Acessibilidade / Reportar erro

Gas exchange and growth of sunflower subjected to saline stress and mineral and organic fertilization1 1 Research developed at Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, CE, Brazil

Trocas gasosas e crescimento de girassol submetido ao estresse salino e adubação mineral e orgânica

ABSTRACT

The frequent use of saline water for crop irrigation, under climatic conditions of semiarid region, can directly affect the physiological processes of plants. However, nutritional management of cultivated plants can influence responses to saline environments. Based on this, the objective of the present study was to evaluate the response of sunflower crops to different electrical conductivities of irrigation water in soil, with and without mineral and organic fertilizers. The experiment was conducted in the experimental area of Universidade Federal do Ceará, Fortaleza, Ceará, Brazil. The experimental design was completely randomized in a 5 × 3 factorial arrangement, with four replicates. The treatments consisted of five levels of electrical conductivity of irrigation water (ECw): 1.1, 2.1, 3.1, 4.1, and 5.1 dS m-1 and three forms of fertilization applied to the soil (M= mineral fertilizer based on NPK, B = goat biofertilizer, and CT = soil without fertilization). The salinity of irrigation water from 2.1 dS m-1 negatively affected plant height, leaf area, stem diameter, and leaf number of sunflower plants and increased leaf temperature. The use of mineral fertilization with NPK and organic goat biofertilizer positively favored growth in the height of plants and number of leaves in relation to the control. Mineral and organic fertilization attenuated the negative effect of saline water on stomatal conductance, transpiration, and the internal concentration of CO2 and provided the highest rate of CO2 assimilation.

Key words:
Helianthus annuus L.; morphophysiology; abiotic stress; organic input; mineral nutrition

RESUMO

A utilização frequente de água salina para irrigação de culturas, sob condições climáticas da região semiárida, pode afetar diretamente os processos fisiológicos das plantas. Entretanto, o manejo nutricional das plantas cultivadas pode influenciar nas respostas ao ambiente salino. Com base nisso, o objetivo do presente estudo foi avaliar a resposta da cultura do girassol a diferente condutividade elétrica da água em solo sem e com fertilizante mineral e orgânico. O experimento foi conduzido na área experimental da Universidade Federal do Ceará, Fortaleza, Ceará. O delineamento foi o inteiramente casualizado, em esquema fatorial 5 × 3, com quatro repetições. Os tratamentos foram compostos por cinco níveis de condutividade elétrica da água de irrigação (CEa): 1,1; 2,1; 3,1; 4,1 e 5,1 dS m-1 e três formas de adubação aplicados ao solo (M = adubação mineral com base em NPK, B = biofertilizante caprino e CT = solo sem adubação). A salinidade da água de irrigação a partir de 2,1 dS m-1 afetou negativamente a altura das plantas, a área foliar, o diâmetro do caule e o número de folhas e aumentou a temperatura da folha. O uso da adubação mineral com NPK e orgânica com biofertilizante caprino favoreceram positivamente o crescimento em altura de plantas e o número de folhas em relação à testemunha. A adubação mineral e a orgânica atenuaram o efeito negativo da água salina na condutância estomática, transpiração e a concentração interna de CO2 e proporcionou maior taxa de assimilação de CO2.

Palavras-chave:
Helianthus annuus L.; morfofisiologia; estresse abiótico; insumo orgânico; nutrição mineral

HIGHLIGHTS:

Electrical conductivity of irrigation water above 2.1 dS m-1 reduces sunflower growth.

The use of mineral and organic fertilizers mitigates the deleterious effect of salts on sunflower crops.

Gas exchange is favored in the presence of organic or mineral fertilizers.

Introduction

Sunflower (Helianthus annuus L.) is an oilseed crop of great importance to the world economy, and its production is highly promoted for its seeds and high quality edible oil. Additionally, sunflower oil can be used as an alternative feedstock for the production of biofuels; therefore, it is both of economic and agronomic interest (Hussain et al., 2018Hussain, S. A.; Farooq, M. A.; Akhtar, J.; Saqib, Z. A. Silicon-mediated growth and yield improvement of sunflower (Helianthus annuus L.) subjected to brackish water stress. Acta Physiologiae Plantarum, v.40, p.1-11, 2018. https://doi.org/10.1007/s11738-018-2755-z
https://doi.org/10.1007/s11738-018-2755-...
).

Agricultural production in semiarid regions requires irrigation for most of the year. However, the frequent use of saline water for crop irrigation, along with the climatic conditions of the region, leads to an increased accumulation of salts in the rhizosphere (Shrivastava & Kumar, 2015Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, v.22, p.123-131, 2015. https://doi.org/10.1016/j.sjbs.2014.12.001
https://doi.org/10.1016/j.sjbs.2014.12.0...
). The high concentration of salts in irrigation water can directly affect the physiological processes of a crop by increasing osmotic stress, causing stomatal closure, which makes the entry of carbon dioxide and water absorption difficult (Silva et al., 2019Silva, S. S. da; Lima, G. S. de; Lima, V. L. A. de; Gheyi, H. R.; Anjos Soares, L. A. dos A.; Lucena, R. C. M. Gas exchanges and production of watermelon plant under salinity management and nitrogen fertilization. Pesquisa Agropecuária Tropical v.49, p.1-10, 2019. http://dx.doi.org/10.1590/1983-40632019v4954822
http://dx.doi.org/10.1590/1983-40632019v...
).

Recent studies have described the benefits of mineral nutrition in plants grown in saline environments. In the sunflower crop, Ashraf et al. (2017Ashraf, M.; Shahzad, S. M.; Akhtar, N.; Imtiaz, M.; Ali, A. Salinization/sodification of soil and physiological dynamics of sunflower irrigated with saline-sodic water amending by potassium and farm yard manure. Journal of Water Reuse and Desalination, v.7, p.476-487, 2017. https://doi.org/10.2166/wrd.2016.053
https://doi.org/10.2166/wrd.2016.053...
) found that potassium fertilization was effective in remediating the effects of salt stress, and Frosi et al. (2018Frosi, G.; Barros, V. A.; Oliveira, M. T.; Santos, M.; Ramos, D. G.; Maia, L. C.; Santos, M. G. Arbuscular mycorrhizal fungi and foliar phosphorus inorganic supply alleviate salt stress effects in physiological attributes, but only arbuscular mycorrhizal fungi increase biomass in woody species of a semiarid environment. Tree physiology, v.38, p.25-36, 2018. https://doi.org/10.1093/treephys/tpx105
https://doi.org/10.1093/treephys/tpx105...
) observed better plant responses with phosphorus fertilization under saline stress. However, studies with nitrogen fertilization did not produce a mitigating effect on saline stress, as reported by Santos et al. (2016Santos, J. B. dos; Guedes Filho, D. H.; Gheyi, H. R.; Lima, G. S. de; Cavalcante, L. F. Irrigation with saline water and nitrogen in production components and yield of sunflower. Revista Caatinga, v.29, p.935-944, 2016.).

Organic fertilization also offers numerous benefits to plants, although with a slower release of mineral elements (Sales et al., 2021Sales, J. R. da S.; Magalhâes, C. L.; Freitas, A. G. S.; Goes, G. F.; Sousa, H. C. de; Sousa, G. G. de. Physiological indices of okra under organomineral fertilization and irrigated with salt water. Revista Brasileira de Engenharia Agrícola e Ambiental , v.25, p.466-471, 2021. http://dx.doi.org/10.1590/1807-1929/agriambi.v25n7p466-471
http://dx.doi.org/10.1590/1807-1929/agri...
), as well as to the physicochemical characteristics of the soil (Ashraf et al., 2017Ashraf, M.; Shahzad, S. M.; Akhtar, N.; Imtiaz, M.; Ali, A. Salinization/sodification of soil and physiological dynamics of sunflower irrigated with saline-sodic water amending by potassium and farm yard manure. Journal of Water Reuse and Desalination, v.7, p.476-487, 2017. https://doi.org/10.2166/wrd.2016.053
https://doi.org/10.2166/wrd.2016.053...
). Some organic sources have been applied to soil irrigated with saline water, as reported by Gomes et al. (2015Gomes, K. R.; Sousa, G. G. de; Lima, F. A.; Viana, T. V. de A.; Azevedo, B. M. de; Silva, G. L. da. Irrigação com água salina na cultura do girassol (Helianthus annuus L.) em solo com biofertilizante bovino. Irriga, v.20, p.680-693, 2015. https://doi.org/10.15809/irriga.2015v20n4p680
https://doi.org/10.15809/irriga.2015v20n...
) using bovine biofertilizer in sunflower, and Souza et al. (2019Souza, M. V. P. de; Sousa, G. G. de; Sales, J. R. da S.; Freire, M. H. da C.; Silva, G. L. da; Viana, T. V. de A. Saline water and biofertilizer from bovine and goat manure in the Lima bean crop. Revista Brasileira de Ciências Agrárias, v.14, p.1-8, 2019. http://dx.doi.org/10.5039/agraria.v14i3a5672
http://dx.doi.org/10.5039/agraria.v14i3a...
) using goat biofertilizer in bean crops.

The objective of the present study was to evaluate the response of sunflower crops to different levels of water salinity in soil, with and without mineral and organic fertilizers.

Material and Methods

The experiment was conducted from September to November 2019 in full sun in the experimental area of the Universidade Federal do Ceará (UFC), Campus do Pici, Fortaleza, Ceará, Brazil (3° 45’ S; 38° 33’ W; 19 m). According to the Köppen classification, the climate of the region is Aw’, which indicates rainy tropical, very hot, with predominant rain from January to May (Alvares et al., 2013Alvares, C. A.; Stape, J. L.; Sentelhas, P. C.; Goncalves, J. L. de M.; Sparovek, G. Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v.22, p.711-728, 2013. http://dx.doi.org/10.1127/0941-2948/2013/0507
http://dx.doi.org/10.1127/0941-2948/2013...
).

The meteorological data obtained during the experimental period are shown in Figure 1.

Figure 1
Mean values of temperature and relative air humidity during the experimental period

The soil used in the experiment was collected from an area close to the site, and classified as Ultisol (USDA, 2014USDA - United States Department of Agriculture - Keys to soil taxonomy. 12.ed. Washington: USDA, 2014. 360p.), which has a sandy-loam texture. The soil was homogenized, sieved with a 4 mm mesh, and characterized in relation to its physicochemical properties (Table 1) at the Soil and Water Laboratory of the Federal University of Ceará, following the methodology recommended by Teixeira et al. (2017Teixeira, P. C.; Donagemma, G. K.; Fontana, A.; Teixeira, W. G. Manual de métodos de análise de solo, 3.ed. Brasília: EMBRAPA, 2017. 573p.).

Table 1
Chemical characteristics of the soil

The sunflower cultivar used was ‘Catissol’ and sowing was conducted in plastic pots, with 14 L capacity that were 26 cm high and 30 cm wide, filled with soil and each containing four seeds at a depth of 2 cm. After establishment of the plants, on the 10th day after sowing (DAS), thinning was performed, leaving the single most vigorous plant per pot.

The experimental design was completely randomized in a 5 × 3 factorial scheme, with four replicates. The treatments were composed of five levels of electrical conductivity of irrigation water (ECw): 1.1 (control well water), 2.1, 3.1, 4.1, and 5.1 dS m-1 and three forms of fertilization applied to the soil (M = mineral fertilizer based on NPK, B = goat biofertilizer, and CT = soil without fertilization).

Fertilization was managed through the application of mineral fertilizer as basal dose and the others in the topdressing, adopting the maximum recommended fertilization dose, according to Freitas et al. (2012Freitas, C. A. S. de; Silva, A. R. A. da; Bezerra, F. M. L.; Andrade, R. R. de; Mota, F. S. B.; Aquino, B. F. de. Crescimento da cultura do girassol irrigado com diferentes tipos de água e adubação nitrogenada. Revista Brasileira de Engenharia Agrícola e Ambiental , v.16, p.1031-1039, 2012. https://doi.org/10.1590/S1415-43662012001000001
https://doi.org/10.1590/S1415-4366201200...
). The supplements were applied in pots of 10, 33, and 15 g, corresponding to 100 kg ha-1 of N, 330 kg ha-1 of P2O5, and 150 kg ha-1 of K2O, using urea (45% N), simple superphosphate (18% P2O5), and potassium chloride (60 K2O), respectively, for a stand of 10 000 plants ha- 1. As the study was conducted only during the growth phase, fertilization appropriate for this period was used (5, 16.5, and 7.5 g of NPK). To complement mineral fertilization, 0.5 g of FTE-BR 12 (9% Zn, 1.8% B, 0.85% Cu, 3% Fe, 2.1% Mn, and 0.10% Mo) per pot was added.

For organic fertilization, goat biofertilizer was used, which was prepared from a mixture of equal parts of fresh goat excreta and water under aerobic fermentation for 30 days in a 300 L plastic container (Souza et al., 2019Souza, M. V. P. de; Sousa, G. G. de; Sales, J. R. da S.; Freire, M. H. da C.; Silva, G. L. da; Viana, T. V. de A. Saline water and biofertilizer from bovine and goat manure in the Lima bean crop. Revista Brasileira de Ciências Agrárias, v.14, p.1-8, 2019. http://dx.doi.org/10.5039/agraria.v14i3a5672
http://dx.doi.org/10.5039/agraria.v14i3a...
), and its chemical characteristics are described in Table 2. The biofertilizer was applied manually two times during the study in a volume corresponding to 2.8 L (10% of the capacity of soil in the plastic pot) with 0.62 g L-1 of N along with 0.62 g L-1 of P, 8.4 g L-1 of K, 165.2 mg L-1 of Fe, 0.2 of Cu, 7.6 mg L-1 of Zn, and 0.16 of g L-1 of Mn per pot.

Table 2
Chemical characteristics of goat biofertilizer with aerobic fermentation

Irrigation was applied manually daily using a graduated container, with a leaching fraction of 15%, using the weighing method described by Puértolas et al. (2017Puértolas, J.; Larsen, E. K.; Davies, W. J.; Dodd, I. C. Applying ‘drought’ to potted plants by maintaining suboptimal soil moisture improves plant water relations. Journal of Experimental Botany, v.68, p.2413-2424, 2017. https://doi.org/10.1093/jxb/erx116
https://doi.org/10.1093/jxb/erx116...
). The water was supplied every 24 hours to maintain the substrate near field capacity.

Irrigation water was prepared by dissolving NaCl, CaCl2.2H2O, and MgCl2.6H2O in an equivalent ratio of 7:2:1, following the relationship between ECw and salt concentration (mmolc L-1 = EC × 10) according to the methodology described by Richards (1954Richards, L. A. Diagnosis and improvement of saline and alkali soils. Washington: US Department of Agriculture, 1954. 160p. USDA Agriculture Handbook, 60).

At 47 DAS, the following growth variables were analyzed: number of leaves (NL) obtained by counting all fully expanded leaves; stem diameter (SD) (at 5 cm from the ground) measured with the help of a digital caliper in mm; plant height (PH), measured with a tape measure in cm; and leaf area (LA) in cm2 using the methodology developed by Maldaner et al. (2009Maldaner, I. C.; Heldwein, A. B.; Loose, L. H.; Lucas, D. D. P.; Guse, F. I.; Bortoluzzi, M. P. Modelos de determinação não-destrutiva da área foliar em girassol. Ciência Rural, v.39, p.1356-1361, 2009. https://doi.org/10.1590/S0103-84782009000500008
https://doi.org/10.1590/S0103-8478200900...
), which only considers the width of the leaf blade (L) of the fully developed leaf, as this is the most accurate method for estimating the leaf area of sunflower.

The following physiological variables were evaluated in the same period in fully expanded leaves: CO2 assimilation rate - A (μmol CO2 m-2 s-1); stomatal conductance - gs (mol H2O m-2); transpiration - E (mmol H2O m-2 s-1); internal CO2 concentration- Ci (μmol mol-1); and leaf temperature - LT (°C) using an infrared gas analyzer (IRGA; LI 6400 XT from LICOR). Measurements were performed in the morning on the youngest fully expanded leaf at an ambient temperature of 32 °C and relative humidity of 65%, under a photosynthetic photon flux density of 1200 μmol m-2 s-1 and air flow rate of 300 mL min-1.

The variables evaluated during the research were analyzed using the Kolmogorov-Smirnov test (p ≤ 0.05) to assess normality. Data were subjected to analysis of variance (ANOVA) using the F test (p ≤ 0.05) and the program Assistant 7.7 Beta (Silva & Azevedo, 2016Silva, F. de A. S.; Azevedo, C. A. V. de. The Assistat Software Version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research, v.11, p.3733-3740, 2016. https://doi.org/10.5897/AJAR2016.11522
https://doi.org/10.5897/AJAR2016.11522...
). When the F test was significant (0.01 or 0.05), the data referring to the electrical conductivities of the water were subjected to regression analysis, and those relating to fertilization were subjected to a means comparison test (Tukey test at 0.05).

Results and Discussion

There was a significant interaction between salinity and fertilization for transpiration, stomatal conductance, and internal CO2 concentration. Besides this, for the CO2 assimilation rate, there was a significant effect for the fertilization factor and leaf temperature, was affected by salinity (Table 3).

Table 3
Summary of the analysis of variance for the variables transpiration (E), stomatal conductance (gs), CO2 assimilation rate (A), CO2 internal concentration (Ci), and leaf temperature (LT) of sunflower under saline stress and fertilization

For transpiration, the quadratic polynomial model showed the best fit (Figure 2A). The treatment with mineral fertilizer provided higher values, with a maximum of 5.11 mmol H2O m-2 s-1 at the electrical conductivity of water of 2.50 dS m-1, followed by the biofertilizer with 4.67 mmol H2O m-2 s-1 at the ECw of 3.63 dS m-1, and the control with 4.46 mmol H2O m-2 s-1 for an ECw of 4.22 dS m-1. The results with organic input and without fertilization are possibly related to less nutritional support during the study phase. Plants under saline stress reduce transpiration as a response mechanism to retain water, thereby maintaining the water potential for easy water absorption, limiting the flow of salts to the shoot (Gomes et al., 2015Gomes, K. R.; Sousa, G. G. de; Lima, F. A.; Viana, T. V. de A.; Azevedo, B. M. de; Silva, G. L. da. Irrigação com água salina na cultura do girassol (Helianthus annuus L.) em solo com biofertilizante bovino. Irriga, v.20, p.680-693, 2015. https://doi.org/10.15809/irriga.2015v20n4p680
https://doi.org/10.15809/irriga.2015v20n...
; Amaral et al., 2021Amaral, A. M.; Bastos, A. V. S.; Santos, M. A. C. M. dos; Teixeira, M. B.; Soares, F. A. L. Respostas fisiológicas do girassol em fase reprodutiva ao estresse hídrico e salino. Revista Research, Society and Development, v.10, p.1-10, 2021. http://dx.doi.org/10.33448/rsd-v10i12.20199
http://dx.doi.org/10.33448/rsd-v10i12.20...
).

Figure 2
Transpiration (A), stomatal conductance (B), and internal CO2 concentration (C) of sunflower plants irrigated with saline water in the soil with mineral fertilization (....), goat biofertilizer (- - -), and without fertilization (___), 47 days after sowing

Frosi et al. (2018Frosi, G.; Barros, V. A.; Oliveira, M. T.; Santos, M.; Ramos, D. G.; Maia, L. C.; Santos, M. G. Arbuscular mycorrhizal fungi and foliar phosphorus inorganic supply alleviate salt stress effects in physiological attributes, but only arbuscular mycorrhizal fungi increase biomass in woody species of a semiarid environment. Tree physiology, v.38, p.25-36, 2018. https://doi.org/10.1093/treephys/tpx105
https://doi.org/10.1093/treephys/tpx105...
) showed that phosphorus application had a positive effect on catingueira plants grown under saline stress and greenhouse conditions. Using an organic source, Gomes et al. (2015Gomes, K. R.; Sousa, G. G. de; Lima, F. A.; Viana, T. V. de A.; Azevedo, B. M. de; Silva, G. L. da. Irrigação com água salina na cultura do girassol (Helianthus annuus L.) em solo com biofertilizante bovino. Irriga, v.20, p.680-693, 2015. https://doi.org/10.15809/irriga.2015v20n4p680
https://doi.org/10.15809/irriga.2015v20n...
) found that the transpiration rate decreased with increasing ECw but with less intensity in treatments containing bovine biofertilizer.

The increase in irrigation water salinity reduced gs, but with reduced intensity with the mineral fertilizer treatment compared to the organic fertilizers (Figure 2B). In the control treatment, adequate adjustment was not possible (y = 1.2156 - 0.216**x R² = 0.57). It is possible that the greater presence of K+ due to mineral fertilization led to high absorption of this element in the inlet channels, causing guard cells to enable greater stomatal opening (Taiz et al., 2017Taiz, L.; Zeiger, E.; Moller, I. M.; Murphy, A. Fisiologia e desenvolvimento vegetal. 6.ed. Porto Alegre: ArtMed, 2017. 888p.).

Costa et al. (2019Costa, F. H. R.; Guilherme, J. M. da. S.; Barbosa, A. da. S.; Canjá, J. F.; Freire M. H. da. C.; Sousa, G. G. de. Água salina e formas de adubação na cultura da abobrinha. Revista Brasileira de Agricultura Irrigada v.13, p. 3757-3764, 2019. https://10.7127/rbai.v13n6001160
https://10.7127/rbai.v13n6001160...
) observed opposite results to those of this study in zucchini plants. Those authors found that stomatal conductance was higher with fertilization using vegetable ash compared to fertilization with NPK as the saline level of the irrigation water increased. In contrast, Souza et al. (2019Souza, M. V. P. de; Sousa, G. G. de; Sales, J. R. da S.; Freire, M. H. da C.; Silva, G. L. da; Viana, T. V. de A. Saline water and biofertilizer from bovine and goat manure in the Lima bean crop. Revista Brasileira de Ciências Agrárias, v.14, p.1-8, 2019. http://dx.doi.org/10.5039/agraria.v14i3a5672
http://dx.doi.org/10.5039/agraria.v14i3a...
) observed deleterious effects of salinity in fava bean plants, but with less intensity in substrates with goat biofertilizer.

The salinity of the irrigation water reduced the internal concentration of CO2, varying from 294.37, 297.48, and 278.89 µmol CO2 m-2 s-1 when using water of 1.1 dS m-1, to 265.45, 260.54, and 273.84 µmol CO2 m-2 s-1 with water of 5.1 dS m-1 for the control, mineral fertilization, and goat biofertilizer, respectively (Figure 2C).

The salinity of the irrigation water reduced the internal concentration of CO2 and the fertilization with an organic source showed that a minimum internal concentration of CO2 of 257.22 µmol CO2 m-2 s-1 was obtained when using water of 3.82 dS m-1, while mineral fertilization revealed 265.45 µmol CO2 m-2 s-1 at the electrical conductivity of 1.1 dS m-1 and the control treatment presented a minimum internal concentration of CO2 of 262.49 µmol CO2 m-2 s-1 with water of 3.28 dS m-1 (Figure 2C). Salt stress causes partial stomatal closure, reduces internal CO2 damage, and causes photochemical damage caused by Na+ and Cl- (Lima et al., 2019Lima, G. S. de; Dias, A. S.; Soares, L. A. dos; Gheyi, H. R.; Nobre, R. G.; Silva, A. A. R. da. Eficiência fotoquímica, partição de fotoassimilados e produção do algodoeiro sob estresse salino e adubação nitrogenada. Revista de Ciências Agrárias, v.42, p.214-225, 2019. https://doi.org/10.19084/RCA18123
https://doi.org/10.19084/RCA18123...
; Silva et al., 2019Silva, S. S. da; Lima, G. S. de; Lima, V. L. A. de; Gheyi, H. R.; Anjos Soares, L. A. dos A.; Lucena, R. C. M. Gas exchanges and production of watermelon plant under salinity management and nitrogen fertilization. Pesquisa Agropecuária Tropical v.49, p.1-10, 2019. http://dx.doi.org/10.1590/1983-40632019v4954822
http://dx.doi.org/10.1590/1983-40632019v...
). A similar result was found by Amaral et al. (2021Amaral, A. M.; Bastos, A. V. S.; Santos, M. A. C. M. dos; Teixeira, M. B.; Soares, F. A. L. Respostas fisiológicas do girassol em fase reprodutiva ao estresse hídrico e salino. Revista Research, Society and Development, v.10, p.1-10, 2021. http://dx.doi.org/10.33448/rsd-v10i12.20199
http://dx.doi.org/10.33448/rsd-v10i12.20...
) for sunflower crops irrigated with saline water.

Figure 3 shows that there was a significant effect only for the fertilization factor for the CO2 assimilation rate, where the highest values of CO2 assimilation rate (17.93 μmol CO2 m-2 s-1) were obtained with the application of mineral fertilization and fertilization with biofertilizer (17.23 μmol CO2 m-2 s-1); these did not differ statistically and were superior to the control (15.3 μmol CO2 m-2 s-1).

Figure 3
CO2 assimilation rate of sunflower plants irrigated with saline water in the soil with mineral fertilization (M), goat biofertilizer (B), and no fertilization (CT), 47 days after sowing

The results of this study show that regardless of the source (mineral or organic) used for sunflower cultivation, fertilization provided nutritional support to increase the photosynthetic rate. However, studies conducted by Gomes et al. (2018Gomes, K. R.; Sousa, G. G. de; Viana, T. V. de A.; Costa, F. R. B.; Azevedo, B. M. de; Sales, J. R. da S. Influência da irrigação e da adubação com fertilizante orgânico e mineral na cultura do girassol. Comunicatae Scientae, v.12, p.2529-2541, 2018. https://doi.org/10.7127/rbai.v12n200798
https://doi.org/10.7127/rbai.v12n200798...
) stated that mineral fertilization resulted in higher CO2 assimilation rates in sunflower plants. In contrast, Souza et al. (2019Souza, M. V. P. de; Sousa, G. G. de; Sales, J. R. da S.; Freire, M. H. da C.; Silva, G. L. da; Viana, T. V. de A. Saline water and biofertilizer from bovine and goat manure in the Lima bean crop. Revista Brasileira de Ciências Agrárias, v.14, p.1-8, 2019. http://dx.doi.org/10.5039/agraria.v14i3a5672
http://dx.doi.org/10.5039/agraria.v14i3a...
) found that the use of bovine biofertilizer as an organic source provided higher CO2 assimilation rate values than those of the control treatment.

The presence of salts in the irrigation water significantly increased (p < 0.05) the leaf temperature from 32.4 to 35.04 °C in the high-salinity water (Figure 4). With each unit increase in ECw, the leaf temperature increased by 2.07%, equivalent to 0.66 ºC. This response was expected, considering that there were reductions in the transpiration of plants under saline stress to avoid greater water losses. Corroborating the present result, Sales et al. (2021Sales, J. R. da S.; Magalhâes, C. L.; Freitas, A. G. S.; Goes, G. F.; Sousa, H. C. de; Sousa, G. G. de. Physiological indices of okra under organomineral fertilization and irrigated with salt water. Revista Brasileira de Engenharia Agrícola e Ambiental , v.25, p.466-471, 2021. http://dx.doi.org/10.1590/1807-1929/agriambi.v25n7p466-471
http://dx.doi.org/10.1590/1807-1929/agri...
) studied the effect of saline stress on okra fertilized with 50% mineral (NPK) + 50% bovine biofertilizer and found an increase in foliar temperature.

Figure 4
Leaf temperature of sunflower plants irrigated with saline water in the soil with mineral fertilization, goat biofertilizer, and without fertilization, 47 days after sowing

According to the analysis of variance (Table 4), there were isolated effects of the irrigation water salinity and fertilization factors for all variables (Table 4). However, none of the variables responded to the effects of the interaction between irrigation water and fertilization.

Table 4
Summary of analysis of variance for number of leaves (NL), stem diameter (SD), plant height (PH), and leaf area (LA) of sunflower under saline stress and fertilization sources

Regression analysis (Figure 5A) showed that the number of leaves was negatively affected by salinity, where the plants suffered reductions of 40.65% in NL from the highest to the lowest salinity. It should be noted that leaves are sensitive organs and are reduced in size and number in the presence of high concentrations of salts, causing reduction or inhibition of cell division and expansion, which can lead to leaf death (Gomes et al. 2015Gomes, K. R.; Sousa, G. G. de; Lima, F. A.; Viana, T. V. de A.; Azevedo, B. M. de; Silva, G. L. da. Irrigação com água salina na cultura do girassol (Helianthus annuus L.) em solo com biofertilizante bovino. Irriga, v.20, p.680-693, 2015. https://doi.org/10.15809/irriga.2015v20n4p680
https://doi.org/10.15809/irriga.2015v20n...
; Taiz et al., 2017Taiz, L.; Zeiger, E.; Moller, I. M.; Murphy, A. Fisiologia e desenvolvimento vegetal. 6.ed. Porto Alegre: ArtMed, 2017. 888p.).

Figure 5
Number of leaves and stem diameter (A and C) irrigated with saline water and under mineral fertilization (M), goat biofertilizer (B), and without fertilization - control (C) of sunflower plants (B and D), 47 days after sowing

The results of this study followed the same trend as that reported by Gomes et al. (2015Gomes, K. R.; Sousa, G. G. de; Lima, F. A.; Viana, T. V. de A.; Azevedo, B. M. de; Silva, G. L. da. Irrigação com água salina na cultura do girassol (Helianthus annuus L.) em solo com biofertilizante bovino. Irriga, v.20, p.680-693, 2015. https://doi.org/10.15809/irriga.2015v20n4p680
https://doi.org/10.15809/irriga.2015v20n...
). Those authors verified that an increase in irrigation water salinity between 0.8 and 6.0 dS m-1 reduced the number of leaves at 45 days after sowing. Similarly, Sousa et al. (2017Sousa, G. G. de; Viana, T. V. de A.; Rebouças Neto, M. de O.; Silva, G. L. da; Azevedo B. M. de; Costa, F. R. B. Características agronômicas do girassol irrigado com águas salinas em substratos com fertilizantes orgânicos. Revista Agrogeoambiental, v.9, p.65-75, 2017. http://dx.doi.org/10.18406/2316-1817v9n12017920
http://dx.doi.org/10.18406/2316-1817v9n1...
) also observed that the number of leaves decreased in sunflower plants when irrigated with water of different salinities.

Figure 5B shows that fertilization with goat biofertilizer and mineral fertilizer did not differ statistically in the average number of leaves (18.75 and 17.10 leaves, respectively), but produced higher numbers than that in the plots without fertilization (12.90 leaves). The superiority of the organic source over the control treatment concerns the presence of essential nutrients for plant growth, such as nitrogen. Nascimento et al. (2019Nascimento, P. dos S.; Alves, L. S.; Paz, V. P. da S. Performance of colored cotton under irrigation water salinity and organic matter dosages. Revista Ambiente & Água, v.14, p.1-9, 2019. https://doi.org/10.4136/ambi-agua.2369
https://doi.org/10.4136/ambi-agua.2369...
) observed that increasing the doses of cattle manure increased the number of leaves of cotton plants grown in pots.

The data of stem diameter (SD) adjusted to the linear regression model (Figure 5C), showed that plants suffered reductions of 14.19% of the stem diameter from higher to lower salinity. For each unit increase in the electrical conductivity of water, SD was reduced by 2.90%. This reduction due to the presence of salts in the irrigation water can be associated with the reduction of available water in the soil, causing the plant to require more energy to absorb water and develop. In a study performed by Travassos et al. (2019Travassos, K. D.; Gheyi, H. R.; Barros, H. M. M.; Soares, F. A. L.; Uyeda, C. A.; Dias, N. da S.; Tavares, M. G.; Chipana-Rivera, R. Water consumption of the sunflower crop irrigated with saline water. DYNA, v.86, p.221-226, 2019. http://dx.doi.org/10.15446/dyna.v86n208.73203
http://dx.doi.org/10.15446/dyna.v86n208....
) on sunflower plants irrigated with water with increasing salinity, a decrease was also observed in stem diameter.

The highest average values of stem diameter were obtained with the use of organic fertilizer (12.22 mm), which differed significantly from the results obtained with the control of 10.8 mm (Figure 5D). Biofertilizers of animal origin, when applied to the soil in liquid form, provide better structural conditions, and consequently, a higher rate of water infiltration and higher release of humic substances into the soil (Azevedo et al., 2021Azevedo, J. de; Viana, T. V. de A.; Gomes, K. R.; Sousa, G. G. de; Azevedo, B. M. de; Chagas, K. L. Gas exchanges in the zucchini culture fertilized with biofertilizers in two types of soil. Comunicata Scientiae, v.12, p.35-62, 2021. https://doi.org/10.14295/CS.v12.3562
https://doi.org/10.14295/CS.v12.3562...
). Sales et al. (2021Sales, J. R. da S.; Magalhâes, C. L.; Freitas, A. G. S.; Goes, G. F.; Sousa, H. C. de; Sousa, G. G. de. Physiological indices of okra under organomineral fertilization and irrigated with salt water. Revista Brasileira de Engenharia Agrícola e Ambiental , v.25, p.466-471, 2021. http://dx.doi.org/10.1590/1807-1929/agriambi.v25n7p466-471
http://dx.doi.org/10.1590/1807-1929/agri...
) concluded that increasing doses of bovine biofertilizer as an organic source applied to okra had positive effects on stem diameter 30 days after transplanting.

Plant height (PH) also decreased with increasing in irrigation water salinity (Figure 6A). With water of 1.1 dS m-1 the average height was 72.74 cm, while plants irrigated with water of 5.1 dS m-1 reached 52.5 cm, which is a reduction of 27.82%. These results relate to the reduction of the osmotic potential, because when the amount of salts in the soil solution is increased, the soil water potential is reduced, and the plants have difficulty absorbing water, which causes a decrease in growth (Gomes et al., 2015Gomes, K. R.; Sousa, G. G. de; Lima, F. A.; Viana, T. V. de A.; Azevedo, B. M. de; Silva, G. L. da. Irrigação com água salina na cultura do girassol (Helianthus annuus L.) em solo com biofertilizante bovino. Irriga, v.20, p.680-693, 2015. https://doi.org/10.15809/irriga.2015v20n4p680
https://doi.org/10.15809/irriga.2015v20n...
; Taiz et al., 2017Taiz, L.; Zeiger, E.; Moller, I. M.; Murphy, A. Fisiologia e desenvolvimento vegetal. 6.ed. Porto Alegre: ArtMed, 2017. 888p.).

Figure 6
Plant height and leaf area (A and C) irrigated with saline water and under mineral fertilization (M), goat biofertilizer (B), and without fertilization - control (C) of sunflower plants at 47 days after sowing

As shown in Figure 6B, mineral fertilization (70.7 cm), as well as fertilization with goat biofertilizer (71.15 cm), promoted greater height in sunflower plants than that of the control treatment (47.55 cm). This superiority may be linked to the greater presence and availability of mineral elements in the fertilized soil, as well as its higher absorption by plants, as it promoted increased foliar expansion (Figure 5B) and CO2 assimilation rate (Figure 3), consequently increasing the energy transfer and distribution of photoassimilates.

Dantas et al. (2015Dantas, M. S. M.; Rolim, M. M.; Duarte, A. de S.; Pedrosa, E. M. R.; Tabosa, J. N.; Dantas, D. da C. Crescimento do girassol adubado com resíduo líquido do processamento de mandioca. Revista Brasileira de Engenharia Agrícola e Ambiental, v.19, p.350-357, 2015. https://doi.org/10.1590/1807-1929/agriambi.v19n4p350-357
https://doi.org/10.1590/1807-1929/agriam...
) working with sunflower plants, cv. Helio 250, showed that liquid residue from cassava processing used as an organic source increased the height of the plants, with maximum values, 60 DAS. In contrast to the present study, Sousa et al. (2017Sousa, G. G. de; Viana, T. V. de A.; Rebouças Neto, M. de O.; Silva, G. L. da; Azevedo B. M. de; Costa, F. R. B. Características agronômicas do girassol irrigado com águas salinas em substratos com fertilizantes orgânicos. Revista Agrogeoambiental, v.9, p.65-75, 2017. http://dx.doi.org/10.18406/2316-1817v9n12017920
http://dx.doi.org/10.18406/2316-1817v9n1...
) used a substrate consisting of sand + sandy soil, organic compost, and bovine and crab biofertilizer and did not find a significant effect of substrates on sunflower plant height.

As observed for plant height, the leaf area was also negatively affected by the increase in salinity of the irrigation water (Figure 6C), and the better adjusted model was a decreasing linear model, showing reductions of 31.27% when irrigated with water of 5.1 dS m-1, compared to ECw of 1.1 dS m-1, and a decrease of 7.2% for each unit increase in water salinity.

Under saline stress conditions, plants decrease leaf expansion to induce a reduction in transpiration rate, thus preventing the absorption of harmful salts, such as sodium and chlorine (Ashraf et al., 2017Ashraf, M.; Shahzad, S. M.; Akhtar, N.; Imtiaz, M.; Ali, A. Salinization/sodification of soil and physiological dynamics of sunflower irrigated with saline-sodic water amending by potassium and farm yard manure. Journal of Water Reuse and Desalination, v.7, p.476-487, 2017. https://doi.org/10.2166/wrd.2016.053
https://doi.org/10.2166/wrd.2016.053...
).

As shown in Figure 6D, mineral fertilizer promoted higher LA (82.83 cm²) compared to goat biofertilizer (65.4 cm²) and the control (65.69 cm²). Mineral fertilizers are readily available for plant uptake, and potassium (K+) maximizes plant cell expansion (Hussain et al., 2018Hussain, S. A.; Farooq, M. A.; Akhtar, J.; Saqib, Z. A. Silicon-mediated growth and yield improvement of sunflower (Helianthus annuus L.) subjected to brackish water stress. Acta Physiologiae Plantarum, v.40, p.1-11, 2018. https://doi.org/10.1007/s11738-018-2755-z
https://doi.org/10.1007/s11738-018-2755-...
) and together with nitrogen (N) and phosphorus (P), provides better plant development. Guedes Filho et al. (2013Guedes Filho, D. H.; Santos, J. B. dos; Gheyi, H. R.; Cavalcante, L. V.; Farias, H. L. de. Biometria do girassol em função da salinidade da água de irrigação e da adubação nitrogenada. Revista Brasileira de Agricultura Irrigada , v.7, p.277-289, 2013. https://doi.org/10.7127/rbai.v7n500174
https://doi.org/10.7127/rbai.v7n500174...
) observed an increase in leaf area in sunflower plants, with increasing doses of nitrogen applied in a conventional way through urea in evaluations conducted at 30 and 40 days after emergence.

Conclusions

  1. The salinity of irrigation water of 2.1 dS m-1 negatively affected plant height, leaf area, stem diameter, and leaf number, and increased leaf temperature in sunflower plants.

  2. The use of mineral fertilization with NPK and organic fertilizer with goat biofertilizer favored growth in plant height and leaf number compared to the control.

  3. Mineral and organic fertilization attenuated the negative effects of saline water on stomatal conductance and transpiration, as well as the internal concentration of CO2, and provided the highest rate of CO2 assimilation.

Literature Cited

  • Alvares, C. A.; Stape, J. L.; Sentelhas, P. C.; Goncalves, J. L. de M.; Sparovek, G. Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v.22, p.711-728, 2013. http://dx.doi.org/10.1127/0941-2948/2013/0507
    » http://dx.doi.org/10.1127/0941-2948/2013/0507
  • Amaral, A. M.; Bastos, A. V. S.; Santos, M. A. C. M. dos; Teixeira, M. B.; Soares, F. A. L. Respostas fisiológicas do girassol em fase reprodutiva ao estresse hídrico e salino. Revista Research, Society and Development, v.10, p.1-10, 2021. http://dx.doi.org/10.33448/rsd-v10i12.20199
    » http://dx.doi.org/10.33448/rsd-v10i12.20199
  • Ashraf, M.; Shahzad, S. M.; Akhtar, N.; Imtiaz, M.; Ali, A. Salinization/sodification of soil and physiological dynamics of sunflower irrigated with saline-sodic water amending by potassium and farm yard manure. Journal of Water Reuse and Desalination, v.7, p.476-487, 2017. https://doi.org/10.2166/wrd.2016.053
    » https://doi.org/10.2166/wrd.2016.053
  • Azevedo, J. de; Viana, T. V. de A.; Gomes, K. R.; Sousa, G. G. de; Azevedo, B. M. de; Chagas, K. L. Gas exchanges in the zucchini culture fertilized with biofertilizers in two types of soil. Comunicata Scientiae, v.12, p.35-62, 2021. https://doi.org/10.14295/CS.v12.3562
    » https://doi.org/10.14295/CS.v12.3562
  • Costa, F. H. R.; Guilherme, J. M. da. S.; Barbosa, A. da. S.; Canjá, J. F.; Freire M. H. da. C.; Sousa, G. G. de. Água salina e formas de adubação na cultura da abobrinha. Revista Brasileira de Agricultura Irrigada v.13, p. 3757-3764, 2019. https://10.7127/rbai.v13n6001160
    » https://10.7127/rbai.v13n6001160
  • Dantas, M. S. M.; Rolim, M. M.; Duarte, A. de S.; Pedrosa, E. M. R.; Tabosa, J. N.; Dantas, D. da C. Crescimento do girassol adubado com resíduo líquido do processamento de mandioca. Revista Brasileira de Engenharia Agrícola e Ambiental, v.19, p.350-357, 2015. https://doi.org/10.1590/1807-1929/agriambi.v19n4p350-357
    » https://doi.org/10.1590/1807-1929/agriambi.v19n4p350-357
  • Freitas, C. A. S. de; Silva, A. R. A. da; Bezerra, F. M. L.; Andrade, R. R. de; Mota, F. S. B.; Aquino, B. F. de. Crescimento da cultura do girassol irrigado com diferentes tipos de água e adubação nitrogenada. Revista Brasileira de Engenharia Agrícola e Ambiental , v.16, p.1031-1039, 2012. https://doi.org/10.1590/S1415-43662012001000001
    » https://doi.org/10.1590/S1415-43662012001000001
  • Frosi, G.; Barros, V. A.; Oliveira, M. T.; Santos, M.; Ramos, D. G.; Maia, L. C.; Santos, M. G. Arbuscular mycorrhizal fungi and foliar phosphorus inorganic supply alleviate salt stress effects in physiological attributes, but only arbuscular mycorrhizal fungi increase biomass in woody species of a semiarid environment. Tree physiology, v.38, p.25-36, 2018. https://doi.org/10.1093/treephys/tpx105
    » https://doi.org/10.1093/treephys/tpx105
  • Gomes, K. R.; Sousa, G. G. de; Lima, F. A.; Viana, T. V. de A.; Azevedo, B. M. de; Silva, G. L. da. Irrigação com água salina na cultura do girassol (Helianthus annuus L.) em solo com biofertilizante bovino. Irriga, v.20, p.680-693, 2015. https://doi.org/10.15809/irriga.2015v20n4p680
    » https://doi.org/10.15809/irriga.2015v20n4p680
  • Gomes, K. R.; Sousa, G. G. de; Viana, T. V. de A.; Costa, F. R. B.; Azevedo, B. M. de; Sales, J. R. da S. Influência da irrigação e da adubação com fertilizante orgânico e mineral na cultura do girassol. Comunicatae Scientae, v.12, p.2529-2541, 2018. https://doi.org/10.7127/rbai.v12n200798
    » https://doi.org/10.7127/rbai.v12n200798
  • Guedes Filho, D. H.; Santos, J. B. dos; Gheyi, H. R.; Cavalcante, L. V.; Farias, H. L. de. Biometria do girassol em função da salinidade da água de irrigação e da adubação nitrogenada. Revista Brasileira de Agricultura Irrigada , v.7, p.277-289, 2013. https://doi.org/10.7127/rbai.v7n500174
    » https://doi.org/10.7127/rbai.v7n500174
  • Hussain, S. A.; Farooq, M. A.; Akhtar, J.; Saqib, Z. A. Silicon-mediated growth and yield improvement of sunflower (Helianthus annuus L.) subjected to brackish water stress. Acta Physiologiae Plantarum, v.40, p.1-11, 2018. https://doi.org/10.1007/s11738-018-2755-z
    » https://doi.org/10.1007/s11738-018-2755-z
  • Lima, G. S. de; Dias, A. S.; Soares, L. A. dos; Gheyi, H. R.; Nobre, R. G.; Silva, A. A. R. da. Eficiência fotoquímica, partição de fotoassimilados e produção do algodoeiro sob estresse salino e adubação nitrogenada. Revista de Ciências Agrárias, v.42, p.214-225, 2019. https://doi.org/10.19084/RCA18123
    » https://doi.org/10.19084/RCA18123
  • Maldaner, I. C.; Heldwein, A. B.; Loose, L. H.; Lucas, D. D. P.; Guse, F. I.; Bortoluzzi, M. P. Modelos de determinação não-destrutiva da área foliar em girassol. Ciência Rural, v.39, p.1356-1361, 2009. https://doi.org/10.1590/S0103-84782009000500008
    » https://doi.org/10.1590/S0103-84782009000500008
  • Nascimento, P. dos S.; Alves, L. S.; Paz, V. P. da S. Performance of colored cotton under irrigation water salinity and organic matter dosages. Revista Ambiente & Água, v.14, p.1-9, 2019. https://doi.org/10.4136/ambi-agua.2369
    » https://doi.org/10.4136/ambi-agua.2369
  • Puértolas, J.; Larsen, E. K.; Davies, W. J.; Dodd, I. C. Applying ‘drought’ to potted plants by maintaining suboptimal soil moisture improves plant water relations. Journal of Experimental Botany, v.68, p.2413-2424, 2017. https://doi.org/10.1093/jxb/erx116
    » https://doi.org/10.1093/jxb/erx116
  • Richards, L. A. Diagnosis and improvement of saline and alkali soils. Washington: US Department of Agriculture, 1954. 160p. USDA Agriculture Handbook, 60
  • Sales, J. R. da S.; Magalhâes, C. L.; Freitas, A. G. S.; Goes, G. F.; Sousa, H. C. de; Sousa, G. G. de. Physiological indices of okra under organomineral fertilization and irrigated with salt water. Revista Brasileira de Engenharia Agrícola e Ambiental , v.25, p.466-471, 2021. http://dx.doi.org/10.1590/1807-1929/agriambi.v25n7p466-471
    » http://dx.doi.org/10.1590/1807-1929/agriambi.v25n7p466-471
  • Sales, J. R. da S.; Souza, M. V. P. de; Sousa, G. G. de; Magalhães, C. L.; Costa, F. H. R.; Viana, T. V. de A. Crescimento e estado nutricional do quiabeiro (Abelmoschus esculentus L.) submetido a adubação com biofertilizantes. Revista Principia v.50. p.198-207, 2020. http://dx.doi.org/10.18265/1517-0306a2020v1n50p198-207
    » http://dx.doi.org/10.18265/1517-0306a2020v1n50p198-207
  • Santos, J. B. dos; Guedes Filho, D. H.; Gheyi, H. R.; Lima, G. S. de; Cavalcante, L. F. Irrigation with saline water and nitrogen in production components and yield of sunflower. Revista Caatinga, v.29, p.935-944, 2016.
  • Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, v.22, p.123-131, 2015. https://doi.org/10.1016/j.sjbs.2014.12.001
    » https://doi.org/10.1016/j.sjbs.2014.12.001
  • Silva, F. de A. S.; Azevedo, C. A. V. de. The Assistat Software Version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research, v.11, p.3733-3740, 2016. https://doi.org/10.5897/AJAR2016.11522
    » https://doi.org/10.5897/AJAR2016.11522
  • Silva, S. S. da; Lima, G. S. de; Lima, V. L. A. de; Gheyi, H. R.; Anjos Soares, L. A. dos A.; Lucena, R. C. M. Gas exchanges and production of watermelon plant under salinity management and nitrogen fertilization. Pesquisa Agropecuária Tropical v.49, p.1-10, 2019. http://dx.doi.org/10.1590/1983-40632019v4954822
    » http://dx.doi.org/10.1590/1983-40632019v4954822
  • Sousa, G. G. de; Viana, T. V. de A.; Rebouças Neto, M. de O.; Silva, G. L. da; Azevedo B. M. de; Costa, F. R. B. Características agronômicas do girassol irrigado com águas salinas em substratos com fertilizantes orgânicos. Revista Agrogeoambiental, v.9, p.65-75, 2017. http://dx.doi.org/10.18406/2316-1817v9n12017920
    » http://dx.doi.org/10.18406/2316-1817v9n12017920
  • Souza, M. V. P. de; Sousa, G. G. de; Sales, J. R. da S.; Freire, M. H. da C.; Silva, G. L. da; Viana, T. V. de A. Saline water and biofertilizer from bovine and goat manure in the Lima bean crop. Revista Brasileira de Ciências Agrárias, v.14, p.1-8, 2019. http://dx.doi.org/10.5039/agraria.v14i3a5672
    » http://dx.doi.org/10.5039/agraria.v14i3a5672
  • Taiz, L.; Zeiger, E.; Moller, I. M.; Murphy, A. Fisiologia e desenvolvimento vegetal. 6.ed. Porto Alegre: ArtMed, 2017. 888p.
  • Teixeira, P. C.; Donagemma, G. K.; Fontana, A.; Teixeira, W. G. Manual de métodos de análise de solo, 3.ed. Brasília: EMBRAPA, 2017. 573p.
  • Travassos, K. D.; Gheyi, H. R.; Barros, H. M. M.; Soares, F. A. L.; Uyeda, C. A.; Dias, N. da S.; Tavares, M. G.; Chipana-Rivera, R. Water consumption of the sunflower crop irrigated with saline water. DYNA, v.86, p.221-226, 2019. http://dx.doi.org/10.15446/dyna.v86n208.73203
    » http://dx.doi.org/10.15446/dyna.v86n208.73203
  • USDA - United States Department of Agriculture - Keys to soil taxonomy. 12.ed. Washington: USDA, 2014. 360p.
  • 1 Research developed at Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, CE, Brazil

Edited by

Editors: Geovani Soares de Lima & Hans Raj Gheyi

Publication Dates

  • Publication in this collection
    08 Aug 2022
  • Date of issue
    Nov 2022

History

  • Received
    15 Feb 2022
  • Accepted
    03 May 2022
  • Published
    13 July 2022
Departamento de Engenharia Agrícola - UFCG Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Campina Grande, PB, Brasil, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com