Acessibilidade / Reportar erro

Microbial-inoculated remineralizers as source of potassium and other nutrients1 1 Research developed at Universidade do Estado de Santa Catarina, Lages, SC, Brazil

Desempenho de remineralizadores inoculados com microrganismos como fonte de potássio e outros nutrientes

ABSTRACT

The consumption of potassium (K) fertilizers in Brazilian agriculture exceeds the national production of this input by more than ten times, indicating the need for alternatives to reduce imports of these products. The objective of this study was to evaluate the performance of the remineralizing rocks phonolite and olivine melilitite as sources of K and other nutrients, as well as the effects of inoculation with Bacillus subtilis and Bacillus megaterium on the solubilization of these rocks in the soil. A greenhouse experiment was conducted using a randomized block design, with four replications, in a factorial arrangement consisting of three K sources (potassium chloride, phonolite, and olivine melilitite), three rates (150, 300, and 600 kg ha-1 K2O), with and without inoculant, and two controls without K (one with and one without inoculant). The experimental units consisted of pots containing 3 kg of soil and a strawberry plant grown for eight months. The treatment with olivine melilitite inoculated with rhizobacteria favored phosphate solubilization when applied the highest rate. Olivine melilitite remineralizer, alone or inoculated with rhizobacteria, increased K+ and Ca2+ contents in the soil when applied at the intermediate and highest rates (300 and 600 kg ha-1 K2O), highlighting this remineralizer as an alternative potassium source for plants.

Key words:
rock dust; potassium fertilization; rhizobacteria

RESUMO

O consumo de fertilizante potássico pela agricultura brasileira supera em mais de dez vezes a produção nacional desse insumo, fato que indica a necessidade de alternativas para diminuir a dependência de sua importação. Diante disso, o objetivo deste trabalho foi avaliar o desempenho dos remineralizadores fonolito e olivina melilitito, como fonte de potássio e outros nutrientes, bem como o efeito da inoculação dessas rochas com as rizobactérias Bacillus subtilis e Bacillus megaterium, no incremento da solubilização destes materiais. O experimento foi realizado em casa de vegetação, sendo conduzido em delineamento blocos casualizados em arranjo fatorial, sendo três fontes (cloreto de potássio, fonolito e olivina melilitito), três doses (150, 300 e 600 kg ha-1 de K2O) com a presença ou ausência da inoculação, além de dois controles, sem adição de potássio, um com e outro sem inoculação, aplicados em 4 repetições. Foram avaliados os teores de potássio e outros nutrientes no solo. O tratamento com olivina melilitito inoculado com rizobactérias favorece a solubilização de fosfato na maior dose. O remineralizador olivina melilitito, isolado ou inoculado com rizobactérias aumentou os teores de K+ e Ca2+ no solo nas doses intermediária e máxima (300 e 600 kg ha-1 de K2O), destacando esse remineralizador como fonte alternativa de potássio para as plantas.

Palavras-chave:
pó de rocha; adubação potássica; rizobactéria

HIGHLIGHTS:

Potassium aluminosilicate mineral weathering depends more on mineral structure than potassi-um content.

Olivine melilitite is a competitive natural source for supplying potassium and calcium to plants.

The BiomaPhos® inoculant enhances phosphate solubilization for plant uptake.

Introduction

Agricultural production is a highly important economic activity in Brazil, but it faces several challenges related to soil fertility management and environmental sustainability (Rabel et al., 2018Rabel, D. O.; Motta, A. C. V.; Barbosa, J. Z.; Melo, V. F.; Prior, S. A. Depth distribution of exchangeable aluminum in acid soils: a study from subtropical Brazil. Acta Scientiarum. Agronomy, v.40, e39320, 2018. https://doi.org/10.4025/actasciagron.v40i1.39320
https://doi.org/10.4025/actasciagron.v40...
). This activity is predominantly carried out under conventional systems, with intensive use of agrochemicals and fast-release fertilizers. However, the efficiency of these fertilizers may be low, as a part of the nutrients is lost by leaching or runoff, affecting their utilization by plants (Resende et al., 2006Resende, Á. V. de; Martins, É. de S.; Oliveira, C. G. de; Sena, M. C. de; Machado, C. T. T.; Kinpara, D. I.; Oliveira Filho, E. C. de. Suprimento de potássio e pesquisa de uso de rochas “in natura” na agricultura brasileira. Revista Espaço e Geografia, v.9, p.19-42, 2006.; Fiedler et al., 2020Fiedler, L.; Zachow, M.; Dotto, M. L. G.; Tagliapietra, O. M.; Bertolini, G. R. F. Produção e mercados do morango orgânico no município de Cascavel (PR). Revista de Extensão e Estudos Rurais, v.9, p.40-59, 2020. https://doi.org/10.36363/rever91202040-59
https://doi.org/10.36363/rever91202040-5...
).

Exclusive use of soluble fertilizers for providing nitrogen (N), phosphorus (P), and potassium (K) to plants can result in reduced availability and absorption of other nutrients, including calcium (Ca) and magnesium (Mg), and micronutrients, which can limit the production of demanding crops such as strawberry (Marschner, 2012Marschner. Marschner’s mineral nutrition of higher plants. Amesterdam: Elsevier/Academic Press, 3.ed. Netherlands 2012. 684p. https://doi.org/10.1017/S001447971100130X
https://doi.org/10.1017/S001447971100130...
).

Considering a scenario of scarcity of nutrient sources, high fertilizer costs, and environmental degradation, the use of soil remineralizers combined with rhizobacteria is an alternative to stimulate plant growth and enhance productivity (Anjanadevi et al., 2016Anjanadevi, I. P.; John, N. S.; John, K. S.; Ieeva, M. L.; Misra, R. S. Rock inhabiting potassium solubilizing bacteria from Kerala, India: Characterization and possibility in chemical K fertilizer substitution. Journal of Basic Microbiology, v.56, p.67-77, 2016. https://doi.org/10.1002/jobm.201500139
https://doi.org/10.1002/jobm.201500139...
; Sattar et al., 2019Sattar, A.; Naveeda, M.; Alia, M.; Zahira, Z.; Nadeemb, S.; Yaseena, M.; Meenac, V. S.; Farooqd, M.; Singhe, R.; Rahmanf, M.; Meena, H. N. Perspectives of potassium solubilizing microbes in sustainable food production system: a review. Applied Soil Ecology, v.133, p.146-159, 2019. https://doi.org/10.1016/j.apsoil.2018.09.012
https://doi.org/10.1016/j.apsoil.2018.09...
; Manning & Theodoro, 2020Manning, D. A.; Theodoro, S. H. Enabling food security through use of local rocks and minerals. The Extractive Industries and Society, v.7, p.480-487, 2020. https://doi.org/10.1016/j.exis.2018.11.002
https://doi.org/10.1016/j.exis.2018.11.0...
).

Despite several studies have been conducted on the use of silicate rock compounds for soil remineralization in cultivation systems, the efficiency of these materials in Brazil is still poorly proven (Silva et al., 2012Silva, A.; Almeida, J.A.; Schmitt, C.; Coelho, C. M. M. Avaliação dos efeitos da aplicação de basalto moído na fertilidade do solo e nutrição de Eucalyptus benthamii. Floresta, v.42, p.69-76, 2012.; Gotz et al., 2019Gotz, L. F.; Castamann, A.; Piovesan, F.; Anzolin, B. L.; Herek, T. A.; Mikoanski, W. M.; Rita, Y. L. Use of rock powder associated with bovine manure in Latossolo Vermelho cultivated with wheat. Revista Brasileira de Agropecuária Sustentável, v.9, p.131-139, 2019. https://doi.org/10.21206/rbas.v9i2.3464
https://doi.org/10.21206/rbas.v9i2.3464...
; Almeida et al., 2022Almeida, J. A. de; Cunha, G. O. M.; Heberle, D. A.; Mafra, Á. L. Potential of olivine melilitite as a soil remineralizer according to particle size and rates. Pesquisa Agropecuária Brasileira, v.57, e01445, 2022. https://doi.org/10.1590/S1678-3921.pab2022.v57.01445
https://doi.org/10.1590/S1678-3921.pab20...
; Brasil et al., 2023Brasil, E. P. F.; Leandro, W. M.; Castro, J. P. V.; de Lima Araújo, I.; Lucas, P. M.; Godoi Araújo, T. Eficiência agronômica de remineralizador granítico K6 na produção de soja e milho silagem. Research, Society and Development, v.12, e10912440545, 2023.), especially regarding their interaction with solubilizing rhizobacteria and the recommended rates of these materials for different crops (Sattar et al., 2019Sattar, A.; Naveeda, M.; Alia, M.; Zahira, Z.; Nadeemb, S.; Yaseena, M.; Meenac, V. S.; Farooqd, M.; Singhe, R.; Rahmanf, M.; Meena, H. N. Perspectives of potassium solubilizing microbes in sustainable food production system: a review. Applied Soil Ecology, v.133, p.146-159, 2019. https://doi.org/10.1016/j.apsoil.2018.09.012
https://doi.org/10.1016/j.apsoil.2018.09...
; Silva et al., 2023Silva, P. H. V.; Souza, A. G. V.; de Araujo, L. D.; Frezarin, E. T.; de Souza, G. V. L.; da Silveira, C. M.; Rigobelo, E. C. Trichoderma harzianum and Bacillus subtilis in association with rock powder for the initial development of maize plants. Agronomy, v.13, p.872, 2023. https://doi.org/10.3390/agronomy13030872
https://doi.org/10.3390/agronomy13030872...
).

In this context, the objective of this study was to evaluate the performance of the remineralizing rocks phonolite and olivine melilitite as sources of potassium and other nutrients, as well as the effects of inoculation with Bacillus subtilis and Bacillus megaterium on the solubilization of these rocks in the soil.

Material and Methods

The experiment was conducted from May to December 2021 in a greenhouse, in Lages, Santa Catarina (SC), Brazil, at the following geographical coordinates: 50° 18’ 10.80” W and 27° 47’ 31.82” S, with a geometric altitude of 920 m in the SIRGAS 2000 coordinate system.

The treatments were designed using a 3 × 3 × 2 factorial arrangement, consisting of a commercial soluble potassium source (KCl) and two powdered rocks (phonolite [Pho] and olivine melilitite [OM], three rates (150, 300, and 600 kg K2O ha-¹), with and without inoculation with rhizobacteria, and two controls (one with and one without inoculation). A randomized block design with four replications was used. The experimental units consisted of polyethylene pots containing 3 kg of soil, each cultivated with a strawberry plant for eight months.

The rock powders were processed from materials collected in Lages and Palmeira, SC. Both rocks were subjected to granulometric and elemental chemical analysis for the quantification of elements/minerals (Table 1).

Table 1
Elemental chemical composition of the rocks

The inoculant used was BiomaPhos®, developed by the Brazilian Agricultural Research Corporation (EMBRAPA); it contains two strains of phosphate-solubilizing rhizobacteria species: Bacillus subtilis (CNPMS B2084) and B. megaterium (CNPMS B119). This inoculant is recommended for seed treatment or direct spraying to sowing furrows (Oliveira et al., 2020Oliveira, P. C. A.; Marriel, I. E.; Gomes, E. A.; Cota, L. V.; Santos, F. C.; Tinoco, S. M. S.; Lana, U. G. P.; Oliveira, M. C.; Mattos, B. B.; Alves, V. M. C.; Ribeiro, V. P.; Vasco Júnior, R. Recomendação agronômica de cepas de Bacillus subtilis (CNPMS B2084) e Bacillus megaterium (CNPMS B119) na cultura do milho. Sete Lagoas: Embrapa Milho e Sorgo, 2020. 18p.). The product has a fluid physical nature, with a density of 1.01 g mL-1 and contains rhizobacteria at concentration (CFU mL-1) of 4×109viable cells mL-1, with a recommended rate of 100 mL ha-1 (Oliveira et al., 2020).

The soil used was a Nitossolo Bruno Distrófico típico, according to the Brazilian Soil Classification System (Santos et al., 2018Santos, H. D.; Jacomine, P.; Anjos, L.; Oliveira, V.; Lumbreras, J.; Coelho, M.; Almeida, J.; Cunha, T.; Oliveira, J. Sistema brasileiro de classificação de solos. 5.ed. Brasília: Embrapa, 2018. 356p. ), corresponding to a Humic Xantic Kandiudox (USDA, 2014USDA - United States Department of Agriculture. Soil Survey Staff. Keys to soil taxonomy. 12.ed. Lincoln: USDA NRCS, 2014. 410p. Available on: Available on: http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/ . Accessed on: Aug. 2023.
http://www.nrcs.usda.gov/wps/portal/nrcs...
). It was collected from the 0-20 cm layer in an area close to the BR-116 highway, in southern Lages. A soil sample was air-dried under greenhouse conditions, ground, passed through 2.0 mm mesh sieves to obtain the bulk soil fraction, and subjected to analysis to determine chemical attributes. The results obtained were: pH in water of 4.95 and pH SMP of 5.12, both determined by potentiometry; organic matter content of 27.8 g kg-¹; exchangeable Ca2+, Mg2+, and Al3+ contents, and potential acidity of 1.25, 0.42, 1.75, and 12.0 cmolc dm-³, respectively; and P and K (Mehlich-1) contents of 3.27 and 85 mg dm-³, respectively. The clay content, determined by the pipette method, was 608 g kg-1. The analyses were carried out following the methodologies described by Tedesco et al. (1995Tedesco, M. J.; Gianello, C.; Bissani, C. A.; Bohnen, H.; Volkweiss, S. J. Análise de solo plantas e outros materiais. Porto Alegre: Universidade Federal do Rio Grande do Sul, 1995. 170p.) and Murphy & Riley (1962Murphy, J.; Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, v.27, p.31-36, 1962.).

Soil preparation for the experiment consisted of application of dolomitic limestone to correct soil acidity to pH 5.5, homogenization of samples, and adjustment of soil moisture to 80% of field capacity, determined by the method of Casaroli & van Lier (2008Casaroli, D.; van Lier, Q. J. Critérios para determinação da capacidade de vaso. Revista Brasileira de Ciência do Solo, v.32, p.59-66, 2008.https://doi.org/10.1590/S0100-06832008000100007
https://doi.org/10.1590/S0100-0683200800...
). At this stage, the treatments with powdered rocks were mixed, and N, P, and micronutrients with soluble fertilizers were applied at 1.5 times the recommended rates in the liming and fertilization manual for growing strawberry crops in the states of Rio Grande do Sul and Santa Catarina (CQFS, 2016CQFS - Comissão de Química e Fertilidade do Solo dos Estados do Rio Grande do Sul e de Santa Catarina. Manual de calagem e adubação para os Estados do Rio Grande do Sul e de Santa Catarina, 2016. Available on: Available on: https://www.sbcs-nrs.org.br/docs/Manual_de_Calagem_e_Adubacao_para_os_Estados_do_RS_e_de_SC-2016.pdf Accessed on: Jun. 2021.
https://www.sbcs-nrs.org.br/docs/Manual_...
).

The pots were weighed every 2 days and manually irrigated with deionized water, maintaining soil moisture close to 80% of the field capacity. The weights corresponding to plant growth in each pot and treatment were discounted for water replacement and moisture control.

The experiment was conducted from May to December 2021, using the strawberry cultivar Pircinque®, which is considered hardy and resistant to soil pathogens (Fagherazzi et al., 2021Fagherazzi, A. F.; Grimaldi, F; Kretzschmar, A.A; Rufato, L; Santos, M.F.S.; Sbrighi, P; Lucchi, P; Baruzzi, G; Faedi, W. Pircinque: new strawberry cultivar for Brazilian producers. Horticultura Brasileira, v.39, p.458-463, 2021. https://doi.org/10.1590/s0102-0536-20210416
https://doi.org/10.1590/s0102-0536-20210...
).

Soil samples were collected by quartering after removing plant roots. These samples were air-dried and ground to obtain the bulk soil. Exchangeable Ca2+, Mg2+, K+, and Al3+ contents were determined using methods described by Tedesco et al. (1995Tedesco, M. J.; Gianello, C.; Bissani, C. A.; Bohnen, H.; Volkweiss, S. J. Análise de solo plantas e outros materiais. Porto Alegre: Universidade Federal do Rio Grande do Sul, 1995. 170p.). P and K contents were determined by Mehlich-1 solution; K contents were also extracted by extraction with 1 mol L-1 ammonium acetate solution at pH 7.0. P was quantified by colorimetry (Murphy & Riley, 1962Murphy, J.; Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, v.27, p.31-36, 1962.), whereas K was quantified by flame photometry.

Statistical analysis of the results was performed using the program SISVAR 5.6 (Ferreira, 2019Ferreira, D. F. Sisvar: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, v.37, p.529-535, 2019. https://doi.org/10.28951/rbb.v37i4.450
https://doi.org/10.28951/rbb.v37i4.450...
). The data were subjected to analysis of variance by the F test, data normality test (Shapiro Wilk), and regression analysis.

Results and Discussion

The analysis of variance showed significant patterns in soil K+ M1 and K+ AA contents, which represent the available potassium extracted by Mehlich 1 and ammonium acetate extractors, respectively (Table 2). Additionally, patterns were found for P, Ca2+, Al3+, and pH CaCl2 in relation to source and rate. However, Mg2+ did not show a significant correlation with the applied rate. Regarding inoculation with rhizobacteria, only K+ M1 and K+ AA had significant variations, whereas P, Ca2+, Mg2+, Al3+, and pH CaCl2 remained consistent. The interaction between source and inoculation was significant for all these elements.

Table 2
Summary of analysis of variance for K+ M1, K+AA, P, Ca²+, Mg²+, Al3+, and pH CaCl2 contents in the soil after strawberry cultivation

Exchangeable potassium contents in the soil increased as the rates of KCl and powdered olivine melilitite remineralizer (OM) were increased, fitting to linear models (Figure 1). K contents increased with increasing KCl rates and were significantly higher than those found with increasing OM rates, as KCl is a soluble fertilizer and OM is a silicate mineral that partially dissolves in the soil. Despite this partial dissolution, this material has potential for use as an alternative K source, as it increased K contents by more than 2 times when using the second and third rates. However, the Pho remineralizer did not increase K contents, indicating that it has a low potential for K solubilization in the soil.

Figure 1
Exchangeable K contents, extracted by Mehlich-1 (A) and ammonium acetate pH 7 (B), in a Humic Xantic Kandiudox soil as a function of KCl, phonolite (Pho), and olivine melilitite (OM) rates, without and with inoculation (IN) with Bacillus subtilis and B. megaterium bacterium

The K+ contents obtained by both extractors were similar, except for the source OM. The Mehlich 1 method resulted in higher K+ values than ammonium acetate. This was also observed by Resende et al. (2006Resende, Á. V. de; Martins, É. de S.; Oliveira, C. G. de; Sena, M. C. de; Machado, C. T. T.; Kinpara, D. I.; Oliveira Filho, E. C. de. Suprimento de potássio e pesquisa de uso de rochas “in natura” na agricultura brasileira. Revista Espaço e Geografia, v.9, p.19-42, 2006.), who highlight that Mehlich-1 can overestimate K contents due to its acidic nature, which favors the dissolution of silicate compounds. However, the literature still lacks information on K+ contents extracted by the acetate method from soils treated with remineralizers.

The lowest K+ contents were found in the control, powdered phonolite (Pho), and Pho+Inoculation (Pho+IN) treatments, regardless of the extractor used, denoting that the solubilization or reactivity of phonolites is very low. Low K+ release in the soil was also observed when Pho was inoculated with rhizobacteria, presenting similar K contents to those in the control. The trend line of K+ content extracted by acetate showed a slight decrease depending on the applied rate. This absence of K+ release by Pho may be due to the greater resistance of its minerals to weathering and the coarser grain size of phonolite compared to olivine melilitite. Cunha & Almeida (2021Cunha, G. O. M.; Almeida, J. A. Productivity of soybean and barley plants cultivated in succession and subjected to different rock powders. Revista Ibero Americana de Ciências Ambientais, v.12, p.59-81, 2021. https://doi.org/10.6008/CBPC2179-6858.2021.009.0006
https://doi.org/10.6008/CBPC2179-6858.20...
) also found a low response for this rock powder in the first crop (common bean), with a slight increase in the second crop (oats), indicating that it requires more time for K release, as also reported by Almeida et al. (2022Almeida, J. A. de; Cunha, G. O. M.; Heberle, D. A.; Mafra, Á. L. Potential of olivine melilitite as a soil remineralizer according to particle size and rates. Pesquisa Agropecuária Brasileira, v.57, e01445, 2022. https://doi.org/10.1590/S1678-3921.pab2022.v57.01445
https://doi.org/10.1590/S1678-3921.pab20...
).

Regarding inoculation with rhizobacteria, no consistent effect was observed, except for the highest OM rate, which increased K+ contents. Microorganisms could contribute to the solubilization of potassium minerals through the production of organic acids (Meena et al., 2014Meena, V. S.; Maurya, B. R.; Verma, J. P. Does a rhizospheric microorganism enhance K+ availability in agricultural soils?. Microbiological research, v.169, p.337-347, 2014. https://doi.org/10.1016/j.micres.2013.09.003
https://doi.org/10.1016/j.micres.2013.09...
). However, this lack of effect may be due to the composition of the tested remineralizing materials. Phonolites contain alkaline feldspars of the sanidine type, in addition to nepheline and clinopyroxenes of the aegirine type, while olivine melilitites predominantly consist of mellilites (approximately 40%), phlogopite (30%), clinopyroxenes (15%), olivine (10%), and opaque minerals (5%).

According to Uroz et al. (2009Uroz, S.; Calvaruso, C.; Turpault, M. P.; Frey-Klett, P. Mineral weathering by bacteria: Ecology, actors and mechanisms. Trends in Microbiology, v.17, p.378-387, 2009. https://doi.org/10.1016/j.tim.2009.05.004
https://doi.org/10.1016/j.tim.2009.05.00...
), redox reactions and production of chelating molecules and organic acids by bacteria can favor the weathering of rocks rich in K+. A study about the effects of bacteria on the solubilization of phonolites in vitro showed a thirteen-fold increase in soluble K rate and a strong positive correlation between the medium acidity and K solubilization (Florentino et al., 2017Florentino, L. A.; Rezende, A. V.; Miranda, C. C. B.; Mesquita, A. C.; Mantovani, J. R.; Bianchini, H. C. Potassium solubilization in phonolite rock by diazotrophic bacteria. Comunicata Scientiae, v.8, p.17-23, 2017. https://doi.org/10.14295/cs.v8i1.1292
https://doi.org/10.14295/cs.v8i1.1292...
). Some microorganisms may also favor the release of K+ from remineralizers in the soil through indirect mechanisms, such as chelation of cations present in silicates and direct adhesion of mineralizing colonies to mineral surfaces (Sattar et al., 2019Sattar, A.; Naveeda, M.; Alia, M.; Zahira, Z.; Nadeemb, S.; Yaseena, M.; Meenac, V. S.; Farooqd, M.; Singhe, R.; Rahmanf, M.; Meena, H. N. Perspectives of potassium solubilizing microbes in sustainable food production system: a review. Applied Soil Ecology, v.133, p.146-159, 2019. https://doi.org/10.1016/j.apsoil.2018.09.012
https://doi.org/10.1016/j.apsoil.2018.09...
). However, there is still a lack of available information on the solubilization of potassium minerals by rhizobacteria.

Mancuso et al. (2014Mancuso, M. A.; Soratto, R. P.; Crusciol, C. A. C.; Castro, G. S. A. Effect of potassium sources and rates on Arabica coffee yield, nutrition, and macronutrient export. Revista Brasileira de Ciência do Solo , v.38, p.1448-1456, 2014. https://doi.org/10.1590/S1678-3921.pab2021.v56.02686
https://doi.org/10.1590/S1678-3921.pab20...
) applied a commercial phonolite rock powder (Ekosil®), containing K-feldspar, andesine, and nepheline, to a Oxisol in Brazil at a rate of 150 kg ha-1 of K2O and found similar coffee yield to that found with application of KCl, in two crop seasons. However, they found that both K+ sources resulted in lower crop yields when using a K2O rate of 300 kg ha-1 compared to those obtained with a rate of 150 kg ha-1, attributing this result to an excess supply of K+ and to imbalances in relation to other nutrients. Furthermore, Tavares et al. (2018Tavares, L. D. F.; Carvalho, A. M. X. de; Camargo, L. G. B.; Pereira, S. G. D. F.; Cardoso, I. M. Nutrients release from powder phonolite mediated by bioweathering actions. International Journal of Recycling of Organic Waste in Agriculture, v.7, p.89-98, 2018. https://doi.org/10.1007/s40093-018-0194-x
https://doi.org/10.1007/s40093-018-0194-...
) evaluated the application of phonolite containing feldspar and feldspathoids (without further specifications on mineralogy) to an Oxisol cultivated with Urochloa decumbens and found no effect of this material on grass yield; however, the treatment with phonolite resulted in a greater residual effect of K+ and Si in the soil compared to that with KCl.

According to Duarte et al. (2013Duarte, W. M.; Mafra, Á. L.; Foresti, M. M.; Piccolla, C. D.; Almeida, J. A. Potencial de olivina melilitito, granito e sienito na disponibilização de potássio em solos. Revista de Ciências Agroveterinárias, v.12, p.68-77, 2013.), the application of olivine melilitite, syenite, and phonolite rocks as sources of K+ can provide benefits, such as increases in soil K+ availability and crop yield. This indicates the potential of this rocks as K sources for soil application, corroborating with the results found for the application of the OM remineralizer in the present work.

Field studies have also shown that the application of rocks containing micas (illite, muscovite, and/or biotite), combined with inoculation with bacterial strains of Bacillus pasteurii, B. cereus, and B. mucilaginosus increases K+ absorption and the yields of wheat, pepper, and peanut crops (Supanjani et al., 2006Supanjani, H. H.; Jung, J.; Lee, K. D. Rock phosphate-potassium and rock solubilising bacteria as alternative, sustainable fertilizers. Agronomy. Sustainable, v.26, p.233- 240, 2006.; Youssef et al., 2010Youssef, G. H.; Seddik, W. M.; Osman, M. A. Efficiency of natural minerals in presence of different nitrogen forms and potassium dissolving bacteria on peanut and sesame yields. The Journal of American Science, v.6, p.647-660, 2010.).

The conventional treatment used in the present work, consisted of KCl, liming, and phosphorus applications, resulted in a slight increase in soil P (Mehlich) content, significantly contrasting with the treatments with phonolite, known for its low P contents. The treatments with powdered rocks resulted in high P contents, especially those with OM; additionally, the inoculant used can solubilize phosphate and the evaluated remineralizing rocks contain P in their mineral matrix. Thus, it is important to consider the possibility that the acid Mehlich extractor can solubilize forms of P not available to plants. This is supported by previous studies and denotes the need for accurate evaluations when interpreting the effectiveness of soil remineralizers in agronomic contexts.

The addition of the OM remineralizer increased soil P availability, especially in the treatments that included bacterial inoculation (Figure 2A). However, this increase was more pronounced at the highest rate. The presence of apatites in the OM composition, combined with the action of organic acids produced by solubilizing bacteria (Uroz et al., 2009Uroz, S.; Calvaruso, C.; Turpault, M. P.; Frey-Klett, P. Mineral weathering by bacteria: Ecology, actors and mechanisms. Trends in Microbiology, v.17, p.378-387, 2009. https://doi.org/10.1016/j.tim.2009.05.004
https://doi.org/10.1016/j.tim.2009.05.00...
; Duarte et al., 2013Duarte, W. M.; Mafra, Á. L.; Foresti, M. M.; Piccolla, C. D.; Almeida, J. A. Potencial de olivina melilitito, granito e sienito na disponibilização de potássio em solos. Revista de Ciências Agroveterinárias, v.12, p.68-77, 2013.), may have contributed to this increase. In this sense, the solubilizing effect of the BiomaPhos® product was confirmed, as shown by Milléo et al. (2023Milléo, M. V. R.; Pandolfo, M.; dos Santos, D. S.; Soares, C. R. F. S.; Moscardi, M. L. Eficiência agronômica de inoculante a base de Bacillus amyloliquefaciens FZB45 para as culturas de milho e soja. Revista Brasileira de Ciências Agrárias, v.18, e2844, 2023.), who reported increased P uptake in soils cultivated with corn and soybeans.

Figure 2
Extractable P (Mehlich 1) and exchangeable Ca2+, Mg2+ and Al3+ contents in a Humic Xantic Kandiudox soil as a function of KCl, phonolite (Pho), and olivine melilitite (OM) rates, with and without inoculation (IN) with Bacillus subtilis and B. megaterium bacterium

Considering that all treatments were subjected to liming for soil acidity correction, Ca2+, Mg2+, and Al3+ contents were affected by the application of the remineralizing powdered rocks, as shown in Figures 2B, C, and D, respectively. Ca2+ and Mg2+ contents increased from 1.25 and 0.42 to values ranging between 5 and 5.5 and between 2 and 2.5 cmolc dm-3, respectively, in all treatments. However, little change in their contents was found when using KCl and Pho as K sources, denoting the limited effectiveness of phonolite in supplying Ca2+ and Mg2+ to the soil. However, increasing OM rates, applied alone or combined with inoculation, resulted in a significant increase in Ca contents, with contents surpassing those in the treatments with Pho. This denotes the effectiveness of OM in making Ca available.

The OM remineralizer did not increase Mg2+ contents, despite the presence of olivine, pyroxenes, and phlogopite in its mineral composition. This indicates that, although OM is rich in Mg, there may be soil factors preventing its effective release; thus, further investigation is needed.

Al3+ contents decreased from 1.75 to values between 0.5 and 0.55 cmolc dm-3 after liming, as expected. However, the OM+IN treatment resulted in additional reducion, indicating positive interaction between the remineralizer and inoculation. This result indicates that combining remineralizers with inoculants might be an effective approach for soil management.

The results of pH evaluations (preferably in a 0.01M CaCl2 solution) are essential to explain the observed increases in Ca2+ and decreases in Al3+ (Figure 3). The different pH levels found for the evaluated treatments can be explained by differences in the chemical and mineralogical properties of the studied rocks, as the ultramafic rock is an alkaline igneous rock, while phlogopite is a metamorphic rock. These intrinsic characteristics can affect the ability of microorganisms to solubilize minerals, resulting in variations in soil pH.

Figure 3
Contents of exchangeable pH (CaCl2) in a Humic Xantic Kandiudox soil as a function of KCl, phonolite (Pho), and olivine melilitite (OM) rates, with and without inoculation (IN) with Bacillus subtilis and B. megaterium bacterium

The results found under greenhouse conditions indicated that the application of olivine melilitite remineralizer provides agronomic and environmental benefits, as it releases nutrients slowly, potentially reducing leaching and environmental impact compared to synthetic fertilizers. Its combination with bacterial inoculants might enhance these benefits. However, these findings should be validated under field conditions, considering environmental variables and farming practices.

Conclusions

  1. The remineralizing rock olivine melilite increases exchangeable K+ and Ca2+ contents in the soil and their availability to plants, mainly when inoculated with the rhizobacteria Bacillus Subtilis and Bacillus Megaterium. However, phonolite rock does not have this effect.

  2. Olivine melilitite may have potential to release phosphorus in the soil, increasing its availability to plants. However, this contribution might not be as significant as initially thought. The source of this released phosphorus can be attributed to minerals such as apatite.

  3. The positive interaction between olivine melilitite and specific strains of rhizobacteria increases soil nutrient contents, contrasting with the limited impact of phonolite. This highlights the importance of selecting the right combination of powdered rock and bacteria for an optimal soil remineralization.

Acknowledgements

To the Universidade do Estado de Santa Catarina - UDESC - Lages and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES for the research support.

Literature Cited

  • Almeida, J. A. de; Cunha, G. O. M.; Heberle, D. A.; Mafra, Á. L. Potential of olivine melilitite as a soil remineralizer according to particle size and rates. Pesquisa Agropecuária Brasileira, v.57, e01445, 2022. https://doi.org/10.1590/S1678-3921.pab2022.v57.01445
    » https://doi.org/10.1590/S1678-3921.pab2022.v57.01445
  • Anjanadevi, I. P.; John, N. S.; John, K. S.; Ieeva, M. L.; Misra, R. S. Rock inhabiting potassium solubilizing bacteria from Kerala, India: Characterization and possibility in chemical K fertilizer substitution. Journal of Basic Microbiology, v.56, p.67-77, 2016. https://doi.org/10.1002/jobm.201500139
    » https://doi.org/10.1002/jobm.201500139
  • Brasil, E. P. F.; Leandro, W. M.; Castro, J. P. V.; de Lima Araújo, I.; Lucas, P. M.; Godoi Araújo, T. Eficiência agronômica de remineralizador granítico K6 na produção de soja e milho silagem. Research, Society and Development, v.12, e10912440545, 2023.
  • Casaroli, D.; van Lier, Q. J. Critérios para determinação da capacidade de vaso. Revista Brasileira de Ciência do Solo, v.32, p.59-66, 2008.https://doi.org/10.1590/S0100-06832008000100007
    » https://doi.org/10.1590/S0100-06832008000100007
  • CQFS - Comissão de Química e Fertilidade do Solo dos Estados do Rio Grande do Sul e de Santa Catarina. Manual de calagem e adubação para os Estados do Rio Grande do Sul e de Santa Catarina, 2016. Available on: Available on: https://www.sbcs-nrs.org.br/docs/Manual_de_Calagem_e_Adubacao_para_os_Estados_do_RS_e_de_SC-2016.pdf Accessed on: Jun. 2021.
    » https://www.sbcs-nrs.org.br/docs/Manual_de_Calagem_e_Adubacao_para_os_Estados_do_RS_e_de_SC-2016.pdf
  • Cunha, G. O. M.; Almeida, J. A. Productivity of soybean and barley plants cultivated in succession and subjected to different rock powders. Revista Ibero Americana de Ciências Ambientais, v.12, p.59-81, 2021. https://doi.org/10.6008/CBPC2179-6858.2021.009.0006
    » https://doi.org/10.6008/CBPC2179-6858.2021.009.0006
  • Duarte, W. M.; Mafra, Á. L.; Foresti, M. M.; Piccolla, C. D.; Almeida, J. A. Potencial de olivina melilitito, granito e sienito na disponibilização de potássio em solos. Revista de Ciências Agroveterinárias, v.12, p.68-77, 2013.
  • Fagherazzi, A. F.; Grimaldi, F; Kretzschmar, A.A; Rufato, L; Santos, M.F.S.; Sbrighi, P; Lucchi, P; Baruzzi, G; Faedi, W. Pircinque: new strawberry cultivar for Brazilian producers. Horticultura Brasileira, v.39, p.458-463, 2021. https://doi.org/10.1590/s0102-0536-20210416
    » https://doi.org/10.1590/s0102-0536-20210416
  • Ferreira, D. F. Sisvar: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, v.37, p.529-535, 2019. https://doi.org/10.28951/rbb.v37i4.450
    » https://doi.org/10.28951/rbb.v37i4.450
  • Fiedler, L.; Zachow, M.; Dotto, M. L. G.; Tagliapietra, O. M.; Bertolini, G. R. F. Produção e mercados do morango orgânico no município de Cascavel (PR). Revista de Extensão e Estudos Rurais, v.9, p.40-59, 2020. https://doi.org/10.36363/rever91202040-59
    » https://doi.org/10.36363/rever91202040-59
  • Florentino, L. A.; Rezende, A. V.; Miranda, C. C. B.; Mesquita, A. C.; Mantovani, J. R.; Bianchini, H. C. Potassium solubilization in phonolite rock by diazotrophic bacteria. Comunicata Scientiae, v.8, p.17-23, 2017. https://doi.org/10.14295/cs.v8i1.1292
    » https://doi.org/10.14295/cs.v8i1.1292
  • Gotz, L. F.; Castamann, A.; Piovesan, F.; Anzolin, B. L.; Herek, T. A.; Mikoanski, W. M.; Rita, Y. L. Use of rock powder associated with bovine manure in Latossolo Vermelho cultivated with wheat. Revista Brasileira de Agropecuária Sustentável, v.9, p.131-139, 2019. https://doi.org/10.21206/rbas.v9i2.3464
    » https://doi.org/10.21206/rbas.v9i2.3464
  • Mancuso, M. A.; Soratto, R. P.; Crusciol, C. A. C.; Castro, G. S. A. Effect of potassium sources and rates on Arabica coffee yield, nutrition, and macronutrient export. Revista Brasileira de Ciência do Solo , v.38, p.1448-1456, 2014. https://doi.org/10.1590/S1678-3921.pab2021.v56.02686
    » https://doi.org/10.1590/S1678-3921.pab2021.v56.02686
  • Manning, D. A.; Theodoro, S. H. Enabling food security through use of local rocks and minerals. The Extractive Industries and Society, v.7, p.480-487, 2020. https://doi.org/10.1016/j.exis.2018.11.002
    » https://doi.org/10.1016/j.exis.2018.11.002
  • Marschner. Marschner’s mineral nutrition of higher plants. Amesterdam: Elsevier/Academic Press, 3.ed. Netherlands 2012. 684p. https://doi.org/10.1017/S001447971100130X
    » https://doi.org/10.1017/S001447971100130X
  • Meena, V. S.; Maurya, B. R.; Verma, J. P. Does a rhizospheric microorganism enhance K+ availability in agricultural soils?. Microbiological research, v.169, p.337-347, 2014. https://doi.org/10.1016/j.micres.2013.09.003
    » https://doi.org/10.1016/j.micres.2013.09.003
  • Milléo, M. V. R.; Pandolfo, M.; dos Santos, D. S.; Soares, C. R. F. S.; Moscardi, M. L. Eficiência agronômica de inoculante a base de Bacillus amyloliquefaciens FZB45 para as culturas de milho e soja. Revista Brasileira de Ciências Agrárias, v.18, e2844, 2023.
  • Murphy, J.; Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, v.27, p.31-36, 1962.
  • Oliveira, P. C. A.; Marriel, I. E.; Gomes, E. A.; Cota, L. V.; Santos, F. C.; Tinoco, S. M. S.; Lana, U. G. P.; Oliveira, M. C.; Mattos, B. B.; Alves, V. M. C.; Ribeiro, V. P.; Vasco Júnior, R. Recomendação agronômica de cepas de Bacillus subtilis (CNPMS B2084) e Bacillus megaterium (CNPMS B119) na cultura do milho. Sete Lagoas: Embrapa Milho e Sorgo, 2020. 18p.
  • Rabel, D. O.; Motta, A. C. V.; Barbosa, J. Z.; Melo, V. F.; Prior, S. A. Depth distribution of exchangeable aluminum in acid soils: a study from subtropical Brazil. Acta Scientiarum. Agronomy, v.40, e39320, 2018. https://doi.org/10.4025/actasciagron.v40i1.39320
    » https://doi.org/10.4025/actasciagron.v40i1.39320
  • Resende, Á. V. de; Martins, É. de S.; Oliveira, C. G. de; Sena, M. C. de; Machado, C. T. T.; Kinpara, D. I.; Oliveira Filho, E. C. de. Suprimento de potássio e pesquisa de uso de rochas “in natura” na agricultura brasileira. Revista Espaço e Geografia, v.9, p.19-42, 2006.
  • Santos, H. D.; Jacomine, P.; Anjos, L.; Oliveira, V.; Lumbreras, J.; Coelho, M.; Almeida, J.; Cunha, T.; Oliveira, J. Sistema brasileiro de classificação de solos. 5.ed. Brasília: Embrapa, 2018. 356p.
  • Sattar, A.; Naveeda, M.; Alia, M.; Zahira, Z.; Nadeemb, S.; Yaseena, M.; Meenac, V. S.; Farooqd, M.; Singhe, R.; Rahmanf, M.; Meena, H. N. Perspectives of potassium solubilizing microbes in sustainable food production system: a review. Applied Soil Ecology, v.133, p.146-159, 2019. https://doi.org/10.1016/j.apsoil.2018.09.012
    » https://doi.org/10.1016/j.apsoil.2018.09.012
  • Silva, A.; Almeida, J.A.; Schmitt, C.; Coelho, C. M. M. Avaliação dos efeitos da aplicação de basalto moído na fertilidade do solo e nutrição de Eucalyptus benthamii Floresta, v.42, p.69-76, 2012.
  • Silva, P. H. V.; Souza, A. G. V.; de Araujo, L. D.; Frezarin, E. T.; de Souza, G. V. L.; da Silveira, C. M.; Rigobelo, E. C. Trichoderma harzianum and Bacillus subtilis in association with rock powder for the initial development of maize plants. Agronomy, v.13, p.872, 2023. https://doi.org/10.3390/agronomy13030872
    » https://doi.org/10.3390/agronomy13030872
  • Supanjani, H. H.; Jung, J.; Lee, K. D. Rock phosphate-potassium and rock solubilising bacteria as alternative, sustainable fertilizers. Agronomy. Sustainable, v.26, p.233- 240, 2006.
  • Tavares, L. D. F.; Carvalho, A. M. X. de; Camargo, L. G. B.; Pereira, S. G. D. F.; Cardoso, I. M. Nutrients release from powder phonolite mediated by bioweathering actions. International Journal of Recycling of Organic Waste in Agriculture, v.7, p.89-98, 2018. https://doi.org/10.1007/s40093-018-0194-x
    » https://doi.org/10.1007/s40093-018-0194-x
  • Tedesco, M. J.; Gianello, C.; Bissani, C. A.; Bohnen, H.; Volkweiss, S. J. Análise de solo plantas e outros materiais. Porto Alegre: Universidade Federal do Rio Grande do Sul, 1995. 170p.
  • Uroz, S.; Calvaruso, C.; Turpault, M. P.; Frey-Klett, P. Mineral weathering by bacteria: Ecology, actors and mechanisms. Trends in Microbiology, v.17, p.378-387, 2009. https://doi.org/10.1016/j.tim.2009.05.004
    » https://doi.org/10.1016/j.tim.2009.05.004
  • USDA - United States Department of Agriculture. Soil Survey Staff. Keys to soil taxonomy. 12.ed. Lincoln: USDA NRCS, 2014. 410p. Available on: Available on: http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/ Accessed on: Aug. 2023.
    » http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
  • Youssef, G. H.; Seddik, W. M.; Osman, M. A. Efficiency of natural minerals in presence of different nitrogen forms and potassium dissolving bacteria on peanut and sesame yields. The Journal of American Science, v.6, p.647-660, 2010.
  • 1 Research developed at Universidade do Estado de Santa Catarina, Lages, SC, Brazil

Edited by

Editors: Geovani Soares de Lima & Hans Raj Gheyi

Publication Dates

  • Publication in this collection
    22 Dec 2023
  • Date of issue
    Feb 2024

History

  • Received
    28 May 2023
  • Accepted
    11 Oct 2023
  • Published
    24 Nov 2023
Unidade Acadêmica de Engenharia Agrícola Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Campina Grande, PB, Brasil, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com