Acessibilidade / Reportar erro

Evaluating enzyme replacement therapies for Anderson-Fabry disease: commentary on a recent report

Abstract

Anderson-Fabry disease (AFD) is a rare lysosomal storage disorder. Randomized controlled clinical trials (RCTs) are preferred as the highest category of evidence, but limited availability of robust evidence in rare diseases may necessitate the use of less rigorous evidence. An analysis of cohort studies of enzyme replacement therapies for AFD published in 2017 by El Dib and coworkers made treatment recommendations that contradict previously published findings from RCTs and a systematic Cochrane review. Our commentary outlines concerns regarding selection criteria and statistical methods with their analysis.

Keywords:
Agalsidase alfa; agalsidase beta; Anderson-Fabry disease; enzyme replacement therapy

Anderson-Fabry disease (AFD) is a rare, inherited, lysosomal storage disorder with serious, progressive, systemic effects that frequently lead to premature mortality (MacDermot et al., 2001aMacDermot KD, Holme A and Miners AH (2001a) Anderson-Fabry disease: Clinical manifestations and impact of disease in a cohort of 98 hemizygous males. J Med Genet 38:750-760.,bMacDermot KD, Holmes A and Miners AH (2001b) Anderson-Fabry disease: Clinical manifestations and impact of disease in a cohort of 60 obligate carrier females. J Med Genet 38:769-775.). Meta-analyses of high-quality randomized controlled clinical trials (RCTs) are generally considered the most rigorous category of evidence for the assessment of therapies (Barton, 2000Barton S (2000) Which clinical studies provide the best evidence? The best RCT still trumps the best observational study. BMJ 321:255-256.; Day, 2010Day S (2010) Evidence-based medicine and rare diseases. Adv Exp Med Biol 686:41-53.), but in rare diseases such as AFD, resource limitations and other practical considerations frequently limit their availability (Day, 2010Day S (2010) Evidence-based medicine and rare diseases. Adv Exp Med Biol 686:41-53.). When evidence from high-quality RCTs is lacking, less rigorous evidence may be used, including results from observational studies and case reports, together with expert opinion (Day, 2010Day S (2010) Evidence-based medicine and rare diseases. Adv Exp Med Biol 686:41-53.).

Comparative data for the two enzyme replacement therapies (ERTs) currently available for AFD, agalsidase alfa and agalsidase beta, are scarce and represented by the Canadian Fabry Disease Initiative, which is an ongoing, long-term, controlled, randomized, head-to-head clinical comparison of the two ERTs (Sirrs et al., 2014Sirrs SM, Bichet DG, Casey R, Clarke JT, Lemoine K, Doucette S, West ML and CFDI Investigators (2014) Outcomes of patients treated through the Canadian Fabry disease initiative. Mol Genet Metab 111:499-506.), and a Cochrane systematic review of RCTs (El Dib et al., 2016El Dib R, Gomaa H, Carvalho RP, Camargo SE, Bazan R, Barretti P and Barreto FC (2016) Enzyme replacement therapy for Anderson-Fabry disease. Cochrane Database Syst Rev 7:CD006663.). These analyses found no notable differences in outcomes between the two ERTs (El Dib et al., 2016El Dib R, Gomaa H, Carvalho RP, Camargo SE, Bazan R, Barretti P and Barreto FC (2016) Enzyme replacement therapy for Anderson-Fabry disease. Cochrane Database Syst Rev 7:CD006663.; Sirrs et al., 2014Sirrs SM, Bichet DG, Casey R, Clarke JT, Lemoine K, Doucette S, West ML and CFDI Investigators (2014) Outcomes of patients treated through the Canadian Fabry disease initiative. Mol Genet Metab 111:499-506.). In contrast to these reports, El Dib and coworkers subsequently published results of a pooled analysis of proportions from cohort studies and concluded that treatment with agalsidase beta should be recommended over agalsidase alfa (El Dib et al., 2017El Dib R, Gomaa H, Ortiz A, Politei J, Kapoor A and Barreto F (2017) Enzyme replacement therapy for Anderson-Fabry disease: A complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PLoS One 12:e0173358.). We are writing this commentary to raise our serious concerns about their methodological approach and validity of the conclusions. As these conclusions include overt recommendations about treatment management decisions, we feel that it is important to minimize potential misunderstandings among clinicians involved in the management of patients with AFD.

Although the stated objective of the El Dib et al. (2017)El Dib R, Gomaa H, Ortiz A, Politei J, Kapoor A and Barreto F (2017) Enzyme replacement therapy for Anderson-Fabry disease: A complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PLoS One 12:e0173358. analysis was to evaluate the efficacy and safety of ERT for AFD, in our opinion, the authors used an inappropriate methodological approach that does not allow conclusions to be drawn about the relative efficacy of the two available ERTs for AFD. As noted above, the conclusions in the 2017 El Dib manuscript also contradict the findings published in 2016 by the same first author, using the Cochrane Institute’s systematic review process to analyze results from RCTs (El Dib et al., 2016El Dib R, Gomaa H, Carvalho RP, Camargo SE, Bazan R, Barretti P and Barreto FC (2016) Enzyme replacement therapy for Anderson-Fabry disease. Cochrane Database Syst Rev 7:CD006663.), as well as the results from the Canadian Fabry Disease Initiative. We believe it is important that the scientific community and practicing physicians should have a clear understanding that the 2017 El Dib publication does not apply the well-established Cochrane methodology (Higgins et al., 2016Higgins JPT, Lasserson T, Chandler J, Tovey D and Churchill R (2016) Methodological Expectations of Cochrane Intervention Reviews. Cochrane, London, 69 p.), despite the mention of Cochrane in the article title. This inclusion of “Cochrane” in the article title may be misleading, as it suggests that the paper is a Cochrane review. A number of specific concerns relating to outcome measures in the 2017 El Dib analysis are detailed in Table 1.

Table 1
Specific comments relating to outcome measures described in the 2017 analysis by El Dib and coworkers.

The authors included 77 cohort studies (represented by 135 individual references) involving 15,305 participants in their “qualitative synthesis” (El Dib et al., 2017El Dib R, Gomaa H, Ortiz A, Politei J, Kapoor A and Barreto F (2017) Enzyme replacement therapy for Anderson-Fabry disease: A complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PLoS One 12:e0173358.). The majority of the included studies (79.2%; n=61) were available as full-text articles and 20.8% (n=16) were reported only in abstract form. Although the original authors, including Christoph Kampmann (one of the authors of this current commentary), were contacted in cases of multiple publications from the same study, only nine responses are included in the supporting information provided with the El Dib et al. (2017El Dib R, Gomaa H, Ortiz A, Politei J, Kapoor A and Barreto F (2017) Enzyme replacement therapy for Anderson-Fabry disease: A complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PLoS One 12:e0173358.) publication. Of these nine responses, potential overlap in patient populations was identified by six of the original authors (covering a total of 23 publications). Although some information is provided about how such potential duplicate reporting of patient data was addressed, the selection of studies to be included appears to have been driven by practical rather than scientific or statistical considerations (e.g., numbers of patients reported, availability of full-text reports).

In the Results section of the abstract (El Dib et al., 2017El Dib R, Gomaa H, Ortiz A, Politei J, Kapoor A and Barreto F (2017) Enzyme replacement therapy for Anderson-Fabry disease: A complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PLoS One 12:e0173358.), it is stated that “77 cohort studies involving 15,305 participants proved eligible”. However, in the “Strengths and Limitations” section of the Discussion section, it is clarified that “out of the 77 cohort studies we were only able to include data in the meta-analysis from 39 (50.6%).” The proportion quoted (50.6%) relates to the number of studies/cohorts (i.e., 39 out of 77), whereas it would have been more informative to state the proportion of patients (rather than studies/cohorts) included in the quantitative analysis. The number of patients (and their baseline characteristics) in the 39 included studies is unknown.

In contrast to their initial Cochrane review (El Dib et al., 2016El Dib R, Gomaa H, Carvalho RP, Camargo SE, Bazan R, Barretti P and Barreto FC (2016) Enzyme replacement therapy for Anderson-Fabry disease. Cochrane Database Syst Rev 7:CD006663.), which focused on data from RCTs, the authors specifically excluded these studies from the 2017 analysis (El Dib et al., 2017El Dib R, Gomaa H, Ortiz A, Politei J, Kapoor A and Barreto F (2017) Enzyme replacement therapy for Anderson-Fabry disease: A complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PLoS One 12:e0173358.). Data from RCTs are more likely to be clinically robust than those from nonrandomized studies/cohorts, which are the focus of the 2017 El Dib analysis. Important and relevant safety parameters (such as infusion-related reactions and the development of antidrug antibodies) were also excluded from the analysis.

The supporting information provided with the El Dib et al. (2017)El Dib R, Gomaa H, Ortiz A, Politei J, Kapoor A and Barreto F (2017) Enzyme replacement therapy for Anderson-Fabry disease: A complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PLoS One 12:e0173358. paper illustrates the considerable variation in inclusion and exclusion criteria between the selected cohort studies. The pooling of results from this highly heterogeneous population is of questionable value and makes it extremely difficult to apply the overall conclusions from the analysis to specific patient groups. For example, the different studies/cohorts included variable proportions of patients who might be expected to be at increased risk for AFD-related events, such as patients with end-stage renal disease or with a history of stroke prior to treatment. It would have been useful if the authors had provided more detailed information on each study/cohort selected, in particular the precise number of patients concerned plus a brief description of the study design. Another variable that is not included in the analysis is the date when the individual studies/cohorts started – this is also likely to have an impact on patient outcomes, as standards of care continue to evolve.

Although the authors state that 39 studies/cohorts were included in their quantitative synthesis (El Dib et al., 2017El Dib R, Gomaa H, Ortiz A, Politei J, Kapoor A and Barreto F (2017) Enzyme replacement therapy for Anderson-Fabry disease: A complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PLoS One 12:e0173358.), data from only 16 were used in the comparisons of agalsidase beta (maximum of four studies/cohorts) and agalsidase alfa (12 studies/cohorts). Given the number of studies included, there is clearly the potential for selection bias in the comparisons of efficacy based on the four outcomes considered (all-cause mortality, renal complications, cardiovascular complications, and cerebrovascular complications), with only four studies/cohorts used to demonstrate the efficacy of agalsidase beta versus 12 studies/cohorts for agalsidase alfa (three versus nine, if pediatric studies are excluded). In addition, the largest real-world analysis to date examining renal, cardiac, morbidity, and mortality outcomes from over 600 patients (Beck et al., 2015Beck M, Hughes D, Kampmann C, Larroque S, Mehta A, Pintos-Morell G, Ramaswami U, West M, Wijatyk A, Giugliani R, et al. (2015) Long-term effectiveness of agalsidase alfa enzyme replacement in Fabry disease: A Fabry Outcome Survey analysis. Mol Genet Metab Rep 3:21-27.) was not included in the 2017 El Dib analysis, raising the question of selection bias.

Furthermore, the studies/cohorts used to demonstrate the efficacy of agalsidase beta (El Dib et al., 2017El Dib R, Gomaa H, Ortiz A, Politei J, Kapoor A and Barreto F (2017) Enzyme replacement therapy for Anderson-Fabry disease: A complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PLoS One 12:e0173358.) included one large study (n=1044 patients) and two very small studies (n=9), plus a pediatric study of 15 patients, which does not allow a relevant analysis of heterogeneity. For example, for the renal complications outcome measure only the large study is used, which automatically prevents the calculation of the I2 measure of heterogeneity. By contrast, the size of the studies/cohorts used to demonstrate the efficacy of agalsidase alfa ranged from seven to 336 patients (average of 79 patients, excluding the three pediatric studies), which allowed the heterogeneity of the data involved in this pooled analysis of proportions to be estimated.

The authors describe their analysis as a “proportional meta-analysis” in the Methods section (El Dib et al., 2017El Dib R, Gomaa H, Ortiz A, Politei J, Kapoor A and Barreto F (2017) Enzyme replacement therapy for Anderson-Fabry disease: A complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PLoS One 12:e0173358.). The correct terminology for this type of analysis (as used in the title and abstract) is “pooled analysis of proportions.” The results obtained from this pooled analysis of proportions are based on aggregate data, which are less desirable than patient-level data. The use of aggregate data in this instance limits the analysis performed for the “simple linear regressions and analysis of variance”, as this type of regression analysis is only informative when the effect of potential confounding factors can be assessed, which was not the case here.

Asymmetry or gaps in the mortality plots included in the publication El Dib et al. (2017)El Dib R, Gomaa H, Ortiz A, Politei J, Kapoor A and Barreto F (2017) Enzyme replacement therapy for Anderson-Fabry disease: A complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PLoS One 12:e0173358. are suggestive of bias, most often due to studies that are smaller, have nonsignificant results, or have an effect in the opposite direction from the others or from that expected. The small-study effect can occur when small studies have systematically different effects from the large ones. The influence of the small-study effect on the results of the pooled analysis appears in mortality plots for agalsidase alfa and untreated patients, showing clear between-study heterogeneity (I2 > 0), which is not apparent in the plot for agalsidase beta owing to: (i) the greater weight of at least one study and (ii) the comparatively small number of studies. The impact of the follow-up period in the analysis was not described (nondifferential).

It should also be noted that although the results in the El Dib et al. (2017)El Dib R, Gomaa H, Ortiz A, Politei J, Kapoor A and Barreto F (2017) Enzyme replacement therapy for Anderson-Fabry disease: A complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PLoS One 12:e0173358. publication show a discordant effect for groups of studies in three mortality plots, no explanation of variance is included. Conventionally, sources of variation should be identified and their impact on effect size should be quantified using statistical tests and methods, such as analysis of variance or weighted meta-regression. Furthermore, when high heterogeneity is evident, individual data should be not pooled and definitive conclusions should only be drawn once more studies become available.

Although the authors planned to perform sensitivity analysis by sex, age (adults versus children), follow-up period (< 5 years versus ≥ 5 years), and AFD phenotype (classical versus nonclassical), only the analyses by age and follow-up period were included, as there were insufficient studies to allow analysis of the other two variables (El Dib et al., 2017El Dib R, Gomaa H, Ortiz A, Politei J, Kapoor A and Barreto F (2017) Enzyme replacement therapy for Anderson-Fabry disease: A complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PLoS One 12:e0173358.). However, among the 77 selected studies/cohorts, 62 (> 80%) included both male and female patients, so it is surprising that the analysis by sex was not included.

In conclusion, we consider the methodology applied in the El Dib et al. (2017)El Dib R, Gomaa H, Ortiz A, Politei J, Kapoor A and Barreto F (2017) Enzyme replacement therapy for Anderson-Fabry disease: A complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PLoS One 12:e0173358. to be inadequate. The numerous limitations of this analysis undermine the conclusions drawn by the authors. As these conclusions extend to making recommendations for management strategies for patients with AFD, the methodological shortcomings of the analysis underpinning these recommendations need to be highlighted, so that clinicians have a clear understanding of the data relating to the relative efficacy of available ERTs for AFD.

Acknowledgments

Editorial assistance in formatting, proofreading, and copy editing was provided by Excel Scientific Solutions and funded by Shire International GmbH.

Disclosures

Dr. Giugliani has received consulting fees, fees for non-CME/CE services, investigator fees, and support for travel expenses to attend scientific meetings from Actelion, Alexion, Amicus, BioMarin, Lysogene, Sanofi-Genzyme, Shire, and Ultragenyx. Dr. Westwood is an employee of Cognite. Drs. Wellhoefer, Schenk, and Gurevich are employees of and own stock in Shire. Dr. Kampmann has received consulting fees from Shire, BioMarin, and Gore, and has received honoraria for lectures and travel, and research grants, from Shire and BioMarin.

References

  • Barba-Romero MÁ, Rivera-Gallego A, Pintos-Morell G and Spanish FOS-Study Group (2011) Fabry disease in Spain: Description of Spanish patients and a comparison with other European countries using data from the Fabry Outcome Survey (FOS). Int J Clin Pract 65:903-910.
  • Barton S (2000) Which clinical studies provide the best evidence? The best RCT still trumps the best observational study. BMJ 321:255-256.
  • Beck M, Hughes D, Kampmann C, Larroque S, Mehta A, Pintos-Morell G, Ramaswami U, West M, Wijatyk A, Giugliani R, et al. (2015) Long-term effectiveness of agalsidase alfa enzyme replacement in Fabry disease: A Fabry Outcome Survey analysis. Mol Genet Metab Rep 3:21-27.
  • Day S (2010) Evidence-based medicine and rare diseases. Adv Exp Med Biol 686:41-53.
  • El Dib R, Gomaa H, Carvalho RP, Camargo SE, Bazan R, Barretti P and Barreto FC (2016) Enzyme replacement therapy for Anderson-Fabry disease. Cochrane Database Syst Rev 7:CD006663.
  • El Dib R, Gomaa H, Ortiz A, Politei J, Kapoor A and Barreto F (2017) Enzyme replacement therapy for Anderson-Fabry disease: A complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PLoS One 12:e0173358.
  • Germain DP, Weidemann F, Abiose A, Patel MR, Cizmarik M, Cole JA, Beitner-Johnson D, Benistan K, Cabrera G, Charrow J, et al. (2013) Analysis of left ventricular mass in untreated men and in men treated with agalsidase-beta: Data from the Fabry Registry. Genet Med 15:958-965.
  • Higgins JPT, Lasserson T, Chandler J, Tovey D and Churchill R (2016) Methodological Expectations of Cochrane Intervention Reviews. Cochrane, London, 69 p.
  • MacDermot KD, Holme A and Miners AH (2001a) Anderson-Fabry disease: Clinical manifestations and impact of disease in a cohort of 98 hemizygous males. J Med Genet 38:750-760.
  • MacDermot KD, Holmes A and Miners AH (2001b) Anderson-Fabry disease: Clinical manifestations and impact of disease in a cohort of 60 obligate carrier females. J Med Genet 38:769-775.
  • McKechnie DGJ, Mac Lochlainn DJ, Mehta AB and Hughes DA (2015) Long term clinical outcomes in patients with Fabry disease receiving enzyme replacement therapy. Mol Genet Metab 114:S78-S79.
  • Mehta A, Beck M, Elliott P, Giugliani R, Linhart A, Sunder-Plassmann G, Schiffmann R, Barbey F, Ries M, Clarke JT, et al. (2009) Enzyme replacement therapy with agalsidase alfa in patients with Fabry’s disease: an analysis of registry data. Lancet 374:1986-1996.
  • Pastores GM, Boyd E, Crandall K, Whelan A, Piersall L and Barnett N (2007) Safety and pharmacokinetics of agalsidase alfa in patients with Fabry disease and end-stage renal disease. Nephrol Dial Transplant 22:1920-1925.
  • Sirrs SM, Bichet DG, Casey R, Clarke JT, Lemoine K, Doucette S, West ML and CFDI Investigators (2014) Outcomes of patients treated through the Canadian Fabry disease initiative. Mol Genet Metab 111:499-506.
  • Whybra C, Miebach E, Mengel E, Gal A, Baron K, Beck M and Kampmann C (2009) A 4-year study of the efficacy and tolerability of enzyme replacement therapy with agalsidase alfa in 36 women with Fabry disease. Genet Med 11:441-449.
  • Associate Editor: Carlos F.M. Menck

Publication Dates

  • Publication in this collection
    11 Oct 2018
  • Date of issue
    Oct-Dec 2018

History

  • Received
    28 Nov 2017
  • Accepted
    29 Jan 2018
Sociedade Brasileira de Genética Rua Cap. Adelmio Norberto da Silva, 736, 14025-670 Ribeirão Preto SP Brazil, Tel.: (55 16) 3911-4130 / Fax.: (55 16) 3621-3552 - Ribeirão Preto - SP - Brazil
E-mail: editor@gmb.org.br