Acessibilidade / Reportar erro

The Chalcogenide Compound Fe2SnSe4: Synthesis and Crystal Structure Analysis by Powder X-ray Diffraction

Abstract

Fe2SnSe4 belongs to the adamantine family of quaternary chalcogenides crystallizing in the olivine type structure, which can be described from a hexagonal close-packing of selenium anions with the octahedral and tetrahedral sites occupied by the iron and tin cations, respectively. The structural characterization of the sample, synthesized by the melt and annealing technique, was carried out by powder X-ray diffraction at room temperature. The XRD data analysis shows, that Fe2SnSe4 adopt the orthorhombic olivine type structure, space group Pnma, and unit cell parameters a = 13.2019(3) Å, b = 7.6746(1) Å, c = 6.3572(1) Å, V = 644.11(2) Å3 were derived.

Keywords:
Chacogenides; Olivines; Chemical synthesis; Crystal structure; Powder X-ray diffraction; Rietveld refinement

1. Introduction

The ternary chalcogenide semiconductors AII2-BIV-XVI4 (II= Mn, Fe, Co; IV= Si, Ge, Sn; VI= S, Se, Te) have drawn wide interest for their magnetic, optoelectronic and thermoelectric properties11 Vincent H, Bertaut EF, Baur WH, Shannon RD. Polyhedral deformations in olivine-type compounds and the crystal structure of Fe2SiS4 and Fe2GeS4. Acta Crystallogr B. 1976;32(6):1749-55. http://dx.doi.org/10.1107/S056774087600633X.
http://dx.doi.org/10.1107/S0567740876006...

2 Jumas JC, Philippot E, Maurin M. Etude structurale d’un thiospinelle d’étain Fe2SnS4. Acta Crystallogr B. 1977;33(12):3850-4. http://dx.doi.org/10.1107/S0567740877012205.
http://dx.doi.org/10.1107/S0567740877012...

3 Wintenberger M, Jumas JC. Etude par diffraction neutronique de Mn2SnS4: affinement de la structure cristallographique et determination de la structure magnétique. Acta Crystallogr B. 1980;36(9):1993-6. http://dx.doi.org/10.1107/S0567740880007789.
http://dx.doi.org/10.1107/S0567740880007...

4 Lamarche G, Lamarche F, Lamarche AM. A possible 83K magnetic detector for high energy particles. Physica B. 1994;194-196:219-20. http://dx.doi.org/10.1016/0921-4526(94)90439-1.
http://dx.doi.org/10.1016/0921-4526(94)9...

5 Quintero M, Ferrer D, Caldera D, Moreno E, Quintero E, Morocoima M, et al. Lattice parameter values and magnetic properties for the Mn2GeTe4, Fe2GeTe4 and Fe2SnSe4 compounds. J Alloys Compd. 2009;469(1-2):4-8. http://dx.doi.org/10.1016/j.jallcom.2008.01.096.
http://dx.doi.org/10.1016/j.jallcom.2008...

6 Quintero M, Quintero E, Caldera D, Moreno E, Morocoima M, Grima P, et al. Magnetic properties for the Mn2GeTe4 compound. J Magn Magn Mater. 2009;321(4):291-9. http://dx.doi.org/10.1016/j.jmmm.2008.09.003.
http://dx.doi.org/10.1016/j.jmmm.2008.09...

7 Delgado GE, Betancourt L, Mora AJ, Contreras JE, Grima-Gallardo P, Quintero M. Synthesis and crystallographic study of the ternary compound Fe2GeTe4. Chalcogenide Lett [serial on the Internet]. 2010 [cited 2020 July 3];7:133-8. Available from: http://chalcogen.ro/133_Delgado.pdf
http://chalcogen.ro/133_Delgado.pdf...

8 Gudelli VK, Kanchana V, Vaitheeswaran G. Predicted thermoelectric properties of olivine-type Fe2GeCh4 (Ch = S, Se and Te). J Phys Condens Matter. 2016;28(2):025502. http://dx.doi.org/10.1088/0953-8984/28/2/025502.
http://dx.doi.org/10.1088/0953-8984/28/2...

9 Wei K, Martin J, Nolas GS. Synthesis and transport properties of Fe2SnSe4. J Alloys Compd. 2018;732:218-21. http://dx.doi.org/10.1016/j.jallcom.2017.10.202.
http://dx.doi.org/10.1016/j.jallcom.2017...

10 Nagai H, Hayashi K, Miyazaki Y. Thermoelectric properties of olivine-type sulfides Tm2XS4 (Tm= Mn, Fe, X= Si, Ge). Trans Mater Res Soc Jpn. 2018;43(1):13-7. http://dx.doi.org/10.14723/tmrsj.43.13.
http://dx.doi.org/10.14723/tmrsj.43.13...

11 Davydova A, Eriksson J, Chen R, Rudisch K, Persson C, Scragg JJS. Thio-olivine Mn2SiS4 thin films by reactive magnetron sputtering: structural and optical properties with insights from first principles calculations. Mater Des. 2018;152:110-8. http://dx.doi.org/10.1016/j.matdes.2018.04.080.
http://dx.doi.org/10.1016/j.matdes.2018....
-1212 Solzi M, Pernechele C, Attolini G, Delgado GE, Sagredo V. Magnetic ordering of Mn2GeS4 single crystals with olivine structure. J Magn Magn Mater. 2020;497:166164. http://dx.doi.org/10.1016/j.jmmm.2019.166164.
http://dx.doi.org/10.1016/j.jmmm.2019.16...
. The presence of transition metal and chalcogenide elements in the same compound enables unique interaction between the electron spins, which is one of the factors that give rise to potential applications1313 Jungwirth T, Sinova J, Masek J, Kucera J, MacDonald AH. Theory of ferromagnetic (III, Mn) V semiconductors. Rev Mod Phys. 2006;78(3):809-64. http://dx.doi.org/10.1103/RevModPhys.78.809.
http://dx.doi.org/10.1103/RevModPhys.78....
.

These type of materials generally belongs to the adamantine family of ternary chalcogenide crystallizing in the olivine type structure11 Vincent H, Bertaut EF, Baur WH, Shannon RD. Polyhedral deformations in olivine-type compounds and the crystal structure of Fe2SiS4 and Fe2GeS4. Acta Crystallogr B. 1976;32(6):1749-55. http://dx.doi.org/10.1107/S056774087600633X.
http://dx.doi.org/10.1107/S0567740876006...
with the anions forming a hexagonal close packing and the cations in tetrahedral and octahedral coordination. However, a distorted spinel structure with space group I41/a has been reported for Fe2SnS422 Jumas JC, Philippot E, Maurin M. Etude structurale d’un thiospinelle d’étain Fe2SnS4. Acta Crystallogr B. 1977;33(12):3850-4. http://dx.doi.org/10.1107/S0567740877012205.
http://dx.doi.org/10.1107/S0567740877012...
, and an orthorhombic structure with space group Cmmm for Mn2SnS433 Wintenberger M, Jumas JC. Etude par diffraction neutronique de Mn2SnS4: affinement de la structure cristallographique et determination de la structure magnétique. Acta Crystallogr B. 1980;36(9):1993-6. http://dx.doi.org/10.1107/S0567740880007789.
http://dx.doi.org/10.1107/S0567740880007...
. It should be noted that the presence of a transition metal in these materials additionally introduces a magnetic behavior44 Lamarche G, Lamarche F, Lamarche AM. A possible 83K magnetic detector for high energy particles. Physica B. 1994;194-196:219-20. http://dx.doi.org/10.1016/0921-4526(94)90439-1.
http://dx.doi.org/10.1016/0921-4526(94)9...
.

From the point of view of their magnetic structure and properties, the chalcogenide olivines represent interesting examples of frustrated lattices of magnetic atoms determining complex magnetic excitations1414 Hagemann IS, Khalifah PG, Ramirez AP, Cava RJ. Geometric magnetic frustration in olivines. Phys Rev B Condens Matter Mater Phys. 2000;62(2):R771-4. http://dx.doi.org/10.1103/PhysRevB.62.R771.
http://dx.doi.org/10.1103/PhysRevB.62.R7...
. Materials belonging to this family of olivine-type compounds have been considered as good model systems to study multicritical phenomena1515 Mikus H, Deiseroth HJ, Aleksandrov K, Ritter C, Kremer RK. The magnetic structure of Mn2GeSe4. Eur J Inorg Chem. 2007;2007(11):1515-8. http://dx.doi.org/10.1002/ejic.200600770.
http://dx.doi.org/10.1002/ejic.200600770...
, and have found important new applications also for thermoelectric power generation88 Gudelli VK, Kanchana V, Vaitheeswaran G. Predicted thermoelectric properties of olivine-type Fe2GeCh4 (Ch = S, Se and Te). J Phys Condens Matter. 2016;28(2):025502. http://dx.doi.org/10.1088/0953-8984/28/2/025502.
http://dx.doi.org/10.1088/0953-8984/28/2...
, and as cathode materials for batteries1616 Torres A, Arroyo de Dompablo ME. Comparative Investigation of MgMnSiO 4 and Olivine-Type MgMnSiS 4 as Cathode Materials for Mg Batteries. J Phys Chem C. 2018;122(17):9356-62. http://dx.doi.org/10.1021/acs.jpcc.8b02369.
http://dx.doi.org/10.1021/acs.jpcc.8b023...
.

In particular, for olivine-like structures containing iron atoms, recently it has been proven that the ternary chalcogenides Fe2GeS4 and Fe2SiS4 have the potential to overcome the limitations in the binary FeS2, which is considered as one of the promising light-absorbing material with high absorption coefficient to be used in thin film solar cells1717 Yu L, Lany S, Kykyneshi R, Jieratum V, Ravichandran R, Pelatt B, et al. Iron chalcogenide photovoltaic absorbers. Adv Energy Mater. 2011;1(5):748-53. http://dx.doi.org/10.1002/aenm.201100351.
http://dx.doi.org/10.1002/aenm.201100351...
. These materials are proposed to have high absorption coefficients and gap of 1.40 eV and 1.55 eV, respectively, which is more suitable for solar light absorption. Besides both phases are predicted to be more stable than the binary FeS2 phase. These properties make Fe2GeS4 and Fe2SiS4 as a potential material to use in photovoltaics1717 Yu L, Lany S, Kykyneshi R, Jieratum V, Ravichandran R, Pelatt B, et al. Iron chalcogenide photovoltaic absorbers. Adv Energy Mater. 2011;1(5):748-53. http://dx.doi.org/10.1002/aenm.201100351.
http://dx.doi.org/10.1002/aenm.201100351...
. Meanwhile, Fe-content olivine compounds with Se ad Te anions emerge as promising candidates with good thermoelectric performances88 Gudelli VK, Kanchana V, Vaitheeswaran G. Predicted thermoelectric properties of olivine-type Fe2GeCh4 (Ch = S, Se and Te). J Phys Condens Matter. 2016;28(2):025502. http://dx.doi.org/10.1088/0953-8984/28/2/025502.
http://dx.doi.org/10.1088/0953-8984/28/2...
.

The compound Fe2SnSe4, or more precisely Fe2Sn[]Se4, where [] denotes the cation vacancy which is included to maintain the same number of cations and anions sites, belongs to this family, II2-IV-VI4, of ternary chalcogenide semiconductors1818 Parthé E. Wurtzite and zinc-blende structures. In: Westbrook JH, Fleischer RL, editors. Intermetallic compounds, principles and practices. Chichester: John Wiley & Sons; 1995. (vol. 1).. As regards to the physical properties of the ternary Fe2SnSe4, it was reported that it shows ferromagnetic behavior with a Curie temperature near to room temperature Tc= 301.4K55 Quintero M, Ferrer D, Caldera D, Moreno E, Quintero E, Morocoima M, et al. Lattice parameter values and magnetic properties for the Mn2GeTe4, Fe2GeTe4 and Fe2SnSe4 compounds. J Alloys Compd. 2009;469(1-2):4-8. http://dx.doi.org/10.1016/j.jallcom.2008.01.096.
http://dx.doi.org/10.1016/j.jallcom.2008...
, and interesting transport properties for thermoelectric applications88 Gudelli VK, Kanchana V, Vaitheeswaran G. Predicted thermoelectric properties of olivine-type Fe2GeCh4 (Ch = S, Se and Te). J Phys Condens Matter. 2016;28(2):025502. http://dx.doi.org/10.1088/0953-8984/28/2/025502.
http://dx.doi.org/10.1088/0953-8984/28/2...
. However, no complete X-ray crystal structure analysis has been reported and the only crystallographic information are the cell parameters: (a= 14.778 Å, b= 10.764 Å, c= 6.061 Å, V=964.0 Å3)55 Quintero M, Ferrer D, Caldera D, Moreno E, Quintero E, Morocoima M, et al. Lattice parameter values and magnetic properties for the Mn2GeTe4, Fe2GeTe4 and Fe2SnSe4 compounds. J Alloys Compd. 2009;469(1-2):4-8. http://dx.doi.org/10.1016/j.jallcom.2008.01.096.
http://dx.doi.org/10.1016/j.jallcom.2008...
and (a= 14.803 Å, b= 10.768 Å, c= 6.059 Å, V= 965.8 Å3)99 Wei K, Martin J, Nolas GS. Synthesis and transport properties of Fe2SnSe4. J Alloys Compd. 2018;732:218-21. http://dx.doi.org/10.1016/j.jallcom.2017.10.202.
http://dx.doi.org/10.1016/j.jallcom.2017...
. Moreover, a search in the databases Powder Diffraction File PDF-ICDD1919 International Centre for Diffraction Data. PDF-ICDD-Powder Diffraction File (Set 1-69). Newtown Square: International Centre for Diffraction Data; 2017., Inorganic Crystal Structure Database (ICSD)2020 Gemlin Institute. ICSD - Inorganic Crystal Structure Database: scientific manual [Internet]. Kalrsruhe: Gemlin Institute; 2008 [cited 2020 July 3]. Available from: https://www.nist.gov/sites/default/files/documents/ srd/09-0303-sci_man_ICSD_v1.pdf
https://www.nist.gov/sites/default/files...
, and Springer Materials2121 SpringerMaterials [Internet]. 2020 [cited 2020 July 3]. Available from: https://materials.springer.com
https://materials.springer.com...
showed no entries for this ternary chalcogenide compound.

It is very important to establish the crystal structure of a semiconductor because this is used to understand and explain the physical properties relevant to possible applications. In the hope of providing a full description of the Fe2SnSe4 structure, in the present work, and as part of ongoing crystal structural studies on chalcogenide compounds2222 Delgado GE, Manfredy L, López-Rivera SA. Crystal structure of the ternary semiconductor Cu2In14/3[]4/3Se8 determined by X-ray powder diffraction data. Powder Diffr. 2018;33(3):237-41. http://dx.doi.org/10.1017/S0885715618000519.
http://dx.doi.org/10.1017/S0885715618000...

23 Marroquín G, Delgado GE, Grima-Gallardo P, Quintero M. Structural characterization of the new diamond-like semiconductor CuVInSe3. Rev Mex Fis. 2018;64(6):548. http://dx.doi.org/10.31349/RevMexFis.64.548.
http://dx.doi.org/10.31349/RevMexFis.64....

24 Delgado GE, Sagredo V. Synthesis and crystal structure of the quaternary semiconductor Cu2NiGeS4, a new stannite-type compound. Rev Mex Fis. 2019;65:355-9. http://dx.doi.org/10.31349/RevMexFis.65.355.
http://dx.doi.org/10.31349/RevMexFis.65....

25 Delgado GE, Rincón C, Marroquin G. On the crystal structure of the ordered vacancy compound Cu3In5Te9. Rev Mex Fis. 2019;65:360-4. http://dx.doi.org/10.31349/RevMexFis.65.360.
http://dx.doi.org/10.31349/RevMexFis.65....

26 Delgado-Niño P, Chacón C, Delgado GE. A new ordered vacancy compound; preparation and crystal structure of Ag3In5Te9. Rev Mex Fis. 2019;65:475-8. http://dx.doi.org/10.31349/RevMexFis.65.475.
http://dx.doi.org/10.31349/RevMexFis.65....
-2727 Chacón C, Delgado-Niño P, Delgado GE. Synthesis and crystal structure determination of the new olivine-type compound Mn2SnSe4. Rev Mex Fis. 2019;66(1):30-4. http://dx.doi.org/10.31349/RevMexFis.66.30.
http://dx.doi.org/10.31349/RevMexFis.66....
, we report the structural characterization of this ternary compound using powder X-ray diffraction techniques.

2. Experimental procedures

2.1 Synthesis

Fe2SnSe4 was synthesized by the reaction of high purity elements, Fe, Sn, and Se with a nominal purity of at least 99.99% (Sigma-Aldrich), using the melt and annealing technique. Stoichiometric quantities of the three elements were charged in an evacuated quartz ampoule, previously subject to pyrolysis to avoid reaction of the starting materials with quartz. Then, the ampoule was sealed under vacuum (~10-4 Torr) and the fusion process was carried out inside a furnace (vertical position) heated up to 1100 K at a rate of 20 K/h, with a stop of 48 h at 493 K (melting point of Se). The ampoule was shaking using a mechanical system during all the heating process to guarantee the complete mixing of all the elements. Then, the temperature was gradually decreased until 600 K and this temperature was maintained for 30 days. Finally, the furnace was turned off and the ingots were cooled to room temperature.

2.2 Chemical analysis

The stoichiometry of the sample was determined by energy-dispersive X-ray spectroscopy (EDS) analysis using a JMS-6400 scanning electron microscope (SEM). The average composition of Fe: Sn: Se sample, taken from the central part of the ingots, was 14.0: 28.6: 57.4 at. % that led to the formula close to the ideal value composition 2: 1: 4. The error in the standardless analysis was around 5%.

2.3 X-ray powder diffraction

For the X-ray analysis, a small quantity of the sample was ground mechanically in an agate mortar and pestle. The resulting fine powder was mounted on a flat holder. The X-ray powder diffraction data were collected at room temperature, in reflection mode using a Panalytical X’pert diffractometer using CuKα radiation (λ = 1.5418 Å). The specimen was scanned from 10 to 80° 2θ, with a step size of 0.02° and counting time of 20 s. Silicon (SRM-640) was used as an external standard.

3. Results and Discussion

For pattern indexing and unit cell parameter refinement, the precise determination of peaks positions was carried out using the Highscore Plus v3.0 analytical software. The X-ray diffractogram of Fe2SnSe4 is shown in Figure 1. A search in the PDF-ICDD database1919 International Centre for Diffraction Data. PDF-ICDD-Powder Diffraction File (Set 1-69). Newtown Square: International Centre for Diffraction Data; 2017. was performed and no binaries are present. Therefore, the powder X-ray pattern corresponds to a single phase.

Figure 1
Observed (circles), calculated (solid line), and difference plot of the final Rietveld refinement of Fe2SnSe4. The Bragg reflections are indicated by vertical bars.

The 20 first measured reflections were completely indexed using the program DICVOL042828 Boultif A, Löuer D. Powder pattern indexing with the dichotomy method. J Appl Cryst. 2004;37(5):724-31. http://dx.doi.org/10.1107/S0021889804014876.
http://dx.doi.org/10.1107/S0021889804014...
, which gave a unique solution in an orthorhombic cell with unit cell parameters a = 13.202 Å, b = 7.675 Å, c = 6.357 Å, and indexed figures of merit M20 = 26.72929 de Wolff PM. A simplified criterion for the reliability of a powder pattern indexing. J Appl Cryst. 1968;1(2):108-13. http://dx.doi.org/10.1107/S002188986800508X.
http://dx.doi.org/10.1107/S0021889868005...
and F20 = 40.7(0.0100, 49)3030 Smith GS, Snyder RLFN. A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing. J Appl Cryst. 1979;12(1):60-5. http://dx.doi.org/10.1107/S002188987901178X.
http://dx.doi.org/10.1107/S0021889879011...
. Systematic absences indicate a P-type cell, which suggested along with the sample composition and cell parameter dimensions that this material is isostructural with the olivine type compounds with orthorhombic space group Pnma (N° 62) as the recently reported compound Mn2SnSe4 [2727 Chacón C, Delgado-Niño P, Delgado GE. Synthesis and crystal structure determination of the new olivine-type compound Mn2SnSe4. Rev Mex Fis. 2019;66(1):30-4. http://dx.doi.org/10.31349/RevMexFis.66.30.
http://dx.doi.org/10.31349/RevMexFis.66....
]. So the space group Pnma and the atomic position parameters of Mn2SnSe4 were taken as the staring values to refine the structural parameters of Fe2SnSe4.

The crystal structure refinement, employing the Rietveld method3131 Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Cryst. 1969;2(2):65-71. http://dx.doi.org/10.1107/S0021889869006558.
http://dx.doi.org/10.1107/S0021889869006...
, was performed using the Fullprof program3232 Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder 4diffraction. Physica B. 1993;192(1-2):55-69. http://dx.doi.org/10.1016/0921-4526(93)90108-I.
http://dx.doi.org/10.1016/0921-4526(93)9...
available in the software package Winplotr3333 Roisnel T, Rodríquez-Carvajal J. WinPLOTR: a windows tool for powder diffraction pattern analysis. Mater Sci Forum. 2001;378-381:118-24. http://dx.doi.org/10.4028/www.scientific.net/MSF.378-381.118.
http://dx.doi.org/10.4028/www.scientific...
. The indexing results were taken as the starting unit cell parameters. The angular dependence of the peak full width at half maximum (FWHM) was described by the Caglioti’s formula, FWHM22 Jumas JC, Philippot E, Maurin M. Etude structurale d’un thiospinelle d’étain Fe2SnS4. Acta Crystallogr B. 1977;33(12):3850-4. http://dx.doi.org/10.1107/S0567740877012205.
http://dx.doi.org/10.1107/S0567740877012...
=Utan22 Jumas JC, Philippot E, Maurin M. Etude structurale d’un thiospinelle d’étain Fe2SnS4. Acta Crystallogr B. 1977;33(12):3850-4. http://dx.doi.org/10.1107/S0567740877012205.
http://dx.doi.org/10.1107/S0567740877012...
θ+Vtanθ+W, where U, V, and W are fitting parameters3434 Caglioti G, Paoletti A, Ricci FP. Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl Instrum. 1958;3(4):223-8. http://dx.doi.org/10.1016/0369-643X(58)90029-X.
http://dx.doi.org/10.1016/0369-643X(58)9...
. Peak shapes were described by the parameterized Thompson-Cox-Hastings pseudo-Voigt profile function3535 Thompson P, Cox DE, Hastings JB. Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3. J Appl Cryst. 1987;20(2):79-83. http://dx.doi.org/10.1107/S0021889887087090.
http://dx.doi.org/10.1107/S0021889887087...
. The background was described by the automatic interpolation of 66 points throughout the whole pattern. The thermal motion of the atoms was described by one overall isotropic temperature factor. Details of the Rietveld refinement of Fe2SnSe4 are summarized in Table 1, and the atomic positions and thermal displacement factors are presented in Table 2. The observed, calculated, and residual powder XRD patterns of Fe2SnSe4 are shown in Figure 1.

Table 1
Rietveld refinement details for the ternary chalcogenide Fe2SnSe4.
Table 2
Atomic coordinates, occupancy factors, isotropic temperature factors, and geometric parameters (Å, º) for Fe2SnSe4.

It should be noted that the previously reported unit cell parameters for this material55 Quintero M, Ferrer D, Caldera D, Moreno E, Quintero E, Morocoima M, et al. Lattice parameter values and magnetic properties for the Mn2GeTe4, Fe2GeTe4 and Fe2SnSe4 compounds. J Alloys Compd. 2009;469(1-2):4-8. http://dx.doi.org/10.1016/j.jallcom.2008.01.096.
http://dx.doi.org/10.1016/j.jallcom.2008...
,99 Wei K, Martin J, Nolas GS. Synthesis and transport properties of Fe2SnSe4. J Alloys Compd. 2018;732:218-21. http://dx.doi.org/10.1016/j.jallcom.2017.10.202.
http://dx.doi.org/10.1016/j.jallcom.2017...
will be used to reproduce the experimental diffraction pattern, however, it does not produce good results. On the other hand, the unit cell volume obtained in this work agrees in the order of magnitude with those reported for similar compounds (see Table 3).

Table 3
Crystallographic information reported in the literature for the system Fe2-IV-VI4 (IV= Si, Ge, Sn; VI= S, Se, Te).

The structure of the ternary chalcogenide Fe2SnSe4 can be described as an olivine type structure which consists of a hexagonal close packing of Se-2 anions with the Fe+2 cations occupying half of the octahedral sites and the Sn+4 cations occupying an eighth of the tetrahedral sites. As expected for these materials each anion is coordinated by four cations (three Fe and one Sn) located at the corners of a slightly distorted tetrahedron. The polyhedral coordination of the cations and anions are presented in Figure 2, showing the FeSe6 octahedra, SnSe4 tetrahedra and Se(SnFe3) tetrahedra formed. Figure 3 shows the unit cell diagram of Fe2SnSe4 with the octahedra and tetrahedra coordination around the cations. Details of the olivine type structure description are published elsewhere2121 SpringerMaterials [Internet]. 2020 [cited 2020 July 3]. Available from: https://materials.springer.com
https://materials.springer.com...
.

Figure 2
Coordination polyhedra of the cations (Fe1, Fe2, Sn) and anions (Se), showing the FeSe6 octahedra, SnSe4 tetrahedra, and Se(SnFe3) tetrahedra formed in the Fe2SnSe4 structure.
Figure 3
Unit cell diagram in the ac plane of the olivine type compound Fe2SnSe4 (Pnma) showing the FeSe6 octahedra and SnSe4 tetrahedra.

Unit cell parameter values of Fe2SnSe4 are very similar to those reported in the crystal structures of the Fe-content compounds with II2-IV-VI4 compositions as shown in Table 3. The Fe-Se bond distances vary from 2.52(1) Å to 2.76(2) Å [with a mean value of 2.66(2) Å] and Sn-Se bond distances from 2.42(1) Å to 2.56(2) Å [mean value of 2.47(2) Å]. These interatomic distances are shorter than the sum of the respective ionic radii for structures tetrahedrally bonded3636 Shannon RS. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A. 1976;32(5):751-67. http://dx.doi.org/10.1107/S0567739476001551.
http://dx.doi.org/10.1107/S0567739476001...
, nevertheless compare quite well with those observed in other adamantane structures with common elements, found in the Inorganic Crystal Structure Database (ICSD)2020 Gemlin Institute. ICSD - Inorganic Crystal Structure Database: scientific manual [Internet]. Kalrsruhe: Gemlin Institute; 2008 [cited 2020 July 3]. Available from: https://www.nist.gov/sites/default/files/documents/ srd/09-0303-sci_man_ICSD_v1.pdf
https://www.nist.gov/sites/default/files...
, such as Cu2FeSnSe43737 Roque-Infante E, Delgado JM, López-Rivera SA. Synthesis and crystal structure of Cu2FeSnSe4, a I2IIIVVI4 semiconductor. Mater Lett. 1997;33(1-2):67-70. http://dx.doi.org/10.1016/S0167-577X(97)00079-7.
http://dx.doi.org/10.1016/S0167-577X(97)...
, Fe2GeSe43838 Henao JA, Delgado JM, Quintero M. X-ray powder diffraction data and structural study of Fe2GeSe4. Powder Diffr. 1998;13(4):196-201. http://dx.doi.org/10.1017/S0885715600010101.
http://dx.doi.org/10.1017/S0885715600010...
, Cu2(Cd,Zn)SnSe43939 Olekseyuk ID, Gulay LD, Dydchak IV, Piskach LV, Parasyuk OV, Marchuk OV. Single crystal preparation and crystal structure of the Cu2Zn/Cd,Hg/SnSe4 compounds. J Alloys Compd. 2002;340(1-2):141-5. http://dx.doi.org/10.1016/S0925-8388(02)00006-3.
http://dx.doi.org/10.1016/S0925-8388(02)...
, Cu2SnSe44040 Marcano G, Rincón C, Marín G, Tovar R, Delgado GE. Crystal growth and characterization of the cubic semiconductor Cu2SnSe4. J Appl Phys. 2002;92(4):1811-5. http://dx.doi.org/10.1063/1.1492018.
http://dx.doi.org/10.1063/1.1492018...
, Cu2SnSe34141 Delgado GE, Mora AJ, Marcano G, Rincón C. Crystal structure refinement of the semiconducting compound Cu2SnSe3 from X-ray powder diffraction data. Mater Res Bull. 2003;38(15):1949-55. http://dx.doi.org/10.1016/j.materresbull.2003.09.017.
http://dx.doi.org/10.1016/j.materresbull...
, Fe2CrSe44242 Delgado GE, Sagredo V. Crystal structure of the Fe2CrSe4 compound from X-ray powder diffraction. Phys Status Solidi. 2004;201(3):421-6. http://dx.doi.org/10.1002/pssa.200306728.
http://dx.doi.org/10.1002/pssa.200306728...
, Cu2MnSnSe44343 Sachanyuk VP, Olekseyuk ID, Parasyuk OV. X‐ray powder diffraction study of the Cu2Cd1–xMnxSnSe4 alloys. Phys Status Solidi. 2006;203(3):459-65. http://dx.doi.org/10.1002/pssa.200521349.
http://dx.doi.org/10.1002/pssa.200521349...
, CuFe(Al,In,Ga)Se34444 Mora AJ, Delgado GE, Grima-Gallardo P. Crystal structure of CuFeInSe3 from X-ray powder diffraction data. Phys Status Solidi. 2007;204(2):547-54. http://dx.doi.org/10.1002/pssa.200622395.
http://dx.doi.org/10.1002/pssa.200622395...
,4545 Delgado GE, Mora AJ, Contreras JE, Grima-Gallardo P, Durán S, Muñoz M, et al. Crystal structure characterization of the quaternary compounds CuFeAlSe3 and CuFeGaSe3. Cryst Res Technol. 2009;44(5):548-52. http://dx.doi.org/10.1002/crat.200800596.
http://dx.doi.org/10.1002/crat.200800596...
and CuFe2(Al,Ga,In)Se44646 Delgado GE, Mora AJ, Grima-Gallardo P, Quintero M. Crystal structure of CuFe2InSe4 from X-ray powder diffraction. J Alloys Compd. 2008;454(1-2):306-9. http://dx.doi.org/10.1016/j.jallcom.2006.12.057.
http://dx.doi.org/10.1016/j.jallcom.2006...
,4747 Delgado GE, Mora AJ, Grima-Gallardo P, Muñoz M, Durán S, Quintero M, et al. Crystal structure of the quaternary compounds CuFe2AlSe4 and CuFe2GaSe4 from X-ray powder diffraction. Bull Mater Sci. 2015;38(4):1061-4. http://dx.doi.org/10.1007/s12034-015-0933-9.
http://dx.doi.org/10.1007/s12034-015-093...
. All the bond angles in the structure of Fe2SnSe4 are close to the ideal tetrahedral and octahedral bond angle values.

4. Conclusions

The crystal structure of the ternary magnetic compound Fe2SnSe4 was refined using powder X-ray diffraction through the Rietveld method. This material was synthesized by the melt and annealing technique and crystallizes with an olivine structure in the orthorhombic space group Pnma. This is a new compound of the II2-IV-VI4 family of semiconductors with an olivine-type structure. The crystal structure knowledge of Fe2SnSe4 allows further investigation of this material about their structure-property relationship. This ternary semiconductor compound can be considered as a potential candidate for device thermoelectric applications.

5. Acknowledgments

This work was supported by FONACIT (Grant LAB-97000821).

6. References

  • 1
    Vincent H, Bertaut EF, Baur WH, Shannon RD. Polyhedral deformations in olivine-type compounds and the crystal structure of Fe2SiS4 and Fe2GeS4 Acta Crystallogr B. 1976;32(6):1749-55. http://dx.doi.org/10.1107/S056774087600633X
    » http://dx.doi.org/10.1107/S056774087600633X
  • 2
    Jumas JC, Philippot E, Maurin M. Etude structurale d’un thiospinelle d’étain Fe2SnS4 Acta Crystallogr B. 1977;33(12):3850-4. http://dx.doi.org/10.1107/S0567740877012205
    » http://dx.doi.org/10.1107/S0567740877012205
  • 3
    Wintenberger M, Jumas JC. Etude par diffraction neutronique de Mn2SnS4: affinement de la structure cristallographique et determination de la structure magnétique. Acta Crystallogr B. 1980;36(9):1993-6. http://dx.doi.org/10.1107/S0567740880007789
    » http://dx.doi.org/10.1107/S0567740880007789
  • 4
    Lamarche G, Lamarche F, Lamarche AM. A possible 83K magnetic detector for high energy particles. Physica B. 1994;194-196:219-20. http://dx.doi.org/10.1016/0921-4526(94)90439-1
    » http://dx.doi.org/10.1016/0921-4526(94)90439-1
  • 5
    Quintero M, Ferrer D, Caldera D, Moreno E, Quintero E, Morocoima M, et al. Lattice parameter values and magnetic properties for the Mn2GeTe4, Fe2GeTe4 and Fe2SnSe4 compounds. J Alloys Compd. 2009;469(1-2):4-8. http://dx.doi.org/10.1016/j.jallcom.2008.01.096
    » http://dx.doi.org/10.1016/j.jallcom.2008.01.096
  • 6
    Quintero M, Quintero E, Caldera D, Moreno E, Morocoima M, Grima P, et al. Magnetic properties for the Mn2GeTe4 compound. J Magn Magn Mater. 2009;321(4):291-9. http://dx.doi.org/10.1016/j.jmmm.2008.09.003
    » http://dx.doi.org/10.1016/j.jmmm.2008.09.003
  • 7
    Delgado GE, Betancourt L, Mora AJ, Contreras JE, Grima-Gallardo P, Quintero M. Synthesis and crystallographic study of the ternary compound Fe2GeTe4 Chalcogenide Lett [serial on the Internet]. 2010 [cited 2020 July 3];7:133-8. Available from: http://chalcogen.ro/133_Delgado.pdf
    » http://chalcogen.ro/133_Delgado.pdf
  • 8
    Gudelli VK, Kanchana V, Vaitheeswaran G. Predicted thermoelectric properties of olivine-type Fe2GeCh4 (Ch = S, Se and Te). J Phys Condens Matter. 2016;28(2):025502. http://dx.doi.org/10.1088/0953-8984/28/2/025502
    » http://dx.doi.org/10.1088/0953-8984/28/2/025502
  • 9
    Wei K, Martin J, Nolas GS. Synthesis and transport properties of Fe2SnSe4 J Alloys Compd. 2018;732:218-21. http://dx.doi.org/10.1016/j.jallcom.2017.10.202
    » http://dx.doi.org/10.1016/j.jallcom.2017.10.202
  • 10
    Nagai H, Hayashi K, Miyazaki Y. Thermoelectric properties of olivine-type sulfides Tm2XS4 (Tm= Mn, Fe, X= Si, Ge). Trans Mater Res Soc Jpn. 2018;43(1):13-7. http://dx.doi.org/10.14723/tmrsj.43.13
    » http://dx.doi.org/10.14723/tmrsj.43.13
  • 11
    Davydova A, Eriksson J, Chen R, Rudisch K, Persson C, Scragg JJS. Thio-olivine Mn2SiS4 thin films by reactive magnetron sputtering: structural and optical properties with insights from first principles calculations. Mater Des. 2018;152:110-8. http://dx.doi.org/10.1016/j.matdes.2018.04.080
    » http://dx.doi.org/10.1016/j.matdes.2018.04.080
  • 12
    Solzi M, Pernechele C, Attolini G, Delgado GE, Sagredo V. Magnetic ordering of Mn2GeS4 single crystals with olivine structure. J Magn Magn Mater. 2020;497:166164. http://dx.doi.org/10.1016/j.jmmm.2019.166164
    » http://dx.doi.org/10.1016/j.jmmm.2019.166164
  • 13
    Jungwirth T, Sinova J, Masek J, Kucera J, MacDonald AH. Theory of ferromagnetic (III, Mn) V semiconductors. Rev Mod Phys. 2006;78(3):809-64. http://dx.doi.org/10.1103/RevModPhys.78.809
    » http://dx.doi.org/10.1103/RevModPhys.78.809
  • 14
    Hagemann IS, Khalifah PG, Ramirez AP, Cava RJ. Geometric magnetic frustration in olivines. Phys Rev B Condens Matter Mater Phys. 2000;62(2):R771-4. http://dx.doi.org/10.1103/PhysRevB.62.R771
    » http://dx.doi.org/10.1103/PhysRevB.62.R771
  • 15
    Mikus H, Deiseroth HJ, Aleksandrov K, Ritter C, Kremer RK. The magnetic structure of Mn2GeSe4 Eur J Inorg Chem. 2007;2007(11):1515-8. http://dx.doi.org/10.1002/ejic.200600770
    » http://dx.doi.org/10.1002/ejic.200600770
  • 16
    Torres A, Arroyo de Dompablo ME. Comparative Investigation of MgMnSiO 4 and Olivine-Type MgMnSiS 4 as Cathode Materials for Mg Batteries. J Phys Chem C. 2018;122(17):9356-62. http://dx.doi.org/10.1021/acs.jpcc.8b02369
    » http://dx.doi.org/10.1021/acs.jpcc.8b02369
  • 17
    Yu L, Lany S, Kykyneshi R, Jieratum V, Ravichandran R, Pelatt B, et al. Iron chalcogenide photovoltaic absorbers. Adv Energy Mater. 2011;1(5):748-53. http://dx.doi.org/10.1002/aenm.201100351
    » http://dx.doi.org/10.1002/aenm.201100351
  • 18
    Parthé E. Wurtzite and zinc-blende structures. In: Westbrook JH, Fleischer RL, editors. Intermetallic compounds, principles and practices. Chichester: John Wiley & Sons; 1995. (vol. 1).
  • 19
    International Centre for Diffraction Data. PDF-ICDD-Powder Diffraction File (Set 1-69). Newtown Square: International Centre for Diffraction Data; 2017.
  • 20
    Gemlin Institute. ICSD - Inorganic Crystal Structure Database: scientific manual [Internet]. Kalrsruhe: Gemlin Institute; 2008 [cited 2020 July 3]. Available from: https://www.nist.gov/sites/default/files/documents/ srd/09-0303-sci_man_ICSD_v1.pdf
    » https://www.nist.gov/sites/default/files/documents/
  • 21
    SpringerMaterials [Internet]. 2020 [cited 2020 July 3]. Available from: https://materials.springer.com
    » https://materials.springer.com
  • 22
    Delgado GE, Manfredy L, López-Rivera SA. Crystal structure of the ternary semiconductor Cu2In14/3[]4/3Se8 determined by X-ray powder diffraction data. Powder Diffr. 2018;33(3):237-41. http://dx.doi.org/10.1017/S0885715618000519
    » http://dx.doi.org/10.1017/S0885715618000519
  • 23
    Marroquín G, Delgado GE, Grima-Gallardo P, Quintero M. Structural characterization of the new diamond-like semiconductor CuVInSe3 Rev Mex Fis. 2018;64(6):548. http://dx.doi.org/10.31349/RevMexFis.64.548
    » http://dx.doi.org/10.31349/RevMexFis.64.548
  • 24
    Delgado GE, Sagredo V. Synthesis and crystal structure of the quaternary semiconductor Cu2NiGeS4, a new stannite-type compound. Rev Mex Fis. 2019;65:355-9. http://dx.doi.org/10.31349/RevMexFis.65.355
    » http://dx.doi.org/10.31349/RevMexFis.65.355
  • 25
    Delgado GE, Rincón C, Marroquin G. On the crystal structure of the ordered vacancy compound Cu3In5Te9 Rev Mex Fis. 2019;65:360-4. http://dx.doi.org/10.31349/RevMexFis.65.360
    » http://dx.doi.org/10.31349/RevMexFis.65.360
  • 26
    Delgado-Niño P, Chacón C, Delgado GE. A new ordered vacancy compound; preparation and crystal structure of Ag3In5Te9 Rev Mex Fis. 2019;65:475-8. http://dx.doi.org/10.31349/RevMexFis.65.475
    » http://dx.doi.org/10.31349/RevMexFis.65.475
  • 27
    Chacón C, Delgado-Niño P, Delgado GE. Synthesis and crystal structure determination of the new olivine-type compound Mn2SnSe4 Rev Mex Fis. 2019;66(1):30-4. http://dx.doi.org/10.31349/RevMexFis.66.30
    » http://dx.doi.org/10.31349/RevMexFis.66.30
  • 28
    Boultif A, Löuer D. Powder pattern indexing with the dichotomy method. J Appl Cryst. 2004;37(5):724-31. http://dx.doi.org/10.1107/S0021889804014876
    » http://dx.doi.org/10.1107/S0021889804014876
  • 29
    de Wolff PM. A simplified criterion for the reliability of a powder pattern indexing. J Appl Cryst. 1968;1(2):108-13. http://dx.doi.org/10.1107/S002188986800508X
    » http://dx.doi.org/10.1107/S002188986800508X
  • 30
    Smith GS, Snyder RLFN. A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing. J Appl Cryst. 1979;12(1):60-5. http://dx.doi.org/10.1107/S002188987901178X
    » http://dx.doi.org/10.1107/S002188987901178X
  • 31
    Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Cryst. 1969;2(2):65-71. http://dx.doi.org/10.1107/S0021889869006558
    » http://dx.doi.org/10.1107/S0021889869006558
  • 32
    Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder 4diffraction. Physica B. 1993;192(1-2):55-69. http://dx.doi.org/10.1016/0921-4526(93)90108-I
    » http://dx.doi.org/10.1016/0921-4526(93)90108-I
  • 33
    Roisnel T, Rodríquez-Carvajal J. WinPLOTR: a windows tool for powder diffraction pattern analysis. Mater Sci Forum. 2001;378-381:118-24. http://dx.doi.org/10.4028/www.scientific.net/MSF.378-381.118
    » http://dx.doi.org/10.4028/www.scientific.net/MSF.378-381.118
  • 34
    Caglioti G, Paoletti A, Ricci FP. Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl Instrum. 1958;3(4):223-8. http://dx.doi.org/10.1016/0369-643X(58)90029-X
    » http://dx.doi.org/10.1016/0369-643X(58)90029-X
  • 35
    Thompson P, Cox DE, Hastings JB. Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 J Appl Cryst. 1987;20(2):79-83. http://dx.doi.org/10.1107/S0021889887087090
    » http://dx.doi.org/10.1107/S0021889887087090
  • 36
    Shannon RS. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A. 1976;32(5):751-67. http://dx.doi.org/10.1107/S0567739476001551
    » http://dx.doi.org/10.1107/S0567739476001551
  • 37
    Roque-Infante E, Delgado JM, López-Rivera SA. Synthesis and crystal structure of Cu2FeSnSe4, a I2IIIVVI4 semiconductor. Mater Lett. 1997;33(1-2):67-70. http://dx.doi.org/10.1016/S0167-577X(97)00079-7
    » http://dx.doi.org/10.1016/S0167-577X(97)00079-7
  • 38
    Henao JA, Delgado JM, Quintero M. X-ray powder diffraction data and structural study of Fe2GeSe4 Powder Diffr. 1998;13(4):196-201. http://dx.doi.org/10.1017/S0885715600010101
    » http://dx.doi.org/10.1017/S0885715600010101
  • 39
    Olekseyuk ID, Gulay LD, Dydchak IV, Piskach LV, Parasyuk OV, Marchuk OV. Single crystal preparation and crystal structure of the Cu2Zn/Cd,Hg/SnSe4 compounds. J Alloys Compd. 2002;340(1-2):141-5. http://dx.doi.org/10.1016/S0925-8388(02)00006-3
    » http://dx.doi.org/10.1016/S0925-8388(02)00006-3
  • 40
    Marcano G, Rincón C, Marín G, Tovar R, Delgado GE. Crystal growth and characterization of the cubic semiconductor Cu2SnSe4 J Appl Phys. 2002;92(4):1811-5. http://dx.doi.org/10.1063/1.1492018
    » http://dx.doi.org/10.1063/1.1492018
  • 41
    Delgado GE, Mora AJ, Marcano G, Rincón C. Crystal structure refinement of the semiconducting compound Cu2SnSe3 from X-ray powder diffraction data. Mater Res Bull. 2003;38(15):1949-55. http://dx.doi.org/10.1016/j.materresbull.2003.09.017
    » http://dx.doi.org/10.1016/j.materresbull.2003.09.017
  • 42
    Delgado GE, Sagredo V. Crystal structure of the Fe2CrSe4 compound from X-ray powder diffraction. Phys Status Solidi. 2004;201(3):421-6. http://dx.doi.org/10.1002/pssa.200306728
    » http://dx.doi.org/10.1002/pssa.200306728
  • 43
    Sachanyuk VP, Olekseyuk ID, Parasyuk OV. X‐ray powder diffraction study of the Cu2Cd1–xMnxSnSe4 alloys. Phys Status Solidi. 2006;203(3):459-65. http://dx.doi.org/10.1002/pssa.200521349
    » http://dx.doi.org/10.1002/pssa.200521349
  • 44
    Mora AJ, Delgado GE, Grima-Gallardo P. Crystal structure of CuFeInSe3 from X-ray powder diffraction data. Phys Status Solidi. 2007;204(2):547-54. http://dx.doi.org/10.1002/pssa.200622395
    » http://dx.doi.org/10.1002/pssa.200622395
  • 45
    Delgado GE, Mora AJ, Contreras JE, Grima-Gallardo P, Durán S, Muñoz M, et al. Crystal structure characterization of the quaternary compounds CuFeAlSe3 and CuFeGaSe3 Cryst Res Technol. 2009;44(5):548-52. http://dx.doi.org/10.1002/crat.200800596
    » http://dx.doi.org/10.1002/crat.200800596
  • 46
    Delgado GE, Mora AJ, Grima-Gallardo P, Quintero M. Crystal structure of CuFe2InSe4 from X-ray powder diffraction. J Alloys Compd. 2008;454(1-2):306-9. http://dx.doi.org/10.1016/j.jallcom.2006.12.057
    » http://dx.doi.org/10.1016/j.jallcom.2006.12.057
  • 47
    Delgado GE, Mora AJ, Grima-Gallardo P, Muñoz M, Durán S, Quintero M, et al. Crystal structure of the quaternary compounds CuFe2AlSe4 and CuFe2GaSe4 from X-ray powder diffraction. Bull Mater Sci. 2015;38(4):1061-4. http://dx.doi.org/10.1007/s12034-015-0933-9
    » http://dx.doi.org/10.1007/s12034-015-0933-9

Publication Dates

  • Publication in this collection
    12 Feb 2021
  • Date of issue
    2021

History

  • Received
    05 Apr 2020
  • Reviewed
    11 Oct 2020
  • Accepted
    11 Nov 2020
ABM, ABC, ABPol UFSCar - Dep. de Engenharia de Materiais, Rod. Washington Luiz, km 235, 13565-905 - São Carlos - SP- Brasil. Tel (55 16) 3351-9487 - São Carlos - SP - Brazil
E-mail: pessan@ufscar.br