Acessibilidade / Reportar erro

Performance and carcass characteristics of lambs fed diets supplemented with different levels of Saccharomyces cerevisiae

ABSTRACT

The objective of this study was to evaluate the productive performance, apparent digestibility, and carcass and longissimus dorsi muscle characteristics of lambs fed diets supplemented with four levels of Saccharomyces cerevisiae. Thirty-two male Hampshire lambs (25.82±1.95 kg body weight) were distributed in four treatments: basal diet (20:80, forage:concentrate), and the inclusion of 0, 3, 5, and 10 g animal−1 d−1Saccharomyces cerevisiae. The variables evaluated were dry matter intake, daily weight gain, feed conversion, apparent digestibility, dorsal fat thickness, longissimus dorsi muscle area, and physicochemical characteristics of carcass and muscle. We used a completely randomized design and orthogonal polynomials to test the linear and quadratic effects of the inclusion levels of the yeast. Saccharomyces cerevisiae showed a quadratic effect on lamb performance. Dry matter intake decreased with yeast in response to a better feed conversion and body weight gain; however, at the highest Saccharomyces cerevisiae dose, daily weight gain and final weight were lower than with the basal diet treatment. Saccharomyces cerevisiae did not affect apparent digestibility or carcass and muscle physicochemical characteristics. Supplementation with 3 and 5 g d−1 Saccharomyces cerevisiae improves productive performance of lambs fed high concentrate diets without affecting the physicochemical characteristics of the carcass or muscle.

longissimus dorsi; muscle characteristics; sheep; yeast

1. Introduction

The livestock sector is a dynamic, evolving system due to the growing demand for meat and milk, driven by increased incomes, growing population, and urbanization (Mottet et al., 2017Mottet, A.; Haan, C.; Falcucci, A.; Tempio, G.; Opio, C. and Gerber, P. 2017. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Global Food Security 14:1-8. https://doi.org/10.1016/j.gfs.2017.01.001
https://doi.org/10.1016/j.gfs.2017.01.00...
). The production of lamb meat in the world is about 9 million t, and its demand increases each year (Mazinani and Rude, 2020Mazinani, M. and Rude, B. 2020. Population, world production and quality of sheep and goat products. American Journal of Animal and Veterinary Sciences 15:291-299. https://doi.org/10.3844/ajavsp.2020.291.299
https://doi.org/10.3844/ajavsp.2020.291....
), making it necessary to design nutritional strategies that can improve production systems. In sheep, production systems range from extensive conditions to highly technified intensive regimes (Partida de la Peña et al., 2013Partida de la Peña, J. A.; Braña Varela, D.; Jiménez Severiano, H.; Ríos Rincón, F. G. and Buendía Rodríguez, G. 2013. Producción de carne ovina. Libro técnico No. 5. INIFAP, Aeo, México.). In intensive systems, the use of diets high in rapidly fermenting carbohydrates is common. These diets improve intrinsic and extrinsic carcass characteristics (Sañudo et al., 2007Sañudo, C.; Alfonso, M.; San Julián, R.; Thorkelsson, G.; Valdimarsdottir, T.; Zygoyiannis, D.; Stamataris, C.; Piasentier, E.; Mills, C.; Berge, P.; Dransfield, E.; Nute, G. R.; Enser, M. and Fisher, A. V. 2007. Regional variation in the hedonic evaluation of lamb meat from diverse production systems by consumers in six European countries. Meat Science 75:610-621. https://doi.org/10.1016/j.meatsci.2006.09.009
https://doi.org/10.1016/j.meatsci.2006.0...
) through deposition of intramuscular and cover fat (Oliveira et al., 2017Oliveira, M. A.; Alves, S. P.; Santos-Silva, J. and Bessa, R. J. B. 2017. Effect of dietary starch level and its rumen degradability on lamb meat fatty acid composition. Meat Science 123:166-172. https://doi.org/10.1016/j.meatsci.2016.10.001
https://doi.org/10.1016/j.meatsci.2016.1...
). But they also lead to increases in the production of volatile fatty acids and lactate, which decrease ruminal pH, undermine cellulolytic bacterial activity, and reduce fiber digestibility and production of microbial mass, as well as the productive capacity of lambs (Issakowicz et al., 2013Issakowicz, J.; Bueno, M. S.; Sampaio, A. C. K. and Duarte, K. M. R. 2013. Effect of concentrate level and live yeast (Saccharomyces cerevisiae) supplementation on Texel lamb performance and carcass characteristics. Livestock Science 155:44-52. https://doi.org/10.1016/j.livsci.2013.04.001
https://doi.org/10.1016/j.livsci.2013.04...
).

For this reason, the use of feed supplements that improve animal digestive and productive efficiency has increased (Yirga, 2015Yirga, H. 2015. The use of probiotics in animal nutrition. Journal of Probiotics and Health 3:132. https://doi.org/10.4172/2329-8901.1000132
https://doi.org/10.4172/2329-8901.100013...
), reflected in higher meat quality and yield (Vohra et al., 2016Vohra, A.; Syal, P. and Madan, A. 2016. Probiotic yeasts in livestock sector. Animal Feed Science and Technology 219:31-47. https://doi.org/10.1016/j.anifeedsci.2016.05.019
https://doi.org/10.1016/j.anifeedsci.201...
). In this sense, Saccharomyces cerevisiae is a probiotic capable of optimizing fiber digestion by eliminating oxygen dissolved in the rumen to improve lactate metabolism (Chaucheyras-Durand et al., 2008Chaucheyras-Durand, F.; Walker, N. D. and Bach, A. 2008. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Animal Feed Science and Technology 145:5-26. https://doi.org/10.1016/j.anifeedsci.2007.04.019
https://doi.org/10.1016/j.anifeedsci.200...
). In addition, Saccharomyces cerevisiae creates an optimal environment for development of fibrolytic bacterial species (Fonty and Chaucheyras-Durand, 2006Fonty, G. and Chaucheyras-Durand, F. 2006. Effects and modes of action of live yeasts in the rumen. Biologia 61:741-750. https://doi.org/10.2478/s11756-006-0151-4
https://doi.org/10.2478/s11756-006-0151-...
), which affect dry matter intake and digestibility coefficients and result in improvement in animal yield (Fadel Elseed and Abusamra, 2007Fadel Elseed, A. M. A. and Abusamra, R. M. A. 2007. Effects of supplemental yeast (Saccharomyces cerevisiae) culture on NDF digestibility and rumen fermentation of forage sorghum hay in Nubian goat’s kids. Research Journal of Agriculture and Biological Sciences 3:133-137.). Moreover, the research results from Popova (2017)Popova, T. 2017. Effect of probiotics in poultry for improving meat quality. Current Opinion in Food Science 14:72-77. https://doi.org/10.1016/j.cofs.2017.01.008
https://doi.org/10.1016/j.cofs.2017.01.0...
indicate that probiotics generate changes in growth parameters associated with improvements in physicochemical characteristics and meat quality.

Based on this background, the objective of this study was to evaluate the effect of lamb diets with increasing levels of Saccharomyces cerevisiae on productive animal performance, apparent digestibility, and physicochemical characteristics of the muscle under intensive conditions.

2. Material and Methods

The experimental protocol followed the specifications of the regulation for the use and care of animals destined for research (CP 02.11.16).

2.1. Location

The study was conducted in Texcoco, State of Mexico, Mexico (19°27'49.59" N, 98°54'19.92" W, 2250 m altitude). The experiment lasted 73 days, of which 15 days were an adaptation period.

2.2. Animals and treatment

We used 32 male Hampshire lambs, with an initial live weight of 25.82±1.95 kg. The lambs were de-wormed (Closantil® 5%, 1 mL 5 kg1 live weight: oral, and Ivomec® 1%, 1 mL 50 kg1 live weight: subcutaneously), administered vitamins (Vigantol® ADE, 2 mL lamb1: intramuscularly), vaccinated (Bobact® 8, 2.5 mL animal1: intramuscularly), and distributed in one of four treatments in a completely randomized design. Four treatments were evaluated: basal diet (80% balanced feed Engorda Cordero Plus® and 20% alfalfa hay) with the inclusion of 0, 3, 5, and 10 g lamb1 d1 of Saccharomyces cerevisiae (Yea-Sacc1026, Alltech de México), with eight lambs per treatment. Lambs were housed in individual metabolic cages equipped with feeders and water troughs. Feed was offered twice (09:00 and 18:00 h), and adjusted according to body weight (3%). Water was offered ad libitum.

2.3. Lamb performance, digestibility, and carcass sampling

Dry matter intake was assessed as weight of offered feed minus rejected feed. Daily weight gain was obtained by weighing the lambs on three consecutive days, at the beginning of the experiment and then every 15 days, in the morning before feeding. Feed conversion was calculated as the ratio between the amount of feed consumed and live weight gain.

Apparent digestibility of dry matter (DM), organic matter, neutral detergent fiber (NDF), acid detergent fiber (ADF), and total nitrogen were determined by the method of acid insoluble ash (Geerken et al., 1987Geerken, C. M.; Calzadilla, D. and González, R. 1987. Aplicación de la técnica de dos marcadores para medir el consumo de pasto y la digestibilidad de la ración de vacas de pastoreo suplementadas con concentrado. Pastos y Forrajes 10:266-273.), through the collection of feces, during the three days before the end of the experiment.

Samples of ruminal fluid were collected from five lambs per treatment with an esophageal tube, one day before concluding the experiment (day 57), 4 h after the morning feeding. Sample pH was measured immediately with a portable potentiometer (Orion, USA).

At the beginning and on day 55 of the experiment, dorsal fat thickness and the longissimus dorsi muscle area (between the 12th and 13th ribs) were measured using ultrasound Sonovet 600 equipment (Universal Medical System, USA) with a 7.5 Mhz transducer.

At the end of the experiment (day 58), five lambs per treatment were sacrificed. The hot carcass was weighed to calculate carcass yield as described by Gómez-Gurrola et al. (2017)Gómez-Gurrola, A.; Del Sol-García, G.; Sanginés-García, L.; Loya-Olguín, L.; Benítez-Meza, A. and Hernández-Ballesteros, A. 2017. Rendimiento en canal de corderos de pelo, alimentados con diferentes proporciones de Tithonia diversifolia y Pennisetum spp. Abanico Veterinario 7:34-42. https://doi.org/10.21929/abavet2017.72.3
https://doi.org/10.21929/abavet2017.72.3...
. The longissimus dorsi muscle was then extracted, and within the first 30 min post-mortem, pH was measured with a portable potentiometer for meat (Hanna, USA) and color parameters (L*, a*, and b*) were determined using a colorimeter (Minolta CR-400, USA) with a chromatic system. The samples were transported on ice (4 °C) to the laboratory, and 2 h after the sacrifice of the lamb, muscle water holding capacity was measured (Guerrero Legarreta et al., 2002Guerrero Legarreta, I.; Ponce Alquicira, E. and Pérez Chabela, M. L. 2002. Curso práctico de tecnología de carnes y pescado. UAM-Iztapalapa, Mexico, D.F.). The rest of the muscle samples were preserved at −20 °C until their chemical analysis.

2.4. Chemical analysis

Representative samples of feed, refusal, and feces were dehydrated in a forced-air oven (Riossa, USA) at 50 °C during 24 and 36 h, respectively, and processed in a Wiley mill (USA) with a 1-mm screen. For the chemical analysis of muscle, 50 g of tissue was dehydrated in a lyophilizer (Labconco, USA) by placing the samples in 120-mL vials previously weighed. In the feed samples, Saccharomyces cerevisiae, feces, and muscle tissue, we determined (AOAC, 2005AOAC - Association of Official Analytical Chemists. 2005. Official methods of analysis. 18th ed. AOAC International, Arlington, VA.) DM (method 930.15), total protein (method 984.13), and ash (method 942.05) contents. Neutral detergent fiber and ADF were determined in feed and feces (Van Soest et al., 1991Van Soest, P. J.; Robertson J. B. and Lewis, B. A. 1991. Methods of dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
https://doi.org/10.3168/jds.S0022-0302(9...
). Alpha amylase and sodium sulfite were used for NDF analysis in feed and feces samples, respectively, according to the method recommendations. Ether extract samples were determined in feed, Saccharomyces cerevisiae, and muscle tissue according to the methodology described by Nielsen (2010)Nielsen, S. S. 2010. Food analysis laboratory manual. Kluwer Academic/Plenum Publishers, New York.. The chemical profile obtained with the different samples is presented in Table 1.

Table 1
Chemical characterization of the diet and Saccharomyces cerevisiae

2.5. Statistical analysis

Data were analyzed with PROC GLM of SAS (Statistical Analysis System, version 9.4). Normality of the variables was tested with the Shapiro-Wilk test, and orthogonal polynomials contrasts were run to test the linear and quadratic effect of the levels of Saccharomyces cerevisiae inclusion (Steel et al., 1997Steel, R. G. D.; Torrie, J. H. and Dickey, D. A. 1997. Principles and procedures of statistics: A biometrical approach. 3rd ed. McGraw-Hill, New York.). A P≤0.05 was considered statistically significant. The model used was

Y i j = μ + τ i + e i j

in which Yij is observation j in treatment i, μ is the mean value, τi is the fixed effect of treatment, and eij is the error.

3. Results

Inclusion of Saccharomyces cerevisiae in the diet modified (P<0.05) productive performance of lambs (Table 2). The addition of 3 and 5 g d1Saccharomyces cerevisiae in the diet improved (P = 0.005; linear effect) feed conversion by 25.2 and 26.9%, respectively, compared with the control group. The above levels (3 and 5 g d1) of Saccharomyces cerevisiae led to increments in daily weight gain and final weight of 3.3 and 4.5% (P = 0.008) and 2.3 and 2.1% (P = 0.045) when Saccharomyces cerevisiae inclusion levels increased from 0 to 3 and 5 g d1.

Table 2
Productive performance of lambs (n = 8) fed diets supplemented with different levels of Saccharomyces cerevisiae1

In contrast, the highest Saccharomyces cerevisiae (10 g d1) dose reduced dry matter intake by 16% (P = 0.0008) when compared with the control treatment, and even when feed conversion was the best among the treatments, daily weight gain decreased 10.3% (P = 0.008) relative to the control group. No changes in the digestibility coefficients of the diet or in ruminal pH were observed with the addition of Saccharomyces cerevisiae (P>0.05, Table 3).

Table 3
Apparent digestibility (n = 7) and ruminal pH (n = 5) in lambs fed diets supplemented with different levels of Saccharomyces cerevisiae1

The addition of Saccharomyces cerevisiae to the diet did not affect (P>0.05; Table 4) the longissimus dorsi muscle area, dorsal fat thickness, hot carcass weight and yield, pH, or the chemical profile and physical-chemical characteristics of the muscle.

Table 4
Physicochemical characteristics of the carcass and muscle of lambs (n = 5) fed diets supplemented with different levels of Saccharomyces cerevisiae1

4. Discussion

Growth response of livestock species depends mainly on feed intake and nutrition strategy. Nutrition strategy considers the nutritive value of the feed, forage:concentrate ratio, diet protein content, and use of feed supplements such as Saccharomyces cerevisiae. The kind and quantity of the yeast used are decisive (Domínguez-Vara et al., 2009Domínguez-Vara, I. A.; González-Muñoz, S. S.; Pinos-Rodríguez, J. M.; Bórquez-Gastélum, J. L.; Bárcena-Gama, R.; Mendoza-Martínez, G.; Zapata, L. E. and Landois-Palencia, L. L. 2009. Effects of feeding selenium-yeast and chromium-yeast to finishing lambs on growth, carcass characteristics, and blood hormones and metabolites. Animal Feed Science and Technology 152:42-49. https://doi.org/10.1016/j.anifeedsci.2009.03.008
https://doi.org/10.1016/j.anifeedsci.200...
; Mousa et al., 2012Mousa, K. M.; El-Malky, O. M.; Komonna, O. F. and Rashwan, S. E. 2012. Effect of some yeast and minerals on the productive and reproductive performance in ruminants. Journal of American Science 8:291-303.).

The productive response of lambs to Saccharomyces cerevisiae supplementation varies depending on the level of yeast inclusion. Obeidat (2017)Obeidat, B. S. 2017. The effects of feeding olive cake and Saccharomyces cerevisiae supplementation on performance, nutrient digestibility and blood metabolites of Awassi lambs. Animal Feed Science and Technology 231:131-137. https://doi.org/10.1016/j.anifeedsci.2017.07.006
https://doi.org/10.1016/j.anifeedsci.201...
reported that 0.5 g Saccharomyces cerevisiae did not affect daily weight gain, while Cömert et al. (2015)Cömert, M.; Şayan, Y.; Özelçam, H. and Baykal, G. Y. 2015. Effects of Saccharomyces cerevisiae supplementation and anhydrous ammonia treatment of wheat straw on in-situ degradability and, rumen fermentation and growth performance of yearling lambs. Asian-Australasian Journal of Animal Sciences 28:639-646. https://doi.org/10.5713/ajas.14.0757
https://doi.org/10.5713/ajas.14.0757...
observed increases in daily weight gain with 4 g of yeast, as shown in our study.

Improvements in daily weight gain associated with Saccharomyces cerevisiae in lambs fed a concentrated diet would be related to an increase in the flow of bacterial protein available to the small intestine (Fereli et al., 2010Fereli, F.; Branco, A. F.; Jobim, C. C.; Coneglian, S. M.; Granzotto, F. and Barreto, J. C. 2010. Monensina sódica e Saccharomyces cerevisiae em dietas para bovinos: fermentação ruminal, digestibilidade dos nutrientes e eficiência de síntese microbiana. Revista Brasileira de Zootecnia 39:183-190. https://doi.org/10.1590/S1516-35982010000100024
https://doi.org/10.1590/S1516-3598201000...
; Khan et al., 2016Khan, R. U.; Naz, S.; Dhama, K.; Kathrik, K.; Tiwari, R.; Abdelrahman, M. M.; Alhidary, I. A. and Zahoor, A. 2016. Direct-fed microbial: Beneficial applications, modes of action and prospects as a safe tool for enhancing ruminant production and safeguarding health. International Journal of Pharmacology 12:220-231.; Zicarelli et al., 2016Zicarelli, F.; Addi, L.; Tudisco, R.; Calabrò, S.; Lombardi, P.; Cutrignelli, M. I.; Moniello, G.; Grossi, M.; Tozzi, B.; Musco, N. and Infascelli, F. 2016. The influence of diet supplementation with Saccharomyces cerevisiae or Saccharomyces cerevisiae plus Aspergillus oryzae on milk yield of Cilentana grazing dairy goats. Small Ruminant Research 135:90-94. https://doi.org/10.1016/j.smallrumres.2015.12.018
https://doi.org/10.1016/j.smallrumres.20...
).

Haddad and Goussous (2005)Haddad, S. G. and Goussous, S. N. 2005. Effect of yeast culture supplementation on nutrient intake, digestibility and growth performance of Awassi lambs. Animal Feed Science and Technology 118:343-348. https://doi.org/10.1016/j.anifeedsci.2004.10.003
https://doi.org/10.1016/j.anifeedsci.200...
reported a higher daily weight gain in lambs that received 3 g d1Saccharomyces cerevisiae, and this variable was related with increases in the digestibility coefficients of the organic matter, nitrogen, and neutral detergent fiber. The better feed conversion in our study related to Saccharomyces cerevisiae supplementation could indicate a higher feed digestibility and greater efficiency of nutrient utilization (Rodrigues et al., 2013Rodrigues, E.; Arrigoni, M. D. B.; Andrade, C. R. M.; Martins, C. L.; Millen, D. D.; Parra, F. S.; Jorge, A. M. and Andrighetto, C. 2013. Performance, carcass characteristics and gain cost of feedlot cattle fed a high level of concentrate and different feed additives. Revista Brasileira de Zootecnia 42:61-69. https://doi.org/10.1590/S1516-35982013000100009
https://doi.org/10.1590/S1516-3598201300...
; Elghandour et al., 2014Elghandour, M. M. Y.; Vázquez Chagoyán, J. C.; Salem, A. Z. M.; Kholif, A. E.; Martínez Castañeda, J. S.; Camacho, L. M. and Cerrillo-Soto, M. A. 2014. Effects of Saccharomyces cerevisiae at direct addition or pre-incubation on in vitro gas production kinetics and degradability of four fibrous feeds. Italian Journal of Animal Science 13:3075. https://doi.org/10.4081/ijas.2014.3075
https://doi.org/10.4081/ijas.2014.3075...
; Arowolo and He, 2018Arowolo, M. A. and He, J. 2018. Use of probiotics and botanical extracts to improve ruminant production in the tropics: A review. Animal Nutrition 4:241-249. https://doi.org/10.1016/j.aninu.2018.04.010
https://doi.org/10.1016/j.aninu.2018.04....
). However, our results did not show differences in digestibility coefficients of the diet. Two factors could explain this: the quality and nature of the forage and forage inclusion level in the diet. Regarding the first factor, the forage used in our study (alfalfa hay), a legume, contains NDF that is more digestible than the NDF of Gramineae (Oba and Allen, 1999Oba, M. and Allen, M. S. 1999. Evaluation of the importance of the digestibility of neutral detergent fiber from forage: Effects on dry matter intake and milk yield of dairy cows. Journal of Dairy Science 82:589-596. https://doi.org/10.3168/jds.S0022-0302(99)75271-9
https://doi.org/10.3168/jds.S0022-0302(9...
). Chaucheyras-Durand et al. (2012)Chaucheyras-Durand, F.; Chevaux, E.; Martin, C. and Forano, E. 2012. Use of yeast probiotics in ruminants: Effects and mechanisms of action on rumen pH, fibre degradation, and microbiota according to the diet. p.119-152. In: Probiotics in animals. Rigobelo, E. C., ed. IntechOpen. https://doi.org/10.5772/50192
https://doi.org/10.5772/50192...
pointed out that forages with higher levels of lignin and lower levels of easily digestible carbohydrates degrade better in the presence of Saccharomyces cerevisiae. Moreover, the NDF of feed concentrates is generally more digestible than the NDF of forages (Cruz and Sánchez, 2000Cruz, M. and Sánchez, J. M. 2000. La fibra en la alimentación del ganado lechero. Nutrición Animal Tropical 6:39-74.). The second factor refers to the percentage of forage (20%) in the diet of our study. Sartori et al. (2017)Sartori, E. D.; Canozzi, M. E. A.; Zago, D.; Prates, E. R.; Velho, J. P. and Barcellos, J. O. J. 2017. The effect of live yeast supplementation on beef cattle performance: A systematic review and meta-analysis. Journal of Agricultural Science 9:21-37. https://doi.org/10.5539/jas.v9n4p21
https://doi.org/10.5539/jas.v9n4p21...
stated that inclusion of 30 to 50% forage favors Saccharomyces cerevisiae activity in the ruminal environment, coinciding with Mousa et al. (2012)Mousa, K. M.; El-Malky, O. M.; Komonna, O. F. and Rashwan, S. E. 2012. Effect of some yeast and minerals on the productive and reproductive performance in ruminants. Journal of American Science 8:291-303., who observed higher digestibility of DM, protein, and fiber when forage was 40% of lamb diet and 5 and 7.5 g Saccharomyces cerevisiae was added.

Regarding ruminal pH, the similarity among treatments did not suggest an effect of Saccharomyces cerevisiae on ruminal acidosis, a syndrome caused by ingestion of high quantities of rapidly fermentable carbohydrates (Calsamiglia et al., 2012Calsamiglia, S.; Blanch, M.; Ferret, A. and Moya, D. 2012. Is subacute ruminal acidosis a pH related problem? Causes and tools for its control. Animal Feed Science and Technology 172:42-50. https://doi.org/10.1016/j.anifeedsci.2011.12.007
https://doi.org/10.1016/j.anifeedsci.201...
). Saccharomyces cerevisiae prevents this syndrome by competing with lactic acid-producing bacteria for fermentable carbohydrates (Chaucheyras-Durand et al., 2008Chaucheyras-Durand, F.; Walker, N. D. and Bach, A. 2008. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Animal Feed Science and Technology 145:5-26. https://doi.org/10.1016/j.anifeedsci.2007.04.019
https://doi.org/10.1016/j.anifeedsci.200...
).

Although the inclusion of 3 and 5 g Saccharomyces cerevisiae improved productive performance, the response observed with higher doses (10 g d1) was not clear. Yeast cultures are fermented products that contain live yeast, the culture medium for growth, and secondary metabolites produced during fermentation (Linn and Raeth-Knight, 2006Linn, J. and Raeth-Knight, M. 2006. Yeast in dairy cattle diets. In: Proceedings of the 2006 Four State Dairy Nutrition and Management Conference. Iowa State University, MWPS, Ames.), such as phenolics, isoprenoids, alkaloids, and polyketides (Siddiqui et al., 2012Siddiqui, M. S.; Thodey, K.; Trenchard, I. and Smolke, C. D. 2012. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Research 12:144-170. https://doi.org/10.1111/j.1567-1364.2011.00774.x
https://doi.org/10.1111/j.1567-1364.2011...
). Therefore, by increasing the inclusion level of Saccharomyces cerevisiae, the amounts of secondary metabolites supplied increases. These secondary metabolites are regulating molecules with nutraceutical potential (Das and Das, 2015Das, S. and Das, M. K. 2015. Emerging evidence on the role of secondary metabolites as nutraceutical. Indian E-Journal of Pharmaceutical Sciences 1(1).) that coordinate the cell activity of a population of one-celled microorganisms (Davies, 2010Davies, P. J. 2010. The plant hormones: their nature, occurrence, and functions. p.1-15. In: Plant hormones. Davies, P. J., ed. Springer, Dordrecht.). Nevertheless, the type of secondary metabolites and high inclusion doses could have an adverse effect on animal performance (Forbey et al., 2009Forbey, J. S.; Harvey, A. L.; Huffman, M. A.; Provenza, F. D.; Sullivan, R. and Tasdemir, D. 2009. Exploitation of secondary metabolites by animals: A response to homeostatic challenges. Integrative and Comparative Biology 49:314-328. https://doi.org/10.1093/icb/icp046
https://doi.org/10.1093/icb/icp046...
). Tannins are phenolic compounds that form complexes with digestive enzymes, affect rumen fermentation, and depress feed intake; alkaloids cause ataxia and diarrhea that decrease animal performance (Attia-Ismail, 2015Attia-Ismail, S. A. 2015. Plant secondary metabolites: Deleterious effects, remediation. p.157-178. In: Plants, pollutants and remediation. Öztürk, M.; Ashraf, M.; Aksoy, A.; Ahmad, M. and Hakeem, K., eds. Springer. https://doi.org/10.1007/978-94-017-7194-8_8
https://doi.org/10.1007/978-94-017-7194-...
); and isoprenoids (also known as terpenoids) are responsible of hemolysis and neurological problems (Torres-Acosta et al., 2008Torres-Acosta, J. F. J.; Alonso-Díaz, M. A.; Hoste, H.; Sandoval-Castro, C. A. and Aguilar-Caballero, A. J. 2008. Efectos negativos y positivos del consumo de forrajes ricos en taninos en la producción de caprinos. Tropical and Subtropical Agroecosystems 9:83-90.). The above cause weight loss, organ failure, altered metabolic rates, reduced nutrient digestibility, or changes in energy expenditure (Forbey et al., 2009Forbey, J. S.; Harvey, A. L.; Huffman, M. A.; Provenza, F. D.; Sullivan, R. and Tasdemir, D. 2009. Exploitation of secondary metabolites by animals: A response to homeostatic challenges. Integrative and Comparative Biology 49:314-328. https://doi.org/10.1093/icb/icp046
https://doi.org/10.1093/icb/icp046...
).

Final lamb weight largely explains the changes in dorsal fat thickness, longissimus dorsi muscle area, and hot carcass yield (Hernández-García et al., 2015Hernández-García, P. A.; Lara-Bueno, A.; Mendoza-Martínez, G. D.; Bárcena-Gama, J. R.; Plata-Pérez, F. X.; López-Ordaz, R. and Martínez-García, J. A. 2015. Effects of feeding yeast (Saccharomyces cerevisiae), organic selenium and chromium mixed on growth performance and carcass traits of hair lambs. Journal of Integrative Agriculture 14:575-582. https://doi.org/10.1016/S2095-3119(14)60833-9
https://doi.org/10.1016/S2095-3119(14)60...
). However, the variations in final lamb weight by the effect of Saccharomyces cerevisiae supplementation (Table 2) did not modify the mentioned variables.

Lamb age is one factor that affects the linear and positive deposition of fat on the carcass (Bueno et al., 2000Bueno, M. S.; Cunha, E. A.; Santos, L. E.; Roda, D. S. and Leinz, F. F. 2000. Características de carcaça de cordeiros Suffolk abatidos em diferentes idades. Revista Brasileira de Zootecnia 29:1803-1810. https://doi.org/10.1590/S1516-35982000000600029
https://doi.org/10.1590/S1516-3598200000...
). In relation to the results observed in our study, the lambs were sacrificed at 130 days old, sufficient to achieve a homogeneous distribution of fat on the carcass allowing the desirable cover and quality (Issakowicz et al., 2013Issakowicz, J.; Bueno, M. S.; Sampaio, A. C. K. and Duarte, K. M. R. 2013. Effect of concentrate level and live yeast (Saccharomyces cerevisiae) supplementation on Texel lamb performance and carcass characteristics. Livestock Science 155:44-52. https://doi.org/10.1016/j.livsci.2013.04.001
https://doi.org/10.1016/j.livsci.2013.04...
).

There is an inverse relationship between fat cover and meat protein content (Rufino et al., 2013Rufino, L. D. A.; Pereira, O. G.; Ribeiro, K. G.; Valadares Filho, S. C.; Cavali, J. and Paulino, P. V. R. 2013. Effect of substitution of soybean meal for inactive dry yeast on diet digestibility, lamb’s growth and meat quality. Small Ruminant Research 111:56-62. https://doi.org/10.1016/j.smallrumres.2012.09.014
https://doi.org/10.1016/j.smallrumres.20...
). The evaluated yeast treatments, however, did not change protein neither fat content (Table 4), which in our study were within the average values reported for lamb meat (75% moisture, 9% total protein, 4% fat, and 1% mineral matter; Prata, 1999Prata, L. F. 1999. Higiene e inspeção de carnes, pescado e derivados. Funep, Jaboticabal.). Inclusion of Saccharomyces cerevisiae in concentrated diets is related to increases in intramuscular fat deposition; it favors marbling and carcass quality and improves sensorial properties of the meat (Campo et al., 2003Campo, M. M.; Nute, G. R.; Wood, J. D.; Elmore, S. J.; Mottram, D. S. and Enser, M. 2003. Modelling the effect of fatty acids in odour development of cooked meat in vitro: part I-sensory perception. Meat Science 63:367-375. https://doi.org/10.1016/S0309-1740(02)00095-5
https://doi.org/10.1016/S0309-1740(02)00...
; Hascik et al., 2009Hascik, P.; Kacaniova, M.; Novakova, I.; Fikselová, M.; Kulisek, V.; Vavrisinova, K. and Arpášová, H. 2009. Effect of probiotics on protein production in fattening chicken meat. Slovak Journal of Animal Science 42:22-26.). In our study, however, the inclusion of Saccharomyces cerevisiae did not affect the percentage of ether extract (intramuscular fat), which is affected by factors such as breed, sex, age, and diet (Bueno et al., 2000Bueno, M. S.; Cunha, E. A.; Santos, L. E.; Roda, D. S. and Leinz, F. F. 2000. Características de carcaça de cordeiros Suffolk abatidos em diferentes idades. Revista Brasileira de Zootecnia 29:1803-1810. https://doi.org/10.1590/S1516-35982000000600029
https://doi.org/10.1590/S1516-3598200000...
; Partida de la Peña et al., 2013Partida de la Peña, J. A.; Braña Varela, D.; Jiménez Severiano, H.; Ríos Rincón, F. G. and Buendía Rodríguez, G. 2013. Producción de carne ovina. Libro técnico No. 5. INIFAP, Aeo, México.).

The lack of significant effects of Saccharomyces cerevisiae on color components (L*, a*, and b*) and water holding capacity of lamb muscle contrasts with other studies. Saccharomyces cerevisiae increases water holding capacity, explained by increased water molecules linked to muscular proteins in response to a higher total protein percent in the meat (Colmenarez et al., 2014Colmenarez, D.; Pargas-Alvarado, H.; Zapata, T.; Cordero, G.; Fuentes, M. and Puzzar, E. 2014. Efecto de la edad al sacrificio sobre el color y la capacidad de retención de agua de la carne de toros provenientes del Brasil. Gaceta de Ciencias Veterinarias 19:46-53.). Water holding capacity increases the diameter of muscle fibers, which causes a more open myofibrillar structure with a lower light-reflective capacity of the meat surface, generating darker colors related to increases in the value of the a* component (red index) (Mileswki and Zaleska, 2011Mileswki, S. and Zaleska, B. 2011. The effect of dietary supplementation with Saccharomyces cerevisiae dried yeast on lambs meat quality. Journal of Animal and Feed Sciences 20:537-545. https://doi.org/10.22358/jafs/66208/2011
https://doi.org/10.22358/jafs/66208/2011...
).

5. Conclusions

Inclusion of 3 and 5 g lamb1 d1Saccharomyces cerevisiae in concentrated diet for lambs improves productive efficiency to reach slaughter weight in less time due to greater weight gain and better feed conversion. Nevertheless, none of the Saccharomyces cerevisiae levels evaluated affects the physicochemical characteristics of the carcass or muscle.

Acknowledgments

The authors thank the Consejo Nacional de Ciencia y Tecnología (CONACYT) for the scholarship granted for doctoral studies. They also thank Elsa Margarita Crosby Galván for her valuable technical support.

References

  • AOAC - Association of Official Analytical Chemists. 2005. Official methods of analysis. 18th ed. AOAC International, Arlington, VA.
  • Arowolo, M. A. and He, J. 2018. Use of probiotics and botanical extracts to improve ruminant production in the tropics: A review. Animal Nutrition 4:241-249. https://doi.org/10.1016/j.aninu.2018.04.010
    » https://doi.org/10.1016/j.aninu.2018.04.010
  • Attia-Ismail, S. A. 2015. Plant secondary metabolites: Deleterious effects, remediation. p.157-178. In: Plants, pollutants and remediation. Öztürk, M.; Ashraf, M.; Aksoy, A.; Ahmad, M. and Hakeem, K., eds. Springer. https://doi.org/10.1007/978-94-017-7194-8_8
    » https://doi.org/10.1007/978-94-017-7194-8_8
  • Bueno, M. S.; Cunha, E. A.; Santos, L. E.; Roda, D. S. and Leinz, F. F. 2000. Características de carcaça de cordeiros Suffolk abatidos em diferentes idades. Revista Brasileira de Zootecnia 29:1803-1810. https://doi.org/10.1590/S1516-35982000000600029
    » https://doi.org/10.1590/S1516-35982000000600029
  • Calsamiglia, S.; Blanch, M.; Ferret, A. and Moya, D. 2012. Is subacute ruminal acidosis a pH related problem? Causes and tools for its control. Animal Feed Science and Technology 172:42-50. https://doi.org/10.1016/j.anifeedsci.2011.12.007
    » https://doi.org/10.1016/j.anifeedsci.2011.12.007
  • Campo, M. M.; Nute, G. R.; Wood, J. D.; Elmore, S. J.; Mottram, D. S. and Enser, M. 2003. Modelling the effect of fatty acids in odour development of cooked meat in vitro: part I-sensory perception. Meat Science 63:367-375. https://doi.org/10.1016/S0309-1740(02)00095-5
    » https://doi.org/10.1016/S0309-1740(02)00095-5
  • Chaucheyras-Durand, F.; Walker, N. D. and Bach, A. 2008. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Animal Feed Science and Technology 145:5-26. https://doi.org/10.1016/j.anifeedsci.2007.04.019
    » https://doi.org/10.1016/j.anifeedsci.2007.04.019
  • Chaucheyras-Durand, F.; Chevaux, E.; Martin, C. and Forano, E. 2012. Use of yeast probiotics in ruminants: Effects and mechanisms of action on rumen pH, fibre degradation, and microbiota according to the diet. p.119-152. In: Probiotics in animals. Rigobelo, E. C., ed. IntechOpen. https://doi.org/10.5772/50192
    » https://doi.org/10.5772/50192
  • Colmenarez, D.; Pargas-Alvarado, H.; Zapata, T.; Cordero, G.; Fuentes, M. and Puzzar, E. 2014. Efecto de la edad al sacrificio sobre el color y la capacidad de retención de agua de la carne de toros provenientes del Brasil. Gaceta de Ciencias Veterinarias 19:46-53.
  • Cömert, M.; Şayan, Y.; Özelçam, H. and Baykal, G. Y. 2015. Effects of Saccharomyces cerevisiae supplementation and anhydrous ammonia treatment of wheat straw on in-situ degradability and, rumen fermentation and growth performance of yearling lambs. Asian-Australasian Journal of Animal Sciences 28:639-646. https://doi.org/10.5713/ajas.14.0757
    » https://doi.org/10.5713/ajas.14.0757
  • Cruz, M. and Sánchez, J. M. 2000. La fibra en la alimentación del ganado lechero. Nutrición Animal Tropical 6:39-74.
  • Davies, P. J. 2010. The plant hormones: their nature, occurrence, and functions. p.1-15. In: Plant hormones. Davies, P. J., ed. Springer, Dordrecht.
  • Das, S. and Das, M. K. 2015. Emerging evidence on the role of secondary metabolites as nutraceutical. Indian E-Journal of Pharmaceutical Sciences 1(1).
  • Domínguez-Vara, I. A.; González-Muñoz, S. S.; Pinos-Rodríguez, J. M.; Bórquez-Gastélum, J. L.; Bárcena-Gama, R.; Mendoza-Martínez, G.; Zapata, L. E. and Landois-Palencia, L. L. 2009. Effects of feeding selenium-yeast and chromium-yeast to finishing lambs on growth, carcass characteristics, and blood hormones and metabolites. Animal Feed Science and Technology 152:42-49. https://doi.org/10.1016/j.anifeedsci.2009.03.008
    » https://doi.org/10.1016/j.anifeedsci.2009.03.008
  • Elghandour, M. M. Y.; Vázquez Chagoyán, J. C.; Salem, A. Z. M.; Kholif, A. E.; Martínez Castañeda, J. S.; Camacho, L. M. and Cerrillo-Soto, M. A. 2014. Effects of Saccharomyces cerevisiae at direct addition or pre-incubation on in vitro gas production kinetics and degradability of four fibrous feeds. Italian Journal of Animal Science 13:3075. https://doi.org/10.4081/ijas.2014.3075
    » https://doi.org/10.4081/ijas.2014.3075
  • Fadel Elseed, A. M. A. and Abusamra, R. M. A. 2007. Effects of supplemental yeast (Saccharomyces cerevisiae) culture on NDF digestibility and rumen fermentation of forage sorghum hay in Nubian goat’s kids. Research Journal of Agriculture and Biological Sciences 3:133-137.
  • Fereli, F.; Branco, A. F.; Jobim, C. C.; Coneglian, S. M.; Granzotto, F. and Barreto, J. C. 2010. Monensina sódica e Saccharomyces cerevisiae em dietas para bovinos: fermentação ruminal, digestibilidade dos nutrientes e eficiência de síntese microbiana. Revista Brasileira de Zootecnia 39:183-190. https://doi.org/10.1590/S1516-35982010000100024
    » https://doi.org/10.1590/S1516-35982010000100024
  • Fonty, G. and Chaucheyras-Durand, F. 2006. Effects and modes of action of live yeasts in the rumen. Biologia 61:741-750. https://doi.org/10.2478/s11756-006-0151-4
    » https://doi.org/10.2478/s11756-006-0151-4
  • Forbey, J. S.; Harvey, A. L.; Huffman, M. A.; Provenza, F. D.; Sullivan, R. and Tasdemir, D. 2009. Exploitation of secondary metabolites by animals: A response to homeostatic challenges. Integrative and Comparative Biology 49:314-328. https://doi.org/10.1093/icb/icp046
    » https://doi.org/10.1093/icb/icp046
  • Geerken, C. M.; Calzadilla, D. and González, R. 1987. Aplicación de la técnica de dos marcadores para medir el consumo de pasto y la digestibilidad de la ración de vacas de pastoreo suplementadas con concentrado. Pastos y Forrajes 10:266-273.
  • Gómez-Gurrola, A.; Del Sol-García, G.; Sanginés-García, L.; Loya-Olguín, L.; Benítez-Meza, A. and Hernández-Ballesteros, A. 2017. Rendimiento en canal de corderos de pelo, alimentados con diferentes proporciones de Tithonia diversifolia y Pennisetum spp. Abanico Veterinario 7:34-42. https://doi.org/10.21929/abavet2017.72.3
    » https://doi.org/10.21929/abavet2017.72.3
  • Guerrero Legarreta, I.; Ponce Alquicira, E. and Pérez Chabela, M. L. 2002. Curso práctico de tecnología de carnes y pescado. UAM-Iztapalapa, Mexico, D.F.
  • Haddad, S. G. and Goussous, S. N. 2005. Effect of yeast culture supplementation on nutrient intake, digestibility and growth performance of Awassi lambs. Animal Feed Science and Technology 118:343-348. https://doi.org/10.1016/j.anifeedsci.2004.10.003
    » https://doi.org/10.1016/j.anifeedsci.2004.10.003
  • Hascik, P.; Kacaniova, M.; Novakova, I.; Fikselová, M.; Kulisek, V.; Vavrisinova, K. and Arpášová, H. 2009. Effect of probiotics on protein production in fattening chicken meat. Slovak Journal of Animal Science 42:22-26.
  • Hernández-García, P. A.; Lara-Bueno, A.; Mendoza-Martínez, G. D.; Bárcena-Gama, J. R.; Plata-Pérez, F. X.; López-Ordaz, R. and Martínez-García, J. A. 2015. Effects of feeding yeast (Saccharomyces cerevisiae), organic selenium and chromium mixed on growth performance and carcass traits of hair lambs. Journal of Integrative Agriculture 14:575-582. https://doi.org/10.1016/S2095-3119(14)60833-9
    » https://doi.org/10.1016/S2095-3119(14)60833-9
  • Issakowicz, J.; Bueno, M. S.; Sampaio, A. C. K. and Duarte, K. M. R. 2013. Effect of concentrate level and live yeast (Saccharomyces cerevisiae) supplementation on Texel lamb performance and carcass characteristics. Livestock Science 155:44-52. https://doi.org/10.1016/j.livsci.2013.04.001
    » https://doi.org/10.1016/j.livsci.2013.04.001
  • Khan, R. U.; Naz, S.; Dhama, K.; Kathrik, K.; Tiwari, R.; Abdelrahman, M. M.; Alhidary, I. A. and Zahoor, A. 2016. Direct-fed microbial: Beneficial applications, modes of action and prospects as a safe tool for enhancing ruminant production and safeguarding health. International Journal of Pharmacology 12:220-231.
  • Linn, J. and Raeth-Knight, M. 2006. Yeast in dairy cattle diets. In: Proceedings of the 2006 Four State Dairy Nutrition and Management Conference. Iowa State University, MWPS, Ames.
  • Mazinani, M. and Rude, B. 2020. Population, world production and quality of sheep and goat products. American Journal of Animal and Veterinary Sciences 15:291-299. https://doi.org/10.3844/ajavsp.2020.291.299
    » https://doi.org/10.3844/ajavsp.2020.291.299
  • Mileswki, S. and Zaleska, B. 2011. The effect of dietary supplementation with Saccharomyces cerevisiae dried yeast on lambs meat quality. Journal of Animal and Feed Sciences 20:537-545. https://doi.org/10.22358/jafs/66208/2011
    » https://doi.org/10.22358/jafs/66208/2011
  • Mottet, A.; Haan, C.; Falcucci, A.; Tempio, G.; Opio, C. and Gerber, P. 2017. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Global Food Security 14:1-8. https://doi.org/10.1016/j.gfs.2017.01.001
    » https://doi.org/10.1016/j.gfs.2017.01.001
  • Mousa, K. M.; El-Malky, O. M.; Komonna, O. F. and Rashwan, S. E. 2012. Effect of some yeast and minerals on the productive and reproductive performance in ruminants. Journal of American Science 8:291-303.
  • Nielsen, S. S. 2010. Food analysis laboratory manual. Kluwer Academic/Plenum Publishers, New York.
  • Obeidat, B. S. 2017. The effects of feeding olive cake and Saccharomyces cerevisiae supplementation on performance, nutrient digestibility and blood metabolites of Awassi lambs. Animal Feed Science and Technology 231:131-137. https://doi.org/10.1016/j.anifeedsci.2017.07.006
    » https://doi.org/10.1016/j.anifeedsci.2017.07.006
  • Oliveira, M. A.; Alves, S. P.; Santos-Silva, J. and Bessa, R. J. B. 2017. Effect of dietary starch level and its rumen degradability on lamb meat fatty acid composition. Meat Science 123:166-172. https://doi.org/10.1016/j.meatsci.2016.10.001
    » https://doi.org/10.1016/j.meatsci.2016.10.001
  • Oba, M. and Allen, M. S. 1999. Evaluation of the importance of the digestibility of neutral detergent fiber from forage: Effects on dry matter intake and milk yield of dairy cows. Journal of Dairy Science 82:589-596. https://doi.org/10.3168/jds.S0022-0302(99)75271-9
    » https://doi.org/10.3168/jds.S0022-0302(99)75271-9
  • Partida de la Peña, J. A.; Braña Varela, D.; Jiménez Severiano, H.; Ríos Rincón, F. G. and Buendía Rodríguez, G. 2013. Producción de carne ovina. Libro técnico No. 5. INIFAP, Aeo, México.
  • Popova, T. 2017. Effect of probiotics in poultry for improving meat quality. Current Opinion in Food Science 14:72-77. https://doi.org/10.1016/j.cofs.2017.01.008
    » https://doi.org/10.1016/j.cofs.2017.01.008
  • Prata, L. F. 1999. Higiene e inspeção de carnes, pescado e derivados. Funep, Jaboticabal.
  • Rodrigues, E.; Arrigoni, M. D. B.; Andrade, C. R. M.; Martins, C. L.; Millen, D. D.; Parra, F. S.; Jorge, A. M. and Andrighetto, C. 2013. Performance, carcass characteristics and gain cost of feedlot cattle fed a high level of concentrate and different feed additives. Revista Brasileira de Zootecnia 42:61-69. https://doi.org/10.1590/S1516-35982013000100009
    » https://doi.org/10.1590/S1516-35982013000100009
  • Rufino, L. D. A.; Pereira, O. G.; Ribeiro, K. G.; Valadares Filho, S. C.; Cavali, J. and Paulino, P. V. R. 2013. Effect of substitution of soybean meal for inactive dry yeast on diet digestibility, lamb’s growth and meat quality. Small Ruminant Research 111:56-62. https://doi.org/10.1016/j.smallrumres.2012.09.014
    » https://doi.org/10.1016/j.smallrumres.2012.09.014
  • Sañudo, C.; Alfonso, M.; San Julián, R.; Thorkelsson, G.; Valdimarsdottir, T.; Zygoyiannis, D.; Stamataris, C.; Piasentier, E.; Mills, C.; Berge, P.; Dransfield, E.; Nute, G. R.; Enser, M. and Fisher, A. V. 2007. Regional variation in the hedonic evaluation of lamb meat from diverse production systems by consumers in six European countries. Meat Science 75:610-621. https://doi.org/10.1016/j.meatsci.2006.09.009
    » https://doi.org/10.1016/j.meatsci.2006.09.009
  • Sartori, E. D.; Canozzi, M. E. A.; Zago, D.; Prates, E. R.; Velho, J. P. and Barcellos, J. O. J. 2017. The effect of live yeast supplementation on beef cattle performance: A systematic review and meta-analysis. Journal of Agricultural Science 9:21-37. https://doi.org/10.5539/jas.v9n4p21
    » https://doi.org/10.5539/jas.v9n4p21
  • Siddiqui, M. S.; Thodey, K.; Trenchard, I. and Smolke, C. D. 2012. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Research 12:144-170. https://doi.org/10.1111/j.1567-1364.2011.00774.x
    » https://doi.org/10.1111/j.1567-1364.2011.00774.x
  • Steel, R. G. D.; Torrie, J. H. and Dickey, D. A. 1997. Principles and procedures of statistics: A biometrical approach. 3rd ed. McGraw-Hill, New York.
  • Torres-Acosta, J. F. J.; Alonso-Díaz, M. A.; Hoste, H.; Sandoval-Castro, C. A. and Aguilar-Caballero, A. J. 2008. Efectos negativos y positivos del consumo de forrajes ricos en taninos en la producción de caprinos. Tropical and Subtropical Agroecosystems 9:83-90.
  • Van Soest, P. J.; Robertson J. B. and Lewis, B. A. 1991. Methods of dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
    » https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  • Vohra, A.; Syal, P. and Madan, A. 2016. Probiotic yeasts in livestock sector. Animal Feed Science and Technology 219:31-47. https://doi.org/10.1016/j.anifeedsci.2016.05.019
    » https://doi.org/10.1016/j.anifeedsci.2016.05.019
  • Yirga, H. 2015. The use of probiotics in animal nutrition. Journal of Probiotics and Health 3:132. https://doi.org/10.4172/2329-8901.1000132
    » https://doi.org/10.4172/2329-8901.1000132
  • Zicarelli, F.; Addi, L.; Tudisco, R.; Calabrò, S.; Lombardi, P.; Cutrignelli, M. I.; Moniello, G.; Grossi, M.; Tozzi, B.; Musco, N. and Infascelli, F. 2016. The influence of diet supplementation with Saccharomyces cerevisiae or Saccharomyces cerevisiae plus Aspergillus oryzae on milk yield of Cilentana grazing dairy goats. Small Ruminant Research 135:90-94. https://doi.org/10.1016/j.smallrumres.2015.12.018
    » https://doi.org/10.1016/j.smallrumres.2015.12.018

Publication Dates

  • Publication in this collection
    21 Feb 2022
  • Date of issue
    2022

History

  • Received
    23 Dec 2020
  • Accepted
    1 Dec 2021
Sociedade Brasileira de Zootecnia Universidade Federal de Viçosa / Departamento de Zootecnia, 36570-900 Viçosa MG Brazil, Tel.: +55 31 3612-4602, +55 31 3612-4612 - Viçosa - MG - Brazil
E-mail: rbz@sbz.org.br