SciELO - Scientific Electronic Library Online

 
vol.20 número4Nutritional Evaluation of Soybean Hulls with or without β-Mannanase Supplement on Performance, Intestinal Morphometric and Carcass Yield of Broilers ChickensMolecular Authentication of Meats from Three Terrestrial Birds Based on Pcr-Rflp Analysis of the Mitochondrial 12S rRNA Gene índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Brazilian Journal of Poultry Science

versão impressa ISSN 1516-635Xversão On-line ISSN 1806-9061

Braz. J. Poult. Sci. vol.20 no.4 Campinas out./dez. 2018

https://doi.org/10.1590/1806-9061-2018-0730 

Articles

Molecular Diagnostic of Chicken Parvovirus (ChPV) Affecting Broiler Flocks in Ecuador

IDepartment of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, 05588-000, São Paulo, Brazil

IISchool of Veterinary Medicine and Animal Science, Central University of Ecuador, Quito, Ecuador


ABSTRACT

Enteric diseases affect poultry and cause important economic losses in many countries worldwide. Avian parvovirus has been linked to enteric conditions, such as malabsorption and runting-stunting syndrome (RSS), characterized by diarrhoea, and reduced weight gain and growth retardation. In 2013 and 2016, 79 samples were collected from different organs of chickens in Ecuador that exhibited signs of diarrhea and stunting syndrome, and analysed for the presence of chicken parvovirus (ChPV). The detection method of ChPV applied was Polymerase Chain Reaction (PCR), using primers designed from the conserved region of the viral genome that encodes the non-structural protein NS1. Out of the 79 samples, 50.6% (40/79) were positive for ChPV, and their nucleotide and amino acid sequences were analysed to determine their phylogenetic relationship with the sequences reported in the United States, Canada, China, South Korea, Croatia, Poland, Hungary, and Brazil. Strong similarity of nucleotide and amino acid sequences among all analyzed sequences and between the analysed and reference sequences was demonstrated, and the phylogenetic analysis clustered all the sequences within the same group, demonstrating a strong relation between the studied strains and the reference chicken parvovirus strains.

Keywords: Chicken parvovirus; enteric diseases; molecular diagnostic; PCR

INTRODUCTION

The intestinal health of birds is related to animal welfare and the productive capacity of animals. Enteric problems cause economic losses around the world, especially in young chickens, due to the costs of therapeutic treatments, decreased productivity and even increased morbidity and mortality. Viral diseases are characterized by the presence of diarrhoea, decreased weight gain, and increased feed conversion (Goodwin et al., 1993; Otto et al., 2006; Pantin-Jackwood et al., 2008; Kang et al., 2012). Several viruses are associated with enteric problems in chickens, such as avian coronavirus (IBV), avian reovirus (AReo), chicken astrovirus (CAstV), avian rotavirus-A (ARTv-A), fowl aviadenovirus (FAdV), and chicken parvovirus (ChPV) (Guy, 1998; Zsak et al., 2008; Nuñez & Ferreira, 2013), but there is limited information on the effects of individual viruses and their interactions on gut health (Pantin-Jackwood et al. 2008; Domanska-Blicharz et al., 2012; Mettifogo et al., 2014).

Avian parvovirus was first reported by Kisary et al. (1984),who found parvovirus-like virus particles that caused Derzsy’s disease in geese, using electron microscopy with gut samples from chickens with Runting-Stunting Syndrome (RSS).The family Parvoviridae contains two subfamilies: Parvovirinae that infect vertebrates, and Densovirinae that infect invertebrates (Nuñez & Ferreira, 2013).

The chicken parvovirus (ChPV)belongs to the genus Aveparvovirus, which also includes the turkey parvovirus (Cotmore et al., 2014). The particles of ChPV are small (19-24 nm in diameter), non-enveloped, and have icosahedral symmetry. The linear genome is single-stranded DNA and it is5 kilobases long (Kisary et al., 1984; Cotmore & Tattersall, 1995; Domanska-Blicharz et al., 2012).The genome contains 3 open reading frames (ORFs), including ORF 5’, which is 2085 nt long, ORF 3’,which is 2028 nt long, and a small ORF that is 306 nt long, located between 5’ and 3’ ORFs. The 5’ORF encodes a non-structural protein, NS1, whereas the 3’ORF appears to encode the capsid proteins VP1, VP2 and VP3, whereas the function of the small ORF has not been defined yet(Day & Zsak, 2010).

ChPV is related to enteric diseases that cause diarrhoea, growth retardation and lower than average weight gain, specially in 2- to 7-year-old chicks, and it is considered to be one of the aetiological agents for RSS (Zsak et al., 2013). This syndrome is also called malabsorption syndrome (MAS), helicopter disease, infectious stunting syndrome and brittle bone disease (Finkler et al., 2016).Viral replication and pathogenic effects mainly occur in cells with high proliferative rates (Hueffer & Parrish, 2003).

The aim of this study is to determine the presence of ChPV in organs obtained from broilers in Ecuador with signs of enteric disease, using Polymerase Chain Reaction (PCR) and nucleotide sequencing procedures.

MATERIALS AND METHODS

Samples

In 2013 and 2016, 79 samples were received at the Laboratory of Avian Diseases of the University of São Paulo, Brazil, corresponding to imprints of different organs, including the thymus, spleen, trachea, lung, air sac, gut, caecal tonsil, bursa, kidney and bone marrow of broilers between 1 to 4 weeks of age reared in Ecuador. Out of those samples, 42 were obtained in 2013, and 37 in 2016. The samples were used for the molecular analysis of enteric viruses that could be affecting commercial broiler flocks, whose clinical history included enteric problems such as diarrhoea, malabsorption, and delayed growth. These birds belonged to different commercial flocks distributed in the northern region of Ecuador, and after necropsy, several imprints were collected on FTA cards (GE Healthcare, Buckinghamshire, UK) for shipment to Brazil.

DNA Isolation

The material impregnated on the FTA cards was cut and suspended in PBS (Phosphate Buffered Solution), 0.1 M, pH 7.4, at 1:1 ratio, then macerated into 2-mLmicrotubes using a bead mill (TissueLyser LT Bead Mill, Qiagen, Hilden, Germany) for 5 minutes. The material was finally centrifuged for 30 min at 12,000 x g and at 4 °C. An aliquot of the supernatant was then collected for the extraction of DNA by the phenol/chloroform technique described by Chomczynski (1993). The extracted DNA was stored at -20 °C.

Polymerase chain reaction (PCR) for the detection of chicken parvovirus

The primers used in this reaction were those described by Zsak et al. (2009), PVF1 5’-TTCTAATAACGATATCACT-3’ and PVR1 5’-TTTGCGCTTGCGGTGAAGTCTGGCTCG-3’,corresponding to the conserved region of the non-structural NS gene, which amplify a 561-bp fragment. The PCR reaction conditions for ChPV amplification were performed as reported by Zsak et al. (2009), with some variations. PCR components were mixed in a DNA-free microfuge tube that included 1X reaction buffer, 1.25 mM of each deoxynucleotide triphosphate, 0.5 μM of each primer, 1.25 U of Platinum® Taq polymerase (Invitrogen® by Life Technologies, Carlsbad, CA, USA), and 2 μL of extracted DNA. Thermocycling parameters included one cycle of DNA denaturation at 94 °C for 3 min, followed by 35 cycles of 94 °C for 30 s, 55 °C for 30 s, and 72 °C for 1 min, followed by final extension at 72°C for 10 min. The PCR products of all samples were run on 1.5% Agarose gel using SyBR® Safe DNA gel stain (InvitrogenTM) and a 100 bp DNA Ladder (InvitrogenTM) to determine band size.

DNA sequencing and nucleotide sequence analysis

The amplified product was purified using the GPX™ PCR DNA and Gel Band Purification kit (GE Healthcare, Piscataway, New Jersey, USA), according to the manufacturer’s instructions. Each purified product was sequenced in the forward and reverse direction using the BigDye® Terminator Cycle Sequencing Kit v. 3.1 (Applied Biosystems by Life Technologies, Carlsbad, CA, USA). Sequencing reactions were carried out in ABI 3730 DNA Analyzer (Applied Biosystems by Life Technologies). The sequences obtained were edited using the CLC Main Workbench 7.7.3 software and aligned with previous reported sequences obtained from the GenBank database belonging to Brazil, Canada, Croatia, China, Hungary, South Korea, Poland, and the United States, using the CLUSTAL W method available in the ClustalX 2.1 software. Accession numbers of the reference sequences are detailed in the phylogenetic tree (Figure 1). The phylogenetic tree was inferred using the neighbour-joining method, with 1,000 bootstrap replicates integrated in the MEGA 7.0.18 software. The nucleotide and amino acid sequence similarity matrix was generated in the BioEdit Sequence Alignment Editor v. 7.2.5.

Figure 1 Phylogenetic analysis of the nucleotide sequences of ChPV from Ecuador. The sequence NC_001701.1 in red (goose parvovirus) was placed as a control outside the group. Numbers along the back refer to bootstrap values for 1,000 replicates. The scale bar represents the number of substitutions per site. The sequences obtained in the present work are shown in blue. EC=Ecuador, BR=Brazil, CA=Canada, HR=Croatia, HU=Hungary, PL=Poland, CH=China, US=United States, KR=South Korea. 

RESULTS

PCR

PCR products were run on 1.5% agarose gel, and the location of the DNA band of each positive sample confirmed the amplification of the 561 bp segment in 40/79 samples, out of which 17/42 corresponded to the samples received in 2013 and 23/37 to the samples received in 2016. The details of the positive samples are described in Table 1.

Table 1 Sample identification and origin, type of bird, clinical signs, year of collection and accession number from the NCBI GenBank database. 

Number of positive samples Sample Identification Type of Sample Bird Clinical signs Year of collection GenBank Accession number
Diarrhea Stunting
1 EC 513-14 Spleen Broiler Yes Yes 2013 KY649239
2 EC 513-16 Lung Broiler Yes Yes 2013 KY649240
3 EC 513-17 Trachea Broiler Yes Yes 2013 KY649241
4 EC 513-18 Kidney Broiler Yes Yes 2013 KY649242
5 EC 513-19 Timus Broiler Yes Yes 2013 KY649243
6 EC 513-22 Air sac Broiler Yes Yes 2013 KY649244
7 EC 513-23 Trachea Broiler Yes Yes 2013 KY649245
8 EC 513-24 Timus Broiler Yes Yes 2013 KY649246
9 EC 513-25 Bone marrow Broiler Yes Yes 2013 KY649247
10 EC 513-26 Spleen Broiler Yes Yes 2013 KY649248
11 EC 513-29 Trachea Broiler Yes Yes 2013 KY649249
12 EC 513-30 Trachea Broiler Yes Yes 2013 KY649250
13 EC 513-32 Trachea Broiler Yes Yes 2013 KY649251
14 EC 513-33 Cecal tonsils Broiler Yes Yes 2013 KY649252
15 EC 513-34 Gut Broiler Yes Yes 2013 KY649253
16 EC 513-37 Cecal tonsils Broiler Yes Yes 2013 KY649254
17 EC 513-38 Cecal tonsils Broiler Yes Yes 2013 KY649255
18 EC 722-3 Trachea Broiler Yes Yes 2016 KY649256
19 EC 722-15 Trachea Broiler Yes Yes 2016 KY649257
20 EC 722-17 Kidney Broiler Yes Yes 2016 KY649258
21 EC 722-18 Bursa Broiler Yes Yes 2016 KY649259
22 EC 722-19 Bursa Broiler Yes Yes 2016 KY649260
23 EC 722-20 Bursa Broiler Yes Yes 2016 KY649261
24 EC 722-21 Bursa Broiler Yes Yes 2016 KY649262
25 EC 722-22 Bursa Broiler Yes Yes 2016 KY649263
26 EC 722-23 Bursa Broiler Yes Yes 2016 KY649264
27 EC 722-24 Bursa Broiler Yes Yes 2016 KY649265
28 EC 722-25 Bursa Broiler Yes Yes 2016 KY649266
29 EC 722-26 Bursa Broiler Yes Yes 2016 KY649267
30 EC 722-27 Bursa Broiler Yes Yes 2016 KY649268
31 EC 722-28 Bursa Broiler Yes Yes 2016 KY649269
32 EC 722-29 Bursa Broiler Yes Yes 2016 KY649270
33 EC 722-30 Bursa Broiler Yes Yes 2016 KY649271
34 EC 722-31 Bursa Broiler Yes Yes 2016 KY649272
35 EC 722-32 Bursa Broiler Yes Yes 2016 KY649273
36 EC 722-33 Bursa Broiler Yes Yes 2016 KY649274
37 EC 722-34 Bursa Broiler Yes Yes 2016 KY649275
38 EC 722-35 Bursa Broiler Yes Yes 2016 KY649276
39 EC 722-36 Bursa Broiler Yes Yes 2016 KY649277
40 EC 722-37 Bursa Broiler Yes Yes 2016 KY649278

DNA sequencing and phylogenetic analysis

It was possible to sequence all positive results, obtaining a total of 40 sequences from different organs: 20 from bursae, seven in tracheas, three in caecal tonsils, two in spleens, kidneys, and thymuses, one in each of the following organs: air sac, bone marrow, intestine, and lung. The details of all positive samples, including GenBank accession numbers, are given in Table 1. The 40 sequenced fragments were analysed with a size of 398 nucleotides, showing a high percentage of similarity among nucleotides (NT)(89.6% - 100%) and amino acids (AA)(90.1% - 100%). Furthermore, there was a high percentage of similarity between sequences from Brazil (91.9% - 99.2% NT and 91.6% - 100% AA), Canada (87.9% - 94.2% NT and 87.8% - 96.2% AA), the United States (90.4% - 97.4% NT and 91.6% - 100% AA), Croatia (91.7% - 99.4% NT and 91.6% - 100% AA), Poland (92.2% - 98.2% NT and 91.6% - 100% AA), China (90.7% - 98.2% NT and 92.4% - 99.2% AA), South Korea (88.4% - 96.2% NT and 87.8% - 96.2% AA) and Hungary (91.9% - 98.7% NT and 92.4% - 99.2% AA). The similarity matrix is detailed in Table 2.

Table 2 Matrix of similarity for nucleotide and amino acid sequences. To the left, nucleotide sequences, and to the top, amino acid sequences obtained in the study, compared with the reference sequences obtained from GenBank. EC=Ecuador, BR=Brazil (21), CA=Canada (22), HR=Croatia (23), HU=Hungary (24), PL=Poland (26 and 27), CH=China (29), US=United States (28), KR=South Korea (25). To the left, nucleotide sequences, and to the top, amino acid sequences obtained in the study, compared with the reference sequences obtained from GenBank. EC=Ecuador, BR=Brazil, CA=Canada, HR=Croatia, HU=Hungary, PL=Poland, CH=China, US=United States, KR=South Korea. (Part 1) 

ChPV isolates and reference strains Numbers corresponding to the access number of ChPV from Ecuador isolates in comparison with reference strains Reference strains obtained in the GenBank data base
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
1 EC_513-14 - 1,000 1,000 0,969 1,000 1,000 1,000 0,992 1,000 1,000 1,000 0,984 1,000 1,000 1,000 1,000 0,992 0,992 0,931 0,931 0,992 0,946 1,000 0,992 0,962 0,984 0,992 0,984 0,992
2 EC_513-16 0,987 - 1,000 0,969 1,000 1,000 1,000 0,992 1,000 1,000 1,000 0,984 1,000 1,000 1,000 1,000 0,992 0,992 0,931 0,931 0,992 0,946 1,000 0,992 0,962 0,984 0,992 0,984 0,992
3 EC_513-17 1,000 0,987 - 0,969 1,000 1,000 1,000 0,992 1,000 1,000 1,000 0,984 1,000 1,000 1,000 1,000 0,992 0,992 0,931 0,931 0,992 0,946 1,000 0,992 0,962 0,984 0,992 0,984 0,992
4 EC_513-18 0,954 0,957 0,954 - 0,969 0,969 0,969 0,962 0,969 0,969 0,969 0,984 0,969 0,969 0,969 0,969 0,977 0,962 0,924 0,924 0,962 0,946 0,969 0,977 0,931 0,984 0,962 0,984 0,977
5 EC_513-19 0,979 0,992 0,979 0,959 - 1,000 1,000 0,992 1,000 1,000 1,000 0,984 1,000 1,000 1,000 1,000 0,992 0,992 0,931 0,931 0,992 0,946 1,000 0,992 0,962 0,984 0,992 0,984 0,992
6 EC_513-22 1,000 0,987 1,000 0,954 0,979 - 1,000 0,992 1,000 1,000 1,000 0,984 1,000 1,000 1,000 1,000 0,992 0,992 0,931 0,931 0,992 0,946 1,000 0,992 0,962 0,984 0,992 0,984 0,992
7 EC_513-23 0,997 0,984 0,997 0,957 0,977 0,997 - 0,992 1,000 1,000 1,000 0,984 1,000 1,000 1,000 1,000 0,992 0,992 0,931 0,931 0,992 0,946 1,000 0,992 0,962 0,984 0,992 0,984 0,992
8 EC_513-24 0,989 0,977 0,989 0,954 0,969 0,989 0,992 - 0,992 0,992 0,992 0,977 0,992 0,992 0,992 0,992 0,984 1,000 0,931 0,931 1,000 0,939 0,992 0,984 0,954 0,977 0,984 0,977 0,984
9 EC_513-25 0,997 0,984 0,997 0,957 0,977 0,997 1,000 0,992 - 1,000 1,000 0,984 1,000 1,000 1,000 1,000 0,992 0,992 0,931 0,931 0,992 0,946 1,000 0,992 0,962 0,984 0,992 0,984 0,992
10 EC_513-26 0,997 0,984 0,997 0,957 0,977 0,997 1,000 0,992 1,000 - 1,000 0,984 1,000 1,000 1,000 1,000 0,992 0,992 0,931 0,931 0,992 0,946 1,000 0,992 0,962 0,984 0,992 0,984 0,992
11 EC_513-29 0,974 0,977 0,974 0,969 0,979 0,974 0,977 0,974 0,977 0,977 - 0,984 1,000 1,000 1,000 1,000 0,992 0,992 0,931 0,931 0,992 0,946 1,000 0,992 0,962 0,984 0,992 0,984 0,992
12 EC_513-30 0,964 0,977 0,964 0,979 0,979 0,964 0,967 0,964 0,967 0,967 0,974 - 0,984 0,984 0,984 0,984 0,992 0,977 0,931 0,931 0,977 0,962 0,984 0,992 0,946 1,000 0,977 1,000 0,992
13 EC_513-32 0,962 0,974 0,962 0,959 0,982 0,962 0,964 0,962 0,964 0,964 0,979 0,977 - 1,000 1,000 1,000 0,992 0,992 0,931 0,931 0,992 0,946 1,000 0,992 0,962 0,984 0,992 0,984 0,992
14 EC_513-33 0,992 0,979 0,992 0,952 0,972 0,992 0,989 0,987 0,989 0,989 0,982 0,962 0,964 - 1,000 1,000 0,992 0,992 0,931 0,931 0,992 0,946 1,000 0,992 0,962 0,984 0,992 0,984 0,992
15 EC_513-34 0,992 0,979 0,992 0,952 0,972 0,992 0,989 0,987 0,989 0,989 0,982 0,962 0,964 1,000 - 1,000 0,992 0,992 0,931 0,931 0,992 0,946 1,000 0,992 0,962 0,984 0,992 0,984 0,992
16 EC_513-37 0,977 0,989 0,977 0,957 0,992 0,977 0,974 0,967 0,974 0,974 0,987 0,977 0,979 0,979 0,979 - 0,992 0,992 0,931 0,931 0,992 0,946 1,000 0,992 0,962 0,984 0,992 0,984 0,992
17 EC_513-38 0,974 0,987 0,974 0,969 0,989 0,974 0,977 0,969 0,977 0,977 0,979 0,989 0,977 0,967 0,967 0,987 - 0,984 0,924 0,924 0,984 0,954 0,992 0,984 0,954 0,992 0,984 0,992 0,984
18 EC_722-3 0,989 0,977 0,989 0,954 0,969 0,989 0,992 0,994 0,992 0,992 0,979 0,964 0,967 0,992 0,992 0,972 0,969 - 0,931 0,931 1,000 0,939 0,992 0,984 0,954 0,977 0,984 0,977 0,984
19 EC_722-15 0,904 0,917 0,904 0,896 0,917 0,904 0,902 0,904 0,902 0,902 0,912 0,914 0,924 0,907 0,907 0,917 0,909 0,909 - 1,000 0,931 0,893 0,931 0,939 0,893 0,931 0,931 0,931 0,939
20 EC_722-17 0,904 0,917 0,904 0,896 0,917 0,904 0,902 0,904 0,902 0,902 0,912 0,914 0,924 0,907 0,907 0,917 0,909 0,909 1,000 - 0,931 0,893 0,931 0,939 0,893 0,931 0,931 0,931 0,939
21 JX861894 0,954 0,967 0,954 0,952 0,974 0,954 0,957 0,959 0,957 0,957 0,972 0,969 0,992 0,957 0,957 0,972 0,969 0,964 0,922 0,922 - 0,939 0,992 0,984 0,954 0,977 0,984 0,977 0,984
22 JF267316 0,912 0,924 0,912 0,932 0,929 0,912 0,914 0,912 0,914 0,914 0,927 0,942 0,937 0,914 0,914 0,929 0,932 0,917 0,879 0,879 0,929 - 0,946 0,954 0,984 0,962 0,939 0,962 0,954
23 JF428870 0,962 0,974 0,962 0,959 0,982 0,962 0,964 0,962 0,964 0,964 0,979 0,977 0,994 0,964 0,964 0,979 0,977 0,967 0,919 0,919 0,992 0,932 - 0,992 0,962 0,984 0,992 0,984 0,992
24 GQ281296 0,954 0,967 0,954 0,962 0,974 0,954 0,957 0,954 0,957 0,957 0,972 0,979 0,987 0,957 0,957 0,972 0,969 0,959 0,919 0,919 0,984 0,939 0,987 - 0,954 0,992 0,984 0,992 1,000
25 KC593420 0,924 0,937 0,924 0,922 0,944 0,924 0,927 0,924 0,927 0,927 0,942 0,939 0,962 0,927 0,927 0,942 0,939 0,929 0,886 0,886 0,959 0,968 0,962 0,954 - 0,946 0,954 0,946 0,954
26 JQ178301 0,952 0,964 0,952 0,964 0,969 0,952 0,954 0,952 0,954 0,954 0,969 0,982 0,982 0,954 0,954 0,969 0,972 0,957 0,922 0,922 0,974 0,949 0,977 0,984 0,944 - 0,977 1,000 0,992
27 JQ178303 0,952 0,964 0,952 0,944 0,972 0,952 0,954 0,947 0,954 0,954 0,964 0,962 0,979 0,949 0,949 0,969 0,967 0,952 0,922 0,922 0,972 0,927 0,974 0,972 0,942 0,972 - 0,977 0,984
28 GQ260159 0,944 0,957 0,944 0,967 0,962 0,944 0,947 0,944 0,947 0,947 0,967 0,974 0,969 0,952 0,952 0,967 0,964 0,949 0,904 0,904 0,962 0,942 0,969 0,977 0,932 0,977 0,954 - 0,992
29 KU523900 0,957 0,969 0,957 0,962 0,977 0,957 0,959 0,957 0,959 0,959 0,967 0,982 0,974 0,954 0,954 0,969 0,977 0,957 0,907 0,907 0,972 0,927 0,979 0,977 0,942 0,967 0,959 0,969 -

Table 2 Matrix of similarity for nucleotide and amino acid sequences. To the left, nucleotide sequences, and to the top, amino acid sequences obtained in the study, compared with the reference sequences obtained from GenBank. EC=Ecuador, BR=Brazil (21), CA=Canada (22), HR=Croatia (23), HU=Hungary (24), PL=Poland (26 and 27), CH=China (29), US=United States (28), KR=South Korea (25). To the left, nucleotide sequences, and to the top, amino acid sequences obtained in the study, compared with the reference sequences obtained from GenBank. EC=Ecuador, BR=Brazil, CA=Canada, HR=Croatia, HU=Hungary, PL=Poland, CH=China, US=United States, KR=South Korea. (Part 2) 

ChPV isolates and reference strains Numbers corresponding to the access number of ChPV from Ecuador isolates in comparison with reference strains Reference strains obtained in the GenBank data base
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 21 22 23 24 25 26 27 28 29
30 EC_722-18 - 1,000 0,984 0,984 0,984 0,977 0,977 0,969 0,969 0,962 1,000 1,000 0,984 1,000 1,000 0,984 0,984 0,946 0,916 0,916 0,992 0,946 1,000 0,992 0,962 0,984 0,992 0,984 0,992
31 EC_722-19 1,000 - 0,984 0,984 0,984 0,977 0,977 0,969 0,969 0,962 1,000 1,000 0,984 1,000 1,000 0,984 0,984 0,946 0,916 0,916 0,992 0,946 1,000 0,992 0,962 0,984 0,992 0,984 0,992
32 EC_722-20 0,987 0,987 - 1,000 0,984 0,962 0,992 0,984 0,984 0,977 0,984 0,984 0,984 0,984 0,984 1,000 1,000 0,946 0,916 0,916 0,977 0,962 0,984 0,992 0,946 1,000 0,977 1,000 0,992
33 EC_722-21 0,984 0,984 0,997 - 0,984 0,962 0,992 0,984 0,984 0,977 0,984 0,984 0,984 0,984 0,984 1,000 1,000 0,946 0,916 0,916 0,977 0,962 0,984 0,992 0,946 1,000 0,977 1,000 0,992
34 EC_722-22 0,979 0,979 0,972 0,969 - 0,977 0,977 0,977 0,977 0,962 0,984 0,984 1,000 0,984 0,984 0,984 0,984 0,946 0,916 0,916 0,977 0,946 0,984 0,977 0,946 0,984 0,977 0,984 0,977
35 EC_722-23 0,972 0,972 0,959 0,957 0,969 - 0,969 0,954 0,954 0,954 0,977 0,977 0,977 0,977 0,977 0,962 0,962 0,962 0,931 0,931 0,969 0,924 0,977 0,969 0,939 0,962 0,984 0,962 0,969
36 EC_722-24 0,974 0,974 0,982 0,979 0,969 0,957 - 0,977 0,977 0,984 0,977 0,977 0,977 0,977 0,977 0,992 0,992 0,946 0,916 0,916 0,969 0,954 0,977 0,984 0,939 0,992 0,984 0,992 0,984
37 EC_722-25 0,964 0,964 0,972 0,969 0,959 0,944 0,964 - 1,000 0,962 0,969 0,969 0,977 0,969 0,969 0,984 0,984 0,939 0,909 0,909 0,962 0,946 0,969 0,977 0,931 0,984 0,962 0,984 0,977
38 EC_722-26 0,964 0,964 0,972 0,969 0,959 0,944 0,964 1,000 - 0,962 0,969 0,969 0,977 0,969 0,969 0,984 0,984 0,939 0,909 0,909 0,962 0,946 0,969 0,977 0,931 0,984 0,962 0,984 0,977
39 EC_722-27 0,952 0,952 0,959 0,957 0,952 0,949 0,977 0,957 0,957 - 0,962 0,962 0,962 0,962 0,962 0,977 0,977 0,931 0,901 0,901 0,954 0,939 0,962 0,969 0,924 0,977 0,969 0,977 0,969
40 EC_722-28 1,000 1,000 0,987 0,984 0,979 0,972 0,974 0,964 0,964 0,952 - 1,000 0,984 1,000 1,000 0,984 0,984 0,946 0,916 0,916 0,992 0,946 1,000 0,992 0,962 0,984 0,992 0,984 0,992
41 EC_722-29 0,982 0,982 0,969 0,967 0,962 0,959 0,957 0,957 0,957 0,939 0,982 - 0,984 1,000 1,000 0,984 0,984 0,946 0,916 0,916 0,992 0,946 1,000 0,992 0,962 0,984 0,992 0,984 0,992
42 EC_722-30 0,987 0,987 0,984 0,982 0,987 0,969 0,977 0,969 0,969 0,957 0,987 0,969 - 0,984 0,984 0,984 0,984 0,946 0,916 0,916 0,977 0,946 0,984 0,977 0,946 0,984 0,977 0,984 0,977
43 EC_722-31 1,000 1,000 0,987 0,984 0,979 0,972 0,974 0,964 0,964 0,952 1,000 0,982 0,987 - 1,000 0,984 0,984 0,946 0,916 0,916 0,992 0,946 1,000 0,992 0,962 0,984 0,992 0,984 0,992
44 EC_722-32 0,989 0,989 0,977 0,974 0,969 0,967 0,964 0,959 0,959 0,947 0,989 0,992 0,977 0,989 - 0,984 0,984 0,946 0,916 0,916 0,992 0,946 1,000 0,992 0,962 0,984 0,992 0,984 0,992
45 EC_722-33 0,984 0,984 0,992 0,994 0,969 0,957 0,979 0,964 0,964 0,957 0,984 0,967 0,977 0,984 0,974 - 1,000 0,946 0,916 0,916 0,977 0,962 0,984 0,992 0,946 1,000 0,977 1,000 0,992
46 EC_722-34 0,987 0,987 0,994 0,992 0,977 0,959 0,987 0,977 0,977 0,964 0,987 0,969 0,989 0,987 0,977 0,987 - 0,946 0,916 0,916 0,977 0,962 0,984 0,992 0,946 1,000 0,977 1,000 0,992
47 EC_722-35 0,929 0,929 0,924 0,922 0,929 0,957 0,922 0,912 0,912 0,914 0,929 0,917 0,929 0,929 0,924 0,919 0,924 - 0,962 0,962 0,946 0,909 0,946 0,954 0,909 0,946 0,946 0,946 0,954
48 EC_722-36 0,919 0,919 0,914 0,912 0,917 0,947 0,912 0,899 0,899 0,904 0,919 0,907 0,919 0,919 0,914 0,909 0,914 0,979 - 1,000 0,916 0,878 0,916 0,924 0,878 0,916 0,916 0,916 0,924
49 EC_722-37 0,919 0,919 0,914 0,912 0,917 0,947 0,912 0,899 0,899 0,904 0,919 0,907 0,919 0,919 0,914 0,909 0,914 0,979 1,000 - 0,916 0,878 0,916 0,924 0,878 0,916 0,916 0,916 0,924
21 JX861894 0,972 0,972 0,959 0,957 0,977 0,967 0,957 0,954 0,954 0,947 0,972 0,954 0,972 0,972 0,962 0,957 0,964 0,927 0,919 0,919 - 0,939 0,992 0,984 0,954 0,977 0,984 0,977 0,984
22 JF267316 0,929 0,929 0,932 0,929 0,934 0,927 0,929 0,929 0,929 0,927 0,929 0,912 0,939 0,929 0,919 0,924 0,937 0,891 0,881 0,881 0,929 - 0,946 0,954 0,984 0,962 0,939 0,962 0,954
23 JF428870 0,979 0,979 0,967 0,964 0,979 0,969 0,959 0,962 0,962 0,949 0,979 0,962 0,979 0,979 0,969 0,964 0,972 0,929 0,917 0,917 0,992 0,932 - 0,992 0,962 0,984 0,992 0,984 0,992
24 GQ281296 0,972 0,972 0,969 0,972 0,977 0,967 0,967 0,964 0,964 0,957 0,972 0,954 0,977 0,972 0,962 0,967 0,974 0,934 0,922 0,922 0,984 0,939 0,987 - 0,954 0,992 0,984 0,992 1,000
25 KC593420 0,942 0,942 0,929 0,927 0,947 0,937 0,927 0,924 0,924 0,917 0,942 0,924 0,942 0,942 0,932 0,927 0,934 0,896 0,884 0,884 0,959 0,968 0,962 0,954 - 0,946 0,954 0,946 0,954
26 JQ178301 0,969 0,969 0,972 0,969 0,979 0,967 0,969 0,967 0,967 0,962 0,969 0,952 0,979 0,969 0,959 0,964 0,977 0,934 0,922 0,922 0,974 0,949 0,977 0,984 0,944 - 0,977 1,000 0,992
27 JQ178303 0,969 0,969 0,957 0,954 0,974 0,974 0,964 0,947 0,947 0,952 0,969 0,952 0,969 0,969 0,959 0,954 0,962 0,934 0,922 0,922 0,972 0,927 0,974 0,972 0,942 0,972 - 0,977 0,984
28 GQ260159 0,962 0,962 0,964 0,967 0,967 0,949 0,967 0,964 0,964 0,964 0,962 0,944 0,972 0,962 0,952 0,967 0,969 0,917 0,904 0,904 0,962 0,942 0,969 0,977 0,932 0,977 0,954 - 0,992
29 KU523900 0,974 0,974 0,972 0,969 0,964 0,959 0,969 0,964 0,964 0,959 0,974 0,957 0,969 0,974 0,964 0,974 0,977 0,922 0,912 0,912 0,972 0,927 0,979 0,977 0,942 0,967 0,959 0,969 -

In the phylogenetic analysis, all sequences were clustered in the same group, demonstrating that the sequences obtained in this study are related to the reference sequences originating from North America, Brazil, Europe and Asia, as shown in Figure 1.

DISCUSSION

The primary aetiology of RSS or MAS in chickens is still unknown, although several viruses have been identified in birds with RSS, and ChPV being found in many of these disorders (Goodwin et al., 1993; Pantin-Jackwood et al., 2008; Domanska-Blicharz et al., 2012; Devaney et al., 2016). ChPV has a worldwide distribution, and it has been associated with enteric diseases in many other countries (Kisary et al., 1984; Decaesstecker et al., 1986; Goodwin et al., 1990; Zsak et al., 2008,2009;Bidin et al., 2011; Domanska-Blicharz et al., 2012;Tarasiuk et al., 2012;Nuñez et al., 2016). Experimentally, ChPV produces intestinal alterations such as diarrhoea, reduced weight gain and growth retardation (Zsak et al., 2013). In the present study, we searched for the presence of ChPV in different imprints of organs fixed in FTA cards collected from birds with enteric problems, such as diarrhoea and stunting. The results showed the presence of ChPV in 50.6% of the collected samples, demonstrating that the virus is not only related to enteric organs but also to organs of other systems, such as respiratory (trachea, lungs, and air sacs), immune (thymus, bursa, bone marrow and spleen), and urinary (kidney) organ, as previously demonstrated in the experimental studies of Zsak et al. (2013) and Domanska-Blicharz et al. (2012).

The parvovirus infections found in this study corresponded to young chickens, confirming previously published data on the occurrence of the virus in young animals (Palade et al., 2011; Domanska-Blicharz et al., 2012), which may indicate the occurrence of vertical infection in poultry farms in Ecuador.

In this study, we confirmed that the PCR protocol used for the amplification of a genome segment encoding the non-structural protein (NS1) in the 5’ORF region (Zsak et al., 2009) allowed for the identification of ChPV by the amplification of a 561-bp DNA fragment. Furthermore, we found a high percentage of similarity between the obtained nucleotide and amino acid sequences and others described and submitted to the GenBank from North America, Brazil, Europe and Asia. All samples used in this study derived from broilers affected with enteric disease, and therefore, it was not possible to determine the presence of ChPV in birds with no signs of enteric disease to corroborate the prevalence of natural infections of ChPV in healthy broiler flocks in the USA found by Zsak et al. (2008).

In conclusion, we confirmed the circulation of ChPV in poultry farms located in the northern region of Ecuador, providing the first molecular report of the virus in this country, which is possibly related to the enteric diseases described above. However, the exact role of the virus in enteropathiesis not fully understood, and thus, further pathological and epidemiological studies are needed to determine the real pathogenicity and prevalence of this pathogen in Ecuador, and to develop vaccines in the future to prevent the vertical and horizontal transmission of ChPV.

ACKNOWLEDGMENTS

The authors would like to the “Secretaría de Educación Superior, Ciencia, Tecnología e Innovación - SENESCYT” for its economic support through the Universities of Excellence 2014 scholarship programme of Ecuador. The authors would also like to thank the poultry companies in Brazil that generously sent the samples for the development of this study and for the diagnosis of enteric viruses. This work was supported by grants of FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) under#2013/08560-5 and 2015/09348-5, and CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnológico) under #453920/2014-4 and 140744/2014-2.

REFERENCES

Bidin M, Lojkic, AEI, Bidin BZ, Tišljar AM, Majnaricd D. Identification and phylogenetic diversity of parvovirus circulating in commercial chicken and turkey flocks in croatia. Avian Diseases 2011;55:693-696. [ Links ]

Chomczynski P. A reagent for the single-step simultaneus isolation of RNA, DNA and protein for the cell and tissues samples. Biotechniques 1993;15:532-536. [ Links ]

Cotmore SF, Agbandje-McKenna M, Chiorini JA, Mukha DV, Pintel DJ, Qiu J, et al. The family Parvoviridae. Archives of Virology 2014;159:1239-1247. [ Links ]

Cotmore SF,Tattersall P. DNA replication in the autonomous parvoviruses. Seminars in Virology 1995;6:271-281. [ Links ]

Day JM, Zsak L. Determination and analysis of the full-length chicken parvovirus genome. Virology 2010;399:59-64. [ Links ]

Decaesstecker M, Charlier G,Meulemans G. Significance of parvoviruses, entero-like viruses and reoviruses in the aetiology of the chicken malabsorption syndrome. Avian Pathology 1986;15:769-782. [ Links ]

Devaney R, Trudgett J, Trudgett A, Meharg C, Smyth V. A metagenomic comparison of endemic viruses from broiler chickens with runting-stunting syndrome and from normal birds. Avian Pathology 2016;45:616-629. [ Links ]

Domanska-Blicharz K, Jacukowicz A, Lisowska A, Minta Z. Genetic characterization of parvoviruses circulating in turkey and chicken flocks in Poland. Archives of Virology 2012;157:2425-2430. [ Links ]

Finkler F, de Lima DA, Cerva C, Cibulski SP, Teixeira TF, Dos Santos HF, et al. Chicken parvovirus viral loads in cloacal swabs from malabsorption syndrome-affected and healthy broilers. Tropical Animal Health and Production 2016;48:1685-1689. [ Links ]

Goodwin MA, Brown J, Smeltzer MA, Crary CK, Miller SL, Dickson TG, et al. A Survey for Parvovirus-Like Virus (So-Called Chick Anemia Agent) Antibodies in Broiler Breeders. Avian Diseases 1990;34:704-708. [ Links ]

Goodwin MA, Davis JF, McNulty MS, Brown J, Player C. Enteritis (So-Called Runting Stunting Syndrome) in Georgia Broiler Chicks. Avian Diseases 1993;37:451-458. [ Links ]

Guy JS. Virus infections of the gastrointestinal tract of poultry. Poultry Science 1998;77:1166-1175. [ Links ]

Hueffer K, Parrish CR. Parvovirus host range, cell tropism and evolution. Current Opinion in Microbiology 2003;6:392-398. [ Links ]

Kang K-I, El-Gazzar M, Sellers HS, Dorea F, Williams SM, Kim T, et al. Investigation into the aetiology of runting and stunting syndrome in chickens. Avian Pathology 2012;41:41-50. [ Links ]

Kisary J, Nagy B, Bitay Z. Presence of parvoviruses in the intestine of chickens showing stunting syndrome. Avian Pathology 1984;13:339-343. [ Links ]

Mettifogo E, Nuñez LF, Chacón JL, Santander Parra SH, Astolfi-Ferreira CS, Jerez JA, et al. Emergence of enteric viruses in production chickens is a concern for avian health. Scientific World Journal 2014;(9):450423. [ Links ]

Nuñez LF, Sá LR, Parra SH, Astolfi-Ferreira CS, Carranza C, Ferreira AJ. Molecular detection of chicken parvovirus in broilers with enteric disorders presenting curving of duodenal loop, pancreatic atrophy, and mesenteritis. Poultry Science 2016;95:802-810 [ Links ]

Nuñez LFN, Piantino Ferreira AJ. Viral agents related to enteric disease in commercial chicken flocks, with special reference to Latin America. World's Poultry Science Journal 2013;69:853-864. [ Links ]

Otto P, Liebler-Tenorio EM, Elschner M, Reetz J, Löhren U, Diller R. Detection of rotaviruses and intestinal lesions in broiler chicks from flocks with Runting and Stunting Syndrome (RSS). Avian Diseases 2006;50:411-418. [ Links ]

Palade EA, Kisary J, Benyeda Z, Mándoki M, Balka G, Jakab C, et al. Naturally occurring parvoviral infection in Hungarian broiler flocks. Avian Pathology 2011;40:191-197. [ Links ]

Pantin-Jackwood MJ, Day JM, Jackwood MW, Spackman E. Enteric viruses detected by molecular methods in commercial chicken and turkey flocks in the United States between 2005 and 2006. Avian Diseases 2008;52:235-244. [ Links ]

Tarasiuk K, Wozniakowski G, Samorek-Salamonowicz E. Occurrence of chicken parvovirus infection in poland. Open Virology Journal 2012;6:7-11. [ Links ]

Zsak L, Cha RM, Day JM. 2013. Chicken Parvovirus - Induced Runting-Stunting Syndrome in Young Broilers. Avian Diseases 2013;57:123-127. [ Links ]

Zsak L, Strother KO, Day JM. Development of a polymerase chain reaction procedure for detection of chicken and turkey parvoviruses. Avian Diseases 2009;53:83-88. [ Links ]

Zsak L, Strother KO, Kisary J. Partial genome sequence analysis of parvoviruses associated with enteric disease in poultry. Avian Pathology 2008;37:435-441. [ Links ]

Received: January 11, 2018; Accepted: April 03, 2018

Corresponding author e-mail address Antonio J.Piantino Ferreira Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, 05588-000, São Paulo, Brazil. Phone: +55 11 3091-1352 Email:ajpferr@usp.br

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License