Acessibilidade / Reportar erro

Extraction, Chemical Composition and in vitro Antibacterial Activity of the Essential Oil of Lippia origanoides Kunth from Northeast Brazil

Abstract

Lippia origanoides Kunth has among its synonyms Lippia sidoides Cham. and is popularly known as ‘alecrim-pimenta’ or ‘rosemary pepper’. Essential oil of L. origanoides (EOLO) has been previously reported for several biological activities without significant acute toxicity, even at higher doses. In this study, essential oil (EO) was extracted from dried leaves, inflorescences, and branches of L. origanoides from Limoeiro do Norte, Ceará, Brazil by hydrodistillation at 3.63% (w/w) yield. Posteriorly, the presence of chemical compounds in the EOLO was identified by gas chromatography coupled to mass spectrometry (GC-MS). The analysis allowed to identify the thymol as the main metabolite (83.53%), followed by p-cymene (5.92%), caryophyllene (4.31%), γ-terpinene (3.27%), thymol methyl ether (1.18%), β-myrcene (1.00%), and α-terpinene (0.79%). The minimal inhibitory concentration (MIC) of EOLO was assessed against Gram-negative and Gram-positive bacterial pathogens such as Enterobacter aerogenes, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus. At 10 µL/mL concentration, the EOLO exhibited antibacterial activity against all the tested bacterial pathogens, and this concentration was considered as the MIC. The minimum bactericidal concentration (MBC) of EOLO was assessed at the MIC concentration, which inhibited the complete growth of all tested bacterial pathogens after 3 h. Therefore, concentrations less than 10 µL/mL were set as MBC. Thus, our findings suggest that the EOLO can be used as a promising antibacterial agent in the industries.

Keywords:
Gram-negative bacterium; Gram-positive bacterium; monoterpene; pathogen; thymol.

GRAPHICAL ABSTRACT

HIGHLIGHTS

  • Thymol was identified as the main metabolite in the EOLO.

  • EOLO has antibacterial activity against Gram-negative and Gram-positive bacterial pathogens.

  • The antibacterial effect of EOLO may be associated with the presence of thymol.

HIGHLIGHTS

  • Thymol was identified as the main metabolite in the EOLO.

  • EOLO has antibacterial activity against Gram-negative and Gram-positive bacterial pathogens.

  • The antibacterial effect of EOLO may be associated with the presence of thymol.

INTRODUCTION

Essential oils (EO) are volatile organic constituents responsible for the fragrance in several plant species. Many research groups documented the importance of these compounds in the food, pharmaceutical, and agricultural fields. Indeed, EO are known to potent several pharmacological activities such as antimicrobial, anti-inflammatory, antipyretic, gastroprotective, and antioxidant properties. Besides, these EO have been used as phytosanitary controls since they allow the development of techniques to reduce the adverse effects of oxidants, radicals, pathogenic and spoilage microorganisms [11 Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils - a review. Food Chem Toxicol. 2008;46(2):446-75.

2 Oliveira MLM, Bezerra BMO, Leite LO, Girão VCC, Nunes-Pinheiro DCS. Topical continuous use of Lippia sidoides Cham. essential oil induces cutaneous inflammatory response, but does not delay wound healing process. J Ethnopharmacol. 2014;153(1):283-9.

3 Ma Y, Li M, Zhang H, Sun H, Su H, Wang Y, et al. Bioassay-guided isolation of active compounds from Adenosma buchneroides essential oil as mosquito repellent against Aedes albopictus. J Ethnopharmacol. 2019;231:386-93.

4 Brandenburg MM, Rocha FG, Pawloski PL, Soley BS, Rockenbach A, Scharf DR, et al. Baccharis dracunculifolia (Asteraceae) essential oil displays anti-inflammatory activity in models of skin inflammation. J Ethnopharmacol. 2020;259:112840.

5 Sahal G, Woerdenbag HJ, Hinrichs WLJ, Visser A, Tepper PG, Quax WJ, et al. Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. J Ethnopharmacol. 2020;246:112188.
-66 Veras BO, Oliveira JRS, Lima VLM, Navarro DMAF, Aguiar JCROF, Moura GMM, et al. The essential oil of the leaves of Verbesina macrophylla (Cass.) S.F.Blake has antimicrobial, anti-inflammatory and antipyretic activities and is toxicologically safe. J Ethnopharmacol. 2021;265:113248.].

Among the several genera of EO-producing plants, the Lippia stands out. The genus Lippia (Verbenaceae) comprises approximately 200 species of herbs, shrubs, and small trees, distributed in Central and South America, as well as in Tropical Africa. It is estimated that Brazil contains 70-75% of all known species and a large part is concentrated in the Northeast region [77 Maia JGS, Taveira FSN, Andrade EHA, Silva MHL, Zoghbi MGB. Essential oils of Lippia grandis Schau. Flavour Fragr J. 2003;18(5):417-20.

8 Cavalcanti SCH, Niculau ES, Blank AF, Câmara CAG, Araújo IN, Alves PB. Composition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch). Bioresour Technol. 2010;101(2):829-32.
-99 Silva LL, Silva DT, Garlet QI, Cunha MA, Mallmann CA, Baldisserotto B, et al. Anesthetic activity of Brazilian native plants in silver catfish (Rhamdia quelen). Neotrop Ichthyol. 2013;11:443-51.]. Lippia origanoides Kunth has among its synonyms Lippia sidoides Cham. and is popularly known as ‘alecrim-pimenta’ or ‘rosemary pepper’. This is an aromatic plant found naturally in Northeast Brazil and used in popular medicine as an antiseptic, scabicide, and anti-inflammatory [1010 Cavalcanti ESB, Morais SM, Lima MAA, Santana EWP. Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz. 2004;99(5):541-4.,1111 Ribeiro Neto JA, Tarôco BRP, Santos HB, Thomé RG, Wolfram E, Ribeiro RIMA. Using the plants of Brazilian Cerrado for wound healing: from traditional use to scientific approach. J Ethnopharmacol. 2020;260:112547.]. The EO of L. origanoides (EOLO) has been reported for several biological activities [88 Cavalcanti SCH, Niculau ES, Blank AF, Câmara CAG, Araújo IN, Alves PB. Composition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch). Bioresour Technol. 2010;101(2):829-32.

9 Silva LL, Silva DT, Garlet QI, Cunha MA, Mallmann CA, Baldisserotto B, et al. Anesthetic activity of Brazilian native plants in silver catfish (Rhamdia quelen). Neotrop Ichthyol. 2013;11:443-51.

10 Cavalcanti ESB, Morais SM, Lima MAA, Santana EWP. Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz. 2004;99(5):541-4.

11 Ribeiro Neto JA, Tarôco BRP, Santos HB, Thomé RG, Wolfram E, Ribeiro RIMA. Using the plants of Brazilian Cerrado for wound healing: from traditional use to scientific approach. J Ethnopharmacol. 2020;260:112547.

12 Ambrosio CMS, Alencar SM, Sousa RLM, Moreno AM, Gloria EM. Antimicrobial activity of several essential oils on pathogenic and beneficial bacteria. Ind Crops Prod. 2017;97:128-36.

13 Araújo MJC, Camara CAG, Moraes MM, Born FS. Insecticidal properties and chemical composition of Piper aduncum L., Lippia sidoides Cham. and Schinus terebinthifolius Raddi essential oils against Plutella xylostella L. An Acad Bras Cienc. 2020;92:1-14.

14 Baldim I, Tonani L, Kress MRZ, Oliveira WP. Lippia sidoides essential oil encapsulated in lipid nanosystem as an anti-Candida agent. Ind Crops Prod. 2019;127:73-81.

15 Baldim I, Rosa DM, Souza CRF, Ana R, Durazzo A, Lucarini M, et al. Factors affecting the retention efficiency and physicochemical properties of spray dried lipid nanoparticles loaded with Lippia sidoides essential oil. Biomolecules. 2020;10(5):1-15.

16 Barbosa R, Cruz-Mendes Y, Silva-Alves KS, Ferreira-da-Silva FW, Ribeiro NM, Morais LP, et al. Effects of Lippia sidoides essential oil, thymol, p-cymene, myrcene and caryophyllene on rat sciatic nerve excitability. Braz. J Med Biol Res. 2017;50(12):1-6.

17 Bertini LM, Pereira AF, Oliveira CLL, Menezes EA, Morais SM, Cunha FA, et al. Perfil de sensibilidade de bactérias frente a óleos essenciais de algumas plantas do Nordeste do Brasil. Informa. 2005;17(3/4):80-3.

18 Botelho MA, Rao VS, Carvalho CBM, Bezerra-Filho JG, Fonseca SGC, Vale ML, et al. Lippia sidoides and Myracrodruon urundeuva gel prevents alveolar bone resorption in experimental periodontitis in rats. J Ethnopharmacol. 2007;113(3):471-8.

19 Botelho MA, Nogueira NAP, Bastos GM, Fonseca SGC, Lemos TLG, Matos FJA, et al. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Brazilian J Med Biol Res. 2007;40(3):349-56.

20 Camurça-Vasconcelos ALF, Bevilaqua CML, Morais SM, Maciel MV, Costa CTC, Macedo ITF, et al. Anthelmintic activity of Lippia sidoides essential oil on sheep gastrointestinal nematodes. Vet Parasitol. 2008;154(1-2):167-70.

21 Camurça-Vasconcelos ALF, Bevilaqua CML, Morais SM, Maciel MV, Costa CTC, Macedo ITF, et al. Anthelmintic activity of Croton zehntneri and Lippia sidoides essential oils. Vet Parasitol. 2007;148(3-4):288-94.

22 Carvalho RRDC, Laranjeira D, Carvalho Filho JLS, Souza PE, Blank AF, Alves PB, et al. In vitro activity of essential oils of Lippia sidoides and Lippia gracilis and their major chemical components against Thielaviopsis paradoxa, causal agent of stem bleeding in coconut palms. Quim Nova. 2013;36(2):241-4.

23 Castro CE, Ribeiro JM, Diniz TT, Almeida AC, Ferreira LC, Martins ER, et al. Antimicrobial activity of Lippia sidoides Cham. (Verbenaceae) essential oil against Staphylococcus aureus and Escherichia coli. Ver Bras Plantas Med. 2011;13(3):293-7.

24 Costa RA, Cavalcante TTA, Melo CTV, Barroso DLA, Machado MH, Carvalho MG, et al. Antioxidant and antibacterial activities of essential oil of Lippia sidoides against drug-resistant Staphylococcus aureus from food. African J Biotechnol. 2018;17(8):232-8.

25 Costa JGM, Rodrigues FFG, Angélico EC, Silva MR, Mota ML, Santos NKA, et al. Chemical-biological study of the essential oils of Hyptis martiusii, Lippia sidoides and Syzigium aromaticum against larvae of Aedes aegypti and Culex quinquefasciatus. Rev Bras Farmacogn. 2005;15(4):304-9.

26 Dias LRC, Santos ARB, Paz Filho ER, Silva PHS, Sobrinho CA. Study of essential oil from Lippia sidoides Cham. (alecrim pimenta) for control of Macrophomina phaseolina in cowpea. Rev Cuba Plantas Med. 2019;24(1):1-17.

27 Farias-Junior AP, Rios MC, Moura TA, Almeida RP, Alves PB, Blank AF, et al. Leishmanicidal activity of carvacrol-rich essential oil from Lippia sidoides Cham. Biol Res. 2012;45(4):399-402.

28 Fernandes LP, Turatti ICC, Lopes NP, Ferreira JC, Candido RC, Oliveira WP. Volatile retention and antifungal properties of spray-dried microparticles of Lippia sidoides essential oil. Dry Technol. 2008;26(12):1534-42.

29 Ferreira TPS, Mourão DSC, Santos GR, Guimarães LGL, Pires ECF, Santos WF, Aguiar RWS. Fungistatic activity of essential oil of Lippia sidoides Cham. against Curvularia lunata. African J Agric Res. 2018;13(14):704-13.

30 Figueiredo MB, Gomes GA, Santangelo JM, Pontes EG, Azambuja P, Garcia ES, et al. Lethal and sublethal effects of essential oil of Lippia sidoides (Verbenaceae) and monoterpenes on Chagas’ disease vector Rhodnius prolixus. Mem Inst Oswaldo Cruz. 2017;112(1):63-9.

31 Fontenelle ROS, Morais SM, Brito EHS, Kerntopf MR, Brilhante RSN, Cordeiro RA, et al. Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides Cham. J Antimicrob Chemother. 2007;59(5):934-40.

32 Gomes GA, Monteiro CMDO, Senra TDOS, Zeringota V, Calmon F, Matos RDS, et al. Chemical composition and acaricidal activity of essential oil from Lippia sidoides on larvae of Dermacentor nitens (Acari: Ixodidae) and larvae and engorged females of Rhipicephalus microplus (Acari: Ixodidae). Parasitol Res. 2012;111(6):2423-30.

33 Gonçalves AH, Pereira AS, Santos GRS, Guimarães LGL. Atividade fungitóxica in vitro dos óleos essenciais de Lippia sidoides Cham., Cymbopogon citratus (D.C.) Stapf. e de seus constituintes majoritários no controle de Rhizoctonia solani e Sclerotium rolfsii. Rev Bras Plantas Med. 2015;17(4):1007-15.

34 Guimarães LDLG, Cardoso MG, Souza RM, Zacaroni AB, Santos GR. Essential oil of Lippia sidoides native to Minas Gerais: composition, secretory structures and antibacterial activity. Rev Cienc Agron. 2014;45(2):267-75.

35 Hashimoto GS, Oliveira D, Marinho Neto F, Ruiz ML, Acchile M, Chagas EC, et al. Essential oils of Lippia sidoides and Mentha piperita against monogenean parasites and their influence on the hematology of Nile tilapia. Aquaculture. 2016;450:182-6.

36 Lima RK, Cardoso MG, Moraes JC, Carvalho SM, Rodrigues VG, Guimarães LGL. Chemical composition and fumigant effect of essentialoil of Lippia sidoides Cham. and monoterpenes against Tenebrio molitor (L.) (Coleoptera: Tenebrionidae). Ciên Agrotec. 2011;35(4):664-71.

37 Lima GPG, Souza TM, Freire GP, Farias DF, Cunha AP, Ricardo NMPS, et al. Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol Res. 2013;112(5):1953-8.

38 Linden L, Farias I, Santos A, Silveira K, Sampaio F. Antimicrobial evaluation of sutures containing Lippia sidoides Cham. essencial oil. MOL2NET. 2016;2(14).

39 Majolo C, Silva AMS, Monteiro PC, Brandão FR, Chaves FCM, Chagas EC. Antibacterial activity of essential oil and extracts of Lippia sidoides and thymol against Aeromonas hydrophila. Biota Amaz. 2020;10(2):46-9.

40 Majolo C, Rocha SIB, Chagas EC, Chaves FCM, Bizzo HR. Chemical composition of Lippia spp. essential oil and antimicrobial activity against Aeromonas hydrophila. Aquac Res. 2016;48(5):2380-7.

41 Majolo C, Pilarski F, Chaves FCM, Bizzo HR, Chagas EC. Antimicrobial activity of some essential oils against Streptococcus agalactiae, an important pathogen for fish farming in Brazil. J Essent Oil Res. 2018;30(5):388-97.

42 Marco CA, Teixeira E, Simplício A, Oliveira C, Costa J, Feitosa J. Chemical composition and allelopathyc activity of essential oil of Lippia sidoides Cham. Chil J Agric Res. 2012;72(1):157-60.

43 Melo CBF, Barreto JO, Regis RR, Silva FJA, Silva-Lovato CH, Oliveira VC, et al. Desenvolvimento de um produto à base de óleo essencial de Lippia sidoides como auxiliar para prevenção e tratamento da estomatite protética. J Heal Sci. 2017;19(5):188.

44 Melo ARB, Higino TMM, Oliveira ADPR, Fontes A, Silva DCN, Castro MCAB, et al. Lippia sidoides and Lippia origanoides essential oils affect the viability, motility and ultrastructure of Trypanosoma cruzi. Micron. 2020;120:102781.

45 Monteiro MVB, Leite AKRM, Bertini LM, Morais SM, Nunes-Pinheiro DCS. Topical anti-inflammatory, gastroprotective and antioxidant effects of the essential oil of Lippia sidoides Cham. leaves. J Ethnopharmacol. 2007;111(2):378-82.

46 Morais SR, Oliveira TLS, Bara MTF, Conceição EC, Rezende MH, Ferri PH, et al. Chemical constituents of essential oil from Lippia sidoides Cham. (Verbenaceae) leaves cultivated in Hidrolândia, Goiás, Brazil. Int J Anal Chem. 2012;2012363919.

47 Morais SR, Oliveira TLS, Oliveira LP, Tresvenzol L, Conceição E, Rezende M, et al. Essential oil composition, antimicrobial and pharmacological activities of Lippia sidoides Cham. (Verbenaceae) from São Gonçalo do Abaeté, Minas Gerais, Brazil. Pharmacogn Mag. 2016;12(48):262-70.

48 Mota APP, Dantas JCP, Frota CC. Antimicrobial activity of essential oils from Lippia alba, Lippia sidoides, Cymbopogon citrates, Plectranthus amboinicus, and Cinnamomum zeylanicum against Mycobacterium tuberculosis. Cienc Rural. 2018;48(6).

49 Mota ML, Lobo LTC, Costa JMG, Costa LS, Rocha HAO, Silva LFR, et al. In vitro and in vivo antimalarial activity of essential oils and chemical components from three medicinal plants found in Northeastern Brazil. Planta Med. 2012;78(7):658-64.

50 Mourão DDSC, Souza MR, Reis JVL, Ferreira TPS, Osorio PRA, Santos ER, et al. Fungistatic activity of essential oils for the control of bipolaris leaf spot in maize. J Med Plants Res. 2019;13(12):280-7.

51 Oliveira FP, Lima EDO, Souza EL, Helena B, Santos C, Barreto HM. Effectiveness of Lippia sidoides Cham. (Verbenaceae) essential oil in inhibiting the growth of Staphylococcus aureus strains isolated from clinical material. Brazilian J Pharmacogn. 2006;16(4):510-6.

52 Oliveira J, Gloria EM, Parisi MCM, Baggio JS, Silva PPM, Ambrosio CMS, et al. Antifungal activity of essential oils associated with carboxymethylcellulose against Colletotrichum acutatum in strawberries. Sci Hortic (Amsterdam). 2019;243:261-7.

53 Oliveira VCS, Moura DMS, Lopes JAD, Andrade PP, Silva NH, Figueiredo RCBQ. Effects of essential oils from Cymbopogon citratus (DC) Stapf., Lippia sidoides Cham., and Ocimum gratissimum L. on growth and ultrastructure of Leishmania chagasi promastigotes. Parasitol Res. 2009;104(5):1053-9.

54 Oliveira AP, Santana AS, Santana EDR, Lima APS, Faro RRN, Nunes RS, et al. Nanoformulation prototype of the essential oil of Lippia sidoides and thymol to population management of Sitophilus zeamais (Coleoptera: Curculionidae). Ind Crops Prod. 2017;107:198-205.

55 Oliveira AP, Santos AA, Santana AS, Lima APS, Melo CR, Santana EDR, et al. Essential oil of Lippia sidoides and its major compound thymol: Toxicity and walking response of populations of Sitophilus zeamais (Coleoptera: Curculionidae). Crop Prot. 2018;112:33-8.

56 Parente MSR, Custódio FR, Cardoso NA, Lima MJA, Melo TS, Linhares MI, et al. Antidepressant-like effect of Lippia sidoides CHAM (Verbenaceae) essential oil and its major compound thymol in mice. Sci Pharm. 2018;86(3):1-19.

57 Pereira SLS, Praxedes YCM, Bastos TC, Alencar PNB, Costa FN. Clinical effect of a gel containing Lippia sidoides on plaque and gingivitis control. Eur J Dent. 2013;7(1):28-34.

58 Pereira AMS, Franca SC, Fachin AL, Bertoni BW, Pina ES, Coppede JS. Phytotherapic pharmaceutical combination of Lippia salviifolia and Lippia sidoides, phytotherapic pharmaceutical composition, process for preparing a phytotherapic pharmaceutical composition and veterinary uses. United States Pat. 2016;2(12).

59 Pinto NOF, Rodrigues THS, Pereira RCA, Silva LMA, Cáceres CA, Azeredo HMC, et al. Production and physico-chemical characterization of nanocapsules of the essential oil from Lippia sidoides Cham. Ind Crops Prod. 2016;86:279-88.

60 Rodrigues ÍSC, Tavares VN, Pereira SLS, Costa FN. Antiplaque and antigingivitis effect of Lippia sidoides. A double-blind clinical study in humans. J Appl Oral Sci. 2009;17(5):404-7.

61 Rondon FCM, Bevilaqua CML, Accioly MP, Morais SM, Andrade-Júnior HF, Carvalho CA, et al. In vitro efficacy of Coriandrum sativum, Lippia sidoides and Copaifera reticulata against Leishmania chagasi. Rev Bras Parasitol Vet. 2012;21(3):185-91.

62 Santana LKN, Oliveira MFSS, Ribeiro GT, Poderoso JCM, Santos ÍTBF, Pinheiro HSS, et al. Effect analysis of Lippia sidoides’ essential oil over Atta sexdens (Hymenoptera: Formicidae). Ciên Agri. 2018;1655-8.

63 Santos IGA, Scher R, Rott MB, Menezes LR, Costa EV, Cavalcanti SCH, et al. Amebicidal activity of the essential oils of Lippia spp. (Verbenaceae) against Acanthamoeba polyphaga trophozoites. Parasitol Res. 2015;115(2):535-40.

64 Santos CP, Oliveira TC, Pinto JAO, Fontes SS, Cruz EMO, Arrigoni-Blank MF, et al. Chemical diversity and influence of plant age on the essential oil from Lippia sidoides Cham. germplasm. Ind Crops Prod. 2015;76:416-21.

65 Santos VS, Silva PH, Pádua LE. Bioactivity of the essential oil of Lippia sidoides Cham. (rosemary-pepper) on the Callosobruchus maculatus (Fabr.) (Coleoptera: Chysomelidae). EntomoBrasilis. 2018;11(2):113-7.

66 Santos AA, Oliveira BMS, Melo CR, Lima APS, Santana EDR, Blank AF, et al. Sub-lethal effects of essential oil of Lippia sidoides on drywood termite Cryptotermes brevis (Blattodea: Termitoidea). Ecotoxicol Environ Saf. 2017;145:436-41.

67 Saraiva AGQ, Saraiva GD, Albuquerque RL, Nogueira CES, Teixeira AMR, Lima LB, et al. Chemical analysis and vibrational spectroscopy study of essential oils from Lippia sidoides and of its major constituent. Vib Spectrosc. 2020;110103111.

68 Soares BV, Neves LR, Ferreira DO, Oliveira MSB, Chaves FCM, Chagas EC, et al. Antiparasitic activity, histopathology and physiology of Colossoma macropomum (tambaqui) exposed to the essential oil of Lippia sidoides (Verbenaceae). Vet Parasitol. 2016;234:49-56.

69 Trevisan MTS, Marques RA, Silva MGV, Scherer D, Haubner R, Ulrich CM, et al. Composition of essential oils and ethanol extracts of the leaves of Lippia species: identification, quantitation and antioxidant capacity. Rec Nat Prod. 2016;10(4):485-96.

70 Vázquez-Sánchez D, Galvão JA, Ambrosio CMS, Gloria EM, Oetterer M. Single and binary applications of essential oils effectively control Listeria monocytogenes biofilms. Ind Crops Prod. 2018;121:452-60.

71 Vázquez-Sánchez D, Galvão JA, Mazine MR, Gloria EM, Oetterer M. Control of Staphylococcus aureus biofilms by the application of single and combined treatments based in plant essential oils. Int J Food Microbiol. 2018;286:128-38.

72 Ventura AS, Silva TSC, Zanon RB, Inoue LAKA, Cardoso CAL. Physiological and pharmacokinetic responses in neotropical Piaractus mesopotamicus to the essential oil from Lippia sidoides (Verbenaceae) as an anesthetic. Int Aquat Res. 2019;11:1-12.

73 Veras HNH, Araruna MKA, Costa JGM, Coutinho HDM, Kerntopf MR, Botelho MA, et al. Topical antiinflammatory activity of essential oil of Lippia sidoides Cham: possible mechanism of action. Phyther Res. 2012;27(2):179-85.

74 Veras HNH, Rodrigues FFG, Botelho MA, Menezes IRA, Coutinho HDM, Costa JGM. Enhancement of aminoglycosides and β-lactams antibiotic activity by essential oil of Lippia sidoides Cham. and the thymol. Arab J Chem. 2013;10:S2790-5.
-7575 Veras HNH, Rodrigues FFG, Colares AV, Menezes IRA, Coutinho HDM, Botelho MA, et al. Synergistic antibiotic activity of volatile compounds from the essential oil of Lippia sidoides and thymol. Fitoterapia. 2012;83(3):508-12.], such as acaricidal [88 Cavalcanti SCH, Niculau ES, Blank AF, Câmara CAG, Araújo IN, Alves PB. Composition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch). Bioresour Technol. 2010;101(2):829-32.,3232 Gomes GA, Monteiro CMDO, Senra TDOS, Zeringota V, Calmon F, Matos RDS, et al. Chemical composition and acaricidal activity of essential oil from Lippia sidoides on larvae of Dermacentor nitens (Acari: Ixodidae) and larvae and engorged females of Rhipicephalus microplus (Acari: Ixodidae). Parasitol Res. 2012;111(6):2423-30.], allelopathic [4242 Marco CA, Teixeira E, Simplício A, Oliveira C, Costa J, Feitosa J. Chemical composition and allelopathyc activity of essential oil of Lippia sidoides Cham. Chil J Agric Res. 2012;72(1):157-60.], anesthetic [99 Silva LL, Silva DT, Garlet QI, Cunha MA, Mallmann CA, Baldisserotto B, et al. Anesthetic activity of Brazilian native plants in silver catfish (Rhamdia quelen). Neotrop Ichthyol. 2013;11:443-51.,7272 Ventura AS, Silva TSC, Zanon RB, Inoue LAKA, Cardoso CAL. Physiological and pharmacokinetic responses in neotropical Piaractus mesopotamicus to the essential oil from Lippia sidoides (Verbenaceae) as an anesthetic. Int Aquat Res. 2019;11:1-12.], anthelmintic [2020 Camurça-Vasconcelos ALF, Bevilaqua CML, Morais SM, Maciel MV, Costa CTC, Macedo ITF, et al. Anthelmintic activity of Lippia sidoides essential oil on sheep gastrointestinal nematodes. Vet Parasitol. 2008;154(1-2):167-70.,2121 Camurça-Vasconcelos ALF, Bevilaqua CML, Morais SM, Maciel MV, Costa CTC, Macedo ITF, et al. Anthelmintic activity of Croton zehntneri and Lippia sidoides essential oils. Vet Parasitol. 2007;148(3-4):288-94.], antibacterial [1212 Ambrosio CMS, Alencar SM, Sousa RLM, Moreno AM, Gloria EM. Antimicrobial activity of several essential oils on pathogenic and beneficial bacteria. Ind Crops Prod. 2017;97:128-36.,1717 Bertini LM, Pereira AF, Oliveira CLL, Menezes EA, Morais SM, Cunha FA, et al. Perfil de sensibilidade de bactérias frente a óleos essenciais de algumas plantas do Nordeste do Brasil. Informa. 2005;17(3/4):80-3.,2323 Castro CE, Ribeiro JM, Diniz TT, Almeida AC, Ferreira LC, Martins ER, et al. Antimicrobial activity of Lippia sidoides Cham. (Verbenaceae) essential oil against Staphylococcus aureus and Escherichia coli. Ver Bras Plantas Med. 2011;13(3):293-7.,2424 Costa RA, Cavalcante TTA, Melo CTV, Barroso DLA, Machado MH, Carvalho MG, et al. Antioxidant and antibacterial activities of essential oil of Lippia sidoides against drug-resistant Staphylococcus aureus from food. African J Biotechnol. 2018;17(8):232-8.,3434 Guimarães LDLG, Cardoso MG, Souza RM, Zacaroni AB, Santos GR. Essential oil of Lippia sidoides native to Minas Gerais: composition, secretory structures and antibacterial activity. Rev Cienc Agron. 2014;45(2):267-75.,3838 Linden L, Farias I, Santos A, Silveira K, Sampaio F. Antimicrobial evaluation of sutures containing Lippia sidoides Cham. essencial oil. MOL2NET. 2016;2(14).

39 Majolo C, Silva AMS, Monteiro PC, Brandão FR, Chaves FCM, Chagas EC. Antibacterial activity of essential oil and extracts of Lippia sidoides and thymol against Aeromonas hydrophila. Biota Amaz. 2020;10(2):46-9.

40 Majolo C, Rocha SIB, Chagas EC, Chaves FCM, Bizzo HR. Chemical composition of Lippia spp. essential oil and antimicrobial activity against Aeromonas hydrophila. Aquac Res. 2016;48(5):2380-7.
-4141 Majolo C, Pilarski F, Chaves FCM, Bizzo HR, Chagas EC. Antimicrobial activity of some essential oils against Streptococcus agalactiae, an important pathogen for fish farming in Brazil. J Essent Oil Res. 2018;30(5):388-97.,4848 Mota APP, Dantas JCP, Frota CC. Antimicrobial activity of essential oils from Lippia alba, Lippia sidoides, Cymbopogon citrates, Plectranthus amboinicus, and Cinnamomum zeylanicum against Mycobacterium tuberculosis. Cienc Rural. 2018;48(6).,5151 Oliveira FP, Lima EDO, Souza EL, Helena B, Santos C, Barreto HM. Effectiveness of Lippia sidoides Cham. (Verbenaceae) essential oil in inhibiting the growth of Staphylococcus aureus strains isolated from clinical material. Brazilian J Pharmacogn. 2006;16(4):510-6.,7070 Vázquez-Sánchez D, Galvão JA, Ambrosio CMS, Gloria EM, Oetterer M. Single and binary applications of essential oils effectively control Listeria monocytogenes biofilms. Ind Crops Prod. 2018;121:452-60.,7171 Vázquez-Sánchez D, Galvão JA, Mazine MR, Gloria EM, Oetterer M. Control of Staphylococcus aureus biofilms by the application of single and combined treatments based in plant essential oils. Int J Food Microbiol. 2018;286:128-38.,7373 Veras HNH, Araruna MKA, Costa JGM, Coutinho HDM, Kerntopf MR, Botelho MA, et al. Topical antiinflammatory activity of essential oil of Lippia sidoides Cham: possible mechanism of action. Phyther Res. 2012;27(2):179-85.,7474 Veras HNH, Rodrigues FFG, Botelho MA, Menezes IRA, Coutinho HDM, Costa JGM. Enhancement of aminoglycosides and β-lactams antibiotic activity by essential oil of Lippia sidoides Cham. and the thymol. Arab J Chem. 2013;10:S2790-5.], antidepressant [5656 Parente MSR, Custódio FR, Cardoso NA, Lima MJA, Melo TS, Linhares MI, et al. Antidepressant-like effect of Lippia sidoides CHAM (Verbenaceae) essential oil and its major compound thymol in mice. Sci Pharm. 2018;86(3):1-19.], antifungal [1414 Baldim I, Tonani L, Kress MRZ, Oliveira WP. Lippia sidoides essential oil encapsulated in lipid nanosystem as an anti-Candida agent. Ind Crops Prod. 2019;127:73-81.,2222 Carvalho RRDC, Laranjeira D, Carvalho Filho JLS, Souza PE, Blank AF, Alves PB, et al. In vitro activity of essential oils of Lippia sidoides and Lippia gracilis and their major chemical components against Thielaviopsis paradoxa, causal agent of stem bleeding in coconut palms. Quim Nova. 2013;36(2):241-4.,2626 Dias LRC, Santos ARB, Paz Filho ER, Silva PHS, Sobrinho CA. Study of essential oil from Lippia sidoides Cham. (alecrim pimenta) for control of Macrophomina phaseolina in cowpea. Rev Cuba Plantas Med. 2019;24(1):1-17.,2828 Fernandes LP, Turatti ICC, Lopes NP, Ferreira JC, Candido RC, Oliveira WP. Volatile retention and antifungal properties of spray-dried microparticles of Lippia sidoides essential oil. Dry Technol. 2008;26(12):1534-42.,2929 Ferreira TPS, Mourão DSC, Santos GR, Guimarães LGL, Pires ECF, Santos WF, Aguiar RWS. Fungistatic activity of essential oil of Lippia sidoides Cham. against Curvularia lunata. African J Agric Res. 2018;13(14):704-13.,3131 Fontenelle ROS, Morais SM, Brito EHS, Kerntopf MR, Brilhante RSN, Cordeiro RA, et al. Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides Cham. J Antimicrob Chemother. 2007;59(5):934-40.,3333 Gonçalves AH, Pereira AS, Santos GRS, Guimarães LGL. Atividade fungitóxica in vitro dos óleos essenciais de Lippia sidoides Cham., Cymbopogon citratus (D.C.) Stapf. e de seus constituintes majoritários no controle de Rhizoctonia solani e Sclerotium rolfsii. Rev Bras Plantas Med. 2015;17(4):1007-15.,5050 Mourão DDSC, Souza MR, Reis JVL, Ferreira TPS, Osorio PRA, Santos ER, et al. Fungistatic activity of essential oils for the control of bipolaris leaf spot in maize. J Med Plants Res. 2019;13(12):280-7.,5252 Oliveira J, Gloria EM, Parisi MCM, Baggio JS, Silva PPM, Ambrosio CMS, et al. Antifungal activity of essential oils associated with carboxymethylcellulose against Colletotrichum acutatum in strawberries. Sci Hortic (Amsterdam). 2019;243:261-7.,6262 Santana LKN, Oliveira MFSS, Ribeiro GT, Poderoso JCM, Santos ÍTBF, Pinheiro HSS, et al. Effect analysis of Lippia sidoides’ essential oil over Atta sexdens (Hymenoptera: Formicidae). Ciên Agri. 2018;1655-8.], antigingivitis [5757 Pereira SLS, Praxedes YCM, Bastos TC, Alencar PNB, Costa FN. Clinical effect of a gel containing Lippia sidoides on plaque and gingivitis control. Eur J Dent. 2013;7(1):28-34.,6060 Rodrigues ÍSC, Tavares VN, Pereira SLS, Costa FN. Antiplaque and antigingivitis effect of Lippia sidoides. A double-blind clinical study in humans. J Appl Oral Sci. 2009;17(5):404-7.], anti-inflammatory [1818 Botelho MA, Rao VS, Carvalho CBM, Bezerra-Filho JG, Fonseca SGC, Vale ML, et al. Lippia sidoides and Myracrodruon urundeuva gel prevents alveolar bone resorption in experimental periodontitis in rats. J Ethnopharmacol. 2007;113(3):471-8.,4545 Monteiro MVB, Leite AKRM, Bertini LM, Morais SM, Nunes-Pinheiro DCS. Topical anti-inflammatory, gastroprotective and antioxidant effects of the essential oil of Lippia sidoides Cham. leaves. J Ethnopharmacol. 2007;111(2):378-82.,7575 Veras HNH, Rodrigues FFG, Colares AV, Menezes IRA, Coutinho HDM, Botelho MA, et al. Synergistic antibiotic activity of volatile compounds from the essential oil of Lippia sidoides and thymol. Fitoterapia. 2012;83(3):508-12.], antimicrobial [1818 Botelho MA, Rao VS, Carvalho CBM, Bezerra-Filho JG, Fonseca SGC, Vale ML, et al. Lippia sidoides and Myracrodruon urundeuva gel prevents alveolar bone resorption in experimental periodontitis in rats. J Ethnopharmacol. 2007;113(3):471-8.,1919 Botelho MA, Nogueira NAP, Bastos GM, Fonseca SGC, Lemos TLG, Matos FJA, et al. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Brazilian J Med Biol Res. 2007;40(3):349-56.,4343 Melo CBF, Barreto JO, Regis RR, Silva FJA, Silva-Lovato CH, Oliveira VC, et al. Desenvolvimento de um produto à base de óleo essencial de Lippia sidoides como auxiliar para prevenção e tratamento da estomatite protética. J Heal Sci. 2017;19(5):188.,4747 Morais SR, Oliveira TLS, Oliveira LP, Tresvenzol L, Conceição E, Rezende M, et al. Essential oil composition, antimicrobial and pharmacological activities of Lippia sidoides Cham. (Verbenaceae) from São Gonçalo do Abaeté, Minas Gerais, Brazil. Pharmacogn Mag. 2016;12(48):262-70.,5858 Pereira AMS, Franca SC, Fachin AL, Bertoni BW, Pina ES, Coppede JS. Phytotherapic pharmaceutical combination of Lippia salviifolia and Lippia sidoides, phytotherapic pharmaceutical composition, process for preparing a phytotherapic pharmaceutical composition and veterinary uses. United States Pat. 2016;2(12).], antioxidant [2424 Costa RA, Cavalcante TTA, Melo CTV, Barroso DLA, Machado MH, Carvalho MG, et al. Antioxidant and antibacterial activities of essential oil of Lippia sidoides against drug-resistant Staphylococcus aureus from food. African J Biotechnol. 2018;17(8):232-8.,4545 Monteiro MVB, Leite AKRM, Bertini LM, Morais SM, Nunes-Pinheiro DCS. Topical anti-inflammatory, gastroprotective and antioxidant effects of the essential oil of Lippia sidoides Cham. leaves. J Ethnopharmacol. 2007;111(2):378-82.,6969 Trevisan MTS, Marques RA, Silva MGV, Scherer D, Haubner R, Ulrich CM, et al. Composition of essential oils and ethanol extracts of the leaves of Lippia species: identification, quantitation and antioxidant capacity. Rec Nat Prod. 2016;10(4):485-96.], antiparasitic [3535 Hashimoto GS, Oliveira D, Marinho Neto F, Ruiz ML, Acchile M, Chagas EC, et al. Essential oils of Lippia sidoides and Mentha piperita against monogenean parasites and their influence on the hematology of Nile tilapia. Aquaculture. 2016;450:182-6.,6868 Soares BV, Neves LR, Ferreira DO, Oliveira MSB, Chaves FCM, Chagas EC, et al. Antiparasitic activity, histopathology and physiology of Colossoma macropomum (tambaqui) exposed to the essential oil of Lippia sidoides (Verbenaceae). Vet Parasitol. 2016;234:49-56.], antiplaque [5757 Pereira SLS, Praxedes YCM, Bastos TC, Alencar PNB, Costa FN. Clinical effect of a gel containing Lippia sidoides on plaque and gingivitis control. Eur J Dent. 2013;7(1):28-34.,6060 Rodrigues ÍSC, Tavares VN, Pereira SLS, Costa FN. Antiplaque and antigingivitis effect of Lippia sidoides. A double-blind clinical study in humans. J Appl Oral Sci. 2009;17(5):404-7.], antiprotozoal [2727 Farias-Junior AP, Rios MC, Moura TA, Almeida RP, Alves PB, Blank AF, et al. Leishmanicidal activity of carvacrol-rich essential oil from Lippia sidoides Cham. Biol Res. 2012;45(4):399-402.,4444 Melo ARB, Higino TMM, Oliveira ADPR, Fontes A, Silva DCN, Castro MCAB, et al. Lippia sidoides and Lippia origanoides essential oils affect the viability, motility and ultrastructure of Trypanosoma cruzi. Micron. 2020;120:102781.,4949 Mota ML, Lobo LTC, Costa JMG, Costa LS, Rocha HAO, Silva LFR, et al. In vitro and in vivo antimalarial activity of essential oils and chemical components from three medicinal plants found in Northeastern Brazil. Planta Med. 2012;78(7):658-64.,5353 Oliveira VCS, Moura DMS, Lopes JAD, Andrade PP, Silva NH, Figueiredo RCBQ. Effects of essential oils from Cymbopogon citratus (DC) Stapf., Lippia sidoides Cham., and Ocimum gratissimum L. on growth and ultrastructure of Leishmania chagasi promastigotes. Parasitol Res. 2009;104(5):1053-9.,6161 Rondon FCM, Bevilaqua CML, Accioly MP, Morais SM, Andrade-Júnior HF, Carvalho CA, et al. In vitro efficacy of Coriandrum sativum, Lippia sidoides and Copaifera reticulata against Leishmania chagasi. Rev Bras Parasitol Vet. 2012;21(3):185-91.,6363 Santos IGA, Scher R, Rott MB, Menezes LR, Costa EV, Cavalcanti SCH, et al. Amebicidal activity of the essential oils of Lippia spp. (Verbenaceae) against Acanthamoeba polyphaga trophozoites. Parasitol Res. 2015;115(2):535-40.], cytotoxicity [2929 Ferreira TPS, Mourão DSC, Santos GR, Guimarães LGL, Pires ECF, Santos WF, Aguiar RWS. Fungistatic activity of essential oil of Lippia sidoides Cham. against Curvularia lunata. African J Agric Res. 2018;13(14):704-13.,4949 Mota ML, Lobo LTC, Costa JMG, Costa LS, Rocha HAO, Silva LFR, et al. In vitro and in vivo antimalarial activity of essential oils and chemical components from three medicinal plants found in Northeastern Brazil. Planta Med. 2012;78(7):658-64.,6161 Rondon FCM, Bevilaqua CML, Accioly MP, Morais SM, Andrade-Júnior HF, Carvalho CA, et al. In vitro efficacy of Coriandrum sativum, Lippia sidoides and Copaifera reticulata against Leishmania chagasi. Rev Bras Parasitol Vet. 2012;21(3):185-91.,6363 Santos IGA, Scher R, Rott MB, Menezes LR, Costa EV, Cavalcanti SCH, et al. Amebicidal activity of the essential oils of Lippia spp. (Verbenaceae) against Acanthamoeba polyphaga trophozoites. Parasitol Res. 2015;115(2):535-40.], gastroprotective [4545 Monteiro MVB, Leite AKRM, Bertini LM, Morais SM, Nunes-Pinheiro DCS. Topical anti-inflammatory, gastroprotective and antioxidant effects of the essential oil of Lippia sidoides Cham. leaves. J Ethnopharmacol. 2007;111(2):378-82.], insecticidal [1313 Araújo MJC, Camara CAG, Moraes MM, Born FS. Insecticidal properties and chemical composition of Piper aduncum L., Lippia sidoides Cham. and Schinus terebinthifolius Raddi essential oils against Plutella xylostella L. An Acad Bras Cienc. 2020;92:1-14.,3030 Figueiredo MB, Gomes GA, Santangelo JM, Pontes EG, Azambuja P, Garcia ES, et al. Lethal and sublethal effects of essential oil of Lippia sidoides (Verbenaceae) and monoterpenes on Chagas’ disease vector Rhodnius prolixus. Mem Inst Oswaldo Cruz. 2017;112(1):63-9.,3636 Lima RK, Cardoso MG, Moraes JC, Carvalho SM, Rodrigues VG, Guimarães LGL. Chemical composition and fumigant effect of essentialoil of Lippia sidoides Cham. and monoterpenes against Tenebrio molitor (L.) (Coleoptera: Tenebrionidae). Ciên Agrotec. 2011;35(4):664-71.,3737 Lima GPG, Souza TM, Freire GP, Farias DF, Cunha AP, Ricardo NMPS, et al. Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol Res. 2013;112(5):1953-8.,5454 Oliveira AP, Santana AS, Santana EDR, Lima APS, Faro RRN, Nunes RS, et al. Nanoformulation prototype of the essential oil of Lippia sidoides and thymol to population management of Sitophilus zeamais (Coleoptera: Curculionidae). Ind Crops Prod. 2017;107:198-205.,5555 Oliveira AP, Santos AA, Santana AS, Lima APS, Melo CR, Santana EDR, et al. Essential oil of Lippia sidoides and its major compound thymol: Toxicity and walking response of populations of Sitophilus zeamais (Coleoptera: Curculionidae). Crop Prot. 2018;112:33-8.,6262 Santana LKN, Oliveira MFSS, Ribeiro GT, Poderoso JCM, Santos ÍTBF, Pinheiro HSS, et al. Effect analysis of Lippia sidoides’ essential oil over Atta sexdens (Hymenoptera: Formicidae). Ciên Agri. 2018;1655-8.,6565 Santos VS, Silva PH, Pádua LE. Bioactivity of the essential oil of Lippia sidoides Cham. (rosemary-pepper) on the Callosobruchus maculatus (Fabr.) (Coleoptera: Chysomelidae). EntomoBrasilis. 2018;11(2):113-7.,6666 Santos AA, Oliveira BMS, Melo CR, Lima APS, Santana EDR, Blank AF, et al. Sub-lethal effects of essential oil of Lippia sidoides on drywood termite Cryptotermes brevis (Blattodea: Termitoidea). Ecotoxicol Environ Saf. 2017;145:436-41.], larvicidal [1010 Cavalcanti ESB, Morais SM, Lima MAA, Santana EWP. Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz. 2004;99(5):541-4.,2525 Costa JGM, Rodrigues FFG, Angélico EC, Silva MR, Mota ML, Santos NKA, et al. Chemical-biological study of the essential oils of Hyptis martiusii, Lippia sidoides and Syzigium aromaticum against larvae of Aedes aegypti and Culex quinquefasciatus. Rev Bras Farmacogn. 2005;15(4):304-9.], phytotoxicity [2929 Ferreira TPS, Mourão DSC, Santos GR, Guimarães LGL, Pires ECF, Santos WF, Aguiar RWS. Fungistatic activity of essential oil of Lippia sidoides Cham. against Curvularia lunata. African J Agric Res. 2018;13(14):704-13.,5050 Mourão DDSC, Souza MR, Reis JVL, Ferreira TPS, Osorio PRA, Santos ER, et al. Fungistatic activity of essential oils for the control of bipolaris leaf spot in maize. J Med Plants Res. 2019;13(12):280-7.], sciatic nerve excitability [1616 Barbosa R, Cruz-Mendes Y, Silva-Alves KS, Ferreira-da-Silva FW, Ribeiro NM, Morais LP, et al. Effects of Lippia sidoides essential oil, thymol, p-cymene, myrcene and caryophyllene on rat sciatic nerve excitability. Braz. J Med Biol Res. 2017;50(12):1-6.], and toxicity [3131 Fontenelle ROS, Morais SM, Brito EHS, Kerntopf MR, Brilhante RSN, Cordeiro RA, et al. Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides Cham. J Antimicrob Chemother. 2007;59(5):934-40.,3535 Hashimoto GS, Oliveira D, Marinho Neto F, Ruiz ML, Acchile M, Chagas EC, et al. Essential oils of Lippia sidoides and Mentha piperita against monogenean parasites and their influence on the hematology of Nile tilapia. Aquaculture. 2016;450:182-6.,3737 Lima GPG, Souza TM, Freire GP, Farias DF, Cunha AP, Ricardo NMPS, et al. Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol Res. 2013;112(5):1953-8.,4545 Monteiro MVB, Leite AKRM, Bertini LM, Morais SM, Nunes-Pinheiro DCS. Topical anti-inflammatory, gastroprotective and antioxidant effects of the essential oil of Lippia sidoides Cham. leaves. J Ethnopharmacol. 2007;111(2):378-82.,4949 Mota ML, Lobo LTC, Costa JMG, Costa LS, Rocha HAO, Silva LFR, et al. In vitro and in vivo antimalarial activity of essential oils and chemical components from three medicinal plants found in Northeastern Brazil. Planta Med. 2012;78(7):658-64.,6868 Soares BV, Neves LR, Ferreira DO, Oliveira MSB, Chaves FCM, Chagas EC, et al. Antiparasitic activity, histopathology and physiology of Colossoma macropomum (tambaqui) exposed to the essential oil of Lippia sidoides (Verbenaceae). Vet Parasitol. 2016;234:49-56.]. Interestingly, to the best of our knowledge, EOLO has not been previously reported for any acute toxic effect even at high doses above 500 mg/kg [1212 Ambrosio CMS, Alencar SM, Sousa RLM, Moreno AM, Gloria EM. Antimicrobial activity of several essential oils on pathogenic and beneficial bacteria. Ind Crops Prod. 2017;97:128-36.].

EOLO is rich in terpenes, mainly carvacrol [88 Cavalcanti SCH, Niculau ES, Blank AF, Câmara CAG, Araújo IN, Alves PB. Composition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch). Bioresour Technol. 2010;101(2):829-32.,99 Silva LL, Silva DT, Garlet QI, Cunha MA, Mallmann CA, Baldisserotto B, et al. Anesthetic activity of Brazilian native plants in silver catfish (Rhamdia quelen). Neotrop Ichthyol. 2013;11:443-51.,1313 Araújo MJC, Camara CAG, Moraes MM, Born FS. Insecticidal properties and chemical composition of Piper aduncum L., Lippia sidoides Cham. and Schinus terebinthifolius Raddi essential oils against Plutella xylostella L. An Acad Bras Cienc. 2020;92:1-14.,2727 Farias-Junior AP, Rios MC, Moura TA, Almeida RP, Alves PB, Blank AF, et al. Leishmanicidal activity of carvacrol-rich essential oil from Lippia sidoides Cham. Biol Res. 2012;45(4):399-402.,3333 Gonçalves AH, Pereira AS, Santos GRS, Guimarães LGL. Atividade fungitóxica in vitro dos óleos essenciais de Lippia sidoides Cham., Cymbopogon citratus (D.C.) Stapf. e de seus constituintes majoritários no controle de Rhizoctonia solani e Sclerotium rolfsii. Rev Bras Plantas Med. 2015;17(4):1007-15.,3434 Guimarães LDLG, Cardoso MG, Souza RM, Zacaroni AB, Santos GR. Essential oil of Lippia sidoides native to Minas Gerais: composition, secretory structures and antibacterial activity. Rev Cienc Agron. 2014;45(2):267-75.,3636 Lima RK, Cardoso MG, Moraes JC, Carvalho SM, Rodrigues VG, Guimarães LGL. Chemical composition and fumigant effect of essentialoil of Lippia sidoides Cham. and monoterpenes against Tenebrio molitor (L.) (Coleoptera: Tenebrionidae). Ciên Agrotec. 2011;35(4):664-71.,5858 Pereira AMS, Franca SC, Fachin AL, Bertoni BW, Pina ES, Coppede JS. Phytotherapic pharmaceutical combination of Lippia salviifolia and Lippia sidoides, phytotherapic pharmaceutical composition, process for preparing a phytotherapic pharmaceutical composition and veterinary uses. United States Pat. 2016;2(12).,6363 Santos IGA, Scher R, Rott MB, Menezes LR, Costa EV, Cavalcanti SCH, et al. Amebicidal activity of the essential oils of Lippia spp. (Verbenaceae) against Acanthamoeba polyphaga trophozoites. Parasitol Res. 2015;115(2):535-40.,6464 Santos CP, Oliveira TC, Pinto JAO, Fontes SS, Cruz EMO, Arrigoni-Blank MF, et al. Chemical diversity and influence of plant age on the essential oil from Lippia sidoides Cham. germplasm. Ind Crops Prod. 2015;76:416-21.] and thymol [1010 Cavalcanti ESB, Morais SM, Lima MAA, Santana EWP. Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz. 2004;99(5):541-4.,1414 Baldim I, Tonani L, Kress MRZ, Oliveira WP. Lippia sidoides essential oil encapsulated in lipid nanosystem as an anti-Candida agent. Ind Crops Prod. 2019;127:73-81.

15 Baldim I, Rosa DM, Souza CRF, Ana R, Durazzo A, Lucarini M, et al. Factors affecting the retention efficiency and physicochemical properties of spray dried lipid nanoparticles loaded with Lippia sidoides essential oil. Biomolecules. 2020;10(5):1-15.

16 Barbosa R, Cruz-Mendes Y, Silva-Alves KS, Ferreira-da-Silva FW, Ribeiro NM, Morais LP, et al. Effects of Lippia sidoides essential oil, thymol, p-cymene, myrcene and caryophyllene on rat sciatic nerve excitability. Braz. J Med Biol Res. 2017;50(12):1-6.
-1717 Bertini LM, Pereira AF, Oliveira CLL, Menezes EA, Morais SM, Cunha FA, et al. Perfil de sensibilidade de bactérias frente a óleos essenciais de algumas plantas do Nordeste do Brasil. Informa. 2005;17(3/4):80-3.,1919 Botelho MA, Nogueira NAP, Bastos GM, Fonseca SGC, Lemos TLG, Matos FJA, et al. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Brazilian J Med Biol Res. 2007;40(3):349-56.,2121 Camurça-Vasconcelos ALF, Bevilaqua CML, Morais SM, Maciel MV, Costa CTC, Macedo ITF, et al. Anthelmintic activity of Croton zehntneri and Lippia sidoides essential oils. Vet Parasitol. 2007;148(3-4):288-94.,2222 Carvalho RRDC, Laranjeira D, Carvalho Filho JLS, Souza PE, Blank AF, Alves PB, et al. In vitro activity of essential oils of Lippia sidoides and Lippia gracilis and their major chemical components against Thielaviopsis paradoxa, causal agent of stem bleeding in coconut palms. Quim Nova. 2013;36(2):241-4.,2424 Costa RA, Cavalcante TTA, Melo CTV, Barroso DLA, Machado MH, Carvalho MG, et al. Antioxidant and antibacterial activities of essential oil of Lippia sidoides against drug-resistant Staphylococcus aureus from food. African J Biotechnol. 2018;17(8):232-8.

25 Costa JGM, Rodrigues FFG, Angélico EC, Silva MR, Mota ML, Santos NKA, et al. Chemical-biological study of the essential oils of Hyptis martiusii, Lippia sidoides and Syzigium aromaticum against larvae of Aedes aegypti and Culex quinquefasciatus. Rev Bras Farmacogn. 2005;15(4):304-9.
-2626 Dias LRC, Santos ARB, Paz Filho ER, Silva PHS, Sobrinho CA. Study of essential oil from Lippia sidoides Cham. (alecrim pimenta) for control of Macrophomina phaseolina in cowpea. Rev Cuba Plantas Med. 2019;24(1):1-17.,2828 Fernandes LP, Turatti ICC, Lopes NP, Ferreira JC, Candido RC, Oliveira WP. Volatile retention and antifungal properties of spray-dried microparticles of Lippia sidoides essential oil. Dry Technol. 2008;26(12):1534-42.

29 Ferreira TPS, Mourão DSC, Santos GR, Guimarães LGL, Pires ECF, Santos WF, Aguiar RWS. Fungistatic activity of essential oil of Lippia sidoides Cham. against Curvularia lunata. African J Agric Res. 2018;13(14):704-13.

30 Figueiredo MB, Gomes GA, Santangelo JM, Pontes EG, Azambuja P, Garcia ES, et al. Lethal and sublethal effects of essential oil of Lippia sidoides (Verbenaceae) and monoterpenes on Chagas’ disease vector Rhodnius prolixus. Mem Inst Oswaldo Cruz. 2017;112(1):63-9.

31 Fontenelle ROS, Morais SM, Brito EHS, Kerntopf MR, Brilhante RSN, Cordeiro RA, et al. Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides Cham. J Antimicrob Chemother. 2007;59(5):934-40.
-3232 Gomes GA, Monteiro CMDO, Senra TDOS, Zeringota V, Calmon F, Matos RDS, et al. Chemical composition and acaricidal activity of essential oil from Lippia sidoides on larvae of Dermacentor nitens (Acari: Ixodidae) and larvae and engorged females of Rhipicephalus microplus (Acari: Ixodidae). Parasitol Res. 2012;111(6):2423-30.,3535 Hashimoto GS, Oliveira D, Marinho Neto F, Ruiz ML, Acchile M, Chagas EC, et al. Essential oils of Lippia sidoides and Mentha piperita against monogenean parasites and their influence on the hematology of Nile tilapia. Aquaculture. 2016;450:182-6.,3737 Lima GPG, Souza TM, Freire GP, Farias DF, Cunha AP, Ricardo NMPS, et al. Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol Res. 2013;112(5):1953-8.,3838 Linden L, Farias I, Santos A, Silveira K, Sampaio F. Antimicrobial evaluation of sutures containing Lippia sidoides Cham. essencial oil. MOL2NET. 2016;2(14).,4040 Majolo C, Rocha SIB, Chagas EC, Chaves FCM, Bizzo HR. Chemical composition of Lippia spp. essential oil and antimicrobial activity against Aeromonas hydrophila. Aquac Res. 2016;48(5):2380-7.

41 Majolo C, Pilarski F, Chaves FCM, Bizzo HR, Chagas EC. Antimicrobial activity of some essential oils against Streptococcus agalactiae, an important pathogen for fish farming in Brazil. J Essent Oil Res. 2018;30(5):388-97.
-4242 Marco CA, Teixeira E, Simplício A, Oliveira C, Costa J, Feitosa J. Chemical composition and allelopathyc activity of essential oil of Lippia sidoides Cham. Chil J Agric Res. 2012;72(1):157-60.,4545 Monteiro MVB, Leite AKRM, Bertini LM, Morais SM, Nunes-Pinheiro DCS. Topical anti-inflammatory, gastroprotective and antioxidant effects of the essential oil of Lippia sidoides Cham. leaves. J Ethnopharmacol. 2007;111(2):378-82.,4949 Mota ML, Lobo LTC, Costa JMG, Costa LS, Rocha HAO, Silva LFR, et al. In vitro and in vivo antimalarial activity of essential oils and chemical components from three medicinal plants found in Northeastern Brazil. Planta Med. 2012;78(7):658-64.,5050 Mourão DDSC, Souza MR, Reis JVL, Ferreira TPS, Osorio PRA, Santos ER, et al. Fungistatic activity of essential oils for the control of bipolaris leaf spot in maize. J Med Plants Res. 2019;13(12):280-7.,5252 Oliveira J, Gloria EM, Parisi MCM, Baggio JS, Silva PPM, Ambrosio CMS, et al. Antifungal activity of essential oils associated with carboxymethylcellulose against Colletotrichum acutatum in strawberries. Sci Hortic (Amsterdam). 2019;243:261-7.

53 Oliveira VCS, Moura DMS, Lopes JAD, Andrade PP, Silva NH, Figueiredo RCBQ. Effects of essential oils from Cymbopogon citratus (DC) Stapf., Lippia sidoides Cham., and Ocimum gratissimum L. on growth and ultrastructure of Leishmania chagasi promastigotes. Parasitol Res. 2009;104(5):1053-9.

54 Oliveira AP, Santana AS, Santana EDR, Lima APS, Faro RRN, Nunes RS, et al. Nanoformulation prototype of the essential oil of Lippia sidoides and thymol to population management of Sitophilus zeamais (Coleoptera: Curculionidae). Ind Crops Prod. 2017;107:198-205.
-5555 Oliveira AP, Santos AA, Santana AS, Lima APS, Melo CR, Santana EDR, et al. Essential oil of Lippia sidoides and its major compound thymol: Toxicity and walking response of populations of Sitophilus zeamais (Coleoptera: Curculionidae). Crop Prot. 2018;112:33-8.,5757 Pereira SLS, Praxedes YCM, Bastos TC, Alencar PNB, Costa FN. Clinical effect of a gel containing Lippia sidoides on plaque and gingivitis control. Eur J Dent. 2013;7(1):28-34.,5959 Pinto NOF, Rodrigues THS, Pereira RCA, Silva LMA, Cáceres CA, Azeredo HMC, et al. Production and physico-chemical characterization of nanocapsules of the essential oil from Lippia sidoides Cham. Ind Crops Prod. 2016;86:279-88.,6161 Rondon FCM, Bevilaqua CML, Accioly MP, Morais SM, Andrade-Júnior HF, Carvalho CA, et al. In vitro efficacy of Coriandrum sativum, Lippia sidoides and Copaifera reticulata against Leishmania chagasi. Rev Bras Parasitol Vet. 2012;21(3):185-91.,6666 Santos AA, Oliveira BMS, Melo CR, Lima APS, Santana EDR, Blank AF, et al. Sub-lethal effects of essential oil of Lippia sidoides on drywood termite Cryptotermes brevis (Blattodea: Termitoidea). Ecotoxicol Environ Saf. 2017;145:436-41.

67 Saraiva AGQ, Saraiva GD, Albuquerque RL, Nogueira CES, Teixeira AMR, Lima LB, et al. Chemical analysis and vibrational spectroscopy study of essential oils from Lippia sidoides and of its major constituent. Vib Spectrosc. 2020;110103111.

68 Soares BV, Neves LR, Ferreira DO, Oliveira MSB, Chaves FCM, Chagas EC, et al. Antiparasitic activity, histopathology and physiology of Colossoma macropomum (tambaqui) exposed to the essential oil of Lippia sidoides (Verbenaceae). Vet Parasitol. 2016;234:49-56.

69 Trevisan MTS, Marques RA, Silva MGV, Scherer D, Haubner R, Ulrich CM, et al. Composition of essential oils and ethanol extracts of the leaves of Lippia species: identification, quantitation and antioxidant capacity. Rec Nat Prod. 2016;10(4):485-96.

70 Vázquez-Sánchez D, Galvão JA, Ambrosio CMS, Gloria EM, Oetterer M. Single and binary applications of essential oils effectively control Listeria monocytogenes biofilms. Ind Crops Prod. 2018;121:452-60.

71 Vázquez-Sánchez D, Galvão JA, Mazine MR, Gloria EM, Oetterer M. Control of Staphylococcus aureus biofilms by the application of single and combined treatments based in plant essential oils. Int J Food Microbiol. 2018;286:128-38.

72 Ventura AS, Silva TSC, Zanon RB, Inoue LAKA, Cardoso CAL. Physiological and pharmacokinetic responses in neotropical Piaractus mesopotamicus to the essential oil from Lippia sidoides (Verbenaceae) as an anesthetic. Int Aquat Res. 2019;11:1-12.

73 Veras HNH, Araruna MKA, Costa JGM, Coutinho HDM, Kerntopf MR, Botelho MA, et al. Topical antiinflammatory activity of essential oil of Lippia sidoides Cham: possible mechanism of action. Phyther Res. 2012;27(2):179-85.

74 Veras HNH, Rodrigues FFG, Botelho MA, Menezes IRA, Coutinho HDM, Costa JGM. Enhancement of aminoglycosides and β-lactams antibiotic activity by essential oil of Lippia sidoides Cham. and the thymol. Arab J Chem. 2013;10:S2790-5.
-7575 Veras HNH, Rodrigues FFG, Colares AV, Menezes IRA, Coutinho HDM, Botelho MA, et al. Synergistic antibiotic activity of volatile compounds from the essential oil of Lippia sidoides and thymol. Fitoterapia. 2012;83(3):508-12.], responsible for their antibacterial and antifungal activities [7676 Nazzaro F, Fratianni F, Martino L, Coppola R, Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel). 2013;6(12):1451-74.,7777 Ventura AS, Souza T, Silva DC, Andrea C, Cardoso L, Antônio L, et al. Alternative anesthetic features of 'erva cidreira' Lippia alba and 'alecrim pimenta' Lippia sidoides in fish. Med Veterinária. 2019;13(3):416-28.]. However, it is very known that the activity against bacteria by a range of EO is dependent on the mechanisms of action of each individual compound or the combinations between them, such as synergistic, additive, and antagonistic interactions [7676 Nazzaro F, Fratianni F, Martino L, Coppola R, Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel). 2013;6(12):1451-74.,7878 Hyldgaard M, Mygind T, Meyer RL. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol. 2012;3:1-24.,7979 Van de Vel E, Sampers I, Raes K. A review on influencing factors on the minimum inhibitory concentration of essential oils. Crit. Rev. Food Sci Nutr. 2017;59(3):357-78.]. Thus, this combination of compounds with different mechanisms of action can significantly increase the antibacterial efficacy of EO against multidrug-resistant bacterial pathogens, and which also reducing the emergence of novel resistant species [7373 Veras HNH, Araruna MKA, Costa JGM, Coutinho HDM, Kerntopf MR, Botelho MA, et al. Topical antiinflammatory activity of essential oil of Lippia sidoides Cham: possible mechanism of action. Phyther Res. 2012;27(2):179-85.,7676 Nazzaro F, Fratianni F, Martino L, Coppola R, Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel). 2013;6(12):1451-74.,8080 Coimbra AT, Ferreira S, Duarte AP. Genus Ruta: a natural source of high value products with biological and pharmacological properties. J Ethnopharmacol. 2020;260113076].

Bacterial resistance to antibiotics is increasing, so there is a growing concern in opportunistic bacterial pathogens that cause healthcare-associated infections (HAIs), such as Enterobacter aerogenes, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Foodborne pathogens are also a concern, particularly Salmonella enterica serovar Typhimurium [8181 Centers for Disease Control and Prevention (CDC) [Internet]. USA: Centers for Disease Control and Prevention [cited 2021 Dec 25]. Available from: https://www.cdc.gov/.
https://www.cdc.gov...
]. The use of EO to pathogenic bacteria control should begin with the in vitro antibacterial activity study. For this, some factors must be considered and evaluated together, such as i) EO extraction yield, an important aspect from an economic point of view; ii) chemical composition of EO, which affects the biological activity; iii) EO concentration and iv) the contact time required to have bactericidal and bacteriostatic activities, which influence its applicability [1111 Ribeiro Neto JA, Tarôco BRP, Santos HB, Thomé RG, Wolfram E, Ribeiro RIMA. Using the plants of Brazilian Cerrado for wound healing: from traditional use to scientific approach. J Ethnopharmacol. 2020;260:112547.,8282 Oliveira MM, Brugnera D, Cardoso M, Guimarães LG, Piccoli R. Yield, chemical composition and antilisterial activity of essential oils from Cymbopogon species. Rev Bras Plantas Med. 2011;13(1):08-16.,8383 Nidhi P, Rolta R, Kumar V, Dev K, Sourirajan A. Synergistic potential of Citrus aurantium L. essential oil with antibiotics against Candida albicans. J Ethnopharmacol. 2020;262:113135.].

Therefore, the present study aimed to extract the EOLO from Northeast Brazil and evaluate its chemical composition by gas chromatography coupled to mass spectrometry (GC-MS). Further, in vitro antibacterial activity against the bacterial pathogens E. aerogenes, K. pneumoniae, P. aeruginosa, Salmonella Typhimurium, and S. aureus was evaluated.

MATERIAL AND METHODS

Plant material

On February 03, 2014, plant of L. origanoides Kunth from the Unidade de Estudo, Pesquisa e Extensão (UEPE) of the Instituto Federal do Ceará (IFCE), Limoeiro do Norte, Ceará, Brazil (5° 10’ 56” S, 38° 00’ 44” W) was compared with the plant of L. sidoides Cham. collected in 2005 at the Universidade Federal de Sergipe (UFS) campus rural, São Cristóvão, Sergipe, Brazil (10º 33’ 19” S, 37º 3’ 43” W) and deposited in Reflora - Herbário Virtual (barcode ASE0018058; http://reflora.jbrj.gov.br/reflora/herbarioVirtual/ConsultaPublicoHVUC/ConsultaPublicoHVUC.do). It is worth mentioning that the accepted scientific name is L. origanoides Kunth and L. sidoides Cham. is one of its synonyms according to Brazilian Flora 2020 [8484 Salimena FRG, Cardoso PH. Lippia in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. 2020. [Internet] [cited 2022 Mar 22]. Available from: https://reflora.jbrj.gov.br/reflora/floradobrasil/FB21449.
https://reflora.jbrj.gov.br/reflora/flor...
]. Posteriorly, the leaves, inflorescences, and branches of L. origanoides were collected at 9 am on February 10, 2014, washed, disinfected with sodium hypochlorite (NaClO) at 1% (w/v) for 1 min, dried in a circulating air oven at 60 ºC for 6 h, and immediately the extraction of the EO was carried out.

Extraction of essential oil of L. origanoides (EOLO)

The EO was extracted from 200 g of dried leaves, inflorescences, and branches of L. origanoides by hydrodistillation using Clevenger equipment (Glasslabor, Brazil) [8585 Clevenger JF. Apparatus for the determination of volatile oil. J Pharm Sci. 1928;17:345-9.], which consists of the evaporation of a mixture of water and volatile compounds present in the plant material as described in the European Pharmacopoeia [8686 European Pharmacopoeia. European directorate for the quality of medicines and healthcare (EDQM): Essential oils in herbal drugs (Monograph 2. 8.12.). 8 th ed. European Pharmacopoeia. Strasbourg; 1996.]. The extraction was conducted for 90 min at 100 ºC in a heating blanket. Then, the water was removed by decanting, and the obtained EOLO was stored at 4 ºC in the refrigerator, protected from light. This extraction was performed 8 times, totaling 1.6 kg of dry plant material. Further, the obtained yield was measured at each extraction and expressed in % (w/w).

Identification and quantification of the chemical compounds in the EOLO

The identification and quantification of the chemical compounds in the EOLO were performed by GC-MS. The GC-MS model QP2010 (Shimadzu, Japan), with an automatic injector AOC-20i and capillary column RTX-5MS (5% phenyl and 95% dimethylpolysiloxane, 30 m x 0.25 mm x 0.25 µm) was used. The flow of helium gas through the capillary column was adjusted to 1.0 mL/min. The oven temperature was set to 40 to 180 ºC at a rate of 4 ºC/min, then 180 to 280 ºC at a rate of 20 ºC/min, and then kept at 280 ºC for 10 min. The temperatures in the injector and detector were kept at 250 and 300 ºC, respectively. The mass spectra of the isolated compounds were collected by GC-MS with an electronic impact of 70 eV. The compounds were identified by comparing their mass spectra with those of the NIST08 library and published data [8787 Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. 4th ed. Carol Stream: Allured Publishing Corporation; 2007.]. The compound concentrations were determined from the peak areas on the chromatogram.

Antibacterial activity of EOLO

Bacterial strains

The evaluation of the antibacterial potential of EOLO was performed for the Gram-negative bacterial pathogens E. aerogenes ATCC 13048, K. pneumoniae ATCC 10031, P. aeruginosa ATCC 25619, and Salmonella Typhimurium ATCC 14028, and the Gram-positive bacterial pathogen S. aureus ATCC 25923. All isolates were obtained by the culture collection of the Laboratory of Microbiology at the Universidade Federal do Ceará (UFC; Ceará, Brazil). The bacterial pathogens were stored at -80 °C in Brain Heart Infusion broth (BHI broth; Himedia, India) with 20% (v/v) sterilized glycerol.

Preparation of the standardized inoculum

Before all experiments, the 5% (v/v) of bacterial strains from glycerol stock were cultivated in BHI broth at 37 ºC. After 24 h of incubation, the broths were plated in BHI agar (Merck, Germany) and incubated at 37 ºC for 18 h. Subsequently, the isolated colonies were inoculated directly into the BHI broth, and their turbidity was adjusted to 0.5 using a McFarland scale, corresponding to a standardized inoculum with a concentration of approximately 1.5 x 108 colony-forming units per milliliter (CFU/mL) [8888 CLSI - Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard - Ninth Edition. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.].

Agar disk diffusion method

The agar disk diffusion assay was performed for assessing the antibacterial activity of EOLO according to the methods previously described by Oliveira and coauthors [5151 Oliveira FP, Lima EDO, Souza EL, Helena B, Santos C, Barreto HM. Effectiveness of Lippia sidoides Cham. (Verbenaceae) essential oil in inhibiting the growth of Staphylococcus aureus strains isolated from clinical material. Brazilian J Pharmacogn. 2006;16(4):510-6.] and Cavalcanti and coauthors [88 Cavalcanti SCH, Niculau ES, Blank AF, Câmara CAG, Araújo IN, Alves PB. Composition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch). Bioresour Technol. 2010;101(2):829-32.], with some modifications. Briefly, the standardized inoculum of each bacterium was uniformly distributed on a Petri dish containing solidified Mueller-Hinton agar (MH agar; Merck, Germany) using a sterile swab. Then, the sterile white paper discs with 6 mm in diameter (Whatman no. 5) were soaked with 20 µL of solutions at 0.0, 1.25, 2.5, 5.0, 10.0, 20.0, 40.0, 80.0, and 160.0 µL/mL of the EOLO. After absorbing all of the EOLO, the discs were placed on the MH agar containing the bacterial inoculum and incubated at 37 ºC. After 24 h, the diameter of the inhibition zones were measured and expressed in mm. The minimal inhibitory concentration (MIC) was considered to be one in which the diameter of the zone of inhibition was greater than or equal to 10 mm (> 10 mm) [8989 Carović-Stanko K, Orlić S, Politeo O, Strikić F, Kolak I, Milos M, et al. Composition and antibacterial activities of essential oils of seven Ocimum taxa. Food Chem. 2010;119(1):196-201.]. This experiment was performed in five biological replicates. The values of the replicates were used for the analysis of variance followed by Tukey’s test using the Statistical Analysis System and Genetics Software (Sisvar) and a p-value less than 0.05 was statistically significant.

Bactericidal effect

The bactericidal effect of the MIC of EOLO was evaluated according to the methods of Sforcin and coauthors [9090 Sforcin J, Fernandes A, Lopes CA, Bankova V, Funari SR. Seasonal effect on Brazilian propolis antibacterial activity. J Ethnopharmacol. 2000;73(1):243-9.] and Oliveira and coauthors [5151 Oliveira FP, Lima EDO, Souza EL, Helena B, Santos C, Barreto HM. Effectiveness of Lippia sidoides Cham. (Verbenaceae) essential oil in inhibiting the growth of Staphylococcus aureus strains isolated from clinical material. Brazilian J Pharmacogn. 2006;16(4):510-6.], with some modifications. The MIC of EOLO considered for all evaluated bacteria was 10 µL/mL, corresponding to 1% (v/v). Thus, a volume of 3 mL of a solution containing 10 µL/mL of EOLO, 0.2% (v/v) of Tween 80 (Merck, Brazil), and standardized inoculum of each bacterium were prepared and incubated at 37 °C. After 0, 3, 6, 9, 21, and 24 h of incubation, aliquots of 0.1 mL of this solution were plated by spread plate method on MH agar with a Drigalski spatula and incubated at 37 ºC for 24 h. Subsequently, the colonies were counted and the number of logarithm base 10 of the number of CFU/mL (log cycles CFU/mL) was calculated for each bacterium. The negative control was performed replacing the EOLO with sterile distilled water. This experiment was performed in five biological replicates.

RESULTS

Extraction and chemical composition of EOLO

The extraction yield of EOLO from plant materials dried in a circulating air oven at 60 ºC for 6 h was 3.63 ± 0.27% (w/w), and seven chemical compounds were identified in the EOLO (Figure 1 and Figure 2).

Figure 1
Chromatogram of the essential oil of Lippia origanoides Kunth (EOLO) obtained by gas chromatography (GC) with peaks identification by mass spectrometry (MS): peak 1 - β-myrcene; peak 2 - α-terpinene; peak 3 - ρ-cymene; peak 4 - γ-terpinene; peak 5 - thymol methyl ether; peak 6 - thymol; peak 7 - caryophyllene. The relative percentage of each compound is shown in Table 2.

Figure 2
Mass spectrum of the peaks obtained by gas chromatography (GC) of the essential oil of Lippia origanoides Kunth (EOLO): peak 1 - β-myrcene; peak 2 - α-terpinene; peak 3 - ρ-cymene; peak 4 - γ-terpinene; peak 5 - thymol methyl ether; peak 6 - thymol; peak 7 - caryophyllene.

The identified compounds were considered as 100% of the composition of the EOLO to calculate the percentage of each compound, as shown in Table 1. The thymol (83.53%) was the main metabolite identified in the EOLO, followed by p-cymene (5.92%), caryophyllene (4.31%), γ-terpinene (3.27%), thymol methyl ether (1.18%), β-myrcene (1.00%), and α-terpinene (0.79%). Thus, the aromatic monoterpenes represent 90.63% of the EOLO (Table 1).

Table 1
Chemical compounds identified and quantified in the essential oil of Lippia origanoides Kunth (EOLO) by gas chromatography coupled to mass spectrometry (GC-MS).

Antibacterial activity of EOLO

The EOLO showed efficient antibacterial activity against the Gram-negative bacterial pathogens E. aerogenes, K. pneumoniae, P. aeruginosa, and Salmonella Typhimurium, and the Gram-positive bacterial pathogen S. aureus (Table 2). The most significant antibacterial activity of EOLO was observed against S. aureus with an inhibition zone of 26.6 mm at 160 µL/mL. Moreover, the antibacterial activity of EOLO was depended on the concentration for all tested bacterial pathogens (Table 2).

Table 2
Antibacterial activity of essential oil of Lippia origanoides Kunth (EOLO) by agar disk diffusion method.

In this study, the classification of the diameter of the zones of inhibition was done by the method of Carović-Stanko and coauthors [8989 Carović-Stanko K, Orlić S, Politeo O, Strikić F, Kolak I, Milos M, et al. Composition and antibacterial activities of essential oils of seven Ocimum taxa. Food Chem. 2010;119(1):196-201.]. According to this method, the inhibitory activity of substances must be at least 10 mm in diameter of zones of inhibition. These authors also classified the inhibitory activity as moderate (10 to 15 mm) or strong (> 15 mm) based on the zones of inhibition. Thus, the concentration of 10 µL/mL of the EOLO was considered the MIC for all the tested bacterial pathogens. Further, we observed that the inhibition zones ranged from 10.2 to 11.8 mm at this MIC concentration (Table 2). Subsequently, the bactericidal effect at the MIC concentration was evaluated in solution for 24 h. The obtained data revealed that the MIC of EOLO completely inhibited the growth of all bacterial pathogens tested after 3 h, in contrast to their respective untreated controls. Moreover, the MIC of EOLO did not allow the bacterial suspension to resume its growth up to the tested time interval of 24 h (Figure 3). Interestingly, EOLO at 10 µL/mL required only a minimum contact time of less than 0 h, at this time the EO was able to inhibit more than 2 log cycles of CFU/mL (Figure 3). The result of this assay has revealed that less than 10 µL/mL of EOLO was considered as minimum bactericidal concentration (MBC) for all bacterial pathogens tested.

Figure 3
Bactericidal effect of the essential oil of Lippia origanoides Kunth (EOLO) at 10 µL/mL against E. aerogenes (A), K. pneumoniae (B), P. aeruginosa (C), Salmonella Typhimurium (D), and S. aureus (E). The assay was conducted for 24 h. Data were expressed as mean ± standard deviation; The dashed lines indicate the detection limit of plated by spread plate method on Mueller-Hinton agar (MH agar).

DISCUSSION

It is very important to quantify the yield of EO extraction from plant materials since they play a vital role in the economic value of the product. The yield of EOLO found by us falls within the range described in the previous studies, which varies from 0.68 to 8.00%. Cavalcanti and coauthors [88 Cavalcanti SCH, Niculau ES, Blank AF, Câmara CAG, Araújo IN, Alves PB. Composition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch). Bioresour Technol. 2010;101(2):829-32.] reported EO yields ranging from 4.86 to 8.00% (w/w) from L. origanoides (synonym L. sidoides) collected from different cities in Northeast Brazil. On the other hand, Morais and coauthors [4646 Morais SR, Oliveira TLS, Bara MTF, Conceição EC, Rezende MH, Ferri PH, et al. Chemical constituents of essential oil from Lippia sidoides Cham. (Verbenaceae) leaves cultivated in Hidrolândia, Goiás, Brazil. Int J Anal Chem. 2012;2012363919.], Morais and coauthors [4747 Morais SR, Oliveira TLS, Oliveira LP, Tresvenzol L, Conceição E, Rezende M, et al. Essential oil composition, antimicrobial and pharmacological activities of Lippia sidoides Cham. (Verbenaceae) from São Gonçalo do Abaeté, Minas Gerais, Brazil. Pharmacogn Mag. 2016;12(48):262-70.], and Mota and coauthors [4848 Mota APP, Dantas JCP, Frota CC. Antimicrobial activity of essential oils from Lippia alba, Lippia sidoides, Cymbopogon citrates, Plectranthus amboinicus, and Cinnamomum zeylanicum against Mycobacterium tuberculosis. Cienc Rural. 2018;48(6).] have yields of 0.80, 0.80 and 0.68% (w/w) for the EO extracted from L. origanoides native to the states of Goiás, Minas Gerais, and Ceará, Brazil, respectively.

Earlier studies have identified thymol as the main metabolite of EO extracted from L. origanoides from different regions of Brazil [1010 Cavalcanti ESB, Morais SM, Lima MAA, Santana EWP. Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz. 2004;99(5):541-4.,1414 Baldim I, Tonani L, Kress MRZ, Oliveira WP. Lippia sidoides essential oil encapsulated in lipid nanosystem as an anti-Candida agent. Ind Crops Prod. 2019;127:73-81.

15 Baldim I, Rosa DM, Souza CRF, Ana R, Durazzo A, Lucarini M, et al. Factors affecting the retention efficiency and physicochemical properties of spray dried lipid nanoparticles loaded with Lippia sidoides essential oil. Biomolecules. 2020;10(5):1-15.

16 Barbosa R, Cruz-Mendes Y, Silva-Alves KS, Ferreira-da-Silva FW, Ribeiro NM, Morais LP, et al. Effects of Lippia sidoides essential oil, thymol, p-cymene, myrcene and caryophyllene on rat sciatic nerve excitability. Braz. J Med Biol Res. 2017;50(12):1-6.
-1717 Bertini LM, Pereira AF, Oliveira CLL, Menezes EA, Morais SM, Cunha FA, et al. Perfil de sensibilidade de bactérias frente a óleos essenciais de algumas plantas do Nordeste do Brasil. Informa. 2005;17(3/4):80-3.,1919 Botelho MA, Nogueira NAP, Bastos GM, Fonseca SGC, Lemos TLG, Matos FJA, et al. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Brazilian J Med Biol Res. 2007;40(3):349-56.,2121 Camurça-Vasconcelos ALF, Bevilaqua CML, Morais SM, Maciel MV, Costa CTC, Macedo ITF, et al. Anthelmintic activity of Croton zehntneri and Lippia sidoides essential oils. Vet Parasitol. 2007;148(3-4):288-94.,2222 Carvalho RRDC, Laranjeira D, Carvalho Filho JLS, Souza PE, Blank AF, Alves PB, et al. In vitro activity of essential oils of Lippia sidoides and Lippia gracilis and their major chemical components against Thielaviopsis paradoxa, causal agent of stem bleeding in coconut palms. Quim Nova. 2013;36(2):241-4.,2424 Costa RA, Cavalcante TTA, Melo CTV, Barroso DLA, Machado MH, Carvalho MG, et al. Antioxidant and antibacterial activities of essential oil of Lippia sidoides against drug-resistant Staphylococcus aureus from food. African J Biotechnol. 2018;17(8):232-8.

25 Costa JGM, Rodrigues FFG, Angélico EC, Silva MR, Mota ML, Santos NKA, et al. Chemical-biological study of the essential oils of Hyptis martiusii, Lippia sidoides and Syzigium aromaticum against larvae of Aedes aegypti and Culex quinquefasciatus. Rev Bras Farmacogn. 2005;15(4):304-9.
-2626 Dias LRC, Santos ARB, Paz Filho ER, Silva PHS, Sobrinho CA. Study of essential oil from Lippia sidoides Cham. (alecrim pimenta) for control of Macrophomina phaseolina in cowpea. Rev Cuba Plantas Med. 2019;24(1):1-17.,2828 Fernandes LP, Turatti ICC, Lopes NP, Ferreira JC, Candido RC, Oliveira WP. Volatile retention and antifungal properties of spray-dried microparticles of Lippia sidoides essential oil. Dry Technol. 2008;26(12):1534-42.

29 Ferreira TPS, Mourão DSC, Santos GR, Guimarães LGL, Pires ECF, Santos WF, Aguiar RWS. Fungistatic activity of essential oil of Lippia sidoides Cham. against Curvularia lunata. African J Agric Res. 2018;13(14):704-13.

30 Figueiredo MB, Gomes GA, Santangelo JM, Pontes EG, Azambuja P, Garcia ES, et al. Lethal and sublethal effects of essential oil of Lippia sidoides (Verbenaceae) and monoterpenes on Chagas’ disease vector Rhodnius prolixus. Mem Inst Oswaldo Cruz. 2017;112(1):63-9.

31 Fontenelle ROS, Morais SM, Brito EHS, Kerntopf MR, Brilhante RSN, Cordeiro RA, et al. Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides Cham. J Antimicrob Chemother. 2007;59(5):934-40.
-3232 Gomes GA, Monteiro CMDO, Senra TDOS, Zeringota V, Calmon F, Matos RDS, et al. Chemical composition and acaricidal activity of essential oil from Lippia sidoides on larvae of Dermacentor nitens (Acari: Ixodidae) and larvae and engorged females of Rhipicephalus microplus (Acari: Ixodidae). Parasitol Res. 2012;111(6):2423-30.,3535 Hashimoto GS, Oliveira D, Marinho Neto F, Ruiz ML, Acchile M, Chagas EC, et al. Essential oils of Lippia sidoides and Mentha piperita against monogenean parasites and their influence on the hematology of Nile tilapia. Aquaculture. 2016;450:182-6.,3737 Lima GPG, Souza TM, Freire GP, Farias DF, Cunha AP, Ricardo NMPS, et al. Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol Res. 2013;112(5):1953-8.,3838 Linden L, Farias I, Santos A, Silveira K, Sampaio F. Antimicrobial evaluation of sutures containing Lippia sidoides Cham. essencial oil. MOL2NET. 2016;2(14).,4040 Majolo C, Rocha SIB, Chagas EC, Chaves FCM, Bizzo HR. Chemical composition of Lippia spp. essential oil and antimicrobial activity against Aeromonas hydrophila. Aquac Res. 2016;48(5):2380-7.

41 Majolo C, Pilarski F, Chaves FCM, Bizzo HR, Chagas EC. Antimicrobial activity of some essential oils against Streptococcus agalactiae, an important pathogen for fish farming in Brazil. J Essent Oil Res. 2018;30(5):388-97.
-4242 Marco CA, Teixeira E, Simplício A, Oliveira C, Costa J, Feitosa J. Chemical composition and allelopathyc activity of essential oil of Lippia sidoides Cham. Chil J Agric Res. 2012;72(1):157-60.,4545 Monteiro MVB, Leite AKRM, Bertini LM, Morais SM, Nunes-Pinheiro DCS. Topical anti-inflammatory, gastroprotective and antioxidant effects of the essential oil of Lippia sidoides Cham. leaves. J Ethnopharmacol. 2007;111(2):378-82.,4949 Mota ML, Lobo LTC, Costa JMG, Costa LS, Rocha HAO, Silva LFR, et al. In vitro and in vivo antimalarial activity of essential oils and chemical components from three medicinal plants found in Northeastern Brazil. Planta Med. 2012;78(7):658-64.,5050 Mourão DDSC, Souza MR, Reis JVL, Ferreira TPS, Osorio PRA, Santos ER, et al. Fungistatic activity of essential oils for the control of bipolaris leaf spot in maize. J Med Plants Res. 2019;13(12):280-7.,5252 Oliveira J, Gloria EM, Parisi MCM, Baggio JS, Silva PPM, Ambrosio CMS, et al. Antifungal activity of essential oils associated with carboxymethylcellulose against Colletotrichum acutatum in strawberries. Sci Hortic (Amsterdam). 2019;243:261-7.

53 Oliveira VCS, Moura DMS, Lopes JAD, Andrade PP, Silva NH, Figueiredo RCBQ. Effects of essential oils from Cymbopogon citratus (DC) Stapf., Lippia sidoides Cham., and Ocimum gratissimum L. on growth and ultrastructure of Leishmania chagasi promastigotes. Parasitol Res. 2009;104(5):1053-9.

54 Oliveira AP, Santana AS, Santana EDR, Lima APS, Faro RRN, Nunes RS, et al. Nanoformulation prototype of the essential oil of Lippia sidoides and thymol to population management of Sitophilus zeamais (Coleoptera: Curculionidae). Ind Crops Prod. 2017;107:198-205.
-5555 Oliveira AP, Santos AA, Santana AS, Lima APS, Melo CR, Santana EDR, et al. Essential oil of Lippia sidoides and its major compound thymol: Toxicity and walking response of populations of Sitophilus zeamais (Coleoptera: Curculionidae). Crop Prot. 2018;112:33-8.,5757 Pereira SLS, Praxedes YCM, Bastos TC, Alencar PNB, Costa FN. Clinical effect of a gel containing Lippia sidoides on plaque and gingivitis control. Eur J Dent. 2013;7(1):28-34.,5959 Pinto NOF, Rodrigues THS, Pereira RCA, Silva LMA, Cáceres CA, Azeredo HMC, et al. Production and physico-chemical characterization of nanocapsules of the essential oil from Lippia sidoides Cham. Ind Crops Prod. 2016;86:279-88.,6161 Rondon FCM, Bevilaqua CML, Accioly MP, Morais SM, Andrade-Júnior HF, Carvalho CA, et al. In vitro efficacy of Coriandrum sativum, Lippia sidoides and Copaifera reticulata against Leishmania chagasi. Rev Bras Parasitol Vet. 2012;21(3):185-91.,6666 Santos AA, Oliveira BMS, Melo CR, Lima APS, Santana EDR, Blank AF, et al. Sub-lethal effects of essential oil of Lippia sidoides on drywood termite Cryptotermes brevis (Blattodea: Termitoidea). Ecotoxicol Environ Saf. 2017;145:436-41.

67 Saraiva AGQ, Saraiva GD, Albuquerque RL, Nogueira CES, Teixeira AMR, Lima LB, et al. Chemical analysis and vibrational spectroscopy study of essential oils from Lippia sidoides and of its major constituent. Vib Spectrosc. 2020;110103111.

68 Soares BV, Neves LR, Ferreira DO, Oliveira MSB, Chaves FCM, Chagas EC, et al. Antiparasitic activity, histopathology and physiology of Colossoma macropomum (tambaqui) exposed to the essential oil of Lippia sidoides (Verbenaceae). Vet Parasitol. 2016;234:49-56.

69 Trevisan MTS, Marques RA, Silva MGV, Scherer D, Haubner R, Ulrich CM, et al. Composition of essential oils and ethanol extracts of the leaves of Lippia species: identification, quantitation and antioxidant capacity. Rec Nat Prod. 2016;10(4):485-96.

70 Vázquez-Sánchez D, Galvão JA, Ambrosio CMS, Gloria EM, Oetterer M. Single and binary applications of essential oils effectively control Listeria monocytogenes biofilms. Ind Crops Prod. 2018;121:452-60.

71 Vázquez-Sánchez D, Galvão JA, Mazine MR, Gloria EM, Oetterer M. Control of Staphylococcus aureus biofilms by the application of single and combined treatments based in plant essential oils. Int J Food Microbiol. 2018;286:128-38.

72 Ventura AS, Silva TSC, Zanon RB, Inoue LAKA, Cardoso CAL. Physiological and pharmacokinetic responses in neotropical Piaractus mesopotamicus to the essential oil from Lippia sidoides (Verbenaceae) as an anesthetic. Int Aquat Res. 2019;11:1-12.

73 Veras HNH, Araruna MKA, Costa JGM, Coutinho HDM, Kerntopf MR, Botelho MA, et al. Topical antiinflammatory activity of essential oil of Lippia sidoides Cham: possible mechanism of action. Phyther Res. 2012;27(2):179-85.

74 Veras HNH, Rodrigues FFG, Botelho MA, Menezes IRA, Coutinho HDM, Costa JGM. Enhancement of aminoglycosides and β-lactams antibiotic activity by essential oil of Lippia sidoides Cham. and the thymol. Arab J Chem. 2013;10:S2790-5.
-7575 Veras HNH, Rodrigues FFG, Colares AV, Menezes IRA, Coutinho HDM, Botelho MA, et al. Synergistic antibiotic activity of volatile compounds from the essential oil of Lippia sidoides and thymol. Fitoterapia. 2012;83(3):508-12.]. However, some other studies showed that carvacrol was also the main metabolite [88 Cavalcanti SCH, Niculau ES, Blank AF, Câmara CAG, Araújo IN, Alves PB. Composition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch). Bioresour Technol. 2010;101(2):829-32.,99 Silva LL, Silva DT, Garlet QI, Cunha MA, Mallmann CA, Baldisserotto B, et al. Anesthetic activity of Brazilian native plants in silver catfish (Rhamdia quelen). Neotrop Ichthyol. 2013;11:443-51.,1313 Araújo MJC, Camara CAG, Moraes MM, Born FS. Insecticidal properties and chemical composition of Piper aduncum L., Lippia sidoides Cham. and Schinus terebinthifolius Raddi essential oils against Plutella xylostella L. An Acad Bras Cienc. 2020;92:1-14.,2727 Farias-Junior AP, Rios MC, Moura TA, Almeida RP, Alves PB, Blank AF, et al. Leishmanicidal activity of carvacrol-rich essential oil from Lippia sidoides Cham. Biol Res. 2012;45(4):399-402.,3333 Gonçalves AH, Pereira AS, Santos GRS, Guimarães LGL. Atividade fungitóxica in vitro dos óleos essenciais de Lippia sidoides Cham., Cymbopogon citratus (D.C.) Stapf. e de seus constituintes majoritários no controle de Rhizoctonia solani e Sclerotium rolfsii. Rev Bras Plantas Med. 2015;17(4):1007-15.,3434 Guimarães LDLG, Cardoso MG, Souza RM, Zacaroni AB, Santos GR. Essential oil of Lippia sidoides native to Minas Gerais: composition, secretory structures and antibacterial activity. Rev Cienc Agron. 2014;45(2):267-75.,3636 Lima RK, Cardoso MG, Moraes JC, Carvalho SM, Rodrigues VG, Guimarães LGL. Chemical composition and fumigant effect of essentialoil of Lippia sidoides Cham. and monoterpenes against Tenebrio molitor (L.) (Coleoptera: Tenebrionidae). Ciên Agrotec. 2011;35(4):664-71.,5858 Pereira AMS, Franca SC, Fachin AL, Bertoni BW, Pina ES, Coppede JS. Phytotherapic pharmaceutical combination of Lippia salviifolia and Lippia sidoides, phytotherapic pharmaceutical composition, process for preparing a phytotherapic pharmaceutical composition and veterinary uses. United States Pat. 2016;2(12).,6363 Santos IGA, Scher R, Rott MB, Menezes LR, Costa EV, Cavalcanti SCH, et al. Amebicidal activity of the essential oils of Lippia spp. (Verbenaceae) against Acanthamoeba polyphaga trophozoites. Parasitol Res. 2015;115(2):535-40.,6464 Santos CP, Oliveira TC, Pinto JAO, Fontes SS, Cruz EMO, Arrigoni-Blank MF, et al. Chemical diversity and influence of plant age on the essential oil from Lippia sidoides Cham. germplasm. Ind Crops Prod. 2015;76:416-21.], as well as some EOLO showed thymol and carvacrol and others only one of these two compounds. It is noteworthy that these compounds are isomers, differing structurally only by the position of the hydroxyl group of the aromatic ring, and both have antibacterial activity [7676 Nazzaro F, Fratianni F, Martino L, Coppola R, Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel). 2013;6(12):1451-74.]. In contrast, Morais and coauthors [4646 Morais SR, Oliveira TLS, Bara MTF, Conceição EC, Rezende MH, Ferri PH, et al. Chemical constituents of essential oil from Lippia sidoides Cham. (Verbenaceae) leaves cultivated in Hidrolândia, Goiás, Brazil. Int J Anal Chem. 2012;2012363919.] and Morais and coauthors [4747 Morais SR, Oliveira TLS, Oliveira LP, Tresvenzol L, Conceição E, Rezende M, et al. Essential oil composition, antimicrobial and pharmacological activities of Lippia sidoides Cham. (Verbenaceae) from São Gonçalo do Abaeté, Minas Gerais, Brazil. Pharmacogn Mag. 2016;12(48):262-70.] did not identify thymol or carvacrol as the main metabolites, but found 1,8-cineole and isoborneol as the main metabolites in the EOLO, respectively. Mota and coauthors [4848 Mota APP, Dantas JCP, Frota CC. Antimicrobial activity of essential oils from Lippia alba, Lippia sidoides, Cymbopogon citrates, Plectranthus amboinicus, and Cinnamomum zeylanicum against Mycobacterium tuberculosis. Cienc Rural. 2018;48(6).] also identified caryophyllene as the main metabolite along with thymol.

In addition to the variation in the composition of the EOLO, there is also modification in the quantity of each compound. These variations, together with the EOLO extraction yield may be due to several factors, such as the location of the plant, collection period of the plant, plant age and growth stage, part of the plant dried or not, extraction method, compound identification, and quantification technique. In addition, genetic variations also play an important factor [4747 Morais SR, Oliveira TLS, Oliveira LP, Tresvenzol L, Conceição E, Rezende M, et al. Essential oil composition, antimicrobial and pharmacological activities of Lippia sidoides Cham. (Verbenaceae) from São Gonçalo do Abaeté, Minas Gerais, Brazil. Pharmacogn Mag. 2016;12(48):262-70.,7777 Ventura AS, Souza T, Silva DC, Andrea C, Cardoso L, Antônio L, et al. Alternative anesthetic features of 'erva cidreira' Lippia alba and 'alecrim pimenta' Lippia sidoides in fish. Med Veterinária. 2019;13(3):416-28.,7979 Van de Vel E, Sampers I, Raes K. A review on influencing factors on the minimum inhibitory concentration of essential oils. Crit. Rev. Food Sci Nutr. 2017;59(3):357-78.,8080 Coimbra AT, Ferreira S, Duarte AP. Genus Ruta: a natural source of high value products with biological and pharmacological properties. J Ethnopharmacol. 2020;260113076,9191 Ramakrishna A, Ravishankar GA. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav. 2011;6(11):1720-31.

92 Soares BV, Tavares-Dias M. The Lippia species (Verbenaceae), and its potential bioactive and importance for veterinary medicine and aquaculture. Biota Amaz. 2013;3109-123.

93 Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q. Response of plant secondary metabolites to environmental factors. Molecules. 2018;23(4):1-26.

94 Chua LYW, Chong CH, Chua BL, Figiel A. Influence of drying methods on the antibacterial, antioxidant and essential oil volatile composition of herbs: a review. Food Bioprocess Technol. 2019;12(3):450-76.

95 Isah T. Stress and defense responses in plant secondary metabolites production. Biol Res. 2019;52(1):39.

96 Baptista-Silva S, Borges S, Ramos OL, Pintado M, Sarmento B. The progress of essential oils as potential therapeutic agents: a review. J Essent Oil Res. 2020;32(4):279-95.
-9797 Li Y, Kong D, Fu Y, Sussman MR, Wu H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem. 2020;148:80-9.]. Factors related to plant cultivation, such as seasonality, pluviometric rate, circadian rhythm, altitude, temperature, vegetative cycles, type of soil, humidity, light intensity, the supply of water, minerals, and carbon dioxide (CO2) can also interfere with enzymatic activities in the plant and, consequently, change the biosynthesis of some secondary metabolites, including terpenes [9191 Ramakrishna A, Ravishankar GA. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav. 2011;6(11):1720-31.,9393 Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q. Response of plant secondary metabolites to environmental factors. Molecules. 2018;23(4):1-26.,9595 Isah T. Stress and defense responses in plant secondary metabolites production. Biol Res. 2019;52(1):39.,9797 Li Y, Kong D, Fu Y, Sussman MR, Wu H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem. 2020;148:80-9.].

Researchers reported the antibacterial potential of EOLO against several bacterial pathogens and demonstrated the presence of main metabolites possibly responsible for this property (Table 3).

Table 3
Antibacterial activity of different essential oil of Lippia origanoides Kunth (EOLO) described in the literature.

Similarly, we have explored the antibacterial potential of EOLO and revealed the presence of different metabolites in this study. Therefore, we associate the effect of EOLO against bacteria with the presence of the main metabolites (Table 1). Interestingly, thymol and carvacrol are isomers and the main metabolites found in the EOLO, which may be responsible for the antibacterial activity of EOLO against Gram-negative and Gram-positive bacterial pathogens [7676 Nazzaro F, Fratianni F, Martino L, Coppola R, Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel). 2013;6(12):1451-74.]. Generally, the antibacterial activity of EO is dependent on the mechanism of action of each compound and the synergistic, additive, or antagonistic interactions between them. Therefore, the variable composition of EO makes it difficult to compare its antibacterial activities between studies [7676 Nazzaro F, Fratianni F, Martino L, Coppola R, Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel). 2013;6(12):1451-74.,7878 Hyldgaard M, Mygind T, Meyer RL. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol. 2012;3:1-24.,7979 Van de Vel E, Sampers I, Raes K. A review on influencing factors on the minimum inhibitory concentration of essential oils. Crit. Rev. Food Sci Nutr. 2017;59(3):357-78.]. On the other hand, this mixture of compounds with different mechanisms of action can significantly help in the multidrug-resistant bacteria control, serving as a scaffold to the development of synthetic drugs, reducing the risk of emergence of new resistant bacteria [7373 Veras HNH, Araruna MKA, Costa JGM, Coutinho HDM, Kerntopf MR, Botelho MA, et al. Topical antiinflammatory activity of essential oil of Lippia sidoides Cham: possible mechanism of action. Phyther Res. 2012;27(2):179-85.,7676 Nazzaro F, Fratianni F, Martino L, Coppola R, Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel). 2013;6(12):1451-74.,8080 Coimbra AT, Ferreira S, Duarte AP. Genus Ruta: a natural source of high value products with biological and pharmacological properties. J Ethnopharmacol. 2020;260113076].

In addition to variations in the composition of the EOLO making it difficult to compare the results of antibacterial activity, the bacterial strains, microbiological techniques, and concentrations of the EOLO are also acting as the limiting factors, as shown in Table 3. Van de Vel and coauthors [7979 Van de Vel E, Sampers I, Raes K. A review on influencing factors on the minimum inhibitory concentration of essential oils. Crit. Rev. Food Sci Nutr. 2017;59(3):357-78.] showed that different incubation conditions, culture media, and the use of emulsifiers/solvents significantly influence the MIC of EO. These authors also pointed out that there is a need for a good international standard procedure to assess the antibacterial activity of EO for comparative studies. In general, despite all the difficulties in comparing the antibacterial effects by the EOLO, these EO have efficient growth inhibitory activity against both Gram-negative and Gram-positive bacterial pathogens even at low concentrations (Table 3).

CONCLUSION

The EOLO showed strong antibacterial activity against Gram-negative and Gram-positive bacterial pathogens at low concentrations. Thus, the use of EOLO as an antibacterial agent in the food and pharmaceutical industries is promising.

Acknowledgments:

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP) for supporting this research.

  • Funding: This research received no external funding.

REFERENCES

  • 1
    Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils - a review. Food Chem Toxicol. 2008;46(2):446-75.
  • 2
    Oliveira MLM, Bezerra BMO, Leite LO, Girão VCC, Nunes-Pinheiro DCS. Topical continuous use of Lippia sidoides Cham. essential oil induces cutaneous inflammatory response, but does not delay wound healing process. J Ethnopharmacol. 2014;153(1):283-9.
  • 3
    Ma Y, Li M, Zhang H, Sun H, Su H, Wang Y, et al. Bioassay-guided isolation of active compounds from Adenosma buchneroides essential oil as mosquito repellent against Aedes albopictus J Ethnopharmacol. 2019;231:386-93.
  • 4
    Brandenburg MM, Rocha FG, Pawloski PL, Soley BS, Rockenbach A, Scharf DR, et al. Baccharis dracunculifolia (Asteraceae) essential oil displays anti-inflammatory activity in models of skin inflammation. J Ethnopharmacol. 2020;259:112840.
  • 5
    Sahal G, Woerdenbag HJ, Hinrichs WLJ, Visser A, Tepper PG, Quax WJ, et al. Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. J Ethnopharmacol. 2020;246:112188.
  • 6
    Veras BO, Oliveira JRS, Lima VLM, Navarro DMAF, Aguiar JCROF, Moura GMM, et al. The essential oil of the leaves of Verbesina macrophylla (Cass.) S.F.Blake has antimicrobial, anti-inflammatory and antipyretic activities and is toxicologically safe. J Ethnopharmacol. 2021;265:113248.
  • 7
    Maia JGS, Taveira FSN, Andrade EHA, Silva MHL, Zoghbi MGB. Essential oils of Lippia grandis Schau. Flavour Fragr J. 2003;18(5):417-20.
  • 8
    Cavalcanti SCH, Niculau ES, Blank AF, Câmara CAG, Araújo IN, Alves PB. Composition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch). Bioresour Technol. 2010;101(2):829-32.
  • 9
    Silva LL, Silva DT, Garlet QI, Cunha MA, Mallmann CA, Baldisserotto B, et al. Anesthetic activity of Brazilian native plants in silver catfish (Rhamdia quelen). Neotrop Ichthyol. 2013;11:443-51.
  • 10
    Cavalcanti ESB, Morais SM, Lima MAA, Santana EWP. Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz. 2004;99(5):541-4.
  • 11
    Ribeiro Neto JA, Tarôco BRP, Santos HB, Thomé RG, Wolfram E, Ribeiro RIMA. Using the plants of Brazilian Cerrado for wound healing: from traditional use to scientific approach. J Ethnopharmacol. 2020;260:112547.
  • 12
    Ambrosio CMS, Alencar SM, Sousa RLM, Moreno AM, Gloria EM. Antimicrobial activity of several essential oils on pathogenic and beneficial bacteria. Ind Crops Prod. 2017;97:128-36.
  • 13
    Araújo MJC, Camara CAG, Moraes MM, Born FS. Insecticidal properties and chemical composition of Piper aduncum L., Lippia sidoides Cham. and Schinus terebinthifolius Raddi essential oils against Plutella xylostella L. An Acad Bras Cienc. 2020;92:1-14.
  • 14
    Baldim I, Tonani L, Kress MRZ, Oliveira WP. Lippia sidoides essential oil encapsulated in lipid nanosystem as an anti-Candida agent. Ind Crops Prod. 2019;127:73-81.
  • 15
    Baldim I, Rosa DM, Souza CRF, Ana R, Durazzo A, Lucarini M, et al. Factors affecting the retention efficiency and physicochemical properties of spray dried lipid nanoparticles loaded with Lippia sidoides essential oil. Biomolecules. 2020;10(5):1-15.
  • 16
    Barbosa R, Cruz-Mendes Y, Silva-Alves KS, Ferreira-da-Silva FW, Ribeiro NM, Morais LP, et al. Effects of Lippia sidoides essential oil, thymol, p-cymene, myrcene and caryophyllene on rat sciatic nerve excitability. Braz. J Med Biol Res. 2017;50(12):1-6.
  • 17
    Bertini LM, Pereira AF, Oliveira CLL, Menezes EA, Morais SM, Cunha FA, et al. Perfil de sensibilidade de bactérias frente a óleos essenciais de algumas plantas do Nordeste do Brasil. Informa. 2005;17(3/4):80-3.
  • 18
    Botelho MA, Rao VS, Carvalho CBM, Bezerra-Filho JG, Fonseca SGC, Vale ML, et al. Lippia sidoides and Myracrodruon urundeuva gel prevents alveolar bone resorption in experimental periodontitis in rats. J Ethnopharmacol. 2007;113(3):471-8.
  • 19
    Botelho MA, Nogueira NAP, Bastos GM, Fonseca SGC, Lemos TLG, Matos FJA, et al. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Brazilian J Med Biol Res. 2007;40(3):349-56.
  • 20
    Camurça-Vasconcelos ALF, Bevilaqua CML, Morais SM, Maciel MV, Costa CTC, Macedo ITF, et al. Anthelmintic activity of Lippia sidoides essential oil on sheep gastrointestinal nematodes. Vet Parasitol. 2008;154(1-2):167-70.
  • 21
    Camurça-Vasconcelos ALF, Bevilaqua CML, Morais SM, Maciel MV, Costa CTC, Macedo ITF, et al. Anthelmintic activity of Croton zehntneri and Lippia sidoides essential oils. Vet Parasitol. 2007;148(3-4):288-94.
  • 22
    Carvalho RRDC, Laranjeira D, Carvalho Filho JLS, Souza PE, Blank AF, Alves PB, et al. In vitro activity of essential oils of Lippia sidoides and Lippia gracilis and their major chemical components against Thielaviopsis paradoxa, causal agent of stem bleeding in coconut palms. Quim Nova. 2013;36(2):241-4.
  • 23
    Castro CE, Ribeiro JM, Diniz TT, Almeida AC, Ferreira LC, Martins ER, et al. Antimicrobial activity of Lippia sidoides Cham. (Verbenaceae) essential oil against Staphylococcus aureus and Escherichia coli Ver Bras Plantas Med. 2011;13(3):293-7.
  • 24
    Costa RA, Cavalcante TTA, Melo CTV, Barroso DLA, Machado MH, Carvalho MG, et al. Antioxidant and antibacterial activities of essential oil of Lippia sidoides against drug-resistant Staphylococcus aureus from food. African J Biotechnol. 2018;17(8):232-8.
  • 25
    Costa JGM, Rodrigues FFG, Angélico EC, Silva MR, Mota ML, Santos NKA, et al. Chemical-biological study of the essential oils of Hyptis martiusii, Lippia sidoides and Syzigium aromaticum against larvae of Aedes aegypti and Culex quinquefasciatus Rev Bras Farmacogn. 2005;15(4):304-9.
  • 26
    Dias LRC, Santos ARB, Paz Filho ER, Silva PHS, Sobrinho CA. Study of essential oil from Lippia sidoides Cham. (alecrim pimenta) for control of Macrophomina phaseolina in cowpea. Rev Cuba Plantas Med. 2019;24(1):1-17.
  • 27
    Farias-Junior AP, Rios MC, Moura TA, Almeida RP, Alves PB, Blank AF, et al. Leishmanicidal activity of carvacrol-rich essential oil from Lippia sidoides Cham. Biol Res. 2012;45(4):399-402.
  • 28
    Fernandes LP, Turatti ICC, Lopes NP, Ferreira JC, Candido RC, Oliveira WP. Volatile retention and antifungal properties of spray-dried microparticles of Lippia sidoides essential oil. Dry Technol. 2008;26(12):1534-42.
  • 29
    Ferreira TPS, Mourão DSC, Santos GR, Guimarães LGL, Pires ECF, Santos WF, Aguiar RWS. Fungistatic activity of essential oil of Lippia sidoides Cham. against Curvularia lunata African J Agric Res. 2018;13(14):704-13.
  • 30
    Figueiredo MB, Gomes GA, Santangelo JM, Pontes EG, Azambuja P, Garcia ES, et al. Lethal and sublethal effects of essential oil of Lippia sidoides (Verbenaceae) and monoterpenes on Chagas’ disease vector Rhodnius prolixus Mem Inst Oswaldo Cruz. 2017;112(1):63-9.
  • 31
    Fontenelle ROS, Morais SM, Brito EHS, Kerntopf MR, Brilhante RSN, Cordeiro RA, et al. Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides Cham. J Antimicrob Chemother. 2007;59(5):934-40.
  • 32
    Gomes GA, Monteiro CMDO, Senra TDOS, Zeringota V, Calmon F, Matos RDS, et al. Chemical composition and acaricidal activity of essential oil from Lippia sidoides on larvae of Dermacentor nitens (Acari: Ixodidae) and larvae and engorged females of Rhipicephalus microplus (Acari: Ixodidae). Parasitol Res. 2012;111(6):2423-30.
  • 33
    Gonçalves AH, Pereira AS, Santos GRS, Guimarães LGL. Atividade fungitóxica in vitro dos óleos essenciais de Lippia sidoides Cham., Cymbopogon citratus (D.C.) Stapf. e de seus constituintes majoritários no controle de Rhizoctonia solani e Sclerotium rolfsii Rev Bras Plantas Med. 2015;17(4):1007-15.
  • 34
    Guimarães LDLG, Cardoso MG, Souza RM, Zacaroni AB, Santos GR. Essential oil of Lippia sidoides native to Minas Gerais: composition, secretory structures and antibacterial activity. Rev Cienc Agron. 2014;45(2):267-75.
  • 35
    Hashimoto GS, Oliveira D, Marinho Neto F, Ruiz ML, Acchile M, Chagas EC, et al. Essential oils of Lippia sidoides and Mentha piperita against monogenean parasites and their influence on the hematology of Nile tilapia Aquaculture. 2016;450:182-6.
  • 36
    Lima RK, Cardoso MG, Moraes JC, Carvalho SM, Rodrigues VG, Guimarães LGL. Chemical composition and fumigant effect of essentialoil of Lippia sidoides Cham. and monoterpenes against Tenebrio molitor (L.) (Coleoptera: Tenebrionidae). Ciên Agrotec. 2011;35(4):664-71.
  • 37
    Lima GPG, Souza TM, Freire GP, Farias DF, Cunha AP, Ricardo NMPS, et al. Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol Res. 2013;112(5):1953-8.
  • 38
    Linden L, Farias I, Santos A, Silveira K, Sampaio F. Antimicrobial evaluation of sutures containing Lippia sidoides Cham. essencial oil. MOL2NET. 2016;2(14).
  • 39
    Majolo C, Silva AMS, Monteiro PC, Brandão FR, Chaves FCM, Chagas EC. Antibacterial activity of essential oil and extracts of Lippia sidoides and thymol against Aeromonas hydrophila. Biota Amaz. 2020;10(2):46-9.
  • 40
    Majolo C, Rocha SIB, Chagas EC, Chaves FCM, Bizzo HR. Chemical composition of Lippia spp. essential oil and antimicrobial activity against Aeromonas hydrophila Aquac Res. 2016;48(5):2380-7.
  • 41
    Majolo C, Pilarski F, Chaves FCM, Bizzo HR, Chagas EC. Antimicrobial activity of some essential oils against Streptococcus agalactiae, an important pathogen for fish farming in Brazil. J Essent Oil Res. 2018;30(5):388-97.
  • 42
    Marco CA, Teixeira E, Simplício A, Oliveira C, Costa J, Feitosa J. Chemical composition and allelopathyc activity of essential oil of Lippia sidoides Cham. Chil J Agric Res. 2012;72(1):157-60.
  • 43
    Melo CBF, Barreto JO, Regis RR, Silva FJA, Silva-Lovato CH, Oliveira VC, et al. Desenvolvimento de um produto à base de óleo essencial de Lippia sidoides como auxiliar para prevenção e tratamento da estomatite protética. J Heal Sci. 2017;19(5):188.
  • 44
    Melo ARB, Higino TMM, Oliveira ADPR, Fontes A, Silva DCN, Castro MCAB, et al. Lippia sidoides and Lippia origanoides essential oils affect the viability, motility and ultrastructure of Trypanosoma cruzi. Micron. 2020;120:102781.
  • 45
    Monteiro MVB, Leite AKRM, Bertini LM, Morais SM, Nunes-Pinheiro DCS. Topical anti-inflammatory, gastroprotective and antioxidant effects of the essential oil of Lippia sidoides Cham. leaves. J Ethnopharmacol. 2007;111(2):378-82.
  • 46
    Morais SR, Oliveira TLS, Bara MTF, Conceição EC, Rezende MH, Ferri PH, et al. Chemical constituents of essential oil from Lippia sidoides Cham. (Verbenaceae) leaves cultivated in Hidrolândia, Goiás, Brazil. Int J Anal Chem. 2012;2012363919.
  • 47
    Morais SR, Oliveira TLS, Oliveira LP, Tresvenzol L, Conceição E, Rezende M, et al. Essential oil composition, antimicrobial and pharmacological activities of Lippia sidoides Cham. (Verbenaceae) from São Gonçalo do Abaeté, Minas Gerais, Brazil. Pharmacogn Mag. 2016;12(48):262-70.
  • 48
    Mota APP, Dantas JCP, Frota CC. Antimicrobial activity of essential oils from Lippia alba, Lippia sidoides, Cymbopogon citrates, Plectranthus amboinicus, and Cinnamomum zeylanicum against Mycobacterium tuberculosis Cienc Rural. 2018;48(6).
  • 49
    Mota ML, Lobo LTC, Costa JMG, Costa LS, Rocha HAO, Silva LFR, et al. In vitro and in vivo antimalarial activity of essential oils and chemical components from three medicinal plants found in Northeastern Brazil. Planta Med. 2012;78(7):658-64.
  • 50
    Mourão DDSC, Souza MR, Reis JVL, Ferreira TPS, Osorio PRA, Santos ER, et al. Fungistatic activity of essential oils for the control of bipolaris leaf spot in maize. J Med Plants Res. 2019;13(12):280-7.
  • 51
    Oliveira FP, Lima EDO, Souza EL, Helena B, Santos C, Barreto HM. Effectiveness of Lippia sidoides Cham. (Verbenaceae) essential oil in inhibiting the growth of Staphylococcus aureus strains isolated from clinical material. Brazilian J Pharmacogn. 2006;16(4):510-6.
  • 52
    Oliveira J, Gloria EM, Parisi MCM, Baggio JS, Silva PPM, Ambrosio CMS, et al. Antifungal activity of essential oils associated with carboxymethylcellulose against Colletotrichum acutatum in strawberries. Sci Hortic (Amsterdam). 2019;243:261-7.
  • 53
    Oliveira VCS, Moura DMS, Lopes JAD, Andrade PP, Silva NH, Figueiredo RCBQ. Effects of essential oils from Cymbopogon citratus (DC) Stapf., Lippia sidoides Cham., and Ocimum gratissimum L. on growth and ultrastructure of Leishmania chagasi promastigotes. Parasitol Res. 2009;104(5):1053-9.
  • 54
    Oliveira AP, Santana AS, Santana EDR, Lima APS, Faro RRN, Nunes RS, et al. Nanoformulation prototype of the essential oil of Lippia sidoides and thymol to population management of Sitophilus zeamais (Coleoptera: Curculionidae). Ind Crops Prod. 2017;107:198-205.
  • 55
    Oliveira AP, Santos AA, Santana AS, Lima APS, Melo CR, Santana EDR, et al. Essential oil of Lippia sidoides and its major compound thymol: Toxicity and walking response of populations of Sitophilus zeamais (Coleoptera: Curculionidae). Crop Prot. 2018;112:33-8.
  • 56
    Parente MSR, Custódio FR, Cardoso NA, Lima MJA, Melo TS, Linhares MI, et al. Antidepressant-like effect of Lippia sidoides CHAM (Verbenaceae) essential oil and its major compound thymol in mice. Sci Pharm. 2018;86(3):1-19.
  • 57
    Pereira SLS, Praxedes YCM, Bastos TC, Alencar PNB, Costa FN. Clinical effect of a gel containing Lippia sidoides on plaque and gingivitis control. Eur J Dent. 2013;7(1):28-34.
  • 58
    Pereira AMS, Franca SC, Fachin AL, Bertoni BW, Pina ES, Coppede JS. Phytotherapic pharmaceutical combination of Lippia salviifolia and Lippia sidoides, phytotherapic pharmaceutical composition, process for preparing a phytotherapic pharmaceutical composition and veterinary uses. United States Pat. 2016;2(12).
  • 59
    Pinto NOF, Rodrigues THS, Pereira RCA, Silva LMA, Cáceres CA, Azeredo HMC, et al. Production and physico-chemical characterization of nanocapsules of the essential oil from Lippia sidoides Cham. Ind Crops Prod. 2016;86:279-88.
  • 60
    Rodrigues ÍSC, Tavares VN, Pereira SLS, Costa FN. Antiplaque and antigingivitis effect of Lippia sidoides A double-blind clinical study in humans. J Appl Oral Sci. 2009;17(5):404-7.
  • 61
    Rondon FCM, Bevilaqua CML, Accioly MP, Morais SM, Andrade-Júnior HF, Carvalho CA, et al. In vitro efficacy of Coriandrum sativum, Lippia sidoides and Copaifera reticulata against Leishmania chagasi Rev Bras Parasitol Vet. 2012;21(3):185-91.
  • 62
    Santana LKN, Oliveira MFSS, Ribeiro GT, Poderoso JCM, Santos ÍTBF, Pinheiro HSS, et al. Effect analysis of Lippia sidoides’ essential oil over Atta sexdens (Hymenoptera: Formicidae). Ciên Agri. 2018;1655-8.
  • 63
    Santos IGA, Scher R, Rott MB, Menezes LR, Costa EV, Cavalcanti SCH, et al. Amebicidal activity of the essential oils of Lippia spp. (Verbenaceae) against Acanthamoeba polyphaga trophozoites. Parasitol Res. 2015;115(2):535-40.
  • 64
    Santos CP, Oliveira TC, Pinto JAO, Fontes SS, Cruz EMO, Arrigoni-Blank MF, et al. Chemical diversity and influence of plant age on the essential oil from Lippia sidoides Cham. germplasm. Ind Crops Prod. 2015;76:416-21.
  • 65
    Santos VS, Silva PH, Pádua LE. Bioactivity of the essential oil of Lippia sidoides Cham. (rosemary-pepper) on the Callosobruchus maculatus (Fabr.) (Coleoptera: Chysomelidae). EntomoBrasilis. 2018;11(2):113-7.
  • 66
    Santos AA, Oliveira BMS, Melo CR, Lima APS, Santana EDR, Blank AF, et al. Sub-lethal effects of essential oil of Lippia sidoides on drywood termite Cryptotermes brevis (Blattodea: Termitoidea). Ecotoxicol Environ Saf. 2017;145:436-41.
  • 67
    Saraiva AGQ, Saraiva GD, Albuquerque RL, Nogueira CES, Teixeira AMR, Lima LB, et al. Chemical analysis and vibrational spectroscopy study of essential oils from Lippia sidoides and of its major constituent. Vib Spectrosc. 2020;110103111.
  • 68
    Soares BV, Neves LR, Ferreira DO, Oliveira MSB, Chaves FCM, Chagas EC, et al. Antiparasitic activity, histopathology and physiology of Colossoma macropomum (tambaqui) exposed to the essential oil of Lippia sidoides (Verbenaceae). Vet Parasitol. 2016;234:49-56.
  • 69
    Trevisan MTS, Marques RA, Silva MGV, Scherer D, Haubner R, Ulrich CM, et al. Composition of essential oils and ethanol extracts of the leaves of Lippia species: identification, quantitation and antioxidant capacity. Rec Nat Prod. 2016;10(4):485-96.
  • 70
    Vázquez-Sánchez D, Galvão JA, Ambrosio CMS, Gloria EM, Oetterer M. Single and binary applications of essential oils effectively control Listeria monocytogenes biofilms. Ind Crops Prod. 2018;121:452-60.
  • 71
    Vázquez-Sánchez D, Galvão JA, Mazine MR, Gloria EM, Oetterer M. Control of Staphylococcus aureus biofilms by the application of single and combined treatments based in plant essential oils. Int J Food Microbiol. 2018;286:128-38.
  • 72
    Ventura AS, Silva TSC, Zanon RB, Inoue LAKA, Cardoso CAL. Physiological and pharmacokinetic responses in neotropical Piaractus mesopotamicus to the essential oil from Lippia sidoides (Verbenaceae) as an anesthetic. Int Aquat Res. 2019;11:1-12.
  • 73
    Veras HNH, Araruna MKA, Costa JGM, Coutinho HDM, Kerntopf MR, Botelho MA, et al. Topical antiinflammatory activity of essential oil of Lippia sidoides Cham: possible mechanism of action. Phyther Res. 2012;27(2):179-85.
  • 74
    Veras HNH, Rodrigues FFG, Botelho MA, Menezes IRA, Coutinho HDM, Costa JGM. Enhancement of aminoglycosides and β-lactams antibiotic activity by essential oil of Lippia sidoides Cham. and the thymol. Arab J Chem. 2013;10:S2790-5.
  • 75
    Veras HNH, Rodrigues FFG, Colares AV, Menezes IRA, Coutinho HDM, Botelho MA, et al. Synergistic antibiotic activity of volatile compounds from the essential oil of Lippia sidoides and thymol. Fitoterapia. 2012;83(3):508-12.
  • 76
    Nazzaro F, Fratianni F, Martino L, Coppola R, Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel). 2013;6(12):1451-74.
  • 77
    Ventura AS, Souza T, Silva DC, Andrea C, Cardoso L, Antônio L, et al. Alternative anesthetic features of 'erva cidreira' Lippia alba and 'alecrim pimenta' Lippia sidoides in fish. Med Veterinária. 2019;13(3):416-28.
  • 78
    Hyldgaard M, Mygind T, Meyer RL. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol. 2012;3:1-24.
  • 79
    Van de Vel E, Sampers I, Raes K. A review on influencing factors on the minimum inhibitory concentration of essential oils. Crit. Rev. Food Sci Nutr. 2017;59(3):357-78.
  • 80
    Coimbra AT, Ferreira S, Duarte AP. Genus Ruta: a natural source of high value products with biological and pharmacological properties. J Ethnopharmacol. 2020;260113076
  • 81
    Centers for Disease Control and Prevention (CDC) [Internet]. USA: Centers for Disease Control and Prevention [cited 2021 Dec 25]. Available from: https://www.cdc.gov/.
    » https://www.cdc.gov
  • 82
    Oliveira MM, Brugnera D, Cardoso M, Guimarães LG, Piccoli R. Yield, chemical composition and antilisterial activity of essential oils from Cymbopogon species. Rev Bras Plantas Med. 2011;13(1):08-16.
  • 83
    Nidhi P, Rolta R, Kumar V, Dev K, Sourirajan A. Synergistic potential of Citrus aurantium L. essential oil with antibiotics against Candida albicans J Ethnopharmacol. 2020;262:113135.
  • 84
    Salimena FRG, Cardoso PH. Lippia in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. 2020. [Internet] [cited 2022 Mar 22]. Available from: https://reflora.jbrj.gov.br/reflora/floradobrasil/FB21449
    » https://reflora.jbrj.gov.br/reflora/floradobrasil/FB21449
  • 85
    Clevenger JF. Apparatus for the determination of volatile oil. J Pharm Sci. 1928;17:345-9.
  • 86
    European Pharmacopoeia. European directorate for the quality of medicines and healthcare (EDQM): Essential oils in herbal drugs (Monograph 2. 8.12.). 8 th ed. European Pharmacopoeia. Strasbourg; 1996.
  • 87
    Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. 4th ed. Carol Stream: Allured Publishing Corporation; 2007.
  • 88
    CLSI - Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard - Ninth Edition. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.
  • 89
    Carović-Stanko K, Orlić S, Politeo O, Strikić F, Kolak I, Milos M, et al. Composition and antibacterial activities of essential oils of seven Ocimum taxa Food Chem. 2010;119(1):196-201.
  • 90
    Sforcin J, Fernandes A, Lopes CA, Bankova V, Funari SR. Seasonal effect on Brazilian propolis antibacterial activity. J Ethnopharmacol. 2000;73(1):243-9.
  • 91
    Ramakrishna A, Ravishankar GA. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav. 2011;6(11):1720-31.
  • 92
    Soares BV, Tavares-Dias M. The Lippia species (Verbenaceae), and its potential bioactive and importance for veterinary medicine and aquaculture. Biota Amaz. 2013;3109-123.
  • 93
    Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q. Response of plant secondary metabolites to environmental factors. Molecules. 2018;23(4):1-26.
  • 94
    Chua LYW, Chong CH, Chua BL, Figiel A. Influence of drying methods on the antibacterial, antioxidant and essential oil volatile composition of herbs: a review. Food Bioprocess Technol. 2019;12(3):450-76.
  • 95
    Isah T. Stress and defense responses in plant secondary metabolites production. Biol Res. 2019;52(1):39.
  • 96
    Baptista-Silva S, Borges S, Ramos OL, Pintado M, Sarmento B. The progress of essential oils as potential therapeutic agents: a review. J Essent Oil Res. 2020;32(4):279-95.
  • 97
    Li Y, Kong D, Fu Y, Sussman MR, Wu H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem. 2020;148:80-9.

Edited by

Editor-in-Chief: Paulo Vitor Farago
Associate Editor: Jane Manfron Budel

Publication Dates

  • Publication in this collection
    25 July 2022
  • Date of issue
    2022

History

  • Received
    20 July 2021
  • Accepted
    24 Apr 2022
Instituto de Tecnologia do Paraná - Tecpar Rua Prof. Algacyr Munhoz Mader, 3775 - CIC, 81350-010 Curitiba PR Brazil, Tel.: +55 41 3316-3052/3054, Fax: +55 41 3346-2872 - Curitiba - PR - Brazil
E-mail: babt@tecpar.br