Acessibilidade / Reportar erro

Modelos de regressão aplicados na caracterização de argamassas leves contendo agregados não convencionais de EVA e fibras de piaçava

Regression models applied in the characterization of lightweight mortar with EVA and piassava fibers

RESUMO

A indústria da construção civil tem um grande potencial para a reciclagem de resíduos mediante a incorporação desses materiais como agregados. O resíduo de EVA (Etileno-Acetato de Vinila) vem sendo utilizado como uma alterativa na produção de compósitos cimentícios leves em conjunto com fibras vegetais de Attalea funifera Martius (piaçava), como reforço. Neste trabalho, procurou-se modelar as propriedades mecânicas de resistência à compressão, resistência à tração e módulo de deformação de argamassas contendo agregados não convencionais como EVA e fibras de piaçava. Foi utilizado um modelo de regressão polinomial com três variáveis explicativas para modelar cada propriedade mecânica, utilizando como variáveis independentes as porcentagens de EVA e fibras presentes na mistura, e a relação água/cimento do material. A qualidade de ajuste dos modelos foi avaliada por meio de testes hipótese, e por critérios estatísticos, dentre deles Shapiro-Wilk, Durbin-Watson, Breusch-Pagan, coeficientes de determinação R2 e critério PRESS (Prediction Error Sum of Squares). Os resultados indicam que os modelos construídos reproduzem satisfatoriamente o comportamento do material. Por meio de simulações realizadas com os modelos propostos, constatou-se que a fibra de piaçava pode ser utilizada como reforço para melhorar as propriedades de resistência à tração e módulo de deformação para a argamassa, dessa forma, foi possível identificar uma proporção ótima entre os agregados.

Palavras-chave
Modelos de Regressão; Análise Multivariada; Resistência Mecânica; Argamassa Leve

ABSTRACT

The civil construction has great potential for recycling other industries residues using these materials as aggregates. The EVA residue (Ethylene Vinyl Acetate) has been used in lightweight mortar production using piassava vegetable fibers (Attalea funifera Martius) as reinforcement. In this work, we build mathematical models to simulate the mechanical properties as compressive strength, tensile strength and modulus of elasticity for mortar with unconventional aggregates of EVA and piassava fibers. We used a polynomial regression model with three explanatory variables to describe each mechanical property, using as independent variables the EVA and fiber percentages in the mixture and also the water/cement ratio. The goodness of fit was measured through hypothesis tests, and statistical criteria’s as Shapiro-Wilk, Durbin-Watson, Breusch-Pagan, the coefficient of determination (R2), and the PRESS statistic. The results allow us to affirm the constructed models reproduce the material behavior. Using the proposed models and simulation techniques, it was found that the piassava fibers can be used as reinforcement elements in the tensile strength and modulus of elasticity for mortars. In addition, we calculate an optimum ratio between aggregates to obtain maximum resistance.

Keywords
Regression Models; Multivariate Analysis; Mechanical Strength; Lightweight Mortar

1. INTRODUÇÃO

A sustentabilidade constitui um tema recorrente nos últimos anos, basicamente procura-se por soluções que possam minimizar os impactos ambientais provenientes do crescimento populacional e o desenvolvimento industrial. Assim, a criação de técnicas e/ou novos produtos, que possam satisfazer as necessidades presentes, sem comprometer as necessidades das gerações futuras, se converte num objetivo da comunidade científica. As soluções em sustentabilidade, principalmente em longo prazo, devem levar em consideração as questões sociais, energéticas, econômicas e ambientais. Nesse contexto, propor soluções de alto impacto torna-se um dos principais desafios da comunidade acadêmica, governos e empresas.

A indústria da construção civil é um dos ramos da economia com grande impacto sobre o Produto Interno Bruto (PIB) nacional. Segundo o Instituto Brasileiro de Geografia e Estatística (IBGE) [11 IBGE, Contas nacionais trimestrais: indicadores de volume e valores correntes out./dez., In: Indicadores IBGE, Rio Janeiro, 2016.], no ano de 2015, o setor da construção civil teve participação de 6,4% no PIB brasileiro. Embora a construção civil seja reconhecida como uma atividade que contribui para o desenvolvimento econômico e social, é também uma atividade que leva a um consumo excessivo de recursos naturais provenientes de fontes não renováveis, sendo também geradora de resíduos de construção e demolição, configurando-se como uma atividade potencialmente degradante ao ambiente [22 NAGALLI, A., Gerenciamento de resíduos sólidos na construção civil. 1 ed., São Paulo -SP, Oficina de Textos, 2016., 33 HENRIQUE, O., UMADA, M.K., POLASTRI, P., et al., “Etapas do gerenciamento de resíduos da construção civil”, Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, v. 19, pp. 39-48, 2015.].

Segundo JOHN [44 JOHN, V. M., “Reciclagem de Resíduos na Construção Civil: Contribuição à metodologia de pesquisa e desenvolvimento”, Tese Livre Docencia, Escola Politécnica da Universidade de São Paulo, Brasil, 2000.], a reciclagem é uma das condições para atingir o desenvolvimento sustentável, e mesmo a indústria da construção civil sendo uma das principais contribuintes ao deterioro do meio ambiente, tem um grande potencial para a reciclagem de resíduos mediante a incorporação desses materiais como agregados. Para MEHTA e MONTEIRO [55 MEHTA, P.K., MONTEIRO, P.J., CONCRETO: Estrutura, Propriedades e Materiais, 3 ed., São Paulo -Pini, 2008.], a reutilização dos resíduos de uma indústria como substitutos de matérias-primas virgens na construção civil reduz o impacto ambiental de ambas as indústrias. NEVILLE [66 NEVILLE, A., BROOKS, J.J, Tecnologia do Concreto, 2 ed., Bookman, 2013.] comenta duas razões complementares para a utilização de resíduos como agregados, a primeira é devida a futura escassez de rochas que podem ser britadas, o que leva a maiores taxações sobre novas pedreiras, a segunda é a diminuição das áreas destinadas a descarte e armazenamento de resíduos.

O Etileno-Acetato de Vinila (EVA) é um material amplamente utilizado na indústria calçadista como alternativa do couro. ARRUDA FILHO et al. [77 ARRUDA FILHO, N.T., DANTAS, C.P., LEAL, A. F., et al., “Resistência mecânica de compósitos cimentícios leves utilizando resíduos industriais e fibras de sisal”, Rev. Bras. Eng. Agrícola e Ambient., v. 16, n. 8, pp. 894-902, 2012.] destacam que os resíduos sólidos de EVA, que produz esta indústria, podem ser utilizados na construção civil como agregado sintético para elaboração de compósitos leves. Os autores destacam que os resíduos de EVA se caracterizam pela baixa massa específica, boas características acústicas e térmicas além de ser resistente a fungos. Estudos demonstram que a presença de EVA na matriz cimentícia leva a uma redução considerável na resistência à compressão, e que a introdução de fibras naturais nas misturas, em especial a palmeira piaçava (Attalea funifera Martius), sisal (Agave sisalana) e côco (Cocos nucifera), levam a uma recuperação parcial das propriedades mecânicas do compósito cimentício [88 SILVA, R., DOMINGUEZ, D., ASSIS, J., “Characterization of Lightweight Cementitious Composites Reinforced with Piassava Fibers Using Mechanical Tests and Micro-Tomography”, Rev. Chemical Enginneering (IRECHE), v. 5, n. 6, 2013., 99 IGLESIAS, S.M., ALMEIDA, H., DOMINGUEZ, D., “Three-Dimensional Image Processing Applied to the Characterization of Lightweight Mortar Reinforced with Piassaba Fibers” In: Marcal, P. V., Yamagata, N. (eds), Design and Analysis of Reinforced Fiber Composites, pp. 19, Switzerland, Spinger International Publishing, 2016., 1010 SILVA, R., ALVIM, R., DOMINGUEZ, D., “Study of mechanical strength of a cementitious composite reinforced with piassava fibers”, ETC Educ. Tecnol. e Cult., 2011., 1111 SANTOS, F.M.R., “Estudo de compósitos cimentíceos leves com resíduos de EVA e fibras vegetais para aplicações na construção civil”, J. Chem. Inf. Model., v. 53, n. 9, pp. 1689-1699, 2013.].

De acordo com MEHTA e MONTEIRO [55 MEHTA, P.K., MONTEIRO, P.J., CONCRETO: Estrutura, Propriedades e Materiais, 3 ed., São Paulo -Pini, 2008.] o agregado exerce uma grande influência sobre a resistência, estabilidade dimensional e durabilidade dos materiais compósitos, logo não deve ser tratado com menor importância que o cimento. Nesse contexto, com o surgimento de novos compósitos, existe a necessidade de caracterizar as propriedades mecânicas e estabelecer a composição ótima destes materiais para uma dosagem racional. Dosagem racional é o procedimento necessário para a obtenção da melhor proporção entre os materiais constitutivos do concreto ou argamassa, com o objetivo de obter a mistura ótima e mais econômica em relação às propriedades mecânicas do material [1212 HELENE, P., ANDRADE, T., Concreto de Cimento Portland, In: Isaia, G (ed), Materiais de Construção Civil e Princípios de Ciência e Engenharia de Materiais, 2ed., capítulo 29, IBRACON, São Paulo, 2010.].

Modelos matemáticos podem ser utilizados para o cálculo de dosagem racional de compósitos de matriz cimentícia, correlacionando as propriedades mecânicas com a composição desses compósitos. Estudos de dosagem utilizando modelos podem ser encontrados na literatura. A Lei de Abrams [1313 ABRAMS, D.A., Design of Concrete Mixtures, Chicago, Structural Materials Research Laboratory, 1920.] correlaciona a relação água/cimento com a resistência à compressão do concreto, essa lei é utilizada ainda hoje no cálculo de dosagem racional. A Lei de Lyse [1414 LYSE, I., “Tests on consistency and strength of concrete having constant water content", In: Fritz Laboratory Report, 154.4, v. 32, pp. 629, Lehigh University, Reprint n. 32 (32-7), 1932.] considera a massa de água por unidade de volume de concreto como a principal determinante da consistência do concreto fresco, dando uma estimativa da trabalhabilidade do concreto. A Lei de Molinari correlacionaram o valor do traço seco apresentado por LYSE [1414 LYSE, I., “Tests on consistency and strength of concrete having constant water content", In: Fritz Laboratory Report, 154.4, v. 32, pp. 629, Lehigh University, Reprint n. 32 (32-7), 1932.] com o consumo de cimento ideal para dosagem racional. Em trabalhos mais recentes, CABRAL et al. [1515 CABRAL, E.B, SCHALCH, V., DAL MOLIN, D.C.C., et al., “Desempenho de concretos com agregados reciclados de cerâmica vermelha”, Cerâmica, v. 55, pp. 448-460, 2009.] utilizam modelos que descrevem o comportamento das propriedades mecânicas do concreto ao se substituir o agregado natural por resíduos de construção e demolição. LIAN et al. [1616 LIAN, C., ZHUGE, Y., BEECHAM, S., “The relationship between porosity and strength for porous concrete”, Construction Building Material, v. 25, n. 11, pp. 4294-4298, 2011.] utilizam um modelo para estimar a resistência à compressão do concreto com diferentes tipos de agregados graúdos, utilizando a porosidade do material como variável explicativa. Outros esforços recentes de diversos autores dedicados a obter modelos que relacionam as propriedades mecânicas de compósitos ciménticios com as frações de seus constituintes podem ser encontrados em [1717 LOPES, R.F., ALVIM, R.D.C., CORREA, N.S., “Mathematical Modeling of Composite Lightweight Mortar Reinforced with Piassava Fibers”, Open Journal of Mathematical Modeling, v. 1, n. 5, pp. 184-193, 2013., 2929 DA SILVA, S. R., ANDRADE, J. J. O., “Investigation of mechanical properties and carbonation of concretes with construction and demolition waste and fly ash”, Construction and Building Materials, v. 153, pp. 704–715, 2017., 3030 MOHAMMED, A. A., “Modelling the mechanical properties of concrete containing PET waste aggregate”, Construction and Building Materials, v. 150, pp. 595–605, 2017, 3131 PEREIRA, E. L., DE OLIVEIRA, A. L., “Optimization of mechanical properties in concrete reinforced with fibers from solid urban wastes (PET bottles) for the production of ecological concrete”, Construction and Building Materials, v. 149, pp. 837-848, 2017., 3232 GUAN, X., LIU, X., JIA, X, et. al. “A stochastic multiscale model for predicting mechanical properties of fiber reinforced concrete”, International Journal of Solids and Structures, v. 56-57, Supplement C, pp. 280-289, 2015., 3333 SONG, P. S., HWANG, S., “Mechanical properties of high-strength steel fiber-reinforced concrete”, Construction and Building Materials, v. 18, pp. 669-673, 2014.].

O presente trabalho tem como objetivo propor três modelos matemáticos para caracterização das propriedades mecânicas de argamassas contendo agregados não convencionais de EVA e fibras naturais de piaçava, visando identificar a melhor proporção de agregados para uma dosagem racional por meio de análise multivariada de dados. Estudou-se o comportamento da resistência à compressão (fc), resistência à tração (ft) e o módulo de deformação (εc) das argamassas produzidas ao se variar as concentrações de EVA e fibras presentes na mistura. Os modelos de regressão propostos foram avaliados quanto à qualidade do ajuste, e utilizados em simulações para identificar a proporção ótima dos agregados em um cálculo de dosagem racional.

2. MATERIAIS E MÉTODOS

Esta seção é dividida em duas etapas, a coleta de dados e a modelagem matemática de cada propriedade estudada. A coleta e preparo dos dados é uma fase essencial, visto que é necessário obter diferentes combinações entre as variáveis do processo para realizar uma análise multivariada. Como o objetivo é modelar a influência dos agregados não convencionais de resíduos de EVA com as fibras de piaçava nas propriedades mecânicas da argamassa, tornou-se necessário obter dados de diferentes dosagens de argamassa contendo diferentes proporções desses agregados.

A etapa de modelagem matemática foi realizada por meio de análise multivariada com técnicas de regressão múltipla, com objetivo de medir, explicar e prever o grau de relacionamento entre variáveis estatísticas. O procedimento proposto foi utilizado para modelar as propriedades da argamassa ao se utilizar os agregados não convencionais citados, obtendo-se as proporções ótimas entre esses agregados.

2.1 Coleta e Preparo de Dados

Os dados de argamassa utilizados neste trabalho foram gerados por LOPES et al. [1717 LOPES, R.F., ALVIM, R.D.C., CORREA, N.S., “Mathematical Modeling of Composite Lightweight Mortar Reinforced with Piassava Fibers”, Open Journal of Mathematical Modeling, v. 1, n. 5, pp. 184-193, 2013.], que produziu um total de 81 diferentes dosagens de argamassas contendo agregados de EVA e fibras de piaçava para diferentes granulometrias e proporções de material cimentício. Os ensaios foram realizados no Laboratório de Ensaios Mecânicos e Resistência dos Materiais (LEMER) localizado na Universidade Estadual de Santa Cruz (UESC). Para este trabalho, utilizaram-se 27 diferentes dosagens. A fixação dessas dosagens tem como principal objetivo a redução da quantidade de variáveis explicativas, o que foi feito visando similaridade com outras pesquisas na área [1818 PESSÔA, J.R.C., DIAS, L.A., SANTANA, M.R.O, et al., “Caracterização de concretos leves incorporados com etileno acetato de vinila (EVA) e fibras da Attalea funifera Martius (Piaçava)”, In: Anais 58 Congresso Brasileiro de Contreto CBC2016, 2016.]. A preparação dos corpos de prova das diferentes dosagens de argamassa utilizadas neste trabalho, foi feita conforme as normas NBR 7215 e NBR 5739 [2727 ABNT, NBR-7215: Cimento Portland -Determinação da Resistencia a Compressão. Rio de Janeiro, ABNT -Associação Brasileira de Normas Técnicas, 1996., 2828 ABNT, NB-5738: Concreto -Procedimento para Moldagem e Cura de Corpos de Prova. Rio de Janeiro, ABNT -Associação Brasileira de Normas Técnicas, 2003.].

LOPES et al. [1717 LOPES, R.F., ALVIM, R.D.C., CORREA, N.S., “Mathematical Modeling of Composite Lightweight Mortar Reinforced with Piassava Fibers”, Open Journal of Mathematical Modeling, v. 1, n. 5, pp. 184-193, 2013.] incorporou os agregados a um traço fixo de 1:0,5 (material cimentício: areia), sendo o material cimentício (aglomerante) composto por 50% cimento, 30% metacaulinita e 20% cinza volante. O agregado de EVA foi incorporado nas proporções de 4%, 6% e 8% do volume total do traço. Para as fibras, utilizaram-se as proporções de 1%, 3% e 5% do volume total do traço. Foram utilizadas as variações da relação água/cimento de 0,5, 0,65 e 0,8 para a estimação dos parâmetros dos modelos.

A granulometria do EVA utilizada neste trabalho foram grãos maiores que 0,65 mm e menores que 0,85 mm, isto é, grãos retidos na peneira de 30 mesh; no caso das fibras de piaçava, utilizou-se um comprimento padrão de 2 cm. A Figura 1 ilustra a distribuição das 27 dosagens de argamassas utilizados neste trabalho. A Tabela 1 apresenta a massa específica de cada um dos componentes utilizados para fabricação da argamassa.

Figura 1
Diagrama das dosagens de argamassa utilizados na coleta de dados, considerando a relação água/cimento, incorporação de EVA e fibras.
Tabela 1
Propriedades dos materiais utilizados no cálculo das dosagens de argamassa.

Para cada traço, foram moldados corpos de prova cilíndricos de 5 cm de diâmetro por 10 cm de altura e corpos de prova prismáticos de 4 cm de largura e 16 cm de comprimento. Os corpos de prova foram ensaiados após 28 dias de cura. A Tabela 2 mostra os resultados obtidos nos ensaios de compressão, tração e módulo de deformação para as diferentes dosagens estudadas. Foram realizados três ensaios por dosagem para cada propriedade. Os resultados utilizados para cada valor das propriedades foram a média dos três resultados.

Tabela 2
Valores médios de resistência à compressão (fc), resistência à tração (fi) e deformação (εc) para as dosagens consideradas neste trabalho.

2.2 Modelagem Matemática

Na modelagem matemática, utilizou-se a metodologia estatística de análise multivariada por meio de Regressão Polinomial. A escolha deveu-se ao fato dos resultados dos ensaios analisados e a busca na literatura científica previa terem apresentado uma relação não linear entre as propriedades mecânicas e as concentrações de agregados [1313 ABRAMS, D.A., Design of Concrete Mixtures, Chicago, Structural Materials Research Laboratory, 1920.

14 LYSE, I., “Tests on consistency and strength of concrete having constant water content", In: Fritz Laboratory Report, 154.4, v. 32, pp. 629, Lehigh University, Reprint n. 32 (32-7), 1932.
-1515 CABRAL, E.B, SCHALCH, V., DAL MOLIN, D.C.C., et al., “Desempenho de concretos com agregados reciclados de cerâmica vermelha”, Cerâmica, v. 55, pp. 448-460, 2009.]. Dessa forma, optou-se pela utilização de um polinômio de grau 2 com três variáveis explicativas que representam os agregados de EVA, as fibras de piaçava e a relação água/aglomerante. A forma geral do modelo é dada por:

Y = β 0 + β 1 e + β 2 f + β 3 e 2 + β 4 f 2 + β 5 e f + β 6 ( a c ) + β 7 ( a c ) 2 + ε ; (1)

onde, e e f representam respetivamente as porcentagens de EVA e fibras presentes na mistura, ac representa a relação água/cimento; β0 não tem interpretação prática, pois é uma estimativa da propriedade quando todas as variáveis independentes são iguais a zero, algo que não acontece na prática; β1 e β2 estão relacionados aos efeitos lineares dos agregados; β3 e β4 estão relacionados aos efeitos quadráticos do EVA e das fibras; β5 é o parâmetro associado ao efeito de interação conjunta entre os dois tipos de agregados, β6 e β7 modelam a relação água/cimento, e o ε representa o erro de ajuste. O Y, que é a variável dependente, representa a propriedade no compósito que está sendo estimada, podendo ser igual a resistência à compressão (fc), resistência à tração (ft) ou o módulo de deformação (εc).

A Figura 2 apresenta os passos utilizados para modelagem matemática de cada propriedade estudada dos compósitos. Utilizando como entrada os dados dos resultados dos ensaios mecânicos (compressão, tração e módulo de deformação) e a composição do traço, e tendo como saída o modelo matemático ajustado.

Figura 2
Diagrama do processo de modelagem matemática.

No processo mostrado na Figura 2, na Etapa 1 se define o objetivo da regressão, isto é, a modelagem de uma das propriedades dos compósitos estudados (compressão, tração e módulo de deformação). Nesta etapa são definidas as variáveis dependentes e independentes do modelo. As variáveis dependentes são: a resistência à compressão (fc), a resistência à tração (ft) e o módulo de deformação (εc) e são estas as que serão estimadas através do modelo ajustado. Como variáveis independentes, utilizaremos as concentrações de agregados em cada traço, as porcentagens de EVA (e), as porcentagens de fibras de piaçava (f) e a relação água/cimento (ac).

A etapa 2 está relacionada aos resultados dos ensaios e à composição de cada dosagem, esta etapa foi definida na seção de coleta e preparo de dados (2.1). Estes dados de argamassa estão apresentados na Tabela 2. Os resultados obtidos nessa etapa foram utilizados para o ajuste dos modelos de regressão de cada propriedade na etapa seguinte.

Na etapa 3 se define a forma do modelo e se estimam seus parâmetros. Inicialmente todos os modelos apresentam a forma completa de um polinômio de grau 2 com três variáveis explicativas conforme a Eq. (1). Para estimar os coeficientes βn que melhor ajustam o modelo ao conjunto de dados foi utilizado o método dos mínimos quadrados [1919 HAIR, J.F., BLACK, W.C., BABIN, B.J., et al., Análise multivariada de dados, 6 ed., Porto Alegre, Bookman, 2009.]. O software estatístico R [2020 R: THE R PROJECT FOR STATISTICAL COMPUTING, https://www.r-project.org/. Acessado em abril de 2017.
https://www.r-project.org/...
] conta com diversas implementações desse método, tendo um suporte abrangente para a regressão linear múltipla.

Na etapa 4, de avaliação, foi realizado o processo de eliminação Backward [1919 HAIR, J.F., BLACK, W.C., BABIN, B.J., et al., Análise multivariada de dados, 6 ed., Porto Alegre, Bookman, 2009.] que visa determinar o melhor conjunto de termos que podem conformar os modelos de regressão, retirando aqueles termos que não contribuem significativamente para a qualidade do modelo. A escolha do processo Backward deveu-se ao fato de partir de um modelo completo, contendo todas as variáveis preditoras envolvidas, simplificando o modelo ao escolher o termo que deve ser retirado. Um princípio que deve nortear a construção desses modelos é a parcimônia, em que modelos mais simples devem ser escolhidos, desde que não haja redução significativa na qualidade do ajustamento. A etapa 4 é iterativa, conforme aos resultados obtidos, torna-se necessário recalcular os coeficientes de ajuste (etapa 3) com uma nova forma paramétrica para o modelo. A seleção Backward incorpora inicialmente todos os termos e depois, por etapas, cada um pode ser ou não eliminado. A decisão de retirada de um termo considera testes F parciais, que são calculados para cada termo como se ele fosse o último a compor o modelo. Sendo assim, caso seja necessário retirar algum termo do modelo, volta-se a etapa 3 estimando novamente os parâmetros sem o termo eliminado.

Findo o processo de eliminação de termos os coeficientes de qualidade dos modelos são avaliados. Foram realizados os testes de hipóteses de Shapiro-wilk [2121 SHAPIRO, S.S., WILK, M.B., “An Analysis of Variance Test for Normality (Complete Samples)”, Biometrika, v. 52, n. 3/4, pp. 591-611, Dec., 1965.], Durbin-Watson [2222 DURBIN, B.Y.J., WATSON, G.S., “Testing for Serial Correlation in Least Squares Regression I”, Biometrika, v. 38, n. 1/2, pp. 159-177, Jun., 1951.] e Breusch-Pagan [2323 BREUSCH, T., PAGAN, A., “A simple test for heteroscedasticity and random coefficient variation”, Econometrica, v. 47, issue 5, pp. 1287-1294, 1979.] para determinar se os modelos respeitam os principais pressupostos de um modelo de regressão, validando normalidade, homocedasticidade e independência dos resíduos. Também foi calculado o coeficiente de determinação (R2) para calcular a qualidade de ajuste aos dados. Todos os testes de hipóteses utilizaram o nível de significância α de 5%, valor considerado razoável para a maioria das aplicações estatísticas.

A etapa 5, etapa de validação dos resultados, tem por objetivo avaliar a estabilidade e a capacidade preditiva do modelo. Utilizou-se o critério PRESS (Prediction Error Sum of Squares) [2424 ALLEN, D., “The relationship between variable selection and data agumentation and a method for prediction”, Technometrics, v. 16, n. 1, pp. 125-127, Fev., 1974.] em conjunto com o R2 de predição, esse é um critério recomendado quando o conjunto de dados utilizados na estimação dos modelos não pode ser subdividido, ou mesmo, não havendo possibilidade de uma nova coleta de dados. Esta é uma etapa importante quando se visa utilizar os modelos para predição de resultados, ou seja, utilizar os modelos em simulações para avaliar características importantes de cada propriedade.

Na última etapa (6), utilizamos os modelos ajustados e validados em simulações. O objetivo geral é simular concentrações de agregados ainda não estudados, analisando a influência desses agregados nas propriedades mecânicas dos compósitos cimentícios, e estimando valores ótimos para dosagem racional da argamassa.

De modo geral, essas seis etapas conformam o processo de modelagem das propriedades mecânicas dos compósitos cimentícios estudados. Esse procedimento é executado de forma análoga para cada propriedade (resistência à compressão, resistência à tração e módulo de deformação) da argamassa.

3. RESULTADOS E DISCUSSÃO

A partir do modelo completo da argamassa (Eq. 1), contendo todos os parâmetros, foi realizado o processo de eliminação Backward para seleção dos termos significativos para cada propriedade mecânica modelada. A Tabela 3 exibe os coeficientes significativos de cada modelo, estimados por mínimos quadrados. Na Tabela 3 os coeficientes que não foram reportados indicam que o termo correspondente foi desconsiderado no processo de eliminação.

Tabela 3
Valores dos coeficientes para cada um dos modelos propostos para o material de argamassa.

Para o modelo de resistência à compressão (fc , as constantes β3 e β4 ue estão associados aos efeitos quadráticos do EVA e das fibras, foram retiradas do modelo no processo Backward devida a baixa significância no teste F, constatando a pouca influência desses termos na resistência à compressão. Por tanto, no modelo fc, aparecem apenas os termos associadas aos efeitos lineares (β1 e β2) e ao efeito de interação conjunta β5 dos agregados, para a relação água/cimento, mantem-se apenas o efeito linear (β6). O modelo ajustado é apresentado como

f c = 48 , 79 + 14 , 57 ( e ) + 80 , 26 ( f ) - 1952 , 36 ( e f ) - 55 , 00 ( a c ) (2)

Para o modelo de resistência à tração (ft), após o processo de eliminação Backward, foram mantidos os termos β4 associados aos efeitos lineares β1 do EVA e o termo associado ao efeito quadrático das fibras. Nesse modelo, para a relação água/cimento mantiveram-se os dois coeficientes, efeito linear e quadrático. O modelo ajustado aparece na forma

f t = 12 , 78 - 6 , 37 ( e ) + 33 , 04 ( f ) 2 - 25 , 25 ( a c ) - 13 , 81 ( a c ) 2 (3)

Analisando os coeficientes dos agregados no modelo de resistência à tração, é possível observar que existe uma redução linear na resistência à tração com a utilização do EVA. Por outro lado, as fibras exercem um efeito quadrático de recuperação da resistência, dessa forma é possível concluir que as fibras podem ser utilizadas como material de reforço, pois recuperam a resistência à tração na presença de EVA. Estes resultados são consistentes como os reportados por outros autores [88 SILVA, R., DOMINGUEZ, D., ASSIS, J., “Characterization of Lightweight Cementitious Composites Reinforced with Piassava Fibers Using Mechanical Tests and Micro-Tomography”, Rev. Chemical Enginneering (IRECHE), v. 5, n. 6, 2013., 1010 SILVA, R., ALVIM, R., DOMINGUEZ, D., “Study of mechanical strength of a cementitious composite reinforced with piassava fibers”, ETC Educ. Tecnol. e Cult., 2011., 1111 SANTOS, F.M.R., “Estudo de compósitos cimentíceos leves com resíduos de EVA e fibras vegetais para aplicações na construção civil”, J. Chem. Inf. Model., v. 53, n. 9, pp. 1689-1699, 2013., 1818 PESSÔA, J.R.C., DIAS, L.A., SANTANA, M.R.O, et al., “Caracterização de concretos leves incorporados com etileno acetato de vinila (EVA) e fibras da Attalea funifera Martius (Piaçava)”, In: Anais 58 Congresso Brasileiro de Contreto CBC2016, 2016.], onde a incorporação de EVA conduz a uma perda da resistência a tração e a adição de fibras permite compensar parcialmente estas perdas. Entretanto, estes autores também destacam que existe um limiar a partir do qual o teor de fibras não favorece a resistência da argamassa leve, passando a enfraquecê-la.

Por último, para o módulo de deformação (εc ), o processo de eliminação conduz a um modelo onde aparece o termo linear para o EVA β1 e o termo de interação entre os agregados β5, para a relação água/cimento fica apenas o termo linear. O modelo para o módulo de deformação foi o que teve uma maior redução no processo de eliminação, reduzindo o modelo ajustado a

ε c = 11 , 34 - 19 , 36 ( e ) + 86 , 18 ( e f ) - 10 , 80 ( a c ) . (4)

Observando os coeficientes da Eq. (4), é possível afirmar que a utilização do EVA também leva a uma redução do módulo de deformação. Pelo coeficiente de interação (ef), é possível concluir que existe uma recuperação parcial do módulo de deformação ao utilizar os dois agregados em conjunto.

Além dos diferentes valores para os coeficientes estimados, a existência de diferentes termos entre os modelos é um indicador de que os agregados de EVA e de fibras influenciam o comportamento das propriedades mecânicas da argamassa de forma diferente. Outro ponto a ser analisado é que as constantes associadas ao efeito quadrático do EVA, fibras e relação água/cimento, em sua maioria, foram retirados pelo processo de eliminação Backward, indicando assim a pouca relevância desses termos no resultado final do modelo.

Depois de obter os modelos ajustados, é importante avaliar os pressupostos da análise de regressão, como a normalidade, homocedasticidade e independência dos resíduos. A Tabela 4 apresenta os resultados dos testes de hipóteses, percebe-se que em todas as situações estudadas o p-valor de cada teste é superior a 0,05 (5%). Considerando o nível de significância de 5% utilizado nos testes de Shapiro-Wilk para normalidade, Durbin-Watson para independência dos erros e Breusch-Pagan para homoscedasticidade, podemos afirmar que os pressupostos da análise de regressão foram atendidos. Dessa forma, os coeficientes estimados por mínimos quadrados são não tendenciosos ou imparciais, ou seja, estimados de maneira ótima.

Tabela 4
Resultados dos testes de hipóteses aplicados aos resíduos dos modelos ajustados para argamassa.

Na Tabela 5 são apresentados os avaliadores da qualidade de ajuste para cada modelo. Podemos constatar que todos os modelos apresentam um coeficiente de determinação R2 elevado, o que indica um bom ajuste aos dados experimentais, sendo o do módulo de deformação (εc) o que apresenta menor valor, com aproximadamente 89%. Em relação ao critério PRESS, observamos que para todos os modelos o valor obtido está na mesma ordem que a soma de quadrados dos erros (SQE), o que segundo KUTNER et al. [2525 KUTNER, M.H., NACHTSHEIM, C.J., NETER, J., Applied Linear Statistical Models, 5 ed., New York, McGraw-Hill Irwin, 2010.], é um indicador da validade do modelo de regressão. Ao analisar o avaliador R2 da Predição, observamos que todos os modelos apresentam valor superior a 84%, fortalecendo a validade dos modelos para novas observações. Segundo MYERS et al. [2626 MYERS, R.H., MONTFOMERY, D.C., ANDERSON, C.M, Response surface methodology: process and product optimization using designed experiments, 4 ed., John Wiley & Sons, 2016.], o coeficientes de determinação (R2) da predição também é um indicador da capacidade preditiva do modelo, e quanto mais próximo for de 100% mais o modelo consegue predizer valores de novas observações.

Tabela 5
Parâmetros da qualidade de ajuste para os modelos de argamassa propostos.

De modo geral, todos os modelos apresentaram uma boa capacidade preditiva pelo R2 e valores próximos de PRESS e SQE, como também valores adequados do coeficiente de determinação R2. Esses resultados são fundamentais para que os modelos possam ser utilizados em simulações, onde espera-se uma boa representação dos dados reais.

Utilizando os modelos propostos para descrição e predição das propriedades mecânicas de resistência à compressão, resistência à tração e o módulo de deformação da argamassa, é possível estudar a influência dos agregados de EVA e fibras de piaçava nestas propriedades, e assim, obter valores ótimos que podem ser utilizados para dosagem racional. Para as simulações, o valor da relação água/cimento foi fixado em 0,62, isso para reduzir a dimensionalidade do problema e realizar uma análise focada nas propriedades dos agregados, mantendo compatibilidade com outras pesquisas [1818 PESSÔA, J.R.C., DIAS, L.A., SANTANA, M.R.O, et al., “Caracterização de concretos leves incorporados com etileno acetato de vinila (EVA) e fibras da Attalea funifera Martius (Piaçava)”, In: Anais 58 Congresso Brasileiro de Contreto CBC2016, 2016.].

A Figura 3 exibe a superfície descritiva e as curvas de nível para a propriedade de resistência à compressão segundo a Eq. (2), considerando as dosagens utilizadas neste estudo. Pela análise da Figura 3 é possível concluir que a utilização do EVA, nas porcentagens estudadas, não tem uma redução significativa na resistência à compressão da argamassa, por outro lado, observa-se que a utilização das fibras pode levar a redução da resistência à compressão para elevadas concentrações de EVA. Vale destacar, que este comportamento está relacionado à baixa resistência a compressão apresentado pela argamassa.

Figura 3
Resultados do modelo de resistência à compressão da argamassa contendo agregados de EVA e fibras naturais de piaçava.

Para uma busca dos valores ótimos ou ponto críticos dos modelos apresentados, igualou-se a primeira derivada de cada modelo em relação às fibras de piaçaba ao valor zero, maximizando a propriedade em relação à utilização das fibras de piaçaba. Para a resistência à compressão (fc) obtemos

f c f = 80 , 26 - 1952 , 36 ( e ) ,

o ponto crítico se encontra aproximadamente no valor de 4,1% de EVA, podendo ser na prática, este valor um limitador para o efeito de reforço das fibras, abaixo deste valor as fibras poderiam ter um efeito de recuperação da resistência. Os dados da Tabela 2, em geral, acompanham a tendência prevista no modelo, existindo algumas dosagens discordantes principalmente onde a relação agua/aglomerante domina o comportamento do material. Destaca-se, que não é indicado extrapolar essa observação para fora do intervalo considerado (concentrações de EVA entre 4% e 8%).

[88 SILVA, R., DOMINGUEZ, D., ASSIS, J., “Characterization of Lightweight Cementitious Composites Reinforced with Piassava Fibers Using Mechanical Tests and Micro-Tomography”, Rev. Chemical Enginneering (IRECHE), v. 5, n. 6, 2013., 1010 SILVA, R., ALVIM, R., DOMINGUEZ, D., “Study of mechanical strength of a cementitious composite reinforced with piassava fibers”, ETC Educ. Tecnol. e Cult., 2011., 1111 SANTOS, F.M.R., “Estudo de compósitos cimentíceos leves com resíduos de EVA e fibras vegetais para aplicações na construção civil”, J. Chem. Inf. Model., v. 53, n. 9, pp. 1689-1699, 2013., 1818 PESSÔA, J.R.C., DIAS, L.A., SANTANA, M.R.O, et al., “Caracterização de concretos leves incorporados com etileno acetato de vinila (EVA) e fibras da Attalea funifera Martius (Piaçava)”, In: Anais 58 Congresso Brasileiro de Contreto CBC2016, 2016.].Os resultados do modelo para resistência à tração são apresentados na Figura 4, observa-se que ocorre uma redução nesta propriedade mecânica com a incorporação do EVA. Por outro lado, a incorporação das fibras, principalmente a 5%, evita a propagação das tensões o que conduz à recuperação parcial da resistência à tração. Este efeito pode ser observado pelas curvas de nível (Figura 4b), em que ao adicionar as fibras, a resistência tende a aumentar suavemente. O comportamento mostrado pelo modelo, já foi constatado experimentalmente em trabalhos anteriores

Figura 4
Resultados do modelo de resistência à tração da argamassa contendo agregados de EVA e fibras naturais de piaçava.

Utilizando a Eq. (3) que representa o modelo ajustado para a resistência a tração é possível identificar que para qualquer valor de EVA, a função se torna estritamente crescente com relação as fibras, ou seja, quanto maior a quantidade de fibras a ser usada, melhor é a recuperação da resistência à tração. Deve ser destacado que este comportamento não deve ser extrapolado fora do intervalo considerado, uma vez que o continuo aumento do teor de agregados não convencionais levará no final ao deterioro do material pelo aumento de vazios na matriz. O valor máximo de fibra agregada neste estúdio não ultrapassou o 5% para o qual o modelo prediz uma melhora na propriedade de tração de até 4,29% em relação a não utilização das fibras. A Figura 5 ilustra o aumento da resistência à tração nas diversas proporções do EVA para o valor ótimo de 5% de fibras, segundo o modelo. Podemos constatar que na medida que aumenta a concentração de EVA também aumenta a recuperação da resistência à tração. Estes resultados do modelo descrevem parcialmente o comportamento dos dados experimentais na Tabela 2, as maiores diferenças aparecem naquelas dosagens com elevada relação a/c.

Figura 5
Valores máximos de resistência à tração estimados usando o modelo proposto para a proporção de 5% de fibras no material argamassa.

A Figura 6 ilustra os resultados do modelo ajustado para o módulo de deformação, apresentando a superfície de resistência e as curvas de nível. A partir da análise da Figura 6 e do modelo de deformação Eq.(5), é possível concluir que a utilização do EVA reduz o módulo de deformação, e que, para as fibras, a função é estritamente crescente. Os resultados do módulo de deformação são semelhantes aos encontrados na tração, onde a presença de EVA reduz a capacidade de deformação, e as fibras recuperam parcialmente a propriedade. Novamente, a concentração de fibras que oferece uma maior recuperação do modulo de deformação é 5%, o que corresponde ao maior valor do intervalo estudado. Embora a utilização do EVA leve a uma perda da propriedade de deformação, ao utilizar a fibra em seu valor ótimo é possível obter uma recuperação de até 11,15% com relação a não utilização. A Figura 7 ilustra os valores máximos do módulo de deformação para diferentes proporções de EVA e 5% de fibras.

Figura 6
Resultados do modelo de módulo de deformação da argamassa contendo agregados de EVA e fibras naturais de piaçava.
Figura 7
Valores máximos do módulo de deformação estimados usando o modelo proposto para a proporção de 5% de fibras no material argamassa.

4. CONCLUSÕES

Neste trabalho foram propostos modelos matemáticos para a caracterização das propriedades mecânicas de argamassas contendo agregados não convencionais de EVA e fibras de piaçava. Os modelos foram utilizados para avaliar a relação dos agregados e a influência dos mesmos nas propriedades estudadas. Na sua construção foram utilizadas técnicas estatísticas de análise multivariada de dados, utilizando como base o método de regressão polinomial.

Os modelos propostos reproduzem os dados de forma satisfatória e apresentaram boa qualidade de ajuste com coeficientes de determinação superiores a 88%, e coeficientes de predição superiores a 84%. Os modelos propostos são uma boa representação das propriedades estudadas e podem ser utilizados em simulações computacionais para uma melhor compreensão da influência das concentrações de agregados e sua interação.

Uma análise dos modelos permite caracterizar a argamassa com agregados não-convencionais, obtendo assim, parâmetros relevantes tais como a proporção ótima de agregados para uma melhor eficiência na mistura. A partir desta análise os modelos predizem que:

  • A incorporação de EVA leva a uma perda nas propriedades mecânicas da argamassa, reduzindo a resistência à compressão, resistência à tração e o módulo de deformação. Destacamos que a influência na resistência a compressão é menor que nas outras duas propriedades. Esse comportamento corrobora trabalhos anteriores [88 SILVA, R., DOMINGUEZ, D., ASSIS, J., “Characterization of Lightweight Cementitious Composites Reinforced with Piassava Fibers Using Mechanical Tests and Micro-Tomography”, Rev. Chemical Enginneering (IRECHE), v. 5, n. 6, 2013., 1010 SILVA, R., ALVIM, R., DOMINGUEZ, D., “Study of mechanical strength of a cementitious composite reinforced with piassava fibers”, ETC Educ. Tecnol. e Cult., 2011., 1111 SANTOS, F.M.R., “Estudo de compósitos cimentíceos leves com resíduos de EVA e fibras vegetais para aplicações na construção civil”, J. Chem. Inf. Model., v. 53, n. 9, pp. 1689-1699, 2013., 1818 PESSÔA, J.R.C., DIAS, L.A., SANTANA, M.R.O, et al., “Caracterização de concretos leves incorporados com etileno acetato de vinila (EVA) e fibras da Attalea funifera Martius (Piaçava)”, In: Anais 58 Congresso Brasileiro de Contreto CBC2016, 2016.].

  • As fibras de piaçava podem ser utilizadas como material de reforço com recuperação parcial da resistência à tração e do módulo de deformação, chegando a uma recuperação de 4,29% para a resistência à tração e de 11,15% para o módulo de deformação. Em todos os casos que houve recuperação na resistência, a eficiência torna-se mais acentuada com maiores valores na concentração do EVA ao utilizar o valor ótimo de fibras, já que se deve considerar que o aumento continuado de fibras pode produzir o efeito contrário com o aumento de vazios na matriz. O efeito de reforço da fibra foi sinalizado nos trabalhos citados.

  • A melhor dosagem entre os agregados, segundo o modelo, envolve a utilização de 5% de fibras em qualquer porcentagem de EVA. Este valor ótimo para fibras é o máximo do intervalo considerado neste trabalho, acreditamos que fora desta faixa um máximo local mais robusto possa ser determinado.

Deve-se sinalizar que o comportamento geral dos valores experimentais mostrados na Tabela 2, coincide com as previsões dos modelos, existindo discrepâncias, principalmente para aquelas dosagens com elevada relação agua/aglutinante. Existe um amplo consenso na literatura [3434 POPOVICS, S., UJHELYI, J., “Contribution to the Concrete Strength versus Water-Cement Ratio Relationship”, J. Mater. Civ. Eng., v. 20, n. 7, pp. 459-463, 2008., 3535 YEH I., “Generalization of strength versus water–cementitious ratio relationship to age”, Cement and Concrete Research, v. 36, pp. 1865-1873, 2006., 3636 KOLIAS, S., GEORGIOU, C. “The effect of paste volume and of water content on the strength and water absorption of concrete”, Cement & Concrete Composites, v. 27, pp. 211-216, 2005.] sobre a forte influência desta relação nas propriedades mecânicas do material.

Os desdobramentos futuros desta pesquisa sugerem uma expansão nas faixas dos parâmetros de interesse (porcentagem de EVA e fibras) visando determinar a proporção ótima de agregados. Ademais, incluir novas variáveis dependentes como as dimensões do grão do EVA e das fibras, visando ampliar a abrangência dos modelos propostos e uma caracterização mais detalhada dos materiais. Também, propor novos modelos incluindo a porosidade entre os parâmetros de estudo, para identificar a influência da relação entre os agregados e a porosidade nas propriedades mecânicas do material.

A metodologia descrita neste trabalho pode ser estendida a estudos de outros compósitos, para obter dosagens ótimas entre os materiais constituintes. No contexto de compósitos cimentícios, pode-se abranger o estudo a compósitos contendo outros tipos de agregados não convencionais, tais quais as fibras de coco, fibras de sisal e pó de tecido, dentre outros.

AGRADECIMENTOS

Agradecemos à Universidade Estadual de Santa Cruz (UESC), que é a instituição onde realizamos a nossa pesquisa, à Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB), pela bolsa de mestrado fornecida para que a nossa pesquisa seja desenvolvida, e ao Núcleo de Biologia Computacional e Gestão de Informações Biotecnológicas (NBCGIB), por ceder sua infraestrutura para o desenvolvimento deste projeto.

BIBLIOGRAFIA

  • 1
    IBGE, Contas nacionais trimestrais: indicadores de volume e valores correntes out./dez., In: Indicadores IBGE, Rio Janeiro, 2016.
  • 2
    NAGALLI, A., Gerenciamento de resíduos sólidos na construção civil. 1 ed., São Paulo -SP, Oficina de Textos, 2016.
  • 3
    HENRIQUE, O., UMADA, M.K., POLASTRI, P., et al., “Etapas do gerenciamento de resíduos da construção civil”, Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, v. 19, pp. 39-48, 2015.
  • 4
    JOHN, V. M., “Reciclagem de Resíduos na Construção Civil: Contribuição à metodologia de pesquisa e desenvolvimento”, Tese Livre Docencia, Escola Politécnica da Universidade de São Paulo, Brasil, 2000.
  • 5
    MEHTA, P.K., MONTEIRO, P.J., CONCRETO: Estrutura, Propriedades e Materiais, 3 ed., São Paulo -Pini, 2008.
  • 6
    NEVILLE, A., BROOKS, J.J, Tecnologia do Concreto, 2 ed., Bookman, 2013.
  • 7
    ARRUDA FILHO, N.T., DANTAS, C.P., LEAL, A. F., et al., “Resistência mecânica de compósitos cimentícios leves utilizando resíduos industriais e fibras de sisal”, Rev. Bras. Eng. Agrícola e Ambient, v. 16, n. 8, pp. 894-902, 2012.
  • 8
    SILVA, R., DOMINGUEZ, D., ASSIS, J., “Characterization of Lightweight Cementitious Composites Reinforced with Piassava Fibers Using Mechanical Tests and Micro-Tomography”, Rev. Chemical Enginneering (IRECHE), v. 5, n. 6, 2013.
  • 9
    IGLESIAS, S.M., ALMEIDA, H., DOMINGUEZ, D., “Three-Dimensional Image Processing Applied to the Characterization of Lightweight Mortar Reinforced with Piassaba Fibers” In: Marcal, P. V., Yamagata, N. (eds), Design and Analysis of Reinforced Fiber Composites, pp. 19, Switzerland, Spinger International Publishing, 2016.
  • 10
    SILVA, R., ALVIM, R., DOMINGUEZ, D., “Study of mechanical strength of a cementitious composite reinforced with piassava fibers”, ETC Educ. Tecnol. e Cult, 2011.
  • 11
    SANTOS, F.M.R., “Estudo de compósitos cimentíceos leves com resíduos de EVA e fibras vegetais para aplicações na construção civil”, J. Chem. Inf. Model, v. 53, n. 9, pp. 1689-1699, 2013.
  • 12
    HELENE, P., ANDRADE, T., Concreto de Cimento Portland, In: Isaia, G (ed), Materiais de Construção Civil e Princípios de Ciência e Engenharia de Materiais, 2ed., capítulo 29, IBRACON, São Paulo, 2010.
  • 13
    ABRAMS, D.A., Design of Concrete Mixtures, Chicago, Structural Materials Research Laboratory, 1920.
  • 14
    LYSE, I., “Tests on consistency and strength of concrete having constant water content", In: Fritz Laboratory Report, 154.4, v. 32, pp. 629, Lehigh University, Reprint n. 32 (32-7), 1932.
  • 15
    CABRAL, E.B, SCHALCH, V., DAL MOLIN, D.C.C., et al., “Desempenho de concretos com agregados reciclados de cerâmica vermelha”, Cerâmica, v. 55, pp. 448-460, 2009.
  • 16
    LIAN, C., ZHUGE, Y., BEECHAM, S., “The relationship between porosity and strength for porous concrete”, Construction Building Material, v. 25, n. 11, pp. 4294-4298, 2011.
  • 17
    LOPES, R.F., ALVIM, R.D.C., CORREA, N.S., “Mathematical Modeling of Composite Lightweight Mortar Reinforced with Piassava Fibers”, Open Journal of Mathematical Modeling, v. 1, n. 5, pp. 184-193, 2013.
  • 18
    PESSÔA, J.R.C., DIAS, L.A., SANTANA, M.R.O, et al., “Caracterização de concretos leves incorporados com etileno acetato de vinila (EVA) e fibras da Attalea funifera Martius (Piaçava)”, In: Anais 58 Congresso Brasileiro de Contreto CBC2016, 2016.
  • 19
    HAIR, J.F., BLACK, W.C., BABIN, B.J., et al, Análise multivariada de dados, 6 ed., Porto Alegre, Bookman, 2009.
  • 20
    R: THE R PROJECT FOR STATISTICAL COMPUTING, https://www.r-project.org/ Acessado em abril de 2017.
    » https://www.r-project.org/
  • 21
    SHAPIRO, S.S., WILK, M.B., “An Analysis of Variance Test for Normality (Complete Samples)”, Biometrika, v. 52, n. 3/4, pp. 591-611, Dec., 1965.
  • 22
    DURBIN, B.Y.J., WATSON, G.S., “Testing for Serial Correlation in Least Squares Regression I”, Biometrika, v. 38, n. 1/2, pp. 159-177, Jun., 1951.
  • 23
    BREUSCH, T., PAGAN, A., “A simple test for heteroscedasticity and random coefficient variation”, Econometrica, v. 47, issue 5, pp. 1287-1294, 1979.
  • 24
    ALLEN, D., “The relationship between variable selection and data agumentation and a method for prediction”, Technometrics, v. 16, n. 1, pp. 125-127, Fev., 1974.
  • 25
    KUTNER, M.H., NACHTSHEIM, C.J., NETER, J., Applied Linear Statistical Models, 5 ed., New York, McGraw-Hill Irwin, 2010.
  • 26
    MYERS, R.H., MONTFOMERY, D.C., ANDERSON, C.M, Response surface methodology: process and product optimization using designed experiments, 4 ed., John Wiley & Sons, 2016.
  • 27
    ABNT, NBR-7215: Cimento Portland -Determinação da Resistencia a Compressão. Rio de Janeiro, ABNT -Associação Brasileira de Normas Técnicas, 1996.
  • 28
    ABNT, NB-5738: Concreto -Procedimento para Moldagem e Cura de Corpos de Prova. Rio de Janeiro, ABNT -Associação Brasileira de Normas Técnicas, 2003.
  • 29
    DA SILVA, S. R., ANDRADE, J. J. O., “Investigation of mechanical properties and carbonation of concretes with construction and demolition waste and fly ash”, Construction and Building Materials, v. 153, pp. 704–715, 2017.
  • 30
    MOHAMMED, A. A., “Modelling the mechanical properties of concrete containing PET waste aggregate”, Construction and Building Materials, v. 150, pp. 595–605, 2017
  • 31
    PEREIRA, E. L., DE OLIVEIRA, A. L., “Optimization of mechanical properties in concrete reinforced with fibers from solid urban wastes (PET bottles) for the production of ecological concrete”, Construction and Building Materials, v. 149, pp. 837-848, 2017.
  • 32
    GUAN, X., LIU, X., JIA, X, et. al. “A stochastic multiscale model for predicting mechanical properties of fiber reinforced concrete”, International Journal of Solids and Structures, v. 56-57, Supplement C, pp. 280-289, 2015.
  • 33
    SONG, P. S., HWANG, S., “Mechanical properties of high-strength steel fiber-reinforced concrete”, Construction and Building Materials, v. 18, pp. 669-673, 2014.
  • 34
    POPOVICS, S., UJHELYI, J., “Contribution to the Concrete Strength versus Water-Cement Ratio Relationship”, J. Mater. Civ. Eng, v. 20, n. 7, pp. 459-463, 2008.
  • 35
    YEH I., “Generalization of strength versus water–cementitious ratio relationship to age”, Cement and Concrete Research, v. 36, pp. 1865-1873, 2006.
  • 36
    KOLIAS, S., GEORGIOU, C. “The effect of paste volume and of water content on the strength and water absorption of concrete”, Cement & Concrete Composites, v. 27, pp. 211-216, 2005.

Datas de Publicação

  • Publicação nesta coleção
    2018

Histórico

  • Recebido
    14 Jun 2017
  • Aceito
    26 Out 2017
Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro, em cooperação com a Associação Brasileira do Hidrogênio, ABH2 Av. Moniz Aragão, 207, 21941-594, Rio de Janeiro, RJ, Brasil, Tel: +55 (21) 3938-8791 - Rio de Janeiro - RJ - Brazil
E-mail: revmateria@gmail.com