Acessibilidade / Reportar erro

Delivery kinetics of natural active agents by PVA hydrogels intended for wound care

ABSTRACT

Acute wound dressings can be based on PVA hydrogels, which present many characteristics of an ideal dressing, e.g., fluid uptake, a moisturized environment, etc. The lack of antimicrobial properties leads to the addition of natural active agents. The present work aims to manufacture and compare PVA gels loaded with Barbatimão bark extract, Leucaena bark extract, Aloe vera, and Lavender essential oil. They were characterized by FTIR, swelling tests, SEM, actives release. There were interactions between PVA and the active agents. The addition of Leucaena and Barbatimão increased the PVA ability to swell, but the opposite was found for Aloe vera and Lavender essential oil. PVA-Lavender essential oil samples presented interconnected pores, while samples with essential oil or extracts presented high crystallinity. Lavender essential oil and Aloe vera presented the highest release. The Barbatimão and Leucaena samples’ release may be related to the samples’ swelling, but the initial release of Aloe vera and Lavender samples was diffusion controlled by swelling. Their long-term release was dose-dependent for Aloe vera, while it was a non-Fickian diffusion for Lavender essential oil related to the hydrogel’s relaxation step. There is a synergistic effect when Aloe vera and Lavender essential oil are loaded in PVA hydrogels.

Keywords
PVA hydrogels; Barbatimão extract; Leucaena extract; Lavender oil; Aloe vera

Keywords
PVA hydrogels; Barbatimão extract; Leucaena extract; Lavender oil; Aloe vera

1. INTRODUCTION

Wounds are the disruption of the skin continuity, which can be classified as open (characterized by bleeding), closed (characterized by internal bleeding), acute (following the normal stages of healing: inflammation, fibroblastic reparation, and remodeling), and chronic (prolonged healing which can also persist) wounds [1[1] KAUR, S., “Wound healing potential of medicinal plants with their screening models: a comprehensive review”, Journal of Drug Delivery and Therapeutics, v. 6, n. 1, pp. 56–66, Jan. 2016. doi: http://dx.doi.org/10.22270/jddt.v6i1.1184
https://doi.org/10.22270/jddt.v6i1.1184...
]. Polyvinyl alcohol – PVA is a classic material for preparing hydrogels (3D networks of crosslinked hydrophilic polymers) for acute wound dressings. PVA [CH2 CH(OH)]n hydrogels present most of the ideal dressing’s characteristics, e.g., they keep a moist environment, absorb the wound exudates, prevent dryness, etc. [2[2] KAMOUN, E.A., CHEN, X., MOHY ELDIN, M.S., et al., “Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers”, Arabian Journal of Chemistry, v. 8, n. 1, pp. 1–14, Jan. 2015. doi: http://dx.doi.org/10.1016/j.arabjc.2014.07.005
https://doi.org/10.1016/j.arabjc.2014.07...
] For treating chronic and acute skin wounds, in addition to burns, some tissue engineering techniques include using biomaterials capable of facilitating skin regeneration and wound healing [3[3] MANCIPE, J.M.A., DIAS, M.L., THIRÉ, R.M.S.M., “Avaliação morfológica de fibras eletrofiadas de policaprolactona em função do tipo de solvente”, Matéria (Rio de Janeiro), v. 24, n. 3, pp. e12400, 2019. doi: http://dx.doi.org/10.1590/s1517-707620190003.0713
https://doi.org/10.1590/s1517-7076201900...
]. One example is PVA-chitosan hydrogels functionalized with tea tree essential oil, which could synergistically affect the components, resulting in dressings with broad spectra of biological activity for repairing and healing injured tissues, such as burns [4[4] SEVERO, A.M.C., FOOK, M.V.L., LEITE, I.F., “Hidrogéis de PVA/quitosana funcionalizados com óleo de melaleuca visando aplicação como curativos”, Matéria (Rio de Janeiro), v. 27, n. 1, pp. e13149, 2022. doi: http://dx.doi.org/10.1590/s1517-707620220001.1349
https://doi.org/10.1590/s1517-7076202200...
]. Nonetheless, many polymeric hydrogels do not present antimicrobial activity to prevent infection [5[5] KIM, J.O., CHOI, J.Y., PARK, J.K., et al., “Development of clindamycin-loaded wound dressing with polyvinyl alcohol and sodium alginate”, Biological & Pharmaceutical Bulletin, v. 31, n. 12, pp. 2277–2282, 2008. doi: http://dx.doi.org/10.1248/bpb.31.2277. PubMed PMID: 19043213.
https://doi.org/10.1248/bpb.31.2277...
], demanding the gels’ loading with active agents [6[6] KAMOUN, E.A., KENAWY, E.-R.S., CHEN, X., “A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings”, Journal of Advanced Research, v. 8, n. 3, pp. 217–233, May. 2017. doi: http://dx.doi.org/10.1016/j.jare.2017.01.005. PubMed PMID: 28239493.
https://doi.org/10.1016/j.jare.2017.01.0...
].

Several bark stem extracts can be used in wound care. Jatropha curcas L. bark, which contains glycosides, tannins, phytosterols, flavanoids, and steroidal sapogenins presented wound healing properties [7[7] SACHDEVA, K., GARG, P., SINGHAL, M., et al., “Wound healing potential of extract of Jatropha curcas L. (Stem bark) in rats”, Pharmacognosy Journal, v. 3, n. 25, pp. 67–72, Sep. 2011. doi: http://dx.doi.org/10.5530/pj.2011.25.12
https://doi.org/10.5530/pj.2011.25.12...
]; Salvadora persica L. bark extract promoted wound healing and antimicrobial activity [8[8] PRATIMA, T., MINAKSHI, N., SATISH, G., “Antioxidant, antimicrobial and wound healing activity of salvadora persica twig extracts”, Journal of Complementary Medicine & Alternative Healthcare, v. 7, n. 4, pp. 555720, Aug. 2018. doi: http://dx.doi.org/110.19080/JCMAH.2018.07.555720
https://doi.org/110.19080/JCMAH.2018.07....
]; The bark of F. benghalensis extract stimulated wound contraction [9[9] GARG, V.K., PALIWAL, S.K., “Wound-healing activity of ethanolic and aqueous extracts of Ficus benghalensis”, Journal of Advanced Pharmaceutical Technology & Research, v. 2, n. 2, pp. 110–114, 2011. doi: http://dx.doi.org/10.4103/2231-4040.82957. PubMed PMID: 22171302.
https://doi.org/10.4103/2231-4040.82957...
]; stem bark of Ficus racemosa L. (rich in lupeol and β-sitosterol) showed enhanced cell proliferation and antimicrobial activity [10[10] BOPAGE, N.S., KAMAL BANDARA GUNAHERATH, G.M., JAYAWARDENA, K.H., et al., “Dual function of active constituents from bark of Ficus racemosa L in wound healing”, BMC Complementary and Alternative Medicine, v. 18, n. 1, pp. 29, Dec. 2018. doi: http://dx.doi.org/10.1186/s12906-018-2089-9. PubMed PMID: 29370854.
https://doi.org/10.1186/s12906-018-2089-...
]; ethanol extract of stem bark of Oroxylum indicum presented an increased wound contraction according to the extract concentration [11[11] LALRINZUALI, K., VABEIRYUREILAI, M., JAGETIA, G.C., “Topical application of stem bark ethanol extract of Sonapatha, Oroxylum indicum (L.) Kurz accelerates healing of deep dermal excision wound in Swiss albino mice”, Journal of Ethnopharmacology, v. 227, pp. 290–299, Dec. 2018. doi: http://dx.doi.org/10.1016/j.jep.2018.08.018. PubMed PMID: 30121235.
https://doi.org/10.1016/j.jep.2018.08.01...
]; among the bark extracts used in India for wound healing, there are also the extracts of Kigelia pinnata Sausage, of Anthocephalus cadamba Roxb and Vernonia arborea Buch.-Ham [12[12] FIRDOUS, S.M., SAUTYA, D., “Medicinal plants with wound healing potential”, Bangladesh Journal of Pharmacology, v. 13, n. 1, pp. 41, Feb. 2018. doi: http://dx.doi.org/10.3329/bjp.v13i1.32646
https://doi.org/10.3329/bjp.v13i1.32646...
].

Stryphnodendron adstringens (Barbatimão) is a Brazilian species from Cerrado e Caatinga regions, which bark extract is used in Brazilian folk medicine for wound healing treatment [13[13] PELLENZ, N.L., BARBISAN, F., AZZOLIN, V.F., et al., “Analysis of in vitro cyto- and genotoxicity of barbatimão extract on human keratinocytes and fibroblasts”, BioMed Research International, v. 2018, pp. 1942451, Oct. 2018. doi: http://dx.doi.org/10.1155/2018/1942451. PubMed PMID: 30402464.
https://doi.org/10.1155/2018/1942451...
,14[14] PINTO, S.G., BUENO, F.G., PANIZZON, G.P., et al., “Stryphnodendron adstringens: clarifying wound healing in streptozotocin-induced diabetic rats”, Planta Medica, v. 81, n. 12-13, pp. 1090–1096, Jul. 2015. doi: http://dx.doi.org/10.1055/s-0035-1546209. PubMed PMID: 26218337.
https://doi.org/10.1055/s-0035-1546209...
]. Stryphnodendron adstringens bark extract is rich in proanthocyanidin [C31H28O12] polymers, specifically flavan-3-ol [C15H14O2] [15[15] COSTA, M.A., PALAZZO DE MELLO, J.C., KANESHIMA, E.N., et al., “Acute and chronic toxicity of an aqueous fraction of the stem bark of stryphnodendron adstringens (Barbatimão) in rodents”, Evidence-Based Complementary and Alternative Medicine, v. 2013, pp. 841580, 2013. doi: http://dx.doi.org/10.1155/2013/841580. PubMed PMID: 23970938.
https://doi.org/10.1155/2013/841580...
] and its activity cicatrizing, anti-inflammatory, antioxidant, and antimicrobial would be due to the presence of tannins (proanthocyanidins) [16[16] SOUZA-MOREIRA, T.M., QUEIROZ-FERNANDES, G.M., PIETRO, R.C.L.R., “Stryphnodendron species known as “Barbatimão”: a comprehensive report”, Molecules (Basel, Switzerland), v. 23, n. 4, pp. 910, Apr. 2018. doi: http://dx.doi.org/10.3390/molecules23040910. PubMed PMID: 29662029.
https://doi.org/10.3390/molecules2304091...
,17[17] PASSARETTI, T., GUARNIERI, A.P., FILIPINI, R., et al., “Eficácia do uso do Barbatimão (Stryfhnodendron barbatiman) no processo de cicatrização em lesões: uma revisão de literatura”, ABCS Health Sciences, v. 41, n. 1, pp. 51–54, May 2016. doi: http://dx.doi.org/10.7322/abcshs.v41i1.846
https://doi.org/10.7322/abcshs.v41i1.846...
]. Diabetic wounded rats treated with Barbatimao extract presented keratinocytes proliferation, replacement of type III by type I collagen, organized extracellular matrix, and the entire extent of the wound filled with new tissue [14[14] PINTO, S.G., BUENO, F.G., PANIZZON, G.P., et al., “Stryphnodendron adstringens: clarifying wound healing in streptozotocin-induced diabetic rats”, Planta Medica, v. 81, n. 12-13, pp. 1090–1096, Jul. 2015. doi: http://dx.doi.org/10.1055/s-0035-1546209. PubMed PMID: 26218337.
https://doi.org/10.1055/s-0035-1546209...
]. Barbatimão barks can be considered effective in treating wounds [18[18] RICARDO, L.M., DIAS, B.M., MÜGGE, F.L.B., et al., “Evidence of traditionality of Brazilian medicinal plants: The case studies of Stryphnodendron adstringens (Mart.) Coville (barbatimão) barks and Copaifera spp. (copaíba) oleoresin in wound healing”, Journal of Ethnopharmacology, v. 219, pp. 319–336, Jun. 2018. doi: http://dx.doi.org/10.1016/j.jep.2018.02.042. PubMed PMID: 29501844.
https://doi.org/10.1016/j.jep.2018.02.04...
], and ointment loaded with Barbatimão extract stimulated cell proliferation. Still, no effect was observed on wound contraction and keratinocyte proliferation [19[19] HERNANDES, L., PEREIRA, L.M.S., PALAZZO, F., et al., “Wound-healing evaluation of ointment from Stryphnodendron adstringens (barbatimão) in rat skin”, Brazilian Journal of Pharmaceutical Sciences, v. 46, n. 3, pp. 431–436, Sep. 2010. doi: http://dx.doi.org/10.1590/S1984-82502010000300005
https://doi.org/10.1590/S1984-8250201000...
].

Leucaena leucocephala (Leucaena) is a leguminous plant that is used as ruminant animal feed, but when there is over 30% of Leucaena in these animals’ feed, they could present intoxication [20[20] PORTO, M.R., MOSCARDINI, A.R.C., NOVAIS, E.P.F., et al., “Intoxicação natural e experimental por Leucaena leucocephala em equinos”, Pesquisa Veterinária Brasileira, v. 37, n. 8, pp. 829–834, Aug. 2017. doi: http://dx.doi.org/10.1590/s0100-736x2017000800008
https://doi.org/10.1590/s0100-736x201700...
]. The Leucaena flowers and leaves extract present tannins and flavonoids, although flowers extract presents mimosine (alkaloids), while leaves extract has steroids and saponin. Leaves seem to have higher antioxidant activity than flowers, but both extracts were bactericides (active against M. luteus ATCC 4698, MSSA ATCC 25923, MRSA ATCC 33591, and MRSA (clinical isolate)) [21[21] GUPTA, D., GUPTA, R.K., “Bioprotective properties of Dragon’s blood resin: In vitro evaluation of antioxidant activity and antimicrobial activity”, BMC Complementary and Alternative Medicine, v. 11, n. 1, pp. 13, Dec. 2011. doi: http://dx.doi.org/10.1186/1472-6882-11-13. PubMed PMID: 21329518.
https://doi.org/10.1186/1472-6882-11-13...
]. Leucaena methanol extract also showed the presence of antioxidant compounds: vitamin C, vitamin E, carotenes, xanthophylls, tannins, and phenols [22[22] CHANWITHEESUK, A., TEERAWUTGULRAG, A., RAKARIYATHAM, N., “Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand”, Food Chemistry, v. 92, n. 3, pp. 491–497, Sep. 2005. doi: http://dx.doi.org/10.1016/j.foodchem.2004.07.035
https://doi.org/10.1016/j.foodchem.2004....
]. Leucaena extract showed rosmarinic acid [C18H16O8], resveratrol [C14H12O3], o-coumaric acid [C9H8O3], among others, as main substances [23[23] ELBANOBY, N.E., EL-SETTAWY, A.A.A., MOHAMED, A.A., et al., “Phytochemicals derived from Leucaena leucocephala (Lam.) de Wit (Fabaceae) biomass and their antimicrobial and antioxidant activities: HPLC analysis of extracts”, Biomass Conversion and Biorefinery, pp. 1–17, Nov. 2022. doi: http://dx.doi.org/10.1007/s13399-022-03420-1
https://doi.org/10.1007/s13399-022-03420...
].

Regarding essential oils, Lavandula officinalis (Lavender) essential oil was previously used for wound care, promoting collagen synthesis, fibroblast differentiation, and wound contraction [24[24] MORI, H.-M., KAWANAMI, H., KAWAHATA, H., et al., “Wound healing potential of lavender oil by acceleration of granulation and wound contraction through induction of TGF-β in a rat model”, BMC Complementary and Alternative Medicine, v. 16, n. 1, pp. 144, Dec. 2016. doi: http://dx.doi.org/10.1186/s12906-016-1128-7. PubMed PMID: 27229681.
https://doi.org/10.1186/s12906-016-1128-...
,25[25] NASCIMENTO, A.S., TAMIASSO, R.S.S., MORAIS, S.F.M., et al., “Óleos essenciais para a cicatrização e/ou prevenção de infecção de feridas cirúrgicas: revisão sistemática”, Revista da Escola de Enfermagem da USP, v. 56, n. spe, pp. e20210442, 2022.]. When in dressings, electrospun membranes of PVA/alginate/lavender oil were developed, showing limited aqueous solution absorption due to the oil hydrophobicity; the samples’ inhibition zones of S. aureus were dose-dependent [26[26] RAFIQ, M., HUSSAIN, T., ABID, S., et al., “Development of sodium alginate/PVA antibacterial nanofibers by the incorporation of essential oils”, Materials Research Express, v. 5, n. 3, pp. 035007, Mar. 2018. doi: http://dx.doi.org/10.1088/2053-1591/aab0b4
https://doi.org/10.1088/2053-1591/aab0b4...
]. Lavender oil’s active substances may be related to phenolic compounds, but its concentration varies per part of the plant used for the oil extraction and by its origin [27[27] SHARIFI-RAD, J., SUREDA, A., TENORE, G., et al., “Biological activities of essential oils: from plant chemoecology to traditional healing systems”, Molecules (Basel, Switzerland), v. 22, n. 1, pp. 70, Jan. 2017. doi: http://dx.doi.org/10.3390/molecules22010070. PubMed PMID: 28045446.
https://doi.org/10.3390/molecules2201007...
]. Lavender essential oil’s main constituents are linalool [CH3C(CH3) = CH(CH2)2C(OH) (CH3)CH = CH2] and linalyl acetate [CH3CO2C(CH = CH2)(CH3)CH2CH = C(CH3)2], besides 1,8-cineole [C10H18O], terpinen-4-ol [C10H18O3] etc [28[28] POKAJEWICZ, K., BIAŁOŃ, M., SVYDENKO, L., et al., “Chemical composition of the essential oil of the new cultivars of Lavandula angustifolia Mill. Bred in Ukraine”, Molecules (Basel, Switzerland), v. 26, n. 18, pp. 5681, Sep. 2021. doi: http://dx.doi.org/10.3390/molecules26185681. PubMed PMID: 34577152.
https://doi.org/10.3390/molecules2618568...
].

Aloe vera is a mucilaginous gel that is viscous and colorless, extracted from the plant’s leaves. It consists mainly of water and polysaccharides, containing vitamins A, B, C, and E, calcium, potassium, magnesium, zinc, various amino acids, enzymes, and carbohydrates [29[29] FREITAS, V.S., RODRIGUES, R.A.F., GASPI, F.O.G., “Propriedades farmacológicas da Aloe vera (L.) Burm. f ”, Revista Brasileira de Plantas Medicinais, v. 16, n. 2, pp. 299–307, Jun. 2014. http://dx.doi.org/10.1590/S1516-05722014000200020
https://doi.org/10.1590/S1516-0572201400...
]. The main regulator of Aloe vera as a healing agent is the existence of a polysaccharide-rich in mannose (glucomannan [C24H42O21]). It works together with gibberellin and growth hormone, stimulating fibroblasts to actively proliferate. By triggering fibroblast activation and proliferation, collagen biogenesis increases [30[30] MASSOUD, D., ALRASHDI, B.M., FOUDA, M.M.A., et al., “Aloe vera and wound healing: a brief review”, Brazilian Journal of Pharmaceutical Sciences, v. 58, pp. e20837, 2022. doi: https://doi.org/10.1590/s2175-97902022e20837
https://doi.org/https://doi.org/10.1590/...
].

CAPES journals platform was searched, within the “Titles” search, using different combinations of keywords (on the 30th of May, 2023). The keywords “lavender” and “hydrogel” search showed four papers, none of them regarding PVA and lavender essential oil hydrogels [31[31] TAJIK, F., ESLAHI, N., RASHIDI, A., et al., “Hybrid antibacterial hydrogels based on PVP and keratin incorporated with lavender extract”, Journal of Polymer Research, v. 28, n. 8, pp. 316, Aug. 2021. doi: http://dx.doi.org/10.1007/s10965-021-02681-0
https://doi.org/10.1007/s10965-021-02681...
,32[32] HEYDARI, M., ALVANDI, H., JAYMAND, M., et al., “A two-layer nanofiber-Tragacanth hydrogel composite containing Lavender extract and Mupirocin as a wound dressing”, Polymer Bulletin, pp.1–17, Feb. 2023. doi: http://dx.doi.org/10.1007/s00289-022-04655-8
https://doi.org/10.1007/s00289-022-04655...
,33[33] GANGULY, R., VERMA, G., INGLE, A., et al., “Structural, rheological and therapeutic properties of pluronic F127 hydrogel and beeswax based lavender oil ointment formulations”, Journal of Molecular Liquids, v. 365, pp. 120157, Nov. 2022. doi: http://dx.doi.org/10.1016/j.molliq.2022.120157
https://doi.org/10.1016/j.molliq.2022.12...
,34[34] DENG, X., CHEN, J., CHEN, W., “Hydrogel particles as a controlled release delivery system for lavender essential oil using pH triggers”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 603, pp. 125134, Oct. 2020. doi: http://dx.doi.org/10.1016/j.colsurfa.2020.125134
https://doi.org/10.1016/j.colsurfa.2020....
]. No paper was found searching “Lavandula” or “L. officinalis” and “hydrogels”. By searching “Stryphnodendron adstringens” and “hydrogel”, two papers were found, one paper of silk fibroin hydrogel [35[35] DE BRITO, V.P., DE SOUZA RIBEIRO, M.M., VIGANÓ, J., et al., “Silk fibroin hydrogels incorporated with the antioxidant extract of stryphnodendron adstringens bark”, Polymers, v. 14, n. 22, pp. 4806, Nov. 2022. doi: http://dx.doi.org/10.3390/polym14224806. PubMed PMID: 36432933.
https://doi.org/10.3390/polym14224806...
], and the second, a generic hydrogel (no mention of PVA), both loaded with Stryphnodendron adstringens bark extract [36[36] DE SOUZA DE AGUIAR, P., CORREA, Á.P., ANTUNES, F.T.T., et al., “Benefits of Stryphnodendron adstringens when associated with hydrogel on wound healing in diabetic rats”, Clinical Phytoscience, v. 7, n. 1, pp. 22, Dec. 2021. doi: http://dx.doi.org/10.1186/s40816-021-00257-5
https://doi.org/10.1186/s40816-021-00257...
]. “barbatimao” and “hydrogel” resulted in no paper found. Searching “Leucaena leucocephala” and “hydrogel”, 2 papers were found, none regarding PVA hydrogels [37[37] RAY, A., SHARMA, A., SINGHAL, R.S., “Porous hydrogel composite with whey protein isolate and galactomannans of Leucaena leucocephala (subabul) seeds: Stability, rheological, thermal, and morphological characterization”, Journal of Food Science, v. 88, n. 5, pp. 2104–2129, May. 2023. doi: http://dx.doi.org/10.1111/1750-3841.16554. PubMed PMID: 37020405.
https://doi.org/10.1111/1750-3841.16554...
,38[38] RAY, A., SHARMA, A., SINGHAL, R.S., “Valorization of arabinoxylans from Linum usitatissimum (flaxseed) and galactomannans from Leucaena leucocephala (subabul) to develop hybrid hydrogels: Rheological, morphological and thermal characterization”, Industrial Crops and Products, v. 178, pp. 114575, Apr. 2022. doi: http://dx.doi.org/10.1016/j.indcrop.2022.114575
https://doi.org/10.1016/j.indcrop.2022.1...
]. 40 papers were found searching for “aloe vera” and “hydrogel”; among then, five were related to “aloe vera” and “PVA” and “hydrogel”: PVA-aloe vera-graphene with antibacterial activity [39[39] HANIF, W., HARDIANSYAH, A., RANDY, A., et al., “Physically crosslinked PVA/graphene-based materials/aloe vera hydrogel with antibacterial activity”, RSC Advances, v. 11, n. 46, pp. 29029–29041, 2021. doi: http://dx.doi.org/10.1039/D1RA04992E. PubMed PMID: 35478571.
https://doi.org/10.1039/D1RA04992E...
], PVA-aloe vera-curcumin for wound healing [40[40] KENAWY, E.-R.S., KAMOUN, E.A., GHALY, Z.S., et al., “Novel physically crosslinked curcumin-loaded pva/aloe vera hydrogel membranes for acceleration of topical wound healing: in vitro and in vivo experiments”, Arabian Journal for Science and Engineering, v. 48, n. 1, pp. 497–514, Jan. 2023. doi: http://dx.doi.org/10.1007/s13369-022-07283-6
https://doi.org/10.1007/s13369-022-07283...
], PVA-aloe vera-salicylic acid for wound dressing [41[41] BIALIK-WĄS, K., PLUTA, K., MALINA, D., et al., “Advanced SA/PVA-based hydrogel matrices with prolonged release of Aloe vera as promising wound dressings”, Materials Science and Engineering C, v. 120, pp. 111667, Jan. 2021. doi: http://dx.doi.org/10.1016/j.msec.2020.111667. PubMed PMID: 33545832.
https://doi.org/10.1016/j.msec.2020.1116...
], PVA-aloe vera-chitosan for skin needs [42[42] ESCOBAR-SIERRA, D.M., PEREA-MESA, Y.P., “Manufacturing and evaluation of Chitosan, PVA and Aloe Vera hydrogels for skin applications”, Dyna, v. 84, n. 203, pp. 134–142, Oct. 2017. doi: http://dx.doi.org/10.15446/dyna.v84n203.62742
https://doi.org/10.15446/dyna.v84n203.62...
], PVA-aloe vera-PVP gels prepared by radiation [43[43] PARK, K.R., NHO, Y.C., “Preparation and characterization by radiation of hydrogels of PVA and PVP containing Aloe vera”, Journal of Applied Polymer Science, v. 91, n. 3, pp. 1612–1618, Feb. 2004. doi: http://dx.doi.org/10.1002/app.13299
https://doi.org/10.1002/app.13299...
]. Since a few papers were available regarding the active agents used in the present paper and none related to a comparison, it highlights the novelty of the current work.

The goal of the present work is to manufacture, characterize and compare physic-chemically and in vitro PVA gels loaded with Stryphnodendron adstringens (Barbatimão) bark extract, Leucaena leucocephala (Leucaena) bark extract, Aloe vera mucilage and Lavender essential oil intended for wound care. In addition, the combination of both Aloe vera and Lavender oil was evaluated.

2. MATERIALS AND METHODS

2.1. Samples manufacturing

The woods extracts Stryphnodendron adstringens (Mart.), commonly named Barbatimão, and Leucaena leucocephala (Lam.), species grew in Seropédica/RJ, and UFRRJ donated them to the Institute of Forest/UFRRJ. The bark extracts were prepared by methanol extraction in the Wood Technology Lab/Forest Institute/UFRRJ. Aloe vera mucilage was extracted from the donation of the plants’ leaves by the Biology Institute/UFRRJ. The lavender essential oil was obtained from a local market (Laszlo®).

The PVA (Sigma-Aldrich, Mw 85000-124000 Da and degree of hydrolysis 99%) was dissolved in water (10% w/v, at 80°C under mechanical stirring for 4h). After dissolution, the solution was kept under stirring. For PVA hydrogels samples manufacturing, 10 ml of solution per petri dish (Φ 90 mm) were poured and freeze-thawed (1 cycle of 22h at –16°C and 2h at room temperature), followed by drying (room temperature). To prepare the PVA hydrogel loaded with active agents, when the PVA solution reached room temperature, the extracts were added to the PVA solution (2 mg of Barbatimão or Leucaena extract, or 2.6 mg of lavender essential oil, or 10 ml of Aloe vera mucilage per 100 mL of PVA solution) under stirring for 15 min. Then, the samples were poured into dishes, freeze-thawed, and dried, as mentioned before, Figure 1.

Figure 1.
Scheme of hydrogels manufacturing methodology.

2.2. Physico-chemical characterization

The samples were evaluated by Fourier Transform Infrared Spectroscopy (FTIR, Vertex 70 equipment, Organic Chemical Lab/UFRRJ), in the ATR mode, with wavenumber range of 4000 cm–1 and 600 cm–1, 32 scans per sample and a spectral resolution of 4 cm–1).

2.3. In vitro analysis

The samples (n = 3) were immersed in 10 mL of distilled water for 4 days at room temperature, being weighed periodically (30 min, 1h 2h, 4h, 24h, 48h, 72h, and 96h). The samples’ swelling degree (SD) was calculated according to equation (1). The WS is the samples’ weight at each time interval; WD is the dry weight before the swelling test [44[44] OLIVEIRA, R.N., ROUZÉ, R., QUILTY, B., et al., “Mechanical properties and in vitro characterization of polyvinyl alcohol-nano-silver hydrogel wound dressings”, Interface Focus, v. 4, n. 1, pp. 20130049, Feb. 2014. doi: http://dx.doi.org/10.1098/rsfs.2013.0049. PubMed PMID: 24501677.
https://doi.org/10.1098/rsfs.2013.0049...
].

(1)SD=100×WsWDWD

The media (water) of immersion was evaluated by Ultraviolet-Visible light spectrophotometry (UV-Vis, EVEN equipment, Materials engineering Lab/UFRRJ), the wavenumber of (360–370) nm. A standard curve of each active agent was plotted (0.1–10 mg/mL of active/water), and the amounts of active agents released by the samples were analyzed in the same wavenumber. The fitted linear curve of each reference plot served as the basis for quantification of each sample’s media (n = 3), equations 25, where the reference curves are related to Barbatimao extract, Aloe vera mucilage, Lavender essential oil, and Leucaena extract, respectively. The PVA samples swelling media were evaluated in the same range.

(2)ConcentrationBarbatimao(mg/ml)=1.91*Absorbance0.16(R2=0.996)
(3)ConcentrationAloe vera(g/ml)=0.54*Absorbance0.07(R2=0.994)
(4)ConcentrationLavender(g/ml)=0.12*Absorbance0.02(R2=0.998)
(5)ConcentrationLeucaena(mg/ml)=0.95*Absorbance0.06(R2=0.988)

2.4. SEM analysis

The samples’ morphology was evaluated using a Tm3030Plus Hitachi scanning electron microscope (SEM), operating under a high vacuum at 15kV. The samples were previously covered with silver (SCD 005 sputter BAL-TEC), CETEM/UFRJ.

3. RESULTS AND DISCUSSION

3.1. Physic-chemical analysis

The PVA spectrum revealed its characteristic bands, Table 1, while the “Barbatimão” extract mainly showed tannins, phenols, beta-carotene, saponin, stilbene, and alkaloids, Table 2 [45[45] OLIVEIRA, R.N., MANCINI, M.C., DE OLIVEIRA, F.C.S., et al., “FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing”, Matéria (Rio de Janeiro), v. 21, n. 3, pp. 767–779, Sep. 2016. doi: http://dx.doi.org/10.1590/S1517-707620160003.0072
https://doi.org/10.1590/S1517-7076201600...
,46[46] MASETTO, M.A.M., DESCHAMPS, C., MÓGOR, A.F., et al., “Teor e composição do óleo essencial de inflorescências e folhas de Lavandula dentata L. em diferentes estádios de desenvolvimento floral e épocas de colheita”, Revista Brasileira de Plantas Medicinais, v. 13, n. 4, pp. 413–421, 2011. doi: http://dx.doi.org/10.1590/S1516-05722011000400007
https://doi.org/10.1590/S1516-0572201100...
]. The Leucaena extract exhibited alkaloids, tannins, flavonoids, alcohols, esters, and ethers, Table 2. Lavender presented 1,8 cineol. The curves of PVA and PVA-active agents were plotted together in Figure 2.

Table 1.
FTIR bands and vibrational modes of PVA. The Greek symbols mean υ = stretching; δ = bending; ω = wagging; ρ = rocking modes [47[47] COSTA JUNIOR, E.S., MANSUR, H.S., “Preparação e caracterização de blendas de quitosana/poli(álcool vinílico) reticuladas quimicamente com glutaraldeído para aplicação em engenharia de tecido”, Quimica Nova, v. 31, n. 6, pp. 1460–1466, 2008. doi: http://dx.doi.org/10.1590/S0100-40422008000600034
https://doi.org/10.1590/S0100-4042200800...
,48[48] HAN, S., LUAN, Y.-M., PANG, S.-F., et al., “Thermodynamic and spectroscopic analysis of the conformational transition of poly(vinyl alcohol) by temperature-dependent FTIR”, Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, v. 139, pp. 37–42, Mar. 2015. doi: http://dx.doi.org/10.1016/ j.saa.2014.11.100. PubMed PMID: 25554949.
https://doi.org/10.1016/ j.saa.2014.11.1...
,49[49] CURLEY, C., HAYES, J.C., ROWAN, N.J., et al., “An evaluation of the thermal and mechanical properties of a salt-modified polyvinyl alcohol hydrogel for a knee meniscus application”, Journal of the Mechanical Behavior of Biomedical Materials, v. 40, pp. 13–22, Dec. 2014. doi: http://dx.doi.org/10.1016/j.jmbbm.2014.08.003. PubMed PMID: 25190433.
https://doi.org/10.1016/j.jmbbm.2014.08....
,50[50] OLAD, A., DOUSTDAR, F., GHAREKHANI, H., “Starch-based semi-IPN hydrogel nanocomposite integrated with clinoptilolite: preparation and swelling kinetic study”, Carbohydrate Polymers, v. 200, pp. 516–528, Nov. 2018. doi: http://dx.doi.org/10.1016/j.carbpol.2018.08.014. PubMed PMID: 30177193.
https://doi.org/10.1016/j.carbpol.2018.0...
,52[52] SUNARYONO, TAUFIQ, A., MUFTI, N., et al., “Analysis of distribution of polyvinyl alcohol hydrogel nanocrystalline by using SAXS synchrotron”, IOP Conference Series: Materials Science and Engineering, v. 202, p. 012041, May 2017. doi: http://dx.doi.org/10.1088/1757-899X/202/1/012041
https://doi.org/10.1088/1757-899X/202/1/...
].
Table 2.
FTIR bands of Barbatimao and Leucaena extracts.
Figure 2.
FTIR spectra of PVA samples loaded with (a) Barbatimao extract, (b) Leucaena extract, (c) Lavender essential oil, (d) Aloe vera mucilage.

PVA-Barbatimão spectrum showed PVA bands (at 3264, 2938, 2907, 1654, 1413, 1378, 1329, 1235, 1143, 1088, 916) cm–1 and the band at 1453 cm–1 of the Barbatimão extract. The band intensity differed from the originals due to the influence of the materials in bond vibration [53[53] ARUAN, N.M., SRIYANTI, I., EDIKRESNHA, D., et al., “Polyvinyl alcohol/soursop leaves extract composite nanofibers synthesized using electrospinning technique and their potential as antibacterial wound dressing”, Procedia Engineering, v. 170, pp. 31–35, 2017. doi: http://dx.doi.org/10.1016/ j.proeng.2017.03.006
https://doi.org/10.1016/ j.proeng.2017.0...
]. Some of the PVA-Barbatimão bands, compared to PVA and Barbatimão extract, were shifted to different wavenumbers. The PVA-Barbatimão band at 847 cm–1 could result from the PVA band at 835 cm–1 displaced towards the Barbatimão band at 859 cm–1, or these bands overlap. The PVA-Barbatimão band at 1524 cm–1 could have the Barbatimão band at 1509 cm–1 shifted due to interaction with PVA, Figure 3. In addition, two bands were identified in the PVA-Barbatimão sample that could be the results of PVA and Barbatimão bands displacement (Barbatimão’s band at 1610 cm–1 shifted to 1576 cm–1, as well as PVA’s band at 1563 cm–1 displaced to 1557 cm–1), Figure 3. It could also indicate a strong interaction between PVA and some extract components since PVA can interact with plant extract [54[54] GAIKWAD, K.K., LEE, J.Y., LEE, Y.S., “Development of polyvinyl alcohol and apple pomace bio- composite film with antioxidant properties for active food packaging application”, Journal of Food Science and Technology, v. 53, n. 3, pp. 1608–1619, Mar. 2016. doi: http://dx.doi.org/10.1007/s13197-015-2104-9. PubMed PMID: 27570286.
https://doi.org/10.1007/s13197-015-2104-...
]. PVA-Leucaena gel also revealed mainly PVA bands (3268, 2938, 2909, 1654, 1414, 1377, 1328, 1235, 1142, 1089, and 916) cm–1. PVA-Leucaena sample also showed bands that could be the overlap of PVA and Leucaena bands, e.g., the band at 846 cm–1. In addition, the Leucaena extract bands could be shifted to different wavenumbers due to PVA presence. It could also indicate the similar strong interaction mentioned in the PVA-Barbatimão sample, Figure 3, since PVA can interact with extracts components [54[54] GAIKWAD, K.K., LEE, J.Y., LEE, Y.S., “Development of polyvinyl alcohol and apple pomace bio- composite film with antioxidant properties for active food packaging application”, Journal of Food Science and Technology, v. 53, n. 3, pp. 1608–1619, Mar. 2016. doi: http://dx.doi.org/10.1007/s13197-015-2104-9. PubMed PMID: 27570286.
https://doi.org/10.1007/s13197-015-2104-...
,55[55] MA, N., WANG, P., KONG, X., et al., “Selective removal of caffeine from tea extracts using macroporous crosslinked polyvinyl alcohol adsorbents”, Journal of Separation Science, v. 35, n. 1, pp. 36–44, Jan. 2012. doi: http://dx.doi.org/10.1002/jssc.201100598. PubMed PMID: 22102370.
https://doi.org/10.1002/jssc.201100598...
].

Figure 3.
FTIR spectra of the raw materials, as well as (a) PVA-Barbatimão and (b) PVA-Leucaena, in the region of wavenumbers between 1700 and 1450 cm–1.

PVA-Lavender showed mainly PVA bands (3268, 2909, 1654, 1563, 1328, 1142, 1089, 916) cm–1, but Lavender essential oil bands were also observed, e.g., at 3747 cm–1, related to water’s υas(not H – bonded) [70[70] CHEN, S.-L., CHUA, G.-L., JI, S.-J., et al., “Ionic liquid: a green solvent for organic transformations I”, In: MALHOTRA, S. Ionic Liquids in Organic Synthesis, chapter 13, Washington, USA, American Chemical Society, pp. 161–176, 2007. ACS Symposium Series.]; 3673 cm–1; 3652 cm–1 (free O-H bond of monomeric υOH) [71[71] SAMFIRA, I., RODINO, S., PETRACHE, P., et al., “Characterization and identity confirmation of essential oils by mid infrared absorption spectrophotometry”, Digest Journal of Nanomaterials and Biostructures, v. 10, n. 2, pp. 557–566, 2015.]; 2979 cm–1 of (CH of methyl groups) [72[72] EL-MOLLA, M.M., EL-GHORAB, A.H., “Extraction of eco-friendly essential oils and their utilization in finishing polyester fabrics for fragrant and medical textiles”, Journal of Engineered Fibers and Fabrics, v. 17, pp. 155892502211044, Jan. 2022. doi: http://dx.doi.org/10.1177/15589250221104475
https://doi.org/10.1177/1558925022110447...
]; 1554 and 1542 cm–1 (υas(N – O)) [73[73] ADINEW, B., “GC-MS analysis of essential oil from long pepper growing in Tepi, South-west Ethiopia”, Science, Technology and Arts Research Journal, v. 3, n. 1, pp. 31, Jun. 2014. doi: http://dx.doi.org/10.4314/star.v3i1.6
https://doi.org/10.4314/star.v3i1.6...
]; 1394 cm–1, 1382 cm–1 of 1,8 Cineole (δs(CH3 (CO)) [45[45] OLIVEIRA, R.N., MANCINI, M.C., DE OLIVEIRA, F.C.S., et al., “FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing”, Matéria (Rio de Janeiro), v. 21, n. 3, pp. 767–779, Sep. 2016. doi: http://dx.doi.org/10.1590/S1517-707620160003.0072
https://doi.org/10.1590/S1517-7076201600...
,46[46] MASETTO, M.A.M., DESCHAMPS, C., MÓGOR, A.F., et al., “Teor e composição do óleo essencial de inflorescências e folhas de Lavandula dentata L. em diferentes estádios de desenvolvimento floral e épocas de colheita”, Revista Brasileira de Plantas Medicinais, v. 13, n. 4, pp. 413–421, 2011. doi: http://dx.doi.org/10.1590/S1516-05722011000400007
https://doi.org/10.1590/S1516-0572201100...
]; 1261 cm–1 (δ(N – H)) [74[74] ARIK, N., HORZUM, N., TRUONG, Y.B., “Development and characterizations of engineered electrospun bio-based polyurethane containing essential oils”, Membranes (Basel), v. 12, n. 2, pp. 209, Feb. 2022. doi: http://dx.doi.org/10.3390/membranes12020209. PubMed PMID: 35207129.
https://doi.org/10.3390/membranes1202020...
]; 967 cm–1, 954 cm–1 (υs (glycosidic bond)) [75[75] SIMONA, J., DANI, D., PETR, S., et al., “Edible films from carrageenan/orange essential oil/trehalose—structure, optical properties, and antimicrobial activity”, Polymers, v. 13, n. 3, pp. 332, Jan. 2021. doi: http://dx.doi.org/10.3390/polym13030332. PubMed PMID: 33494246.
https://doi.org/10.3390/polym13030332...
]. There are PVA bands slightly shifted, probably due to physical interactions between PVA and Lavender essential oil. PVA-Aloe vera presented mostly all the PVA characteristic bands. The differences between PVA and PVA-Aloe vera were the bands at 2851, 1543 and 1258 cm–1. These bands would be related to Aloe vera. The first band would be related to cellulose and υs(CH2) [76[76] FELLAK, S., RAFIK, M., HAIDARA, H., et al., “Study of natural degradation effect on lignocellulose fibers of archaeological cedar wood: monitoring by Fourier Transform Infrared (FTIR) spectroscopy”, MATEC Web of Conferences, v. 360, pp. 00006, June 2022. doi: https://doi.org/10.1051/matecconf/202236000006
https://doi.org/https://doi.org/10.1051/...
,77[77] ALIPRANDINI, P., “Estudo da biossorção de cianeto de mercúrio gerado na mineração artesanal do ouro visando a descontaminação de águas residuais”, Tese de D.Sc., Universidade de São Paulo, São Paulo, São Paulo, 2021. doi: http://dx.doi.org/10.11606/T.3.2021.tde-04112021-160158
https://doi.org/10.11606/T.3.2021.tde-04...
]; the band at 1543 cm–1 is related to amide II [78[78] SAMADIEH, S., SADRI, M., “Preparation and biomedical properties of transparent chitosan/gelatin/honey/aloe vera nanocomposite”, Nanomed Res J, v. 5, n. 2, pp. 1–12, 2020.]; the last band would be due to υ(C – O) [79[79] PERIASAMY, S., JEGADEESAN, U., SUNDARAMOORTHI, K., et al., “Comparative analysis of synthesis and characterization of silver nanoparticles extracted using leaf, flower, and bark of hibiscus rosasinensis and examine its antimicrobicidal activity”, Journal of Nanomaterials, v. 2022, pp. 1–10, May. 2022. doi: http://dx.doi.org/10.1155/2022/8123854
https://doi.org/10.1155/2022/8123854...
].

It was possible to correlate the samples’ mechanical behavior to the samples’ crystallinity degree (Xc). The Xc was calculated comparing the FTIR bands areas related to PVA main bands of crystalline (1139 cm–1) and amorphous phases (1085 cm–1) [80[80] XIANG, A., LV, C., ZHOU, H., “Changes in crystallization behaviors of poly(vinyl alcohol) induced by water content”, Journal of Vinyl and Additive Technology, v. 26, n. 4, pp. 613–622, Nov. 2020. doi: http://dx.doi.org/10.1002/vnl.21775
https://doi.org/10.1002/vnl.21775...
], Table 3. Since hydrogels with high crystallinity can be considered the ones with high strength [81[81] LAMASTRO, V., BREWER, E., LOWMAN, A., “Crystallinity, reversibility, and injectability of physically crosslinked poly(vinyl alcohol) and poly(ethylene glycol) hydrogels”, Journal of Applied Polymer Science, v. 137, n. 25, pp. 48659, July. 2020. doi: http://dx.doi.org/10.1002/app.48706
https://doi.org/10.1002/app.48706...
], the gels loaded with Lavender, Leucaena, and Barbatimão would be the best choice for resistant dressings. When the PVA chains are in contact, inter and intramolecular hydrogen bonds can be formed, where crystallites are formed. These crystallites limit the mobility of the polymeric chains, increasing the strength of the gels [82[82] WU, S., HUA, M., ALSAID, Y., et al., “Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect”, Advanced Materials, v. 33, n. 11, pp. e2007829, Mar. 2021. doi: http://dx.doi.org/10.1002/adma.202007829. PubMed PMID: 33554414.
https://doi.org/10.1002/adma.202007829...
].

Table 3.
samples crystallinity degree (Xc).

3.2. SEM analysis

The gels morphology was evaluated under different conditions (Figure 4): unloaded PVA gels and PVA gels loaded with Lavender essential oil. The lavender samples presented a high degradation rate, probably a collaboration of two mechanisms: Lavender essential oil delivery and PVA chains leaching out. As expected, the porosity among them was different. The PVA gel seemed homogeneous and compact [83[83] CHEN, Y., LI, J., LU, J., et al., “Synthesis and properties of Poly(vinyl alcohol) hydrogels with high strength and toughness”, Polymer Testing, v. 108, pp. 107516, Apr. 2022. doi: http://dx.doi.org/10.1016/ j.polymertesting.2022.107516
https://doi.org/10.1016/ j.polymertestin...
], while the Lavender sample presented open and interconnected pores. Interconnected pores would allow water diffusion and active agents’ release, also contributing to oxygen permeation and hydrolytic degradation [84[84] EKASURYA, W., SEBASTIAN, J., PUSPITASARI, D., et al., “Synthesis and Degradation Properties of Sericin/PVA Hydrogels”, Gels (Basel, Switzerland), v. 9, n. 2, pp. 76, Jan. 2023. doi: http://dx.doi.org/10.3390/gels9020076. PubMed PMID: 36826246.
https://doi.org/10.3390/gels9020076...
,85[85] DEY, K., AGNELLI, S., BORSANI, E., et al., “Degradation-dependent stress relaxing semi-interpenetrating networks of hydroxyethyl cellulose in Gelatin-PEG hydrogel with good mechanical stability and reversibility”, Gels (Basel, Switzerland), v. 7, n. 4, pp. 277, Dec. 2021. doi: http://dx.doi.org/10.3390/gels7040277. PubMed PMID: 34940337.
https://doi.org/10.3390/gels7040277...
].

Figure 4.
SEM analysis of (a) PVA hydrogel and (b) PVA-Lavender hydrogel.

3.3. In vitro analysis

The swelling analysis of the gels revealed that all reached a plateau (equilibrium of the swelling degree - ESD) after 48h of immersion, Figure 5, when there is a balance between the elastic forces and the fluid uptake forces imposed on the gels networks [86[86] OLIVEIRA, R.N., MCGUINNESS, G.B., ROUZE, R., et al., “PVA hydrogels loaded with a Brazilian propolis for burn wound healing applications”, Journal of Applied Polymer Science, v. 132, n. 25, pp. 42129, July 2015. doi: https://doi.org/10.1002/app.42129
https://doi.org/https://doi.org/10.1002/...
]. PVA-Barbatimao and PVA-Leucaena samples presented the highest swelling degree. The actives molecules are probably located between PVA chains, and by their release, more media enter, increasing the sample swelling [87[87] RIZWAN, M., YAHYA, R., HASSAN, A., et al., “pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications”, Polymers, v. 9, n. 4, pp. 137, Apr. 2017. doi: http://dx.doi.org/10.3390/polym9040137. PubMed PMID: 30970818.
https://doi.org/10.3390/polym9040137...
]. It was expected that adding essential oil would diminish the hydrogel hydrophilicity [88[88] GHEORGHITA, D., GROSU, E., ROBU, A., et al., “Essential oils as antimicrobial active substances in wound dressings”, Materials (Basel), v. 15, n. 19, pp. 6923, Oct. 2022. doi: http://dx.doi.org/10.3390/ma15196923. PubMed PMID: 36234263.
https://doi.org/10.3390/ma15196923...
], diminishing the samples’ swelling ability. The PVA-Aloe vera did not reach a plateau due to the Aloe vera high release. Non-chemically crosslinked membranes with Aloe vera are expected to present weight loss during swelling [89[89] KOGA, A.Y., FELIX, J.C., SILVESTRE, R.G.M., et al., “Evaluation of wound healing effect of alginate film containing Aloe vera gel and crosslinked with zinc chloride”, Acta Cirurgica Brasileira, v. 35, n. 5, pp. e202000507, 2020. doi: http://dx.doi.org/10.1590/s0102-865020200050000007. PubMed PMID: 32638846.
https://doi.org/10.1590/s0102-8650202000...
]. Nonetheless, the ESD significantly differed between the samples (p = 3,49 E-14). Tukey test (level of significance of 95%) revealed that the ESDleucaena = ESDbarbatimao, but they swell significantly more than PVA (p < 0.05), which also swell significantly more (p < 0.05) than ESDAloe vera = ESDLavander. It is known that the addition of actives to PVA alters the samples water uptake [90[90] CHEN, C.-W., XIE, J., YANG, F.-X., et al., “Development of moisture-absorbing and antioxidant active packaging film based on poly(vinyl alcohol) incorporated with green tea extract and its effect on the quality of dried eel”, Journal of Food Processing and Preservation, v. 42, n. 1, pp. e13374, Jan. 2018. doi: http://dx.doi.org/10.1111/jfpp.13374
https://doi.org/10.1111/jfpp.13374...
]. The actives probably interfered with the PVA ability to crystallize and to entangle. In addition, PVA chains could be leached out to the media by the fluid uptake [86[86] OLIVEIRA, R.N., MCGUINNESS, G.B., ROUZE, R., et al., “PVA hydrogels loaded with a Brazilian propolis for burn wound healing applications”, Journal of Applied Polymer Science, v. 132, n. 25, pp. 42129, July 2015. doi: https://doi.org/10.1002/app.42129
https://doi.org/https://doi.org/10.1002/...
,91[91] OLIVEIRA, R.N., MCGUINNESS, G.B., RAMOS, M.E.T., et al., “Properties of PVA hydrogel wound-care dressings containing uk propolis”, Macromolecular Symposia, v. 368, n. 1, pp. 122–127, Oct. 2016. doi: http://dx.doi.org/10.1002/masy.201500149
https://doi.org/10.1002/masy.201500149...
].

Figure 5.
Samples’ (a) swelling degree; (b) maximum release of each active.

Regarding the release of the actives, the standard curve of the Barbatimão extract was properly (R2= 0.99), as well as the Leucaena extract one (R2= 0.98), Lavender oil, and Aloe vera ones (R2= 0.99). It was observed that the samples delivered the active agents partially to the saline solution after 4 days of immersion, Figure 5. The ANOVA 1-way analysis (factor: type of active agent, 4 levels: Aloe vera, Barbatimao, Leucaena, Lavender) revealed significative differences between actives release, where the PVA-Aloe vera released more active than the others (p < 0.05). There was a higher delivery of Barbatimão extract to the media than PVA-Leucaena hydrogels. Nonetheless, Lavender essential oil and Aloe vera had the highest release. The actives released by PVA gels could be related to the gels crosslinking density [92[92] WU, L., BRAZEL, C.S., “Modifying the release of proxyphylline from PVA hydrogels using surface crosslinking”, International Journal of Pharmaceutics, v. 349, n. 1-2, pp. 144–151, Feb. 2008. doi: http://dx.doi.org/10.1016/j.ijpharm.2007.08.007. PubMed PMID: 17875374.
https://doi.org/10.1016/j.ijpharm.2007.0...
], PVA concentration and molecular weight [93[93] MURPHY, D.J., SANKALIA, M.G., LOUGHLIN, R.G., et al., “Physical characterisation and component release of poly(vinyl alcohol)-tetrahydroxyborate hydrogels and their applicability as potential topical drug delivery systems”, International Journal of Pharmaceutics, v. 423, n. 2, pp. 326–334, Feb. 2012. doi: http://dx.doi.org/10.1016/j.ijpharm.2011.11.018. PubMed PMID: 22107707.
https://doi.org/10.1016/j.ijpharm.2011.1...
], gels’ ability to swell [94[94] CRISPIM, E.G., PIAI, J.F., FAJARDO, A.R., et al., “Hydrogels based on chemically modified poly (vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: preparation and characterization”, Express Polymer Letters, v. 6, n. 5, pp. 383–395, 2012. doi: http://dx.doi.org/10.3144/expresspolymlett.2012.41
https://doi.org/10.3144/expresspolymlett...
], etc.

Visually, Lavender essential oil and Aloe vera mucilage were the ones with the highest release and therefore are the ones evaluated. Aloe vera and Lavender initial release followed the Exponential model (R2= 0.97 and 0.99), respectively), Figure 6, similar to the diffusion-controlled release model related to swelling kinetics [95[95] WERZER, O., TUMPHART, S., KEIMEL, R., et al., “Drug release from thin films encapsulated by a temperature-responsive hydrogel”, Soft Matter, v. 15, n. 8, pp. 1853–1859, 2019. doi: http://dx.doi.org/10.1039/C8SM02529K. PubMed PMID: 30698598.
https://doi.org/10.1039/C8SM02529K...
,96[96] RITGER, P.L., PEPPAS, N.A., “A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs”, Journal of Controlled Release, v. 5, n. 1, pp. 23–36, Jun. 1987. doi: http://dx.doi.org/10.1016/0168-3659(87)90034-4
https://doi.org/10.1016/0168-3659(87)900...
]. Although Aloe vera release after ESD followed a dose-response model R2= 0.99, Lavender essential oil release followed a Boltzmann model R2= 0.99. The dose-response sigmoidal model for drugs delivery can be considered appropriated to identify regions of toxic effect and regions of therapeutical effect [97[97] WANG, X., LI, S., WANG, L., et al., “Microfluidic device for controllable chemical release via field- actuated membrane incorporating nanoparticles”, Journal of Nanomaterials, v. 2013, pp. 625739, 2013. doi: http://dx.doi.org/10.1155/2013/625739
https://doi.org/10.1155/2013/625739...
]. Boltzmann release can be associated with the hydrogel relaxation [98[98] BOSCHETTI, P.J., PELLICCIONI, O.J., SABINO, M., et al., “Swelling behavior of IPN and copolymer hydrogels by Lattice Boltzmann Method” In AIAA Scitech 2020 Forum, Orlando, 2020. http://dx.doi.org/10.2514/6.2020-2234
https://doi.org/10.2514/6.2020-2234...
], related to-Fickian diffusion-controlled release [99[99] GANJI, F., VASHEGHANI-FARAHANI, S., VASHEGHANI-FARAHANI, E., “Theoretical description of hydrogel swelling: a review”, Iranian Polymer Journal, v. 19, n. 5, pp. 375–398, 2010.]. Since Aloe vera mucilage can be quickly released to aqueous media [100[100] RAHMAN, H., “Aloe vera mucilage as solubility enhancer in tablet formulation”, Journal of Nutrition & Food Sciences, v. 6, n. 5, pp. 1000548, 2016. doi: http://dx.doi.org/10.4172/2155-9600.1000548
https://doi.org/10.4172/2155-9600.100054...
], it is expected that the media exchange place with the Aloe vera mucilage (low swelling degree), destabilizing the integrity of the gel (high weight loss). Lavender essential oil presents burst release when in hydrogels, followed by diffusion mechanism and degradation of the hydrogel [101[101] ALVEN, S., PETER, S., ADERIBIGBE, B.A., “Polymer-based hydrogels enriched with essential oils: a promising approach for the treatment of infected wounds”, Polymers, v. 14, n. 18, pp. 3772, Sep. 2022. doi: http://dx.doi.org/10.3390/polym14183772. PubMed PMID: 36145917.
https://doi.org/10.3390/polym14183772...
].

Figure 6.
Aloe vera and Lavender essential oil: (a) initial and (b) long release.

To further investigate, Aloe vera and Lavender essential oil were both loaded simultaneously to PVA gels. However, samples loaded with Lavender essential oil and Aloe vera presented low swelling, Figure 7, these agents were released in considerable amounts and presented potential as dressing materials. The swelling profile of the PVA-Aloe vera-Lavender sample was between PVA-Lavender essential oil and PVA-Aloe vera ones, indicating a synergistic effect of Aloe vera and Lavender essential oil [102[102] YIN, N., MA, W., PEI, J., et al., “Synergistic and antagonistic drug combinations depend on network topology”, PLoS One, v. 9, n. 4, pp. e93960, Apr. 2014. doi: http://dx.doi.org/10.1371/journal.pone.0093960. PubMed PMID: 24713621.
https://doi.org/10.1371/journal.pone.009...
]. If Aloe vera is not freely leached out of the gel by the media entrance, it might be retained by the presence of Lavender essential oil, a hydrophobic material [103[103] FERNANDES, C.C., REZENDE, J.L., SILVA, E.A.J., et al., “Chemical composition and biological activities of essential oil from flowers of Psidium guajava (Myrtaceae)”, Brazilian Journal of Biology = Revista Brasileira de Biologia, v. 81, n. 3, pp. 728–736, Sep. 2021. doi: http://dx.doi.org/10.1590/1519-6984.230533. PubMed PMID: 32876175.
https://doi.org/10.1590/1519-6984.230533...
]. In addition, the process of Lavender essential oil release occurs, but the release rate is affected by Aloe vera. Compared to PVA-Aloe vera gels, when Aloe vera gel does not release any more Aloe vera, the Lavender essential oil release increases. To properly fit, the release was fitted in two steps, the initial and the long-term. The initial delivery of these samples fits a logistic model (R2= 0.98). A logistic model for molecule delivery is usually attributed to chaotic behavior, where the molecule’s delivery depends on time and many more variables [104[104] CRACIUN, A.-M., BARHALESCU, M.L., AGOP, M., et al., “Theoretical modeling of long-time drug release from nitrosalicyl-imine-chitosan hydrogels through multifractal logistic type laws”, Computational and Mathematical Methods in Medicine, v. 2019, pp. 4091464, Aug. 2019. doi: http://dx.doi.org/10.1155/2019/4091464. PubMed PMID: 31485257.
https://doi.org/10.1155/2019/4091464...
]. the long-term release followed a cubic model [105[105] SARUCHI, S., KAITH, B.S., JINDAL, R., et al., “Optimal response surface design of Gum tragacanth- based poly[(acrylic acid)-co-acrylamide] IPN hydrogel for the controlled release of the antihypertensive drug losartan potassium”, RSC Advances, v. 4, n. 75, pp. 39822–39829, 2014. doi: http://dx.doi.org/10.1039/C4RA02803A
https://doi.org/10.1039/C4RA02803A...
]. It is observed that the agents’ release might be modulated when they are combined in the hydrogel.

Figure 7.
PVA-Aloe vera-Lavender essential oil (a) swelling degree, (b) swelling degree compared to the release of the combined actives; (c) initial release modeled; (d) long-term release modeled.

4. CONCLUSION

It was observed interaction between PVA and the added agents. The addition of Leucaena and Barbatimão increased the PVA’s ability to swell. Aloe vera and Lavender essential oil did the opposite. Gels loaded with Lavender essential oil presented interconnected pores, while PVA gels did not. Samples loaded with the essential oil or extracts showed high crystallinity. There was a high delivery of Barbatimão and Leucaena extracts, but Lavender essential oil and Aloe vera had the highest release. Although the Barbatimão and Leucaena samples’ release may be related to the samples’ swelling, it was possible to observe that the initial release of Aloe vera and Lavender samples was diffusion controlled by the swelling. Their long-term release was dose-dependent for Aloe vera, while it was a non-Fickian diffusion for Lavender essential oil related to the hydrogel’s relaxation step. There is a synergistic effect when Aloe vera and Lavender essential oil are loaded in PVA hydrogels, modulating their release.

Acknowledgments

The authors thank the Multi-User Analytical Lab of Chemical Institute/UFRRJ; CETEM/UFRJ; LSP/UFRRJ. Este estudo foi financiado pela FAPERJ – Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Processo SEI E-26/201.381/2021 (260532). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

BIBLIOGRAPHY

  • [1]
    KAUR, S., “Wound healing potential of medicinal plants with their screening models: a comprehensive review”, Journal of Drug Delivery and Therapeutics, v. 6, n. 1, pp. 56–66, Jan. 2016. doi: http://dx.doi.org/10.22270/jddt.v6i1.1184
    » https://doi.org/10.22270/jddt.v6i1.1184
  • [2]
    KAMOUN, E.A., CHEN, X., MOHY ELDIN, M.S., et al, “Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers”, Arabian Journal of Chemistry, v. 8, n. 1, pp. 114, Jan. 2015. doi: http://dx.doi.org/10.1016/j.arabjc.2014.07.005
    » https://doi.org/10.1016/j.arabjc.2014.07.005
  • [3]
    MANCIPE, J.M.A., DIAS, M.L., THIRÉ, R.M.S.M., “Avaliação morfológica de fibras eletrofiadas de policaprolactona em função do tipo de solvente”, Matéria (Rio de Janeiro), v. 24, n. 3, pp. e12400, 2019. doi: http://dx.doi.org/10.1590/s1517-707620190003.0713
    » https://doi.org/10.1590/s1517-707620190003.0713
  • [4]
    SEVERO, A.M.C., FOOK, M.V.L., LEITE, I.F., “Hidrogéis de PVA/quitosana funcionalizados com óleo de melaleuca visando aplicação como curativos”, Matéria (Rio de Janeiro), v. 27, n. 1, pp. e13149, 2022. doi: http://dx.doi.org/10.1590/s1517-707620220001.1349
    » https://doi.org/10.1590/s1517-707620220001.1349
  • [5]
    KIM, J.O., CHOI, J.Y., PARK, J.K., et al, “Development of clindamycin-loaded wound dressing with polyvinyl alcohol and sodium alginate”, Biological & Pharmaceutical Bulletin, v. 31, n. 12, pp. 2277–2282, 2008. doi: http://dx.doi.org/10.1248/bpb.31.2277. PubMed PMID: 19043213.
    » https://doi.org/10.1248/bpb.31.2277
  • [6]
    KAMOUN, E.A., KENAWY, E.-R.S., CHEN, X., “A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings”, Journal of Advanced Research, v. 8, n. 3, pp. 217233, May. 2017. doi: http://dx.doi.org/10.1016/j.jare.2017.01.005. PubMed PMID: 28239493.
    » https://doi.org/10.1016/j.jare.2017.01.005
  • [7]
    SACHDEVA, K., GARG, P., SINGHAL, M., et al, “Wound healing potential of extract of Jatropha curcas L. (Stem bark) in rats”, Pharmacognosy Journal, v. 3, n. 25, pp. 6772, Sep. 2011. doi: http://dx.doi.org/10.5530/pj.2011.25.12
    » https://doi.org/10.5530/pj.2011.25.12
  • [8]
    PRATIMA, T., MINAKSHI, N., SATISH, G., “Antioxidant, antimicrobial and wound healing activity of salvadora persica twig extracts”, Journal of Complementary Medicine & Alternative Healthcare, v. 7, n. 4, pp. 555720, Aug. 2018. doi: http://dx.doi.org/110.19080/JCMAH.2018.07.555720
    » https://doi.org/110.19080/JCMAH.2018.07.55572
  • [9]
    GARG, V.K., PALIWAL, S.K., “Wound-healing activity of ethanolic and aqueous extracts of Ficus benghalensis”, Journal of Advanced Pharmaceutical Technology & Research, v. 2, n. 2, pp. 110114, 2011. doi: http://dx.doi.org/10.4103/2231-4040.82957. PubMed PMID: 22171302.
    » https://doi.org/10.4103/2231-4040.82957
  • [10]
    BOPAGE, N.S., KAMAL BANDARA GUNAHERATH, G.M., JAYAWARDENA, K.H., et al., “Dual function of active constituents from bark of Ficus racemosa L in wound healing”, BMC Complementary and Alternative Medicine, v. 18, n. 1, pp. 29, Dec. 2018. doi: http://dx.doi.org/10.1186/s12906-018-2089-9. PubMed PMID: 29370854.
    » https://doi.org/10.1186/s12906-018-2089-9
  • [11]
    LALRINZUALI, K., VABEIRYUREILAI, M., JAGETIA, G.C., “Topical application of stem bark ethanol extract of Sonapatha, Oroxylum indicum (L.) Kurz accelerates healing of deep dermal excision wound in Swiss albino mice”, Journal of Ethnopharmacology, v. 227, pp. 290299, Dec. 2018. doi: http://dx.doi.org/10.1016/j.jep.2018.08.018. PubMed PMID: 30121235.
    » https://doi.org/10.1016/j.jep.2018.08.018
  • [12]
    FIRDOUS, S.M., SAUTYA, D., “Medicinal plants with wound healing potential”, Bangladesh Journal of Pharmacology, v. 13, n. 1, pp. 41, Feb. 2018. doi: http://dx.doi.org/10.3329/bjp.v13i1.32646
    » https://doi.org/10.3329/bjp.v13i1.32646
  • [13]
    PELLENZ, N.L., BARBISAN, F., AZZOLIN, V.F., et al, “Analysis of in vitro cyto- and genotoxicity of barbatimão extract on human keratinocytes and fibroblasts”, BioMed Research International, v. 2018, pp. 1942451, Oct. 2018. doi: http://dx.doi.org/10.1155/2018/1942451. PubMed PMID: 30402464.
    » https://doi.org/10.1155/2018/1942451
  • [14]
    PINTO, S.G., BUENO, F.G., PANIZZON, G.P., et al, “Stryphnodendron adstringens: clarifying wound healing in streptozotocin-induced diabetic rats”, Planta Medica, v. 81, n. 12-13, pp. 10901096, Jul. 2015. doi: http://dx.doi.org/10.1055/s-0035-1546209. PubMed PMID: 26218337.
    » https://doi.org/10.1055/s-0035-1546209
  • [15]
    COSTA, M.A., PALAZZO DE MELLO, J.C., KANESHIMA, E.N., et al, “Acute and chronic toxicity of an aqueous fraction of the stem bark of stryphnodendron adstringens (Barbatimão) in rodents”, Evidence-Based Complementary and Alternative Medicine, v. 2013, pp. 841580, 2013. doi: http://dx.doi.org/10.1155/2013/841580. PubMed PMID: 23970938.
    » https://doi.org/10.1155/2013/841580
  • [16]
    SOUZA-MOREIRA, T.M., QUEIROZ-FERNANDES, G.M., PIETRO, R.C.L.R., “Stryphnodendron species known as “Barbatimão”: a comprehensive report”, Molecules (Basel, Switzerland), v. 23, n. 4, pp. 910, Apr. 2018. doi: http://dx.doi.org/10.3390/molecules23040910. PubMed PMID: 29662029.
    » https://doi.org/10.3390/molecules23040910
  • [17]
    PASSARETTI, T., GUARNIERI, A.P., FILIPINI, R., et al., “Eficácia do uso do Barbatimão (Stryfhnodendron barbatiman) no processo de cicatrização em lesões: uma revisão de literatura”, ABCS Health Sciences, v. 41, n. 1, pp. 51–54, May 2016. doi: http://dx.doi.org/10.7322/abcshs.v41i1.846
    » https://doi.org/10.7322/abcshs.v41i1.846
  • [18]
    RICARDO, L.M., DIAS, B.M., MÜGGE, F.L.B., et al, “Evidence of traditionality of Brazilian medicinal plants: The case studies of Stryphnodendron adstringens (Mart.) Coville (barbatimão) barks and Copaifera spp. (copaíba) oleoresin in wound healing”, Journal of Ethnopharmacology, v. 219, pp. 319336, Jun. 2018. doi: http://dx.doi.org/10.1016/j.jep.2018.02.042. PubMed PMID: 29501844.
    » https://doi.org/10.1016/j.jep.2018.02.042
  • [19]
    HERNANDES, L., PEREIRA, L.M.S., PALAZZO, F., et al, “Wound-healing evaluation of ointment from Stryphnodendron adstringens (barbatimão) in rat skin”, Brazilian Journal of Pharmaceutical Sciences, v. 46, n. 3, pp. 431436, Sep. 2010. doi: http://dx.doi.org/10.1590/S1984-82502010000300005
    » https://doi.org/10.1590/S1984-82502010000300005
  • [20]
    PORTO, M.R., MOSCARDINI, A.R.C., NOVAIS, E.P.F., et al, “Intoxicação natural e experimental por Leucaena leucocephala em equinos”, Pesquisa Veterinária Brasileira, v. 37, n. 8, pp. 829834, Aug. 2017. doi: http://dx.doi.org/10.1590/s0100-736x2017000800008
    » https://doi.org/10.1590/s0100-736x2017000800008
  • [21]
    GUPTA, D., GUPTA, R.K., “Bioprotective properties of Dragon’s blood resin: In vitro evaluation of antioxidant activity and antimicrobial activity”, BMC Complementary and Alternative Medicine, v. 11, n. 1, pp. 13, Dec. 2011. doi: http://dx.doi.org/10.1186/1472-6882-11-13. PubMed PMID: 21329518.
    » https://doi.org/10.1186/1472-6882-11-13
  • [22]
    CHANWITHEESUK, A., TEERAWUTGULRAG, A., RAKARIYATHAM, N., “Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand”, Food Chemistry, v. 92, n. 3, pp. 491497, Sep. 2005. doi: http://dx.doi.org/10.1016/j.foodchem.2004.07.035
    » https://doi.org/10.1016/j.foodchem.2004.07.035
  • [23]
    ELBANOBY, N.E., EL-SETTAWY, A.A.A., MOHAMED, A.A., et al, “Phytochemicals derived from Leucaena leucocephala (Lam.) de Wit (Fabaceae) biomass and their antimicrobial and antioxidant activities: HPLC analysis of extracts”, Biomass Conversion and Biorefinery, pp. 1–17, Nov. 2022. doi: http://dx.doi.org/10.1007/s13399-022-03420-1
    » https://doi.org/10.1007/s13399-022-03420-1
  • [24]
    MORI, H.-M., KAWANAMI, H., KAWAHATA, H., et al, “Wound healing potential of lavender oil by acceleration of granulation and wound contraction through induction of TGF-β in a rat model”, BMC Complementary and Alternative Medicine, v. 16, n. 1, pp. 144, Dec. 2016. doi: http://dx.doi.org/10.1186/s12906-016-1128-7. PubMed PMID: 27229681.
    » https://doi.org/10.1186/s12906-016-1128-7
  • [25]
    NASCIMENTO, A.S., TAMIASSO, R.S.S., MORAIS, S.F.M., et al., “Óleos essenciais para a cicatrização e/ou prevenção de infecção de feridas cirúrgicas: revisão sistemática”, Revista da Escola de Enfermagem da USP, v. 56, n. spe, pp. e20210442, 2022.
  • [26]
    RAFIQ, M., HUSSAIN, T., ABID, S., et al, “Development of sodium alginate/PVA antibacterial nanofibers by the incorporation of essential oils”, Materials Research Express, v. 5, n. 3, pp. 035007, Mar. 2018. doi: http://dx.doi.org/10.1088/2053-1591/aab0b4
    » https://doi.org/10.1088/2053-1591/aab0b4
  • [27]
    SHARIFI-RAD, J., SUREDA, A., TENORE, G., et al, “Biological activities of essential oils: from plant chemoecology to traditional healing systems”, Molecules (Basel, Switzerland), v. 22, n. 1, pp. 70, Jan. 2017. doi: http://dx.doi.org/10.3390/molecules22010070. PubMed PMID: 28045446.
    » https://doi.org/10.3390/molecules22010070
  • [28]
    POKAJEWICZ, K., BIAŁOŃ, M., SVYDENKO, L., et al., “Chemical composition of the essential oil of the new cultivars of Lavandula angustifolia Mill. Bred in Ukraine”, Molecules (Basel, Switzerland), v. 26, n. 18, pp. 5681, Sep. 2021. doi: http://dx.doi.org/10.3390/molecules26185681. PubMed PMID: 34577152.
    » https://doi.org/10.3390/molecules26185681
  • [29]
    FREITAS, V.S., RODRIGUES, R.A.F., GASPI, F.O.G., “Propriedades farmacológicas da Aloe vera (L.) Burm. f ”, Revista Brasileira de Plantas Medicinais, v. 16, n. 2, pp. 299307, Jun. 2014. http://dx.doi.org/10.1590/S1516-05722014000200020
    » https://doi.org/10.1590/S1516-05722014000200020
  • [30]
    MASSOUD, D., ALRASHDI, B.M., FOUDA, M.M.A., et al., “Aloe vera and wound healing: a brief review”, Brazilian Journal of Pharmaceutical Sciences, v. 58, pp. e20837, 2022. doi: https://doi.org/10.1590/s2175-97902022e20837
    » https://doi.org/https://doi.org/10.1590/s2175-97902022e20837
  • [31]
    TAJIK, F., ESLAHI, N., RASHIDI, A., et al., “Hybrid antibacterial hydrogels based on PVP and keratin incorporated with lavender extract”, Journal of Polymer Research, v. 28, n. 8, pp. 316, Aug. 2021. doi: http://dx.doi.org/10.1007/s10965-021-02681-0
    » https://doi.org/10.1007/s10965-021-02681-0
  • [32]
    HEYDARI, M., ALVANDI, H., JAYMAND, M., et al., “A two-layer nanofiber-Tragacanth hydrogel composite containing Lavender extract and Mupirocin as a wound dressing”, Polymer Bulletin, pp.1–17, Feb. 2023. doi: http://dx.doi.org/10.1007/s00289-022-04655-8
    » https://doi.org/10.1007/s00289-022-04655-8
  • [33]
    GANGULY, R., VERMA, G., INGLE, A., et al., “Structural, rheological and therapeutic properties of pluronic F127 hydrogel and beeswax based lavender oil ointment formulations”, Journal of Molecular Liquids, v. 365, pp. 120157, Nov. 2022. doi: http://dx.doi.org/10.1016/j.molliq.2022.120157
    » https://doi.org/10.1016/j.molliq.2022.120157
  • [34]
    DENG, X., CHEN, J., CHEN, W., “Hydrogel particles as a controlled release delivery system for lavender essential oil using pH triggers”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 603, pp. 125134, Oct. 2020. doi: http://dx.doi.org/10.1016/j.colsurfa.2020.125134
    » https://doi.org/10.1016/j.colsurfa.2020.125134
  • [35]
    DE BRITO, V.P., DE SOUZA RIBEIRO, M.M., VIGANÓ, J., et al., “Silk fibroin hydrogels incorporated with the antioxidant extract of stryphnodendron adstringens bark”, Polymers, v. 14, n. 22, pp. 4806, Nov. 2022. doi: http://dx.doi.org/10.3390/polym14224806. PubMed PMID: 36432933.
    » https://doi.org/10.3390/polym14224806
  • [36]
    DE SOUZA DE AGUIAR, P., CORREA, Á.P., ANTUNES, F.T.T., et al., “Benefits of Stryphnodendron adstringens when associated with hydrogel on wound healing in diabetic rats”, Clinical Phytoscience, v. 7, n. 1, pp. 22, Dec. 2021. doi: http://dx.doi.org/10.1186/s40816-021-00257-5
    » https://doi.org/10.1186/s40816-021-00257-5
  • [37]
    RAY, A., SHARMA, A., SINGHAL, R.S., “Porous hydrogel composite with whey protein isolate and galactomannans of Leucaena leucocephala (subabul) seeds: Stability, rheological, thermal, and morphological characterization”, Journal of Food Science, v. 88, n. 5, pp. 21042129, May. 2023. doi: http://dx.doi.org/10.1111/1750-3841.16554. PubMed PMID: 37020405.
    » https://doi.org/10.1111/1750-3841.16554
  • [38]
    RAY, A., SHARMA, A., SINGHAL, R.S., “Valorization of arabinoxylans from Linum usitatissimum (flaxseed) and galactomannans from Leucaena leucocephala (subabul) to develop hybrid hydrogels: Rheological, morphological and thermal characterization”, Industrial Crops and Products, v. 178, pp. 114575, Apr. 2022. doi: http://dx.doi.org/10.1016/j.indcrop.2022.114575
    » https://doi.org/10.1016/j.indcrop.2022.114575
  • [39]
    HANIF, W., HARDIANSYAH, A., RANDY, A., et al., “Physically crosslinked PVA/graphene-based materials/aloe vera hydrogel with antibacterial activity”, RSC Advances, v. 11, n. 46, pp. 2902929041, 2021. doi: http://dx.doi.org/10.1039/D1RA04992E. PubMed PMID: 35478571.
    » https://doi.org/10.1039/D1RA04992E
  • [40]
    KENAWY, E.-R.S., KAMOUN, E.A., GHALY, Z.S., et al., “Novel physically crosslinked curcumin-loaded pva/aloe vera hydrogel membranes for acceleration of topical wound healing: in vitro and in vivo experiments”, Arabian Journal for Science and Engineering, v. 48, n. 1, pp. 497514, Jan. 2023. doi: http://dx.doi.org/10.1007/s13369-022-07283-6
    » https://doi.org/10.1007/s13369-022-07283-6
  • [41]
    BIALIK-WĄS, K., PLUTA, K., MALINA, D., et al., “Advanced SA/PVA-based hydrogel matrices with prolonged release of Aloe vera as promising wound dressings”, Materials Science and Engineering C, v. 120, pp. 111667, Jan. 2021. doi: http://dx.doi.org/10.1016/j.msec.2020.111667. PubMed PMID: 33545832.
    » https://doi.org/10.1016/j.msec.2020.111667
  • [42]
    ESCOBAR-SIERRA, D.M., PEREA-MESA, Y.P., “Manufacturing and evaluation of Chitosan, PVA and Aloe Vera hydrogels for skin applications”, Dyna, v. 84, n. 203, pp. 134142, Oct. 2017. doi: http://dx.doi.org/10.15446/dyna.v84n203.62742
    » https://doi.org/10.15446/dyna.v84n203.62742
  • [43]
    PARK, K.R., NHO, Y.C., “Preparation and characterization by radiation of hydrogels of PVA and PVP containing Aloe vera”, Journal of Applied Polymer Science, v. 91, n. 3, pp. 16121618, Feb. 2004. doi: http://dx.doi.org/10.1002/app.13299
    » https://doi.org/10.1002/app.13299
  • [44]
    OLIVEIRA, R.N., ROUZÉ, R., QUILTY, B., et al., “Mechanical properties and in vitro characterization of polyvinyl alcohol-nano-silver hydrogel wound dressings”, Interface Focus, v. 4, n. 1, pp. 20130049, Feb. 2014. doi: http://dx.doi.org/10.1098/rsfs.2013.0049. PubMed PMID: 24501677.
    » https://doi.org/10.1098/rsfs.2013.0049
  • [45]
    OLIVEIRA, R.N., MANCINI, M.C., DE OLIVEIRA, F.C.S., et al., “FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing”, Matéria (Rio de Janeiro), v. 21, n. 3, pp. 767779, Sep. 2016. doi: http://dx.doi.org/10.1590/S1517-707620160003.0072
    » https://doi.org/10.1590/S1517-707620160003.0072
  • [46]
    MASETTO, M.A.M., DESCHAMPS, C., MÓGOR, A.F., et al., “Teor e composição do óleo essencial de inflorescências e folhas de Lavandula dentata L. em diferentes estádios de desenvolvimento floral e épocas de colheita”, Revista Brasileira de Plantas Medicinais, v. 13, n. 4, pp. 413421, 2011. doi: http://dx.doi.org/10.1590/S1516-05722011000400007
    » https://doi.org/10.1590/S1516-05722011000400007
  • [47]
    COSTA JUNIOR, E.S., MANSUR, H.S., “Preparação e caracterização de blendas de quitosana/poli(álcool vinílico) reticuladas quimicamente com glutaraldeído para aplicação em engenharia de tecido”, Quimica Nova, v. 31, n. 6, pp. 14601466, 2008. doi: http://dx.doi.org/10.1590/S0100-40422008000600034
    » https://doi.org/10.1590/S0100-40422008000600034
  • [48]
    HAN, S., LUAN, Y.-M., PANG, S.-F., et al., “Thermodynamic and spectroscopic analysis of the conformational transition of poly(vinyl alcohol) by temperature-dependent FTIR”, Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, v. 139, pp. 3742, Mar. 2015. doi: http://dx.doi.org/10.1016/ j.saa.2014.11.100. PubMed PMID: 25554949.
    » https://doi.org/10.1016/ j.saa.2014.11.100
  • [49]
    CURLEY, C., HAYES, J.C., ROWAN, N.J., et al., “An evaluation of the thermal and mechanical properties of a salt-modified polyvinyl alcohol hydrogel for a knee meniscus application”, Journal of the Mechanical Behavior of Biomedical Materials, v. 40, pp. 1322, Dec. 2014. doi: http://dx.doi.org/10.1016/j.jmbbm.2014.08.003. PubMed PMID: 25190433.
    » https://doi.org/10.1016/j.jmbbm.2014.08.003
  • [50]
    OLAD, A., DOUSTDAR, F., GHAREKHANI, H., “Starch-based semi-IPN hydrogel nanocomposite integrated with clinoptilolite: preparation and swelling kinetic study”, Carbohydrate Polymers, v. 200, pp. 516528, Nov. 2018. doi: http://dx.doi.org/10.1016/j.carbpol.2018.08.014. PubMed PMID: 30177193.
    » https://doi.org/10.1016/j.carbpol.2018.08.014
  • [51]
    ROGOJANU, A., RUSU, E., OLARU, N., et al, “(Vinyl Alcohol) Matrix For Drug Release”, Digest Journal of Nanomaterials and Biostructures, v. 6, n. 2, pp. 809818, 2011.
  • [52]
    SUNARYONO, TAUFIQ, A., MUFTI, N., et al., “Analysis of distribution of polyvinyl alcohol hydrogel nanocrystalline by using SAXS synchrotron”, IOP Conference Series: Materials Science and Engineering, v. 202, p. 012041, May 2017. doi: http://dx.doi.org/10.1088/1757-899X/202/1/012041
    » https://doi.org/10.1088/1757-899X/202/1/012041
  • [53]
    ARUAN, N.M., SRIYANTI, I., EDIKRESNHA, D., et al., “Polyvinyl alcohol/soursop leaves extract composite nanofibers synthesized using electrospinning technique and their potential as antibacterial wound dressing”, Procedia Engineering, v. 170, pp. 3135, 2017. doi: http://dx.doi.org/10.1016/ j.proeng.2017.03.006
    » https://doi.org/10.1016/ j.proeng.2017.03.00
  • [54]
    GAIKWAD, K.K., LEE, J.Y., LEE, Y.S., “Development of polyvinyl alcohol and apple pomace bio- composite film with antioxidant properties for active food packaging application”, Journal of Food Science and Technology, v. 53, n. 3, pp. 16081619, Mar. 2016. doi: http://dx.doi.org/10.1007/s13197-015-2104-9. PubMed PMID: 27570286.
    » https://doi.org/10.1007/s13197-015-2104-9
  • [55]
    MA, N., WANG, P., KONG, X., et al., “Selective removal of caffeine from tea extracts using macroporous crosslinked polyvinyl alcohol adsorbents”, Journal of Separation Science, v. 35, n. 1, pp. 3644, Jan. 2012. doi: http://dx.doi.org/10.1002/jssc.201100598. PubMed PMID: 22102370.
    » https://doi.org/10.1002/jssc.201100598
  • [56]
    BAJAD, P.N., PARDESHI, A.B., “Qualitative and quantitave analysis of saponin as bioactive agent of Sapindus emarginatus”, International Journal of Scientific Research, v. 5, n. 10, pp. 351354, 2015.
  • [57]
    POLUNIN, K.E., SOKOLOVA, N.P., GORBUNOV, A.M., et al., “FTIR spectroscopic studies of interactions of stilbenes with silicon dioxide”, Protection of Metals, v. 44, n. 4, pp. 352357, Jul. 2008. doi: http://dx.doi.org/10.1134/S0033173208040061
    » https://doi.org/10.1134/S0033173208040061
  • [58]
    MUSHIN, M., SHAMI, A., “Isolation and Identification of Alkaloids extracted from Local Plants in Malaysia”, Annals of Chromatography and Separation Techniques, v. 2, n. 1, pp. 13, 2016. doi: http://dx.doi.org/10.36876/acst.1016
    » https://doi.org/10.36876/acst.1016
  • [59]
    MALACARNE, M., ANTONIOLLI, G., BERTOLDI, D., et al., “Botanical origin characterisation of tannins using infrared spectroscopy”, Food Chemistry, v. 267, pp. 204209, Nov. 2018. doi: http://dx.doi.org/10.1016/j.foodchem.2017.06.131. PubMed PMID: 29934158.
    » https://doi.org/10.1016/j.foodchem.2017.06.131
  • [60]
    RICCI, A., PARPINELLO, G.P., OLEJAR, K.J., et al., “Attenuated Total Reflection Mid-Infrared (ATR-MIR) spectroscopy and chemometrics for the identification and classification of commercial tannins”, Applied Spectroscopy, v. 69, n. 11, pp. 12431250, Nov. 2015. doi: http://dx.doi.org/10.1366/15-07957. PubMed PMID: 26647047.
    » https://doi.org/10.1366/15-07957
  • [61]
    RODRIGUES, D.F., MENDES, F.F., NORORNHA FILHO, A.D.F., et al., “O extrato da casca de barbatimão, Stryphnodendron adstringens(Martius) Coville, na cicatrização de feridas em animais”, Enciclopédia Biosfera, v. 9, n. 16, pp. 15831601, Jul. 2013. https://conhecer.org.br/ojs/index.php/biosfera/article/view/3469, accessed in Nov. 2016.
    » https://conhecer.org.br/ojs/index.php/biosfera/article/view/3469
  • [62]
    CARRILLO-LÓPEZ, L.M., ZAVALETA-MANCERA, H.A., VILCHIS-NESTOR, A., et al., “Biosynthesis of Silver nanoparticles using Chenopodium ambrosioides”, Journal of Nanomaterials, v. 2014, pp. 951746, 2014. doi: http://dx.doi.org/10.1155/2014/951746
    » https://doi.org/10.1155/2014/951746
  • [63]
    DOS ANJOS, F., OLIVEIRA JÚNIOR, E.A., SOUSA, F.M.S., et al., “Análise espectroscopicada membrana de quitosana eextrato dechenopodium ambrosioidespara uso como biomaterial” In: Anais do do 22o CBECiMat - Congresso Brasileiro de Engenharia e Ciência dos Materiais, pp. 17, Natal – RN – Brasil, 2016.
  • [64]
    BORGES, F.A., SIGUEMATSU, P.R., HERCULANO, R.D., et al., “Novel sustained-release of Stryphnodendron obovatum leaves extract using natural rubber latex as carrier”, Revista de Ciências Farmacêuticas Básica e Aplicada, v. 36, n. 3, pp. 379384, 2015.
  • [65]
    MAITERA, O.N., CHUKKOL, I.B., “Phytochemical and fourier transform infrared spectroscopy analysis of faidherbia albida (Del)as a preservative agent”, World Journal of Research and Review, v. 3, n. 3, pp. 2529, 2016.
  • [66]
    HENECZKOWSKI, M., KOPACZ, M., NOWAK, D., et al., “Infrared spectrum analysis of some flavonoids”, Acta Poloniae Pharmaceutica, v. 58, n. 6, pp. 415420, 2001. PubMed PMID: 12197612.
  • [67]
    MITTAL, N., MATTU, P., KAUR, G., “Extraction and derivatization of Leucaena leucocephala (Lam.) galactomannan: optimization and characterization”, International Journal of Biological Macromolecules, v. 92, pp. 831841, Nov. 2016. doi: http://dx.doi.org/10.1016/j.ijbiomac.2016.07.046. PubMed PMID: 27492556.
    » https://doi.org/10.1016/j.ijbiomac.2016.07.046
  • [68]
    MANSUR, N.F., MEGAT HANAFIAH, M.A.K., ISMAIL, M. “Adsorption of Pb(II) ions on sulfuric acid treated leucaena leucocephala leaf powder”, MATEC Web of Conferences, v. 27, pp. 03002, Oct. 2015. doi: https://doi.org/10.1051/matecconf/20152703002
    » https://doi.org/https://doi.org/10.1051/matecconf/20152703002
  • [69]
    KANAGAMANI, K., MUTHUKRISHNAN, P., ILAYARAJA, M., et al., “Synthesis of Leucaena mediated silver nanoparticles: Assessing their photocatalytic degradation of Cr (VI) and in vitro cytotoxicity against DLA cells”, Journal of Photochemistry and Photobiology A Chemistry, v. 346, pp. 470478, Sep. 2017. doi: http://dx.doi.org/10.1016/j.jphotochem.2017.06.021
    » https://doi.org/10.1016/j.jphotochem.2017.06.021
  • [70]
    CHEN, S.-L., CHUA, G.-L., JI, S.-J., et al., “Ionic liquid: a green solvent for organic transformations I”, In: MALHOTRA, S. Ionic Liquids in Organic Synthesis, chapter 13, Washington, USA, American Chemical Society, pp. 161176, 2007. ACS Symposium Series.
  • [71]
    SAMFIRA, I., RODINO, S., PETRACHE, P., et al., “Characterization and identity confirmation of essential oils by mid infrared absorption spectrophotometry”, Digest Journal of Nanomaterials and Biostructures, v. 10, n. 2, pp. 557566, 2015.
  • [72]
    EL-MOLLA, M.M., EL-GHORAB, A.H., “Extraction of eco-friendly essential oils and their utilization in finishing polyester fabrics for fragrant and medical textiles”, Journal of Engineered Fibers and Fabrics, v. 17, pp. 155892502211044, Jan. 2022. doi: http://dx.doi.org/10.1177/15589250221104475
    » https://doi.org/10.1177/15589250221104475
  • [73]
    ADINEW, B., “GC-MS analysis of essential oil from long pepper growing in Tepi, South-west Ethiopia”, Science, Technology and Arts Research Journal, v. 3, n. 1, pp. 31, Jun. 2014. doi: http://dx.doi.org/10.4314/star.v3i1.6
    » https://doi.org/10.4314/star.v3i1.6
  • [74]
    ARIK, N., HORZUM, N., TRUONG, Y.B., “Development and characterizations of engineered electrospun bio-based polyurethane containing essential oils”, Membranes (Basel), v. 12, n. 2, pp. 209, Feb. 2022. doi: http://dx.doi.org/10.3390/membranes12020209. PubMed PMID: 35207129.
    » https://doi.org/10.3390/membranes12020209
  • [75]
    SIMONA, J., DANI, D., PETR, S., et al., “Edible films from carrageenan/orange essential oil/trehalose—structure, optical properties, and antimicrobial activity”, Polymers, v. 13, n. 3, pp. 332, Jan. 2021. doi: http://dx.doi.org/10.3390/polym13030332. PubMed PMID: 33494246.
    » https://doi.org/10.3390/polym13030332
  • [76]
    FELLAK, S., RAFIK, M., HAIDARA, H., et al., “Study of natural degradation effect on lignocellulose fibers of archaeological cedar wood: monitoring by Fourier Transform Infrared (FTIR) spectroscopy”, MATEC Web of Conferences, v. 360, pp. 00006, June 2022. doi: https://doi.org/10.1051/matecconf/202236000006
    » https://doi.org/https://doi.org/10.1051/matecconf/202236000006
  • [77]
    ALIPRANDINI, P., “Estudo da biossorção de cianeto de mercúrio gerado na mineração artesanal do ouro visando a descontaminação de águas residuais”, Tese de D.Sc., Universidade de São Paulo, São Paulo, São Paulo, 2021. doi: http://dx.doi.org/10.11606/T.3.2021.tde-04112021-160158
    » https://doi.org/10.11606/T.3.2021.tde-04112021-160158
  • [78]
    SAMADIEH, S., SADRI, M., “Preparation and biomedical properties of transparent chitosan/gelatin/honey/aloe vera nanocomposite”, Nanomed Res J, v. 5, n. 2, pp. 112, 2020.
  • [79]
    PERIASAMY, S., JEGADEESAN, U., SUNDARAMOORTHI, K., et al., “Comparative analysis of synthesis and characterization of silver nanoparticles extracted using leaf, flower, and bark of hibiscus rosasinensis and examine its antimicrobicidal activity”, Journal of Nanomaterials, v. 2022, pp. 110, May. 2022. doi: http://dx.doi.org/10.1155/2022/8123854
    » https://doi.org/10.1155/2022/8123854
  • [80]
    XIANG, A., LV, C., ZHOU, H., “Changes in crystallization behaviors of poly(vinyl alcohol) induced by water content”, Journal of Vinyl and Additive Technology, v. 26, n. 4, pp. 613622, Nov. 2020. doi: http://dx.doi.org/10.1002/vnl.21775
    » https://doi.org/10.1002/vnl.21775
  • [81]
    LAMASTRO, V., BREWER, E., LOWMAN, A., “Crystallinity, reversibility, and injectability of physically crosslinked poly(vinyl alcohol) and poly(ethylene glycol) hydrogels”, Journal of Applied Polymer Science, v. 137, n. 25, pp. 48659, July. 2020. doi: http://dx.doi.org/10.1002/app.48706
    » https://doi.org/10.1002/app.48706
  • [82]
    WU, S., HUA, M., ALSAID, Y., et al., “Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect”, Advanced Materials, v. 33, n. 11, pp. e2007829, Mar. 2021. doi: http://dx.doi.org/10.1002/adma.202007829. PubMed PMID: 33554414.
    » https://doi.org/10.1002/adma.202007829
  • [83]
    CHEN, Y., LI, J., LU, J., et al., “Synthesis and properties of Poly(vinyl alcohol) hydrogels with high strength and toughness”, Polymer Testing, v. 108, pp. 107516, Apr. 2022. doi: http://dx.doi.org/10.1016/ j.polymertesting.2022.107516
    » https://doi.org/10.1016/ j.polymertesting.2022.10751
  • [84]
    EKASURYA, W., SEBASTIAN, J., PUSPITASARI, D., et al., “Synthesis and Degradation Properties of Sericin/PVA Hydrogels”, Gels (Basel, Switzerland), v. 9, n. 2, pp. 76, Jan. 2023. doi: http://dx.doi.org/10.3390/gels9020076. PubMed PMID: 36826246.
    » https://doi.org/10.3390/gels9020076
  • [85]
    DEY, K., AGNELLI, S., BORSANI, E., et al., “Degradation-dependent stress relaxing semi-interpenetrating networks of hydroxyethyl cellulose in Gelatin-PEG hydrogel with good mechanical stability and reversibility”, Gels (Basel, Switzerland), v. 7, n. 4, pp. 277, Dec. 2021. doi: http://dx.doi.org/10.3390/gels7040277. PubMed PMID: 34940337.
    » https://doi.org/10.3390/gels7040277
  • [86]
    OLIVEIRA, R.N., MCGUINNESS, G.B., ROUZE, R., et al., “PVA hydrogels loaded with a Brazilian propolis for burn wound healing applications”, Journal of Applied Polymer Science, v. 132, n. 25, pp. 42129, July 2015. doi: https://doi.org/10.1002/app.42129
    » https://doi.org/https://doi.org/10.1002/app.42129
  • [87]
    RIZWAN, M., YAHYA, R., HASSAN, A., et al., “pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications”, Polymers, v. 9, n. 4, pp. 137, Apr. 2017. doi: http://dx.doi.org/10.3390/polym9040137. PubMed PMID: 30970818.
    » https://doi.org/10.3390/polym9040137
  • [88]
    GHEORGHITA, D., GROSU, E., ROBU, A., et al., “Essential oils as antimicrobial active substances in wound dressings”, Materials (Basel), v. 15, n. 19, pp. 6923, Oct. 2022. doi: http://dx.doi.org/10.3390/ma15196923. PubMed PMID: 36234263.
    » https://doi.org/10.3390/ma15196923
  • [89]
    KOGA, A.Y., FELIX, J.C., SILVESTRE, R.G.M., et al., “Evaluation of wound healing effect of alginate film containing Aloe vera gel and crosslinked with zinc chloride”, Acta Cirurgica Brasileira, v. 35, n. 5, pp. e202000507, 2020. doi: http://dx.doi.org/10.1590/s0102-865020200050000007. PubMed PMID: 32638846.
    » https://doi.org/10.1590/s0102-865020200050000007
  • [90]
    CHEN, C.-W., XIE, J., YANG, F.-X., et al., “Development of moisture-absorbing and antioxidant active packaging film based on poly(vinyl alcohol) incorporated with green tea extract and its effect on the quality of dried eel”, Journal of Food Processing and Preservation, v. 42, n. 1, pp. e13374, Jan. 2018. doi: http://dx.doi.org/10.1111/jfpp.13374
    » https://doi.org/10.1111/jfpp.13374
  • [91]
    OLIVEIRA, R.N., MCGUINNESS, G.B., RAMOS, M.E.T., et al., “Properties of PVA hydrogel wound-care dressings containing uk propolis”, Macromolecular Symposia, v. 368, n. 1, pp. 122127, Oct. 2016. doi: http://dx.doi.org/10.1002/masy.201500149
    » https://doi.org/10.1002/masy.201500149
  • [92]
    WU, L., BRAZEL, C.S., “Modifying the release of proxyphylline from PVA hydrogels using surface crosslinking”, International Journal of Pharmaceutics, v. 349, n. 1-2, pp. 144151, Feb. 2008. doi: http://dx.doi.org/10.1016/j.ijpharm.2007.08.007. PubMed PMID: 17875374.
    » https://doi.org/10.1016/j.ijpharm.2007.08.007
  • [93]
    MURPHY, D.J., SANKALIA, M.G., LOUGHLIN, R.G., et al., “Physical characterisation and component release of poly(vinyl alcohol)-tetrahydroxyborate hydrogels and their applicability as potential topical drug delivery systems”, International Journal of Pharmaceutics, v. 423, n. 2, pp. 326334, Feb. 2012. doi: http://dx.doi.org/10.1016/j.ijpharm.2011.11.018. PubMed PMID: 22107707.
    » https://doi.org/10.1016/j.ijpharm.2011.11.018
  • [94]
    CRISPIM, E.G., PIAI, J.F., FAJARDO, A.R., et al., “Hydrogels based on chemically modified poly (vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: preparation and characterization”, Express Polymer Letters, v. 6, n. 5, pp. 383395, 2012. doi: http://dx.doi.org/10.3144/expresspolymlett.2012.41
    » https://doi.org/10.3144/expresspolymlett.2012.41
  • [95]
    WERZER, O., TUMPHART, S., KEIMEL, R., et al., “Drug release from thin films encapsulated by a temperature-responsive hydrogel”, Soft Matter, v. 15, n. 8, pp. 18531859, 2019. doi: http://dx.doi.org/10.1039/C8SM02529K. PubMed PMID: 30698598.
    » https://doi.org/10.1039/C8SM02529K
  • [96]
    RITGER, P.L., PEPPAS, N.A., “A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs”, Journal of Controlled Release, v. 5, n. 1, pp. 2336, Jun. 1987. doi: http://dx.doi.org/10.1016/0168-3659(87)90034-4
    » https://doi.org/10.1016/0168-3659(87)90034-4
  • [97]
    WANG, X., LI, S., WANG, L., et al., “Microfluidic device for controllable chemical release via field- actuated membrane incorporating nanoparticles”, Journal of Nanomaterials, v. 2013, pp. 625739, 2013. doi: http://dx.doi.org/10.1155/2013/625739
    » https://doi.org/10.1155/2013/625739
  • [98]
    BOSCHETTI, P.J., PELLICCIONI, O.J., SABINO, M., et al., “Swelling behavior of IPN and copolymer hydrogels by Lattice Boltzmann Method” In AIAA Scitech 2020 Forum, Orlando, 2020. http://dx.doi.org/10.2514/6.2020-2234
    » https://doi.org/10.2514/6.2020-2234
  • [99]
    GANJI, F., VASHEGHANI-FARAHANI, S., VASHEGHANI-FARAHANI, E., “Theoretical description of hydrogel swelling: a review”, Iranian Polymer Journal, v. 19, n. 5, pp. 375398, 2010.
  • [100]
    RAHMAN, H., “Aloe vera mucilage as solubility enhancer in tablet formulation”, Journal of Nutrition & Food Sciences, v. 6, n. 5, pp. 1000548, 2016. doi: http://dx.doi.org/10.4172/2155-9600.1000548
    » https://doi.org/10.4172/2155-9600.1000548
  • [101]
    ALVEN, S., PETER, S., ADERIBIGBE, B.A., “Polymer-based hydrogels enriched with essential oils: a promising approach for the treatment of infected wounds”, Polymers, v. 14, n. 18, pp. 3772, Sep. 2022. doi: http://dx.doi.org/10.3390/polym14183772. PubMed PMID: 36145917.
    » https://doi.org/10.3390/polym14183772
  • [102]
    YIN, N., MA, W., PEI, J., et al., “Synergistic and antagonistic drug combinations depend on network topology”, PLoS One, v. 9, n. 4, pp. e93960, Apr. 2014. doi: http://dx.doi.org/10.1371/journal.pone.0093960. PubMed PMID: 24713621.
    » https://doi.org/10.1371/journal.pone.0093960
  • [103]
    FERNANDES, C.C., REZENDE, J.L., SILVA, E.A.J., et al., “Chemical composition and biological activities of essential oil from flowers of Psidium guajava (Myrtaceae)”, Brazilian Journal of Biology = Revista Brasileira de Biologia, v. 81, n. 3, pp. 728736, Sep. 2021. doi: http://dx.doi.org/10.1590/1519-6984.230533. PubMed PMID: 32876175.
    » https://doi.org/10.1590/1519-6984.230533
  • [104]
    CRACIUN, A.-M., BARHALESCU, M.L., AGOP, M., et al., “Theoretical modeling of long-time drug release from nitrosalicyl-imine-chitosan hydrogels through multifractal logistic type laws”, Computational and Mathematical Methods in Medicine, v. 2019, pp. 4091464, Aug. 2019. doi: http://dx.doi.org/10.1155/2019/4091464. PubMed PMID: 31485257.
    » https://doi.org/10.1155/2019/4091464
  • [105]
    SARUCHI, S., KAITH, B.S., JINDAL, R., et al., “Optimal response surface design of Gum tragacanth- based poly[(acrylic acid)-co-acrylamide] IPN hydrogel for the controlled release of the antihypertensive drug losartan potassium”, RSC Advances, v. 4, n. 75, pp. 3982239829, 2014. doi: http://dx.doi.org/10.1039/C4RA02803A
    » https://doi.org/10.1039/C4RA02803A

Publication Dates

  • Publication in this collection
    17 July 2023
  • Date of issue
    2023

History

  • Received
    03 Mar 2023
  • Accepted
    02 June 2023
Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro, em cooperação com a Associação Brasileira do Hidrogênio, ABH2 Av. Moniz Aragão, 207, 21941-594, Rio de Janeiro, RJ, Brasil, Tel: +55 (21) 3938-8791 - Rio de Janeiro - RJ - Brazil
E-mail: revmateria@gmail.com