SciELO - Scientific Electronic Library Online

 
vol.10 issue3Influence of the aerobic and anaerobic training on the body fat mass in obese adolescentsAcute cardiovascular responses on knee extension at different performance modes author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista Brasileira de Medicina do Esporte

Print version ISSN 1517-8692

Rev Bras Med Esporte vol.10 no.3 Niterói May/June 2004

http://dx.doi.org/10.1590/S1517-86922004000300005 

ARTIGO ORIGINAL

 

Alteração da relação testosterona: cortisol induzida pelo treinamento de força em mulheres

 

Alteración de la relación testosterona:cortisol inducida por el entrenamiento de fuerza en mujeres

 

 

Marco Carlos UchidaI, IV, V, VI; Reury Frank Pereira BacurauI, III; Francisco NavarroI, III, IV; Francisco Luciano Pontes Jr.I; Vitor Daniel TessutiV; Regina Lúcia MoreauII; Luís Fernando Bicudo Pereira Costa RosaIV; Marcelo Saldanha AokiI, IV

ILaboratório de Fisiologia do Exercício – Faculdade de Educação Física - Centro Universitário UniFMU, SP
IILaboratório de Análises Toxicológicas – Faculdade de Ciências Farmacêuticas – USP, SP
IIIPrograma de Pós-graduação Lato-Senso em Fisiologia do exercício – Universidade Gama Filho, RJ
IVInstituto de Ciências Biomédicas – USP, SP
VColégio Marista Arquidiocesano de São Paulo, SP
VIFaculdade de Educação Física – UNIFIEO, Osasco, SP

Endereço para correspondência

 

 


RESUMO

A razão entre a concentração de testosterona e cortisol (T:C) é freqüentemente utilizada como indicativo do nível de estresse imposto pelo exercício. Alterações na concentração destes hormônios são responsáveis por modular diversas respostas induzidas pelo treinamento, como hipertrofia e ganho de força. O objetivo do presente estudo foi examinar a influência do protocolo de treinamento de força, conhecido como múltiplas-séries (MS), sobre o ganho de força, de resistência muscular localizada e a relação entre a concentração de hormônios catabólicos (cortisol) e anabólicos (testosterona). Para testar esta hipótese cinco jovens do sexo feminino com um ano de experiência em treinamento de força foram submetidas ao protocolo MS. As amostras de sangue foram coletadas antes e imediatamente após o exercício, no primeiro dia e após oito semanas de treinamento. Os testes de 1-RM e de repetições máximas foram realizados também no início e ao final das oito semanas de treinamento de força. Não foram observadas alterações na massa corporal, no IMC, na percentagem de massa gorda e na força máxima (1-RM) no supino, no agachamento e na rosca direta. O número de repetições máximas a 50% de 1-RM foi aumentado apenas para o supino (p < 0,05). Não foi observada alteração na concentração de testosterona total. Com relação à concentração plasmática de cortisol, após oito semanas de treino, na situação de repouso, foi reduzida (38% – p < 0,05). Em conseqüência da atenuação da secreção de cortisol após oito semanas de treinamento, a razão T:C apresentou elevação de 20% na situação de repouso (p < 0,05). Apesar de não terem sido detectadas alterações funcionais nos testes de 1-RM e repetições máximas, o método MS induziu um quadro hormonal favorável ao anabolismo protéico.

Palavras-chave: Sistema endócrino. Múltiplas séries. Anabolismo. Catabolismo.


RESUMEN

La razón entre testosterona y cortisol (T:C) es frecuentemente utilizada como indicador del nivel de stress impuesto por el ejercicio. Las alteraciones de las concentraciones de estas hormonas son las responsables por modular diversas respuestas inducidas por el entrenamiento, como son la hipertrofia y el aumento de la fuerza. El objetivo del presente estudio fué examinar la influencia del protocolo de entrenamiento de fuerza, conocido como series multiples (MS), sobre la ganancia de fuerza, la resistencia muscular localizada y la relación entre las concentraciones de las hormonas catabólicas (cortisol) y anabólicas (testoterona). Para testar esta hipótesis, cinco jovenes del sexo feminino con un año de experiencia en entrenamiento de fuerza fueron sometidas al protocolo MS. Las muestras de sangre fueron colectadas antes e imediatamente después del ejercicio, en el primer día y después de ocho semanas de entrenamiento. Los tests de 1-RM y de repeticiones máximas fueron realizados también al inicio y al final después de las ocho semanas del entrenamiento de fuerza. No fueron observadas alteraciones de la masa corporal, IMC, porcentaje de masa grasa, fuerza (1-RM) para los ejercicios supino, agachamiento y rosca directa. El número de repeticiones máximas al 50% de 1-RM fue aumentando solamente apenas para el supino (p < 0,05). No se observó alteración en la concentración de la testosterona total. Con relación a la concentración plasmática de cortisol después de las ocho semanas de entrenamiento, en la situación de reposo fué reducida (38% – p < 0,05). En consecuencia de la atenuación de la secreción de cortisol después de ocho semanas de entrenamiento, la razón T:C presentó elevación del 20% de la situación de reposo (p < 0,05). A pesar de no haber sido detectadas alteraciones funcionales en los tests de 1-RM de repeticiones máximas, el método MS indujo un cuadro hormonal favorable al anabolismo proteico.

Palabras-clave: Sistema endócrino. Series múltiples. Anabolismo. Catabolismo.


 

 

INTRODUÇÃO

O treinamento de força vem conquistando grande número de mulheres, tornando-se importante componente do programa para promoção da aptidão física. Atualmente, existem vários protocolos de treinamento de força para melhorar diferentes aspectos do sistema neuromuscular(1); entretanto, a maioria destes métodos se originou da observação empírica, sem comprovação científica(2). A diferença entre esses protocolos de treinamento é a forma como as variáveis agudas (intensidade, o volume, o período de descanso entre as séries e a ordem dos exercícios) são dispostas(2,3). Apesar de muita controvérsia sobre a superioridade de um método sobre o outro, os estudos que avaliaram a eficiência e as adaptações provocadas por estes sistemas de treinamento a longo prazo são escassos(4).

As evidências iniciais disponíveis na literatura indicam que as respostas hormonais ao treinamento de força (ex.: aumento da concentração de hormônio do crescimento ou a taxa testosterona para cortisol) estão bem correlacionadas com mudanças no tamanho do músculo, assim como sua capacidade de gerar tensão(5). Em outras situações também é possível se observar a modulação exercida pelo sistema endócrino sobre as adaptações musculares. Por exemplo, as patologias relacionadas ao sistema endócrino, como a síndrome de Cushing (marcada pela hipersecreção de cortisol), podem induzir supressão da síntese miofibrilar de proteínas, acompanhado de deterioração das diferentes manifestações de força(6,7). Por outro lado, o aumento da concentração de hormônios como GH e testosterona estimulam o crescimento da massa muscular(7,8).

Considerando que a manipulação das variáveis do treino (volume, intensidade, período de descanso e ordem dos exercícios) é capaz de interferir sobre as respostas hormonais, que, por sua vez, são responsáveis pela ampliação da síntese protéica adaptativa(9), o objetivo do presente estudo foi examinar a influência do protocolo de treinamento de força (método de múltiplas séries – MS) sobre o ganho de força, resistência muscular localizada e ainda sobre a relação entre a concentração plasmática de testosterona e cortisol em mulheres.

 

MATERIAL E MÉTODOS

Sujeitos: Foram selecionadas cinco jovens (25,3 ± 2,6 anos), praticantes de treinamento de força, saudáveis e não tabagistas, com experiência superior a 12 meses. De acordo com Durand et al. (2003)(10), a resposta observada nesses indivíduos não representa a de iniciantes nem a de atletas altamente treinados, e sim de muitos jovens que se engajam nesse tipo de treinamento. Os participantes foram submetidos ao protocolo de treinamento MS. Realizou-se a coleta dos dados no início e após oito semanas de treinamento. Foram excluídas do estudo mulheres que reportaram histórico de qualquer distúrbio relacionado ao sistema endócrino e/ou ciclo menstrual. Com o intuito de evitar interferência da variação hormonal observada durante o ciclo menstrual, as coletas de sangue foram realizadas no início da fase folicular de cada mulher, no início e ao final da 8ª semana.

O experimento foi aprovado pela Comissão de Ética em Pesquisa com seres humanos do Instituto de Ciências Biomédicas da Universidade de São Paulo (Parecer no 72/00). Seguindo a resolução específica do Conselho Nacional de Saúde (no 196/96), todos os participantes foram informados detalhadamente sobre os procedimentos utilizados e concordaram em participar de maneira voluntária do estudo, assinando termo de consentimento informado e proteção da privacidade. Foram coletadas amostras de urina (início, quatro semanas e após as oito semanas), para averiguar a presença de anabolizantes esteróides; para todos, o resultado foi negativo. Esta análise foi realizada no Laboratório de Análises Toxicológicas da Faculdade de Ciências Farmacêuticas da USP.

Determinação da força máxima (1-RM) e da capacidade de repetição máxima

Após breve alongamento e aquecimento, a força máxima (1-RM) foi determinada através de três tentativas crescentes com intervalo de três minutos, nos respectivos exercícios, o supino, o agachamento e a rosca direta(11). Posteriormente, foi calculado o valor percentual equivalente a 50% do valor de 1-RM (50%-1-RM) para a execução do teste de repetições máximas. A capacidade de repetição máxima foi determinada pela exaustão ou incapacidade de manter o padrão do movimento.

Descrição do protocolo de treinamento de força – Durante as oito semanas, os sujeitos experimentais treinaram quatro vezes por semana (segunda, terça, quinta e sexta-feira), sendo segunda e quinta, o treino A, no qual eram trabalhados peito, costas e ombro; e terça e sexta era realizado o treino B, que consistia em exercícios para coxa e braço. A intensidade foi diferenciada para cada dia, segundas e terças, 100% de 10 repetições máximas (10-RM), e quintas e sextas feiras, 90% de 10 repetições máximas (90%-10-RM). O treinamento de endurance foi restrito a no máximo 20 minutos, duas vezes por semana, separado por pelo menos oito horas entre as sessões de força e resistência aeróbia. O método MS consistia em dois exercícios para cada agrupamento muscular, com exceção dos músculos da coxa, com três exercícios, em quatro séries de 10 repetições para cada exercício, com intervalo entre as séries de 90 segundos. Os exercícios utilizados foram: no treino A, supino, supino inclinado com halteres, remada baixa, puxada pela frente, elevação lateral e desenvolvimento com halteres, e no treino B, leg press, mesa extensora, mesa flexora, rosca direta, barra W, rosca alternada, tríceps na polia alta, tríceps francês.

Avaliação da composição corporal – A composição corporal foi avaliada através da utilização de compasso de dobra cutânea (Lange©); o protocolo utilizado foi o descrito previamente por Jackson e Pollock(12) para mulheres.

Determinações plasmáticas – Após cinco horas de jejum, o sangue foi coletado antes da sessão de treinamento às 19:00, caracterizando situação de repouso, e logo após o término da sessão de treinamento (20:00). Para avaliar as concentrações de testosterona e cortisol séricos, foram utilizados os kits por radioimunoensaio COAT-A-COUNT®, DPC. Os participantes foram instruídos a seguir um cardápio padrão, com horários estabelecidos, 24 horas antes das coletas de sangue(13). As dosagens hormonais foram conduzidas no Laboratório de Metabolismo do Instituto de Ciências Biomédicas da USP.

Análise estatística – Para a comparação entre antes e depois do exercício e pré e pós-treinamento, foi utilizado o teste t de Student pareado. Foi estipulado o nível mínimo de significância de p < 0,05.

 

RESULTADOS

Com relação à composição corporal (peso, IMC e massa gorda), não foram observadas diferenças significativas após a intervenção do treinamento MS em relação ao valor inicial (tabela 1). A carga máxima aferida pelo teste de 1-RM nos exercícios de supino, de agachamento e de rosca direta também não apresentou aumento em relação ao início do treinamento (tabela 2). A capacidade de repetição máxima foi elevada, apenas no supino, em relação ao valor inicial (p < 0,05) (tabela 3).

 

 

 

 

 

 

A concentração de testosterona não foi alterada em nenhum momento. A secreção de cortisol antes da sessão de treino (repouso) foi reduzida (38%) após oito semanas de treinamento (p < 0,05) (tabela 4). Imediatamente após a última sessão de treino na 8ª semana, a concentração de cortisol foi elevada (44%) em relação ao repouso (p < 0,01) (tabela 4). A relação entre a concentração plasmática de testosterona e a concentração plasmática de cortisol (T:C) foi elevada em 20% antes da realização da sessão de treino, na situação de repouso, após oito semanas (p < 0,05) (tabela 4). Imediatamente após a execução da sessão de treino (pós-exercício), após oito semanas de treinamento, foi observado decréscimo (35%) na relação T:C (p < 0,01) (tabela 4).

 

 

DISCUSSÃO

O intuito de nosso trabalho foi verificar a influência do método MS sobre a composição corporal, sobre parâmetros funcionais (testes de força máxima (1-RM) e de repetições máximas a 50% do valor de 1-RM) e sobre a relação entre testosterona e o cortisol (T:C) em mulheres. Esta relação (T:C) tem sido amplamente utilizada como indicativo de adaptação e/ou excesso de sobrecarga.

Nossos dados demonstraram que não houve alteração significativa na composição corporal dos participantes (tabela 1). Além disso, também não foram detectadas alterações de desempenho no teste de 1-RM (para os exercícios de supino, agachamento e rosca direta) (tabela 2), bem como, no teste de repetições máximas a 50%-1RM para os mesmos exercícios, com exceção do supino (tabela 3).

Na coleta inicial não foi verificado aumento na concentração de cortisol pós-exercício (tabela 4). Kraemer et al.(14) também reportaram esta mesma resposta aguda após a realização do exercício de força em mulheres. Estes autores acreditam que provavelmente o aumento do cortisol acontecerá na recuperação, indicando um atraso na secreção de cortisol pós-treino em mulheres. Marx et al.(4), assim como nós, demonstraram redução do cortisol circulante após oito semanas de treinamento de força em mulheres na situação de repouso. A repetição do estresse fisiológico imposto pelo exercício realizada no treinamento físico é correlacionada a alteração na sensibilidade do eixo hipotálamo-hipófise-adrenal(15-18) . Em alguns estudos, indivíduos treinados demonstraram aumento na sensibilidade da hipófise e do córtex da adrenal ao hormônio liberador de corticotropina (CRH), enquanto em outros foi reportado decréscimo(19). Conforme demonstrado por Luger et al.(15), corredores de elite demonstraram atenuação da resposta de secreção do hormônio adrenocorticotrópico (ACTH) e cortisol a administração exógena de CRH. Provavelmente, a redução do cortisol observada após oito semanas de treinamento MS na situação de repouso, conforme observado anteriormente(4,14), estaria relacionada à modulação exercida pelo eixo hipotálamo-hipófise-adrenal(15) .

Da mesma forma que no nosso estudo, Marx et al.(4) também observaram aumento na razão T:C após oito semanas de treinamento durante o repouso (tabela 4). Entretanto, ao contrário dos nossos resultados, estes autores verificaram aumento na concentração circulante de testosterona total. Porém, esta resposta de aumento da testosterona é controversa. A concentração de testosterona em diversos outros estudos também permaneceu inalterada(20,21). Bosco et al.(22) recentemente propuseram uma associação entre a concentração de testosterona e a redução da atividade neural durante uma sessão de treinamento de força de alta intensidade realizado em homens. Em função disso, estes autores concluíram que a testosterona (em concentração adequada) poderia compensar a fadiga de fibras rápidas (presente à medida que a sessão de treino avança), garantindo, assim, menor eficiência neuromuscular.

Os nossos resultados demonstram aumento na relação T:C (tabela 4), indicando que o quadro metabólico induzido pelo método MS é favorável ao anabolismo protéico(23,24). Após oito semanas de treinamento de força, os participantes apresentaram aumento significativo nessa relação, fato que pode ser explicado principalmente pela redução da concentração de cortisol. A redução do cortisol circulante após o treinamento de força tem sido reportado tanto em homens(14,25) quanto em mulheres(4,14). Esta queda pode ser relevante para inibição do catabolismo protéico e favorecimento da agregação de proteínas pela redução da sua degradação. Esta resposta pode ser especialmente importante para as fibras do tipo I, que dependem mais da redução da degradação protéica como mecanismo primário responsável pela sua hipertrofia(26).

Apesar de não ter sido detectada alteração significativa nos parâmetros funcionais e de composição corporal, isto não descarta a influência exercida pelas alterações hormonais. Provavelmente, as adaptações estruturais (síntese e agregação de proteínas contráteis) que possibilitem o ganho de força e resistência muscular necessitem de mais de oito semanas para ocorrer. Possivelmente, o caráter positivo da razão T:C a longo prazo propiciará o surgimento e desenvolvimento de tais adaptações.

A redução na concentração de testosterona, em conjunto com o aumento na concentração de cortisol, ocorre em períodos de treinamento extenuante. Atualmente, acredita-se que a concentração de testosterona para cortisol (relação T:C) seja um indicador fisiológico da sobrecarga de treinamento, à qual o indivíduo está exposto no período, mas ela não necessariamente indica síndrome de overtraining(9,23,24). Viru e Viru(9) destacam que essa mudança é claramente um indicativo de overeaching, mas não de overtraining. O decréscimo da relação T:C pós-treino evidenciada no nosso estudo, após oito semanas de treinamento utilizando o método MS, sugere que este estímulo representou uma sobrecarga intensa, de caráter pontual, ao organismo. Porém, o restabelecimento positivo da relação T:C na situação de repouso, após oito semanas de treinamento, sugere a ocorrência do mecanismo de supercompensação.

Apesar dos nossos resultados indicarem que o método MS é capaz de modular a relação T:C em mulheres, é importante ressaltar que o reduzido número de participantes (n = 5) e a curta duração do presente estudo (oito semanas) são fatores limitantes para conclusões definitivas. Outra limitação do presente estudo foi a ausência de um grupo controle. Indubitavelmente, ainda são necessários estudos adicionais para verificar a influência de diferentes protocolos de treinamento de força sobre o estresse imposto ao organismo e sua subseqüente capacidade de resposta-compensação a longo prazo.

 

CONCLUSÃO

Nossos dados reforçam a idéia da importância do controle correto das variáveis agudas relacionadas à prescrição do treinamento de força. Acreditamos que é imprescindível estabelecer quais protocolos de treinamento apresentam o potencial de promover adaptações positivas, sem o estabelecimento de condições deletérias. O decréscimo na relação T:C, após a sessão de treino, observado no final do estudo, sugere que método de treinamento de força utilizado representa um estímulo intenso para o organismo. Entretanto, a recuperação da relação T:C evidenciada na situação de repouso após oito semanas de treinamento sugere a ocorrência do mecanismo de supercompensação. Através deste resultado, podemos constatar que o método MS, ao final de oito semanas, parece induzir um quadro hormonal favorável ao anabolismo protéico no repouso.

 

AGRADECIMENTOS

Agradecemos o apoio da Fapesp e da academia Companhia Athletica Unidade SP-Market, São Paulo.

 

Todos os autores declararam não haver qualquer potencial conflito de interesses referente a este artigo.

 

REFERÊNCIAS

1. Smilios I, Pilianidis T, Karamouzis M, Tokmakidis S. Hormonal responses after various resistance exercise protocols. Med Sci Sports Exerc 2003;35:644-54.        [ Links ]

2. Fleck SJ, Kraemer WJ. Resistance training systems. In: Fleck SJ, Kraemer WJ, editors. Designing resistance training programs. 2nd ed. Champaing: Human Kinetics, 1997;117-32.        [ Links ]

3. Kraemer WJ. A series of studies: the physiological basis for strength training in American football: fact over philosophy. J Strength Cond Res 1997;11:131-42.        [ Links ]

4. Marx JO, Ratamess NA, Nindl BC, Gotshalk LA, Volek JS, Dohi K, et al. Low volume circuit versus high volume periodized resistance training in women. Med Sci Sports Exerc 2001;33:635-43.        [ Links ]

5. Hakkinen K, Pakarinen A, Alen M, Kauhanen H, Komi P. Neuromuscular and hormonal adaptations in athletes to strength training in two years. J Appl Physiol 1988;65:2406-12.        [ Links ]

6. Khaleeli AA, Betteridge DJ, Edwards RH, Round JM, Ross EJ. Effect of treatment of Cushing's syndrome on skeletal muscle structure and function. Clin Endocrinol 1983;19:547-56.        [ Links ]

7. Kayali AG, Young VR, Goodman MN. Sensitivity of myofibrillar proteins to glucocorticoid-induced muscle proteolysis. Am J Physiol 1987;252:E621-6.        [ Links ]

8. Crowley M, Matt KS. Hormonal regulation of skeletal muscle hypertrophy in rats: the testosterone to cortisol ratio. Eur J Appl Physiol 1996;73:66-72.        [ Links ]

9. Viru A, Viru M. Assessing changes in adaptivity for optimizing training strategies. In: Viru A, Viru M, editors. Biochemical monitoring of sport training. Champaign: Human Kinetics, 2001;193-220.        [ Links ]

10. Durand RJ, Castracane D, Hollander DB, Tryniecki JL, Bamman MM, O'Neal S, et al. Hormonal responses from concentric and eccentric muscle contractions. Med Sci Sports Exerc 2003;35:937-43.        [ Links ]

11. Harnan E, Garhammer J, Pandorf G. Administration, scoring, and interpretation of selected tests. In: Baechle TR, Earle RW, editors. Essentials of strength training and conditioning. 2nd ed. Champaign: Human Kinetics, 2000.        [ Links ]

12. Jackson AS, Pollock ML, Ward A. Generalized equations for predicting body density of women. Med Sci Sports Exerc 1980;12:175-81.        [ Links ]

13. Bacurau RF, Bassit RA, Sawada L, Navarro F, Martins E Jr, Costa Rosa LF. Carbohydrate supplementation during intense exercise and the immune response of cyclists. Clin Nutr 2002;21:423-9.        [ Links ]

14. Kraemer WJ, Staron RS, Hagerman FC, Hikida RS, Fry AC, Gordon SE, et al. The effects of short-term resistance training on endocrine function in men and women. Eur J Appl Physiol 1998;78:69-76.        [ Links ]

15. Luger A, Deuster PA, Kyle SB. Acute hypothalamic-pituitary-adrenal responses to the stress of treadmill exercise. N Engl J Med 1987;316:1309-15.        [ Links ]

16. Inder WJ, Hellemans J, Ellis MJ. Elevated basal adrenocorticotropin and evidence for increased central opioid tone in highly trained male athletes. J Clin Endocrinol Metab 1995;80:244-8.        [ Links ]

17. Loucks AB, Mortola JF, Girton L. Alterations in the hypothalamic-pituitary-ovarian and the hypothalamic-pituitary-adrenal axes in athletic women. J Clin Endocrinol Metab 1989;68:402-11.        [ Links ]

18. Snegovskaya V, Viru A. Elevation of cortisol and growth hormone levels in the course of further improvement of performance capacity in trained rowers. Int J Sports Med 1993;14:202-6.        [ Links ]

19. Kanaley JA, Hartman MD. Cortisol and growth hormone responses to exercise. The Endocrinologist 2002;12:421-32.        [ Links ]

20. Mccall GE, Byrnes WC, Fleck SJ, Dickinson A, Kraemer WJ. Acute and chronic hormonal responses to resistance training designed to promote muscle hypertrophy. Can J Appl Physiol 1999;24:96-107.        [ Links ]

21. Nindl BC, Kraemer WJ, Deaver DR. LH secretion and testosterone concentrations are blunted after resistance exercise in men. J Appl Physiol 2001;91:1251-8.        [ Links ]

22. Bosco C, Colli R, Bonomi R, Von Duvillard S, Viru A. Monitoring strength training: neuromuscular and hormonal profile. Med Sci Sports Exerc 2000;32:202-8.        [ Links ]

23. Urhausen A, Gabriel H, Kinderman W. Blood hormones as markers of training stress and overtraining. Sports Med 1995;20:351-76.        [ Links ]

24. Keizer HA. Neuroendocrine aspects of overtraining. In: Kreider RB, Fry AC, O'Toole ML, editors. Overtraining in sport. Champaign: Human Kinetics 1998;145-67.        [ Links ]

25. Kraemer WJ, Patton J, Gordon SE, Harman EA, Deschenes MR, Reynolds K, et al. Compatibility of high intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol 1995;78:976-89.        [ Links ]

26. Goldspink G. Cellular and molecular aspects of adaptation in skeletal muscle. In: Komi PV, editor. Strength and power in sport. Oxford: Blackwell Scientific Publications, 1992;221-9.        [ Links ]

 

 

Endereço para correspondência
Marco Carlos Uchida, Marcelo Saldanha Aoki
Laboratório de Fisiologia do Exercício, Faculdade de Educação Física - UniFMU
Rua Galvão Bueno, 707
01506-000 – São Paulo, SP

e-mail: uchida@usp.br; e-mail: saldanha@fmu.br

Recebido em 6/12/03. 2a versão recebida em 16/3/04. Aceito em 23/3/04