SciELO - Scientific Electronic Library Online

vol.18 issue4Can thermography aid in the diagnosis of muscle injuries in soccer athletes?Gait analysis on incline and decline surfaces of adult and elderly women with different volume of weekly activities author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Revista Brasileira de Medicina do Esporte

Print version ISSN 1517-8692

Rev Bras Med Esporte vol.18 no.4 São Paulo July/Aug. 2012 



Prevalence and asociated risks of injury in amateur street runners from Belo Horizonte, MG



Alberto Cantídio FerreiraI; Jésus Magno Cabral DiasI; Rafael de Melo FernandesI; George Schayer SabinoI; Marco Túlio Saldanha dos AnjosI; Diogo Carvalho FelícioII

INewton Paiva University Center - Belo Horizonte, MG, Brazil
IIPitágoras College - Betim, MG, Brazil

Mailing address




INTRODUCTION: The practice of street racing has increased in recent years, both for its ease and the low cost involved. This practice, however, involves risks of musculoskeletal injuries.
OBJECTIVE: To assess the prevalence of musculoskeletal injuries and analyze associated factors among street racers amateur of Belo Horizonte /MG.
METHODS: We conducted a cross-sectional observational study. Sample selection was by convenience. The participants were 100 amateur athletes with at least three months of practice running with minimum frequency of twice a week. We collected data on the prevalence of injuries and associated factors using a structured questionnaire.
RESULTS: The prevalence of injuries among athletes was 40%. Among the factors associated with injury include the distance and the variation in average daily volume of training.
CONCLUSION: The prevalence of injuries in amateur runners is considerable, although it was reported by less than half of the participants. The characteristics of training may trigger injury and should be carefully analyzed so that the race is held securely.

Keywords: race, prevalence, injury.




With the purpose to prevent the onset of many several chronic diseases, the American College of Sports Medicine (ACSM) and the American Heart Association (AHA) recommend the practice of physical activities of long duration, moderate intensity and with involvement of great muscular groups, whose characteristics perfectly fit in running1.

Running is a modality with a great number of practitioners, both due to its easiness of practice and its health benefits and low cost involved. It has become popular for these and other reasons; however, the individuals who practice it either in the competition or recreational field, are exposed to occasional associated risks, especially if the movement or training format are innapropriate2,3.

The commonest osteomuscular injuries in running occur in the lower limbs. A recent meta-analysis revealed that the incidence of injuries in running practitioners ranges from 19.4% to 79.3%, being the knee joint the most mentioned4.

The injury mechanism related to running respects a pattern common to all injuries in the different sports and derives from the overlap of many factors. These factors may be divided in extrinsic or intrinsic. The extrinsic factors are those which direct or indirectly are connected to the running preparation or practice and involve errors in the training planning and performance, kinds of training surface, kind of itinerary, kind of shoewear, eating habits and practice joined with other sports modalities. The intrinsic factors are those connected to the body and include biomechanical and anatomic abnormalities, flexibility, injury history, anthropometric characteristics, bone density, body composition and cardiovascular conditioning5-8.

Thus, running either amateur or professional, involves musculoskeletal injuries risk. Therefore, the aim of this study was to verify the prevalence of osteomyoarticular injuries and analyze the associated factors in amateur street runners of Belo Horizonte, MG.



Study outlining and ethical aspects

A transversal observational study was conducted. The study was approved by the Ethics in Research Committee of the Newton Paiva University Center (CAEE 0013.0.273.000-10). All individuals received information about the aims of the research and signed a Free and Clarified Consent Form before the data collection.


The sample selection was by convenience. Athletes with different practice sites were evaluated and the collection was performed in 11 places frequently used for running practice in Belo Horizonte ("Lagoa Seca' region, Avenida Bandeirantes, Praça JK, Avenida José do Patrocínio Pontes, Praça da Assembleia, Avenida José Cândido da Silveira, Lagoa da Pampulha, Avenida Silva Lobo, Parque Municipal, Avenida dos Andradas and Praça da Liberdade). The research was performed with amateur athletes who practiced running for at least three months, with minimum frequency of two times per week and whose age ranged between 18 and 60 years. Participants who performed another sport practice concomitantly or presented previous trauma history in lower limbs were excluded. 100 volunteers with predominance of the male sex (73%) participated in the research. The sample was divided in injured group (IG) and noninjured group (NIG)


Data were collected by previously trained researchers for standardization of the interview. The sample was characterized through the application of a questionnaire designed by the researchers with information concerning sex, age, weight, height and body mass index (BMI). Prevalence was analyzed considering injury any pain or aggravation which had limited or put away for one or more days the participation of the athletes in training and/or competitions in the last six months9. Concerning the associated factors, data about the training variables were collected. The time of the running practice, weekly frequency, daily mean distance, training duration, time of shoewear use, habitual time of the training and training recent variation were investigated. The variables mentioned above were selected for being frequently associated with the risk factors to injury in running4,5,8.

Statistical analysis

Descriptive statistics was used for sample characterization. The Student's t and Mann-Whitney U tests for independent groups were applied for evaluation of differences between groups. A significance level of α = 0.05 was considered in the inferential analyses. All data were analyzed through the SPSS program, version 15.0.



The sample characterization is demonstrated in table 1. In a general analysis, the volunteers were adults and healthy. No significant differences have been identified between the NIG and IG groups.



Table 2 expresses the quantitative variables in the IG and NIG groups. In the analysis between groups, the mean daily distance completed was the only variable with significant statistical difference (p = 0.004). There were no significant differences between genders within the same group and in the different groups (p > 0.05)

Table 3 presents the habitual time and the recent training variations. In the IG, the majority of the athletes (45%) trains in the morning shift, while in the NIG they train in the evening shift (61.6%). More than half of the athletes from IG (52.5%) performed a recent variation in training.




It is important to identify the prevalence and the factors associated with injuries in running so that efficient prevention measures can be adopted. Van Gent et al.4 stated that running can be considered a sport with high risk of injury onset. The present research included 100 volunteers and the prevalence of injuries was of 40%. The results obtained agree with the study by Macera10 who, in a literature review, reported injury prevalence within 24 and 65% among runners.

However, in the literature, great variability is observed in the data of injury onset. Taunton et al.11 verified prevalence of 29.5% in a sample with 844 runners; Hootman et al.12, 25% with 6,313 runners included in the study; Rosendal et al.13, 28% in a study involving 330 military subjects; Hino et al.14, 28,5% with a sample composed of 295 amateur runners; and Middelkoop et al.15, 54.8% in a study conducted with 725 participants of the Rotterdam marathon. Partly, the variability in the results derives from the heterogeneity of the sample as well as methodological divergence in the studies.

The investigations on injury in sports find great difficulty due to the methodological aspects as criteria for cataloging of the injury concept. In our study, we considered injury any pain or aggravation which had limited or put away for one or more days the participation of the athlete in training and/or competitions in the last six months proposed by Lun et al.9. Nevertheless, other definitions are also used. Rudzki16 and Fauno et al.17 considered injury as a nosological diagnosis performed by a doctor; Pollock et al.18, na event which hampered the athletes from running for at least one week; Pope et al.19, the incapacity to complete the daily tasks without sign and symptoms within three days; and Pastre et al.20, pain or musculoskeletal affection resulting from sports training and competitions and which was sufficient to cause alterations in the normal training. Thus, standardization becomes necessary so that the results can be confronted.

The literature has not reached a consensus regarding the differences in the prevalence of injuries among men and women. It is stated that biomechanical, hormone and neuromuscular factors play a crucial role in the onset of injuries21,22. In the present study, there were no differences between genders. Similar prevalence in the male (41%) and female sexes (37%) was observed. The sample size, the lack of biomechanical quantitative data, the nosological diagnosis and the laboratory information made a data analysis impossible.

Concerning the quantitative variables, the mean distance completed per day was the only variable with significant statistical difference between the IG and NIG (p = 0.004). The frequency of adverse results increases when the athletes are engaged in running programs in which the weekly itinerary is longer than 32km23. According to Yeung and Yeung5, there is scientific evidence that the reduction in the distance completed may reduce the onset of injuries. Hootman et al.12 conclude that increase in risk of musculoskeletal injury increases among runners according to increase in weekly training volume. The runners who trained more than 3.75 hours/weeks presented 2.38 more probability to suffer injury when compared to individuals who trained less than 1.25 hours/week. Fredericson and Misra24 corroborated that higher weekly kilometer distance represents higher risk of injury.

An important point to be reflected, besides the training volume (distance), is the training intensity (velocity). It can be deducted that the IG and NIG presented different training velocities, since they did not present difference in the training duration (time), but, at the same time, presented difference in the mean distance completed (km). Thus, it can mean higher mean velocity in the IG compared to the NIG, although this variable had not directly been measured in this investigation. Perhaps, due to the difficulty in in loco measurement, there are few studies in the literature which explain the relationship between training velocity and onset of injuries.

Concerning the categoric variables, the training time was not distinct between the IG and NIG, and this variable was not considered a cause or protection factor to the activity, according to data found in the study. Regarding the training alterations, 52.5% of the individuals in the IG performed a recent variation in training against 31.6% in the NIG. Yeung and Yeung5 observed that there is Strong association between alteration in training and onset of injuries by overload. Sudden changes in training do not allow physiological adaptation of the organism, leading to tissue injury25.

Considerable prevalence of injuries in amateur street runners was observed, despite the short observation time of short months. The negative consequences of the injuries affect the psychological well-being of the athlete and can compromise his/her mental health through symptoms such as depression, fear, frustration, impatience and self-image unfavorable to the practice of the sports modality26.

We chose to perform data collection in places frequently used for running practice in the city of Belo Horizonte without previous environmental analysis of the terrain; however, we stress that different places for running practice impose different overloads during the activity, which may have reflected on the results.

Among the limitations to the study we can mention the management of the injury, which is susceptible to the memory bias, and the study outlining which does not allow cause inference.



It can be concluded that among the amateur street runners of the city of Belo Horizonte, MG, 40% of the interviewed volunteers reported to have suffered some kind of injury over the last six months. Among the associated factors to the injury we highlight daily mean distance and variation in the training volume. Thus, the training characteristics may trigger injuries and should be carefully analyzed so that the activity is safely performed.



1. Pedersen BK, Saltin B. Evidence for prescribing exercise as therapy in chronic disease. Medicine. Scand J Med Sci Sports 2006;16:3-63.         [ Links ]

2. Salgado JVV, Chacon-Mikahil MPT. Corrida de rua: análise do crescimento do número de provas e de praticantes. Conexões 2006;4:90-9.         [ Links ]

3. Paluska SA. An overview of hip injuries in running. Sports Med 2005;35:991-1014.         [ Links ]

4. Van Gent RN, Siem D, Van Middelkoop M, et al. Incidence and determinants of lower extremity running injuries in long distance runners: a systematic review. Br J Sports Med 2007;41:469-80.         [ Links ]

5. Yeung EW, Yeung SS. A systematic review of interventions to prevent lower limb soft tissue running injuries. Br J Sports Med 2001;35:383-9.         [ Links ]

6. Fredericson M, Weir A. Practical Management of Iliotibial Band Friction Syndrome in Runners. Clin J Sport Med 2006;16:1-6.         [ Links ]

7. Cosca DD, Navazio F. Common Problems in Endurance Athletes. Am Fam Physician 2007;76:237-44.         [ Links ]

8. Buist I, Bredeweg SW, Lemmink KA, Pepping GJ, Zwerver J, van Mechelen W, Diercks RL. Incidence and risk factors of Running-Related Injuries during preparation for a four-mile recreational running event. Br J Sports Med 2010;44:598-604.         [ Links ]

9. Lun V, Meeuwisse WH, Stergiou P, Stefanyshyn D. Relation between running injury and static lower limb alignment in recreational runners. Br J Sports Med 2004;38:576-80.         [ Links ]

10. Macera CA. Lower extremity injuries in runners. Advances in prediction. Sports Med 1992;13:50-7.         [ Links ]

11. Taunton JE, Ryan MB, Clement DB, Mckenzie DC, Lloyd-Smith DR, Zumbo BD. A prospective study of running injuries: the Vancouver Sun Run "In Training" clinics. Br J Sports Med 2003;37:239-44.         [ Links ]

12. Hootman JM, Macera CA, Ainsworth BE, Addy CL, Martin M, Blair SN. Epidemiology of musculoskeletal injuries among sedentary and physically active adults. Med Sci Sports Exerc 2002;34:838-44.         [ Links ]

13. Rosendal L, Langberg H, Skov-Jensen A, Kjaer M. Incidence of injury and physical performance adaptations during military training. Clin J Sport Med 2003;13:157-63.         [ Links ]

14. Hino AAF, Reis RS, Rodiguez-añez CR, Fermino RC. Prevalência de lesões em corredores de rua e fatores associados. 2009. Rev Bras Med Esporte 2009;15:36-9.         [ Links ]

15. Middelkoop Van M, Kolkman J, Van Ochten J, Bierma-Zeinstra SMA, Koes B. Prevalence and incidente of lower extremity injuries in male marathon runners. Scand J Med Sci Sports 2008;18:140-4.         [ Links ]

16. Rudzki SJ. Injuries in Australian army recruits. Part I. Decreased incidence and severity of injury seen with reduced running distance. Mil Med 1997;162:472-6.         [ Links ]

17. Fauno P, Kalund S, Andreasen I, et al. Soreness in lower extremities and back is reduced by use of shock absorbing heel inserts. Int J Sports Med. 1993;14:288-90.         [ Links ]

18. Pollock ML, Gettman LR, Milesis CA, et al. Effects of frequency and duration of training on attrition and incidence of injury. Med Sci Sports Exerc 1977;9:31-6.         [ Links ]

19. Pope RP, Herbert RK, Kirwan JD, et al. A randomized trial of preexercise stretching for prevention of lower limb injury. Med Sci Sports Exerc 2000;32:271-7.         [ Links ]

20. Pastre CM, Filho GC, Monteiro HL, Junior JN, Padovani CR. Lesoes desportivas na elite do atletismo brasileiro: estudo a partir de morbidade referida. Rev Bras Med Esporte 2005;11:43-7.         [ Links ]

21. Reinking MF. Exercise-Related Leg Pain in Female Collegiate Athletes The Influence of Intrinsic and Extrinsic Factors. Am J Sports Med 2008;34:1500-7.         [ Links ]

22. Buist I,Bredeweg SW, Lemmink KAPM et al. Predictors of Running-Related Injuries in Novice Runners Enrolled in a Systematic Training Program: A Prospective Cohort Study. Am J Sports Med 2010;38:273-80.         [ Links ]

23. Marti B, Vader JP, Minder CE, et al. On the epidemiology of running injuries. The 1984 Bern Grand-Prix study. Am J Sports Med 1988;16:285-94.         [ Links ]

24. Fredericson M, Misra AK. Epidemiology and aetiology of Marathon running injuries. Sports Med 2007;37:437-9.         [ Links ]

25. Mueller MJ, Maluf KS. Tissue Adaptation to Physical Stress: A Proposed "Physical Stress Theory" to Guide Physical Therapist Practice, Education, and Research. Phys Ther 2002;82:383-403.         [ Links ]

26. Tracey J. The emotional response to the injury and rehabilitation process. Journal of Applied Psychology 2003;15:279-93.         [ Links ]



Mailing address:
Diogo Carvalho Felício
Alameda Maria Turíbia de Jesus, 44/101, Centro
32560-090 - Betim, MG

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License