Acessibilidade / Reportar erro

Cytotoxic effect of Vernonanthura polyanthes leaves aqueous extracts

Efeito citotóxico do extrato aquoso de folhas de Vernonanthura polyanthes.

Abstract

Vernonanthura polyanthes, popularly known as assa-peixe, is a medicinal plant that has been widely used by Brazilian Cerrado population for treatment of diseases without a detailed evaluation of their effectiveness, toxicity, and proper dosage. Thus, more studies investigating the safety of V. polyanthes aqueous extract before the use are needed. The purpose of this study was to evaluate the toxicity, cytotoxicity and genotoxicity of V. polyanthes leaves aqueous extract using the Artemia salina and Allium cepa assays. For the A. salina assay, three groups of 10 larvae were exposed to V. polyanthes leaves aqueous extract at the concentrations of 5, 10, 20, 40, and 80 mg/ml. For the A. cepa assay, 5 onion bulbs were exposed to V. polyanthes leaves aqueous extract at 10, 20, and 40 mg/ml, and then submitted to macroscopic and microscopic analysis. As result it was identified a toxicity and cytotoxicity of V. polyanthes dependent on the extract concentration. The A. salina assay suggests that the concentration of 24 mg/ml of the V. polyanthes extract is able to kill 50% of naupllis; while the A. cepa assay suggests that V. polyanthes leaves aqueous extract is toxic at concentrations higher than 20 mg/ml; however the cytotoxic effect in A. cepa root cells was observed at 40 mg/ml of the extract. It is important to say that the V. polyanthes leaves aqueous extract concentration commonly used in popular medicine is 20 mg/ml. Thus, the popular concentration used is very close to toxicity limit in A. salina model (24 mg/ml) and is the concentration which showed toxic effect in A. cepa root cells (20 mg/ml). No genotoxic activity of V. polyantes leaves aqueous extract was observed in the conditions used in this study. Because of the antiproliferative action and no genotoxic activity, V. polyanthes leaves aqueous extract may present compounds with potential use for human medicine. However more detailed studies need to be performed to confirm this potential.

Keywords:
Allium cepa; Artemia salina; assa-peixe; Cerrado; cytotoxicity

Resumo

Vernonanthura polyanthes, popularmente conhecida como assa-peixe, é uma planta medicinal amplamente utilizada pela população brasileira do Cerrado para o tratamento doenças, sem uma avaliação detalhada de sua eficácia, toxicidade e dosagem adequada. Dessa forma, são necessários estudos para investigar a segurança do uso do extrato aquoso de V. polyanthes. O objetivo deste estudo foi avaliar a toxicidade, citotoxicidade e genotoxicidade do extrato aquoso de folhas de V. polyanthes utilizando os ensaios de Artemia salina e Allium cepa. Para o ensaio de A. salina, três grupos de 10 larvas foram expostos ao extrato aquoso de folhas de V. polyanthes nas concentrações de 5, 10, 20, 40 e 80 mg/ml. Para o ensaio de A. cepa, 5 bulbos de cebola foram expostas ao extrato aquoso de folhas de V. polyanthes nas concentrações de 10, 20 e 40 mg/ml, e então submetidos a análise macroscópica e microscópica. O ensaio de A. salina sugere que a concentração de 24 mg/ml do extrato de V. polyanthes é capaz de matar 50% dos náuplios; enquanto o ensaio de A. cepa sugere que o extrato aquoso das folhas de V. polyanthes é tóxico em concentrações superiores a 20 mg/ml. O efeito citotóxico nas células da raiz de A. cepa foi observado apenas na concentração de 40 mg/ml. É importante dizer que a concentração de extrato aquoso de folhas de V. polyanthes comumente usada na medicina popular é de 20 mg/ml. Assim, a concentração popular utilizada está muito próxima do limite de toxicidade no modelo de A. salina (24 mg/ml) e é a mesma concentração que apresentou efeito tóxico nas células da raiz de A. cepa (20 mg/ml). Não foi observada atividade genotóxica do extrato aquoso de folhas de V. polyantes nas condições utilizadas neste trabalho. Por causa da ação antiproliferativa e ausência de atividade genotóxica, o extrato aquoso de folhas de V. polyanthes pode ser uma boa fonte natural de compostos antitumorais e pode apresentar potencial para uso na medicina. No entanto, estudos mais detalhados precisam ser realizados para confirmar esse potencial.

Palavras-chave:
Allium cepa; Artemia salina; assa-peixe; Cerrado; citotoxicidade

1. Introduction

Medicinal plants have played an important role in the prevention, treatment and also cure of different diseases. The plants used in medicine, food supplements, cosmetics, and other health related products has increased along the time (Jones et al., 2004JONES, P.H., CHRISTODOULOS, K., DOBBS, N., THAVASU, P., BALKWILL, F., BLANN, A.D., CAINE, G.J., KUMAR, S., KAKKAR, A.J., GOMPERTZ, N., TALBOT, D.C., GANESAN, T.S. and HARRIS, A.L., 2004. Combination antiangiogenesis therapy with marimastat, captopril and fragmin in patients with. British Journal of Cancer, vol. 91, no. 1, pp. 30-36. http://dx.doi.org/10.1038/sj.bjc.6601897. PMid:15162145.
http://dx.doi.org/10.1038/sj.bjc.6601897...
). Approximately 50% of all drugs currently in clinical trials are derived from plants (Shakya, 2016SHAKYA, A.K., 2016. Medicinal plants: future source of new drugs. International Journal of Herbal Medicine, vol. 4, no. 4, pp. 59-64.) and there is speculation that more than two billion people worldwide resort to medicinal plants to treat diseases (Lambert et al., 1997LAMBERT, J., SRIVASTAVA, J. and VIETMAYER, N., 1997. Medicinal plants - rescuing a global heritage. Washington DC: World Bank. Technical Paper, no. 355.).

The bioactive phytocompounds present in medicinal plants include an array of compounds, such as tannins, lignans, coumarins, quinones, stilbenes, xanthones, phenolic acids, flavones, flavonols, catechins, anthocyanins, and proanthocyanins. However, it is important to say that those same compounds also can cause adverse issues for human health, if bad administered. For example, rosemary (Cardoso et al., 2014CARDOSO, G.H.S., DANTAS, E.B.S., SOUSA, F.R.C. and PERON, A.P., 2014. Cytotoxicity aqueous extracts of Rosmarinus officinalis L (Labiatae) in plant test system. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 74, no. 4, pp. 886-889. http://dx.doi.org/10.1590/1519-6984.07313. PMid:25627599.
http://dx.doi.org/10.1590/1519-6984.0731...
), and guaco (Dalla Nora et al., 2010DALLA NORA, G., PASTORI, T., LAUGHINGHOUSE 4TH, H.D., DO CANTO-DOROW, T.S. and TEDESCO, S.B., 2010. Antiproliferative and genotoxic effects of Mikania glomerata (Asteraceae). Biocell, vol. 34, no. 3, pp. 95-101. PMid:21443139.), commonly considered medicinal plants, reveals toxic effects dependent on the dose.

The present study is designed to appraise the toxicity and cytogenotoxicity potential of a folk medicinal plant, Vernonanthura polyanthes (Spreng.) A.J. Vega & Dematt. known commonly as assa-peixe. The genus Vernonia went through a taxonomical reclassification and the South America species were segregated in 22 new genera, including Vernonathura (Robinson, 1999ROBINSON, H., 1999. Generic and subtribal classification of American Vernonieae. Smithsonian Contributions to Botany, no. 89, pp. 1-116. https://doi.org/10.5479/si.0081024X.89.
https://doi.org/10.5479/si.0081024X.89...
). The taxonomic classification of Vernonia and Vernonathura genus are yet complex and unclear (Martucci et al., 2104). But the compounds found in species of booth genus have been usually used in popular medicine. Vernonanthura polyanthes presents oval leaves, rough and hairy spear-shaped and occurs primarily in Brazilian Cerrado biome (Vega and Dematteis, 2010VEGA, A.J. and DEMATTEIS, M., 2010. The transfer of Vernonia perangusta to the genus Vernonanthura (Vernonieae, Asteraceae) and the correct name for Vernonanthura phosphorica. Phytotaxa, vol. 8, no. 1, pp. 46-50. http://dx.doi.org/10.11646/phytotaxa.8.1.5.
http://dx.doi.org/10.11646/phytotaxa.8.1...
). The white or pink inflorescences are arranged at the apices of the branches in small capitula (Alves and Neves, 2003ALVES, V.F.G. and NEVES, L.J., 2003. Anatomia Foliar de Vernonia polyanthes Less (Asteraceae). Revista da Universidade Rural - Série Ciências da Vida, vol. 22, pp. 1-8.).

Vernonanthura polyanthes extracts are used in ethnomedicine to treat persistent coughs, pneumonia, bronchitis, gastric disorders, kidney stones, malaria, fever, wounds and fractures (Lorenzi and Matos, 2008LORENZI, H. and MATOS, F.J.A., 2008. Plantas medicinais no brasil: nativas e exóticas. 2nd ed. Nova Odessa: Instituto Plantarum, pp. 165-166.). In addition, the plant is indicated by common sense as diuretic and anti-rheumatic (Jorgetto et al., 2011JORGETTO, G.V., BORIOLO, M.F.G., SILVA, L.M., NOGUEIRA, D.A., JOSÉ, T.D.S. and RIBEIRO, G.E., 2011. Ensaios de atividade antimicrobiana in vitro e mutagênica in vivo com extrato de Vernonia polyanthes Less (Assa-peixe). Revista do Instituto Adolfo Lutz, vol. 70, no. 1, pp. 53-61.; Oliveira et al., 2011OLIVEIRA, A.K.M., OLIVEIRA, N.A., RESENDE, U.M. and MARTINS, P.F.R.B., 2011. Ethnobotany and traditional medicine of the inhabitants of the Pantanal Negro sub-region and the raizeiros of Miranda and Aquidauna, Mato Grosso do Sul, Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 71, no. 1, suppl. 1, pp. 28-289. http://dx.doi.org/10.1590/S1519-69842011000200007. PMid:21537601.
http://dx.doi.org/10.1590/S1519-69842011...
). Focusing on the pharmacological research, this species demonstrated to be a potential vasodilatation agent, able to manage blood pressure (Romanezi da Silveira et al., 2003ROMANEZI DA SILVEIRA, S., FOGLIO, M.A. and GONTIJO, J.A.R., 2003. Effect of the crude extract of Vernonia polyanthes Less. on blood pressure and renal sodium excretion in unanesthetized rats. Phytomedicine, vol. 10, no. 2-3, pp. 127-131. http://dx.doi.org/10.1078/094471103321659825. PMid:12725565.
http://dx.doi.org/10.1078/09447110332165...
). Moreover, this species demonstrated antibacterial (Romanezi da Silveira et al., 2003ROMANEZI DA SILVEIRA, S., FOGLIO, M.A. and GONTIJO, J.A.R., 2003. Effect of the crude extract of Vernonia polyanthes Less. on blood pressure and renal sodium excretion in unanesthetized rats. Phytomedicine, vol. 10, no. 2-3, pp. 127-131. http://dx.doi.org/10.1078/094471103321659825. PMid:12725565.
http://dx.doi.org/10.1078/09447110332165...
), antifungal (Silva et al., 2012SILVA, N.C.C., BARBOSA, L., SEITO, L.N. and FERNANDES JUNIOR, A., 2012. Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants. Natural Product Research, vol. 26, no. 16, pp. 1510-1514. http://dx.doi.org/10.1080/14786419.2011.564582. PMid:22007687.
http://dx.doi.org/10.1080/14786419.2011....
), leishmanicidal (Moreira et al., 2017MOREIRA, R.R.D., MARTINS, G.Z., VARANDAS, R., COGO, J., PEREGO, C.H., RONCOLI, G., SOUSA, M.D.C., NAKAMURA, C.V., SALGUEIRO, L. and CAVALEIRO, C., 2017. Composition and leishmanicidal activity of the essential oil of Vernonia polyanthes Less (Asteraceae). Natural Product Research, vol. 31, no. 24, pp. 2905-2908. http://dx.doi.org/10.1080/14786419.2017.1299723. PMid:28368666.
http://dx.doi.org/10.1080/14786419.2017....
), antinociceptive and anti-inflammatory activities (Temponi et al., 2012TEMPONI, V.S., SILVA, J.B., ALVES, M.S., RIBEIRO, A., PINHO, J.J.R.G., YAMAMOTO, C.H., PINTO, M.A.O., DEL-VECHIO-VIEIRA, G. and SOUSA, O.V., 2012. Antinociceptive and anti-inflammatory effects of ethanol extract from Vernonia polyanthes leaves in rodents. International Journal of Molecular Sciences, vol. 13, no. 3, pp. 3887-3899. http://dx.doi.org/10.3390/ijms13033887. PMid:22489187.
http://dx.doi.org/10.3390/ijms13033887...
; Rodrigues et al., 2016RODRIGUES, K.C., CHIBLI, L.A., SANTOS, B.C., TEMPONI, V.S., PINTO, N.C., SCIO, E., DEL-VECHIO-VIEIRA, G., ALVES, M.S. and SOUSA, O.V., 2016. Evidence of bioactive compounds from Vernonia polyanthes leaves with topical anti-inflammatory potential. International Journal of Molecular Science, vol. 17, no. 12, 1929. PMid: 27916942. ). In addition, V. polyanthes extracts promotes gastroprotection without significant effects on gastric acid secretion (Barbastefano et al., 2007BARBASTEFANO, V., COLA, M., LUIZ-FERREIRA, A., FARIAS-SILVA, E., HIRUMA-LIMA, C.A., RINALDO, D., VILEGAS, W. and SOUZA-BRITO, A.R.M., 2007. Vernonia polyanthes as a new source of antiulcer drugs. Fitoterapia, vol. 78, no. 7-8, pp. 545-551. http://dx.doi.org/10.1016/j.fitote.2007.07.003. PMid:17904766.
http://dx.doi.org/10.1016/j.fitote.2007....
).

In relation to the toxicity, previous study identified that the V. polyanthes aqueous extract showed no toxic, genotoxic, and antigenotoxic activity in the experimental conditions tested using the wing somatic mutation and recombination test SMART/wing (Guerra-Santos et al., 2016GUERRA-SANTOS, I.J., ROCHA, J.D., VALE, C.R., SOUSA, W.C., TELES, A.M., CHEN-CHEN, L., CARVALHO, S. and BAILÃO, E.F.L.C., 2016. Vernonanthura polyanthes leaves aqueous extract enhances doxorubicin genotoxicity in somatic cells of Drosophila melanogaster and presents no antifungal activity against Candida spp. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 76, no. 4, pp. 928-936. http://dx.doi.org/10.1590/1519-6984.04615. PMid:27143064.
http://dx.doi.org/10.1590/1519-6984.0461...
). On the other hand, other study demonstrated that the V. polyanthes leaves ethanolic extract was toxic to mice with LD50 of 2.78 g/kg (Temponi et al., 2012TEMPONI, V.S., SILVA, J.B., ALVES, M.S., RIBEIRO, A., PINHO, J.J.R.G., YAMAMOTO, C.H., PINTO, M.A.O., DEL-VECHIO-VIEIRA, G. and SOUSA, O.V., 2012. Antinociceptive and anti-inflammatory effects of ethanol extract from Vernonia polyanthes leaves in rodents. International Journal of Molecular Sciences, vol. 13, no. 3, pp. 3887-3899. http://dx.doi.org/10.3390/ijms13033887. PMid:22489187.
http://dx.doi.org/10.3390/ijms13033887...
). That contradictory information needs to be best analyzed to verify the V. polyanthes toxicological potential. Actually, several different methodologies should be used to ensure accurate information about the toxicity of medicinal plants.

Here we selected two different methodologies to evaluate the V. polyanthes toxicological potential: Allium cepa and Artemia salina assays. Those methods are very useful for toxicity and cytogenotoxicity screening and they are simple, inexpensive and minimum laboratory facilities are required for its performance (Ribeiro et al., 2016RIBEIRO, T.P., SOUSA, T.R., ARRUDA, A.S., PEIXOTO, N., GONÇALVES, P.J. and ALMEIDA, L.M., 2016. Evaluation of cytotoxicity and genotoxicity of Hancornia speciosa latex in Allium cepa root model. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 76, no. 1, pp. 245-249. http://dx.doi.org/10.1590/1519-6984.20114. PMid:26909640.
http://dx.doi.org/10.1590/1519-6984.2011...
; Neves et al., 2014NEVES, E.S.B., FERREIRA, P.M., LIMA, L.H. and PERON, A.P., 2014. Action of aqueous extracts of Phyllantha niruri L (Euphorbiaceae) leaves on meristematic root cells of Allium cepa. Annals of the Brazilian Academy of Science, vol. 86, no. 3, pp. 1131-1137. http://dx.doi.org/10.1590/0001-3765201420130170. PMid:25098312.
http://dx.doi.org/10.1590/0001-376520142...
; Leme and Marin-Morales, 2009LEME, D.M. and MARIN-MORALES, M.A., 2009. Allium cepa test in environmental monitoring: A review on its application. Mutation Research, vol. 682, no. 1, pp. 71-81. http://dx.doi.org/10.1016/j.mrrev.2009.06.002. PMid:19577002.
http://dx.doi.org/10.1016/j.mrrev.2009.0...
). Moreover, the results obtained using those in vivo models show a high degree of conformity with the results obtained from mammalian assays (Freires et al., 2017FREIRES, I.A., SARDI, J.C., CASTRO, R.D. and ROSALEN, P.L., 2017. Alternative animal and non-animal models for drug discovery and development: bonus or burden? Pharmaceutical Research, vol. 34, no. 4, pp. 681-686. http://dx.doi.org/10.1007/s11095-016-2069-z. PMid:27858217.
http://dx.doi.org/10.1007/s11095-016-206...
; Fedel-Miyasato et al., 2014FEDEL-MIYASATO, L.E., FORMAGIO, A.S., AUHAREK, S.A., KASSUYA, C.A., NAVARRO, S.D., CUNHA-LAURA, A.L., MONREAL, A.C., VIEIRA, M.C. and OLIVEIRA, R.J., 2014. Antigenotoxic and antimutagenic effects of Schinus terebinthifolius Raddi in Allium cepa and Swiss mice: a comparative study. Genetics and Molecular Research, vol. 13, no. 2, pp. 3411-3425. http://dx.doi.org/10.4238/2014.April.30.2. PMid:24841786.
http://dx.doi.org/10.4238/2014.April.30....
; Leme and Marin-Morales, 2009LEME, D.M. and MARIN-MORALES, M.A., 2009. Allium cepa test in environmental monitoring: A review on its application. Mutation Research, vol. 682, no. 1, pp. 71-81. http://dx.doi.org/10.1016/j.mrrev.2009.06.002. PMid:19577002.
http://dx.doi.org/10.1016/j.mrrev.2009.0...
).

2. Material and Methods

2.1. Plant collection and preparation of aqueous extract

Samples of Vernonanthura polyanthes (Spreng.) A.J. Vega & Dematt leaves were collected from specimes located at Campus Henrique Santillo, Universidade Estadual de Goiás, Anápolis, Goiás, Brasil (16° 23’ 0,16”S 48° 56’ 37,8”W, 1073 m) in November 2015 and plants no present flowers at the moment of collect. The collected leaves were identified and a voucher specimen was deposited in UEG Herbarium under identification number 10512. After the identification, the leaves were dried under air circulation and powdered using a knife mill. The aqueous extract solution was prepared by infusion with boiling water. After a rest of 20 min, the solution was filtered using the Millipore membrane filter (0.45 μm pore size) and briefly used. The V. polyanthes leaves aqueous extract concentration commonly used in popular medicine is 20 mg/ml (ANVISA, 2011AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA – ANVISA, 2011. Formulário de fitoterápicos da farmacopeia brasileira. Brasília: ANVISA, 126 p., Guerra-Santos et al., 2016GUERRA-SANTOS, I.J., ROCHA, J.D., VALE, C.R., SOUSA, W.C., TELES, A.M., CHEN-CHEN, L., CARVALHO, S. and BAILÃO, E.F.L.C., 2016. Vernonanthura polyanthes leaves aqueous extract enhances doxorubicin genotoxicity in somatic cells of Drosophila melanogaster and presents no antifungal activity against Candida spp. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 76, no. 4, pp. 928-936. http://dx.doi.org/10.1590/1519-6984.04615. PMid:27143064.
http://dx.doi.org/10.1590/1519-6984.0461...
). Then, it was tested five different concentrations in A. salina assay (5, 10, 20, 40, and 80 mg/ml) and three different concentrations in A. cepa assay (10, 20, and 40 mg/ml).

2.2. Phytochemical screening and secondary metabolites quantification

The V. polyanthes leaves aqueous extract was evaluated to detect the presence of the secondary metabolites. The screening was performed for alkaloids (Bouchardat, Draggendorff and Mayer reaction), anthraquinones (Borntraeger reaction), coumarins (NaOH reactions), flavonoids (cianidin and sulfuric acid reactions, A-1 and A-II), terpenes, phenolic compounds (precipitation reaction with ferric chloride), and tannins (iron salts reaction, protein precipitation, B-1 and B-II), using methodologies previously described (Costa, 2001COSTA, A.F., 2001. Farmacognosia. 3rd ed. Lisboa: F. Calouste Gulbenkian, 992 pp.; Matos, 1988MATOS, F.J.A., 1988. Introdução à fitoquímica experimental. Fortaleza: UFC, 128 p.; Matos and Matos, 1989MATOS, J.M.D. and MATOS, M.E.O., 1989. Farmacognosia: curso teórico-prático. Fortaleza: UFC, 245 p.). Also, the total phenols, flavonoids and tannins were quantified using methodologies previously described by Waterman and Mole (1994)WATERMAN, P.G. and MOLE, S., 1994. Analysis of phenolic plant metabolites. Oxford: Blackwell. Scientific Publication, 238 p. and Rolim et al. (2005)ROLIM, A., MACIEL, C.P., KANEKO, T.M., CONSIGLIERI, V.O., SALGADO-SANTOS, I.M. and VELASCO, M.V., 2005. Validation assay for total flavonoids, as rutin equivalents, from Trichilia catigua Adr. Juss (Meliaceae) and Ptychopetalum olacoides Bentham (Olacaceae) commercial extract. Journal of AOAC International, vol. 88, no. 4, pp. 1015-1019. http://dx.doi.org/10.1093/jaoac/88.4.1015. PMid:16152916.
http://dx.doi.org/10.1093/jaoac/88.4.101...
.

2.3. Toxicity evaluation using Artemia salina

Eggs (25 mg) from A. salina were acquired from local pet shops and hatched at 25 - 30°C in saline water (pH 8.0). After 24 h, the newly hatched larvae were collected and used in the lethality assay according to procedures described by Meyer et al. (1982)MEYER, B.N., FERRIGNI, N.R., PUTNAM, J.E., JACOBSEN, L.B., NICHOLS, D.E. and MCLAUGHLIN, J.L., 1982. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Medica, vol. 45, no. 1, pp. 31-34. http://dx.doi.org/10.1055/s-2007-971236. PMid:7100305.
http://dx.doi.org/10.1055/s-2007-971236...
. Groups of 10 larvae were exposed to V. polyanthes leaves aqueous extract (5, 10, 20, 40, and 80 mg/ml) diluted in natural seawater and, after 24 h, the survival rates (%) were recorded. The negative control (NC) was the saline water used and the positive control (PC) was a potassium dichromate (K2Cr2O7) solution (5 mg/ml). Three independent experiments were performed in experimental triplicate. The averages for the number of dead individuals of A. salina were compared by ANOVA followed by Tukey’s test, using the statistical program SISVAR (Ferreira, 2011FERREIRA, D.F., 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, vol. 35, no. 6, pp. 1039-1042. http://dx.doi.org/10.1590/S1413-70542011000600001.
http://dx.doi.org/10.1590/S1413-70542011...
). In addition, Statistica software was used to calculate the minimum lethal concentration (LC50).

2.4. Mitochondrial activity evaluation using Allium cepa

The mitochondrial respiratory chain activity using A. cepa was adapted from the method reported by Prajitha and Thoppil (2017)PRAJITHA, V. and THOPPIL, J.E., 2017. Cytotoxic and apoptotic activities of extract of Amaranthus spinosus L. in Allium cepa and human erythrocytes. Cytotechnology, vol. 69, no. 1, pp. 123-133. http://dx.doi.org/10.1007/s10616-016-0044-5.
http://dx.doi.org/10.1007/s10616-016-004...
. Briefly, A. cepa bulbs were growth in water for 72 h. The germinated bulbs were exposed to V. polyanthes aqueous extract at 10, 20, and 40 mg/ml for 3 h. Sterile mineral water and sodium azide (1 mg/mL) were used as negative (NC) and positive (PC) controls, respectively. To evaluate the mitochondrial activity, the roots with the same size were stained with 2,3,5-triphenyl tetrazolium chloride (TTC, 0.5%) for 15 min at 35 °C in the dark. After the staining, the roots images were captured in stereoscope and the quantitative analyses were performed measuring complex triphenyl formazan released after washing with 95% ethanol for 30 min in dark. The detection of the dye was made at 490 nm in spectrophotometer, and the experiment was performed in triplicate. The treated and control groups were compared using one way analysis of variance (ANOVA) of ranks, followed by Tukey’s test. P values of less than 0.05 (P<0.05) were considered statistically significant.

2.5. Cytotoxic and genotoxic evaluation using Allium cepa assay

Allium cepa bulbs were germinated in water for 48 h, and after exposed to three different concentrations of V. polyanthes leaves aqueous extract (10, 20, and 40 mg/mL). The controls were: sterile mineral water (NC) and sodium azide (PC, 1mg/ml). After treatment, the roots were collected for the microscopic analyses. Then, the treated roots were collected and placed in Carnoy’s fixative solution (3:1 ethanol:glacial acetic acid v/v) at -2 °C. The roots were subsequently hydrolyzed in HCl 5N for 1 min and washed with sterile mineral water. After this, the roots were placed on a microscope slide and one drop of acetic acid 45% was added. Then, the roots were macerated with rusty needles. A coverslip were placed on the material and a pressure was made to help separate the cells. After, the cover slips were removed after freezing in liquid nitrogen and stained with Giemsa (5%) for 5–10 min. The microscope slides were observed under an optical microscope. The following parameters were observed: mitotic index (MI); frequency of chromosomal aberrations (CA); and nuclear abnormalities (NA). To obtain those information 1000 cells were evaluated from each bulb, totalizing 5 bulbs per treatment (5,000 cells). The data were compared using t test and p < 0.05 was considered statistically significant.

3. Results

The phytochemical screening of V. polyanthes leaves aqueous extract revealed the presence of phenolic compounds, flavonoids, terpenoids, tannins and coumarins. Alkaloids and saponins were not identified in this samples. The total phenolic content, flavonoids and tannins were determined, indicating 27.73 ± 0.11%, 2.35 ±0.00% and 4.81 ± 0.02% in V. polyanthes leaves aqueous extract, respectively. After first screening for secondary metabolites, the V. polyanthes leaves aqueous extract was submitted to Artemia salina and Allium cepa assay to assess its toxicological potential.

The lethality of V. polyanthes leaves extract on brine shrimps nauplii was directly proportional to the concentrations of the extract used in this work (Figure 1). All A. salina nauplii were alive after 24 h of experiment in the negative control, and all nauplii exposed to the positive control died. The LC50 obtained for V. polyanthes leaves aqueous extracts was 24 mg/ml. This means that the medicinal popular dose (20 mg/ml) is very close to toxicity limit identified for Artemia salina at the present study (LC50 = 24 mg/ml). However, the toxicity of V. polyanthes leaves aqueous extract was smaller than the toxicity of positive control (LC50 = 0.19 mg/ml) which is a drug commonly used in this assay able to cause nauplii death at low concentration (potassium dichromate, 5 mg/ml). In addition, statistical analysis showed no significant differences in survival rate between negative control and 5 mg/ml of V. polyanthes, showing that in this concentration this extract is not toxic to A. salina nauplii. On the other hand, no statistical differences were observed between positive control and 40, and 80 mg/ml of V. polyanthes, which means that in this concentration the V. polyanthes extract is highly toxic.

Figure 1
Effects of Vernonanthura polyanthes leaves aqueous extract on the mortality of Artemia salina assay. Nauplii were treated with 5, 10, 20, 40, and 80 mg/ml of V. polyanthes for 24 h. PC: positive control (potassium dichromate, 5mg/ml); NC: negative control (saline water). Averages were compared using one-way ANOVA followed by Tukey´s test. Averages followed by the same letters do not differ statistically among themselves.

The effect of V. polyanthes aqueous extract on the viability of A. cepa cells was also investigated using a mitochondrial respiratory chain activity assay. For this, the conversion of TTC to insoluble red colored triphenyl formazan by the meristematic cells was measured in the root. We observed a concentration-dependent decrease in mitochondrial activity in the onion roots treated with V. polyanthes aqueous extract (Figure 2A). The results obtained are in agreement with the A. salina assay and showed a significant decrease in viability of A. cepa cells at 20 and 40 mg/ml. In this assay, the V. polyanthes aqueous extract was not toxic at 10 mg/ml.

Figure 2
Effects of the Vernonanthura polyanthes leaves aqueous extract on Allium cepa viability using the triphenyltetrazolium chloride (TTC) staining. Bulbs were treated with 10, 20, and 40 mg/ml of V. polyanthes leaves aqueous extract for 3 h. (A) Quantitative analyses were performed measuring complex triphenyl formazan released by the root tips. Averages were compared using one-way ANOVA followed by Tukey´s test. Averages followed by the same letters do not differ statistically among themselves; (B) Representative pictures of Allium cepa root tips after TTC staining.

With the objective of investigating the possible mechanism involved in toxicity of the V. polyanthes aqueous extract we performed a microscopic analysis of the A. cepa meristematic cells. The results showed no statistical difference in MI between 10 and 20 mg/ml and the negative control (Table 1), which suggested that on those concentrations the V. polyanthes extracts is not cytotoxic. However, it was observed a decrease in the MI rate in cells subjected to the concentration of 40 mg/ml (Table 1), which suggest that the highest concentration of the V. polyanthes aqueous extract used in this work was able to inhibit the cell division and so is cytotoxic.

Table 1
Cytogenetic analysis of Allium cepa meristematic cells exposed to different concentrations of Vernonanthura polyanthes leaves aqueous extract.

The genotoxicity was evaluated by the frequency of chromosomal aberrations and nuclear abnormalities. V. polyanthes leaves aqueous extracts at all concentrations showed very few chromosomal aberrations and nuclear abnormality frequency, not differing statistically from the negative control (Table 1). Three main types of chromosome aberrations were recorded: stickiness, bridges and lagging chromosomes (Figure 3). This result indicates that V. polyanthes leaves aqueous extracts is no genotoxic at all the concentrations tested in this work.

Figure 3
The most common chromosomal and nuclear aberrations observed in the Allium cepa meristematic cells exposed to Vernonanthura polyanthes leaves aqueous extract. (A), (B), and (C): Chromosome bridge; (D) Lagging chromosome; (E) Abnormal mitosis; (F) Chromosome stickness; and (G) and (H) nuclear bud.

4. Discussion

In this study, the in vivo A. salina and A. cepa assays were used to assess the toxic, cytotoxic, and genotoxic potential of the V. polyanthes leaves aqueous extract. This species has been empirically used by Brazilian Cerrado population for treatment of several diseases without a detailed evaluation of their effectiveness, toxicity, and proper dosage. Then, more studies investigating the safety of V. polyanthes aqueous extract are needed to safeguard the wellbeing of its users. Trying to assess the effects of V. polyanthes in the form it is actually administered we prepared plant extract in the same way as the therapeutic teas used by the general population In addition, we used different concentrations from that of the popular use to evaluate the effect of concentration in tea toxicity.

The A. salina assay suggests that concentrations over 24 mg/ml are toxic for shrimp and kill 50% of nauplii; while the viability of A. cepa assay suggests that concentrations higher than 20 mg/ml cause significant cell death. Since the concentration commonly used in popular medicine is 20 mg/ml, it is necessary a precaution in the administration of this infusion and more studies using human cells need to be performed to detect the proper dosage for humans.

A previous study using Drosophila as a model to evaluate the toxic potential of V. polyanthes leaves aqueous extract showed no toxic, genotoxic, and antigenotoxic activity in the experimental conditions tested using the wing somatic mutation and recombination test SMART/wing (Guerra-Santos et al., 2016GUERRA-SANTOS, I.J., ROCHA, J.D., VALE, C.R., SOUSA, W.C., TELES, A.M., CHEN-CHEN, L., CARVALHO, S. and BAILÃO, E.F.L.C., 2016. Vernonanthura polyanthes leaves aqueous extract enhances doxorubicin genotoxicity in somatic cells of Drosophila melanogaster and presents no antifungal activity against Candida spp. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 76, no. 4, pp. 928-936. http://dx.doi.org/10.1590/1519-6984.04615. PMid:27143064.
http://dx.doi.org/10.1590/1519-6984.0461...
). Different from that, at the present work we identified a toxic and cytotoxic activity of V. polyanthes. This disagreement can happen, once there is no single test to detect the full spectrum of toxicity of the substance (Dearfield et al., 2002DEARFIELD, K.L., CIMINO, M.C., MCCARROLL, N.E., MAUER, I. and VALCOVIC, L., 2002. Genotoxicity risk assessment: a proposed classification strategy. Mutation Research, vol. 521, no. 1-2, pp. 121-135. http://dx.doi.org/10.1016/S1383-5718(02)00236-X. PMid:12438010.
http://dx.doi.org/10.1016/S1383-5718(02)...
).

The cytotoxic and antiproliferative activity of the V. polyanthes leaves aqueous extract observed in the present work can be due to the phytochemicals present in this species. We identified the presence of phenolic compounds, flavonoids, terpenoids, tannins and coumarins. The total phenolic content was 27.73 ± 0.11%. Phenolic compounds consist of minimum of one aromatic ring and can be classified into several groups such as phenolic acids, flavonoids, coumarins, tannins, lignins and stilbenes (Shahidi and Yeo, 2016SHAHIDI, F. and YEO, J.D., 2016. Insoluble-bound phenolics in food. Molecules, vol. 21, no. 9, pp. 1216. http://dx.doi.org/10.3390/molecules21091216.
http://dx.doi.org/10.3390/molecules21091...
). The phenolic compounds have attracted attention of scientific community due to their effective antioxidant capacity (Shahidi and Yeo, 2016SHAHIDI, F. and YEO, J.D., 2016. Insoluble-bound phenolics in food. Molecules, vol. 21, no. 9, pp. 1216. http://dx.doi.org/10.3390/molecules21091216.
http://dx.doi.org/10.3390/molecules21091...
). We identified that V. polyanthes leaves aqueous extracts has 2.35% of flavonoids and 4.81% of tannins. In addition to those phytochemical screenings, previous characterization also have been shown that different V. polyanthes leaves extracts present compounds such as: flavones chrysoeriol-7-O-glycuronyl, acacetin-flavones 7-O-glycuronyl, sesquiterpenes, triterpenes, lactones piptocarphin A and piptocarphin B, glaucolide A, chlorogenic acids, coumarins, glycosides, steroids, saponin glycosides, and alkaloids (Gallon et al., 2018GALLON, M.E., JAIYESIMI, O.A. and GOBBO-NETO, L., 2018. LC-UV-HRMS dereplication of secondary metabolites from Brazilian Vernonieae (Asteraceae) species supported through in-house database. Biochemical Systematics and Ecology, vol. 78, pp. 5-16. http://dx.doi.org/10.1016/j.bse.2018.03.002.
http://dx.doi.org/10.1016/j.bse.2018.03....
; Martucci et al., 2014MARTUCCI, M.E., DE VOS, R.C., CAROLLO, C.A. and GOBBO-NETO, L., 2014. Metabolomics as a potential chemotaxonomical tool: application in the genus Vernonia schreb. PLoS One, vol. 9, no. 4, pp. 1-8. http://dx.doi.org/10.1371/journal.pone.0093149. PMid:24736747.
http://dx.doi.org/10.1371/journal.pone.0...
; Igual at al., 2013IGUAL, M.O., MARTUCCI, M.E.P., COSTA, F.B. and GOBBO-NETO, L., 2013. Sesquiterpene lactones, chlorogenic acids and flavonoids from leaves of Vernonia polyanthes Less (Asteraceae). Biochemical Systematics and Ecology, vol. 51, pp. 94-97. http://dx.doi.org/10.1016/j.bse.2013.08.018.
http://dx.doi.org/10.1016/j.bse.2013.08....
; Souza et al., 2008SOUZA, F.A., SENA, J., MARANHO, L.T., OLIVEIRA, C.M.R. and GUIMAR, A.T.B., 2008. Caracterização fitoquímica preliminar de infusões populares obtidas das partes aéreas das espécies Apium leptophylum (Pers.) F. Muell. ex Benth. (Apiaceae), Elvira biflora L. (DC.) e Vernonia polyanthes Less. (Asteraceae). Revista Brasileira de Farmácia, vol. 89, no. 1, pp. 24-27.). Despite this variety of metabolites, some studies pointed that flavonoids and terpenoids are the main compounds present in V. polyanthes extracts (Barbastefano et al., 2007BARBASTEFANO, V., COLA, M., LUIZ-FERREIRA, A., FARIAS-SILVA, E., HIRUMA-LIMA, C.A., RINALDO, D., VILEGAS, W. and SOUZA-BRITO, A.R.M., 2007. Vernonia polyanthes as a new source of antiulcer drugs. Fitoterapia, vol. 78, no. 7-8, pp. 545-551. http://dx.doi.org/10.1016/j.fitote.2007.07.003. PMid:17904766.
http://dx.doi.org/10.1016/j.fitote.2007....
; Bohlmann et al., 1981BOHLMANN, F., JAKUPOVIC, J., GUPTA, R.K., KING, R.M. and ROBINSON, H., 1981. Prostangladin-like fatty acid are derivated from Chromolaenae morii. Phytochemistry, vol. 20, no. 3, pp. 473. http://dx.doi.org/10.1016/S0031-9422(00)84169-2.
http://dx.doi.org/10.1016/S0031-9422(00)...
).

Up to now, it was identified more than 8000 flavonoids, which have been presented different biological activities (Chen et al., 2016CHEN, G., LI, X., SALERI, F. and GUO, M., 2016. Analysis of flavonoids in Rhamnus davurica and its antiproliferative activities. Molecules, vol. 23, no. 10, pp. 1275. http://dx.doi.org/10.3390/molecules21101275.
http://dx.doi.org/10.3390/molecules21101...
). The wide functional and pharmacological activities of flavonoids are mainly due to their structural variations and chemical modifications, such as acylation, methylation, glycosylation and hydroxylation (Malla et al., 2012MALLA, S., KOFFAS, M.A.G., KAZLAUSKAS, R.J. and KIM, B.G., 2012. Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli. Applied and Environmental Microbiology, vol. 78, no. 3, pp. 684-694. http://dx.doi.org/10.1128/AEM.06274-11. PMid:22101053.
http://dx.doi.org/10.1128/AEM.06274-11...
). Those wide conformational variations allow the flavonoids to exhibit different activities, such as: antioxidant, antitumor, antiallergic, anti-inflammatory, antibacterial, antiarteriosclerotic and antiestrogenic (Bhouri et al., 2011BHOURI, W., SGHAIER, M.B., KILANI, S., BOUHLEL, I., DIJOUX-FRANCA, M.G., GHEDIRA, K. and GHEDIRA, L.C., 2011. Evaluation of antioxidant and antigenotoxic activity of two flavonoids from Rhamnus alaternus L. (Rhamnaceae): Kaempferol 3-O-β-isorhamninoside and rhamnocitrin 3-O-β-isorhamninoside. Food and Chemical Toxicology, vol. 49, no. 5, pp. 1167-1173. http://dx.doi.org/10.1016/j.fct.2011.02.011. PMid:21338653.
http://dx.doi.org/10.1016/j.fct.2011.02....
; Zhu et al., 2015ZHU, M.Z., WU, W., JIAO, L.L., YANG, P.F. and GUO, M.Q., 2015. Analysis of flavonoids in lotus (Nelumbo nucifera) leaves and their antioxidant activity using macroporous resin chromatography coupled with LC-MS/MS and antioxidant biochemical assays. Molecules (Basel, Switzerland), vol. 20, no. 6, pp. 10553-10565. http://dx.doi.org/10.3390/molecules200610553. PMid:26060918.
http://dx.doi.org/10.3390/molecules20061...
). Then, flavonoids can interfere in biological cell activity depending on their nature and concentration.

Regard to terpenes, in plants, in high concentration they can be toxic, and are important to defense against herbivores and pathogens (Paduch et al., 2007PADUCH, R., KANDEFER-SZERSZEN, M., TRYTEK, M. and FIEDUREK, J., 2007. Terpenes: substances useful in human healthcare. Archivum Immunologiae et Therapiae Experimentalis, vol. 55, no. 5, pp. 315-327.). For human helthcare, the terpenoids exhibit important pharmacological activities, such as antimicrobial, antiviral, anti-fungal, anti-inflammatory, antihyperglycemic and antiparasitic activities, as well as are effective in chemoprevention and chemotherapy (Paduch et al., 2007PADUCH, R., KANDEFER-SZERSZEN, M., TRYTEK, M. and FIEDUREK, J., 2007. Terpenes: substances useful in human healthcare. Archivum Immunologiae et Therapiae Experimentalis, vol. 55, no. 5, pp. 315-327.). There are some terpenoids such as paclitaxel and its derivate which are commonly used as anticancer drugs (Perveen, 2018PERVEEN, S., 2018. Introductory chapter: terpenes and terpenoids. London: IntechOpen. http://dx.doi.org/10.5772/intechopen.71175.
http://dx.doi.org/10.5772/intechopen.711...
). However, complementary studies are necessary to determine the correlation of the flavonoids and terpenoids with the antiproliferative cell activity.

In addition, our results showed that V. polyanthes aqueous extract present no genotoxic effect on A. cepa root. As discussed before, the presence of flavonoids and terpenoids could account for the lack of mutagenic effects caused by infusions of these extract (Teixeira et al., 2003TEIXEIRA, R.O., CAMPAROTO, M.L., MANTOVANI, M.S. and VICENTINI, V.E.P., 2003. Assessment of two medicinal plants, Psidium guajava L. and Achillea millefolium L., in vitro and in vivo assays. Genetics and Molecular Biology, vol. 26, no. 4, pp. 551-555. http://dx.doi.org/10.1590/S1415-47572003000400021.
http://dx.doi.org/10.1590/S1415-47572003...
; Perveen, 2018PERVEEN, S., 2018. Introductory chapter: terpenes and terpenoids. London: IntechOpen. http://dx.doi.org/10.5772/intechopen.71175.
http://dx.doi.org/10.5772/intechopen.711...
). Similarly to what was observed in this work, Costus spiralis (Sousa et al., 2017SOUSA, W.V., PAZ, A.T.S., CONCEIÇÃO, E.C., ALMEIDA, L.M., CHEN-CHEN, L., BORGES, L.L. and BAILÃO, E.F.L.C., 2017. In vivo assessment of cito/genotoxic, antigenotoxic and antifungal potential of Costus spiralis (Jacq.) roscoe leaves and stems. Anais da Academia Brasileira de Ciências, vol. 89, pp. 2043-2051. ), Sambucus australis (Tedesco et al., 2017TEDESCO, M., KUHN, A.W., FRESCURA, V.D., BOLIGON, A.A., ATHAYDE, M.L., TEDESCO, S.B. and SILVA, A.C.F.D., 2017. Assessment of the antiproliferative and antigenotoxic activity and phytochemical screening of aqueous extracts of Sambucus australis Cham. & Schltdl. (Adoxaceae). Anais da Academia Brasileira de Ciências, vol. 89, no. 3, (suppl.), pp. 2141-2154. http://dx.doi.org/10.1590/0001-3765201720150138. PMid:28876381.
http://dx.doi.org/10.1590/0001-376520172...
), Luchea divaricata (Frescura et al., 2012FRESCURA, V.D., LAUGHINGHOUSE 4TH, I.V. and TEDESCO, S.B., 2012. Antiproliferative effect of the tree and medicinal species Luehea divaricata on the Allium cepa cell cycle. Caryologia, vol. 65, no. 1, pp. 27-33. http://dx.doi.org/10.1080/00087114.2012.678083.
http://dx.doi.org/10.1080/00087114.2012....
) and Solidago microglossa (Bagatini et al., 2009BAGATINI, M.D., FACHINETTO, J.M., SILVA, A.C.F. and TEDESCO, S.B., 2009. Cytotoxic effects of infusions (tea) of Solidago microglossa DC. (Asteraceae) on the cell cycle of Allium cepa. Revista Brasileira de Farmacognosia, vol. 19, no. 2b, pp. 632-636. http://dx.doi.org/10.1590/S0102-695X2009000400022.
http://dx.doi.org/10.1590/S0102-695X2009...
) medicinal extracts also presented cytotoxic but no genotoxic or mutagenic effect using A. cepa test.

The scientific literature has been shown that many of the agents used in cancer therapy are derived from natural compounds extract from plants, such as: vinca alkaloid family isolated from Catharanthus roseus (Noble 1990NOBLE, R.L., 1990. The discovery of the vinca alkaloids: chemotherapeutic agents against cancer. Biochemistry and Cell Biology, vol. 68, no. 12, pp. 1344-1351. http://dx.doi.org/10.1139/o90-197. PMid:2085431.
http://dx.doi.org/10.1139/o90-197...
; Stanton et al., 2011STANTON, R.A., GERNERT, K.M., NETTLES, J.H. and ANEJA, R., 2011. Drugs that target dynamic microtubules: a new molecular perspective. Medicinal Research Reviews, vol. 31, no. 3, pp. 443-481. http://dx.doi.org/10.1002/med.20242. PMid:21381049.
http://dx.doi.org/10.1002/med.20242...
), and the taxanes paclitaxel originally identified from plants of the genus Taxus (Baird et al., 2010BAIRD, R.D., TAN, D.S. and KAYE, S.B., 2010. Weekly paclitaxel in the treatment of recurrent ovarian cancer. Nature Reviews. Clinical Oncology, vol. 7, no. 10, pp. 575-582. http://dx.doi.org/10.1038/nrclinonc.2010.120. PMid:20683437.
http://dx.doi.org/10.1038/nrclinonc.2010...
). Vernonia genus which is a sister genus of Vernonanthura also has different species with antitumor properties, such as V. zeylanica (Abeysinghe et al., 2019ABEYSINGHE, N.K., THABREW, I., SAMARAKOON, S.R., EDIRIWEERA, M.K., TENNEKOON, K.H., PATHIRANAGE, V.P.C. and MENDIS, A.S., 2019. Vernolactone promotes apoptosis and autophagy in human teratocarcinomal (NTERA-2) cancer stem-like cells. Stem Cells International, vol. 2019, pp. 6907893. http://dx.doi.org/10.1155/2019/6907893. PMid:31949439.
http://dx.doi.org/10.1155/2019/6907893...
), V. extensa (Thongnest et al., 2019THONGNEST, S., CHAWENGRUM, P., KEERATICHAMROEN, S., LIRDPRAPAMONGKOL, K., EURTIVONG, C., BOONSOMBAT, J., KITTAKOOP, P., SVASTI, J. and RUCHIRAWAT, S., 2019. Vernodalidimer L, a sesquiterpene lactone dimer from Vernonia extensa and anti-tumor effects of vernodalin, vernolepin, and vernolide on HepG2 liver cancer cells. Bioorganic Chemistry, vol. 92, pp. 103197. http://dx.doi.org/10.1016/j.bioorg.2019.103197. PMid:31445193.
http://dx.doi.org/10.1016/j.bioorg.2019....
), V. cinerea (Pouyfung et al., 2019POUYFUNG, P., CHOONATE, S., WONGNOPPAVICH, A., RONGNOPARUT, P. and CHAIRATVIT, K., 2019. Anti-proliferative effect of 8α-tigloyloxyhirsutinolide-13-O-acetate (8αTGH) isolated from Vernonia cinerea on oral squamous cell carcinoma through inhibition of STAT3 and STAT2 phosphorylation. Phytomedicine, vol. 52, pp. 238-246. http://dx.doi.org/10.1016/j.phymed.2018.09.211. PMid:30599904.
http://dx.doi.org/10.1016/j.phymed.2018....
), V. amygdalina (Yedjou et al., 2018YEDJOU, C.G., TCHOUNWOU, S.S., WILLIAMS, K. and TCHOUNWOU, P.B., 2018. Novel cellular staining protocol and antiproliferative effect of Vernonia amygdalina Delile on lung and prostate cancer cells. International Journal of Engineering Science & Research Technology, vol. 7, no. 8, pp. 552-556. PMid:30246001.), V. anthelmintica (Ito et al., 2016ITO, T., AIMAITI, S., WIN, N.N., KODAMA, T. and MORITA, H., 2016. New sesquiterpene lactones, vernonilides A and B, from the seeds of Vernonia anthelmintica in Uyghur and their antiproliferative activities. Bioorganic & Medicinal Chemistry Letters, vol. 26, no. 15, pp. 3608-3611. https://doi.org/10.1016/j.bmcl.2016.06.009.
https://doi.org/10.1016/j.bmcl.2016.06.0...
), V. condensate (Thomas et al., 2016THOMAS, E., GOPALAKRISHNAN, V., SOMASAGARA, R.R., CHOUDHARY, B. and RAGHAVAN, S.C., 2016. Extract of Vernonia condensata, inhibits tumor progression and improves survival of tumor-allograft bearing mouse. Scientific Reports, vol. 2, no. 2, pp. 23255. http://dx.doi.org/10.1038/srep23255. PMid:27009490.
http://dx.doi.org/10.1038/srep23255...
), V. divaricata (Lowe et al., 2014LOWE, H.I., DALEY-BECKFORD, D., TOYANG, N.J., WATSON, C., HARTLEY, S. and BRYANT, J., 2014. The anti-cancer activity of Vernonia divaricata Sw against leukaemia, breast and prostate cancers in vitro. The West Indian Medicinal Journal, vol. 63, n. 4, pp. 285-288.) and V. scorpioides (Pagno et al., 2006PAGNO, T., BLIND, L.Z., BIAVATTI, M.W. and KREUGER, M.R., 2006. Cytotoxic activity of the dichloromethane fraction from Vernonia scorpioides (Lam.) Pers. (Asteraceae) against Ehrlich’s tumor cells in mice. Brazilian Journal of Medical and Biological Research, vol. 39, no. 11, pp. 1483-1491. http://dx.doi.org/10.1590/S0100-879X2006001100012. PMid:17146561.
http://dx.doi.org/10.1590/S0100-879X2006...
). In the similar way to those species, the identification of cytotoxic and antiproliferative properties of V. polyanthes leaves aqueous extract may suggest that this species also could be able to inhibit the tumor cells proliferation, however this capacity must be yet deeply investigated with other assays using cancer cells.

Acknowledgements

We would like to thank the Brazilian funding agencies MCT/CNPq, FNDCT, CAPES, FINEP and FAPEG. LMA and EFLCB were supported by Universidade Estadual de Goiás with fellowships at the program PROBIP (Scientific Production Support Program). Also we would like to thank Aparecido Alves Serafim Ferreira for the technical support in the A. cepa assay experiment.

  • (With 3 figures)

References

  • ABEYSINGHE, N.K., THABREW, I., SAMARAKOON, S.R., EDIRIWEERA, M.K., TENNEKOON, K.H., PATHIRANAGE, V.P.C. and MENDIS, A.S., 2019. Vernolactone promotes apoptosis and autophagy in human teratocarcinomal (NTERA-2) cancer stem-like cells. Stem Cells International, vol. 2019, pp. 6907893. http://dx.doi.org/10.1155/2019/6907893 PMid:31949439.
    » http://dx.doi.org/10.1155/2019/6907893
  • AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA – ANVISA, 2011. Formulário de fitoterápicos da farmacopeia brasileira Brasília: ANVISA, 126 p.
  • ALVES, V.F.G. and NEVES, L.J., 2003. Anatomia Foliar de Vernonia polyanthes Less (Asteraceae). Revista da Universidade Rural - Série Ciências da Vida, vol. 22, pp. 1-8.
  • BAGATINI, M.D., FACHINETTO, J.M., SILVA, A.C.F. and TEDESCO, S.B., 2009. Cytotoxic effects of infusions (tea) of Solidago microglossa DC. (Asteraceae) on the cell cycle of Allium cepa. Revista Brasileira de Farmacognosia, vol. 19, no. 2b, pp. 632-636. http://dx.doi.org/10.1590/S0102-695X2009000400022
    » http://dx.doi.org/10.1590/S0102-695X2009000400022
  • BAIRD, R.D., TAN, D.S. and KAYE, S.B., 2010. Weekly paclitaxel in the treatment of recurrent ovarian cancer. Nature Reviews. Clinical Oncology, vol. 7, no. 10, pp. 575-582. http://dx.doi.org/10.1038/nrclinonc.2010.120 PMid:20683437.
    » http://dx.doi.org/10.1038/nrclinonc.2010.120
  • BARBASTEFANO, V., COLA, M., LUIZ-FERREIRA, A., FARIAS-SILVA, E., HIRUMA-LIMA, C.A., RINALDO, D., VILEGAS, W. and SOUZA-BRITO, A.R.M., 2007. Vernonia polyanthes as a new source of antiulcer drugs. Fitoterapia, vol. 78, no. 7-8, pp. 545-551. http://dx.doi.org/10.1016/j.fitote.2007.07.003 PMid:17904766.
    » http://dx.doi.org/10.1016/j.fitote.2007.07.003
  • BHOURI, W., SGHAIER, M.B., KILANI, S., BOUHLEL, I., DIJOUX-FRANCA, M.G., GHEDIRA, K. and GHEDIRA, L.C., 2011. Evaluation of antioxidant and antigenotoxic activity of two flavonoids from Rhamnus alaternus L. (Rhamnaceae): Kaempferol 3-O-β-isorhamninoside and rhamnocitrin 3-O-β-isorhamninoside. Food and Chemical Toxicology, vol. 49, no. 5, pp. 1167-1173. http://dx.doi.org/10.1016/j.fct.2011.02.011 PMid:21338653.
    » http://dx.doi.org/10.1016/j.fct.2011.02.011
  • BOHLMANN, F., JAKUPOVIC, J., GUPTA, R.K., KING, R.M. and ROBINSON, H., 1981. Prostangladin-like fatty acid are derivated from Chromolaenae morii. Phytochemistry, vol. 20, no. 3, pp. 473. http://dx.doi.org/10.1016/S0031-9422(00)84169-2
    » http://dx.doi.org/10.1016/S0031-9422(00)84169-2
  • CARDOSO, G.H.S., DANTAS, E.B.S., SOUSA, F.R.C. and PERON, A.P., 2014. Cytotoxicity aqueous extracts of Rosmarinus officinalis L (Labiatae) in plant test system. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 74, no. 4, pp. 886-889. http://dx.doi.org/10.1590/1519-6984.07313 PMid:25627599.
    » http://dx.doi.org/10.1590/1519-6984.07313
  • CHEN, G., LI, X., SALERI, F. and GUO, M., 2016. Analysis of flavonoids in Rhamnus davurica and its antiproliferative activities. Molecules, vol. 23, no. 10, pp. 1275. http://dx.doi.org/10.3390/molecules21101275
    » http://dx.doi.org/10.3390/molecules21101275
  • COSTA, A.F., 2001. Farmacognosia 3rd ed. Lisboa: F. Calouste Gulbenkian, 992 pp.
  • DALLA NORA, G., PASTORI, T., LAUGHINGHOUSE 4TH, H.D., DO CANTO-DOROW, T.S. and TEDESCO, S.B., 2010. Antiproliferative and genotoxic effects of Mikania glomerata (Asteraceae). Biocell, vol. 34, no. 3, pp. 95-101. PMid:21443139.
  • DEARFIELD, K.L., CIMINO, M.C., MCCARROLL, N.E., MAUER, I. and VALCOVIC, L., 2002. Genotoxicity risk assessment: a proposed classification strategy. Mutation Research, vol. 521, no. 1-2, pp. 121-135. http://dx.doi.org/10.1016/S1383-5718(02)00236-X PMid:12438010.
    » http://dx.doi.org/10.1016/S1383-5718(02)00236-X
  • FEDEL-MIYASATO, L.E., FORMAGIO, A.S., AUHAREK, S.A., KASSUYA, C.A., NAVARRO, S.D., CUNHA-LAURA, A.L., MONREAL, A.C., VIEIRA, M.C. and OLIVEIRA, R.J., 2014. Antigenotoxic and antimutagenic effects of Schinus terebinthifolius Raddi in Allium cepa and Swiss mice: a comparative study. Genetics and Molecular Research, vol. 13, no. 2, pp. 3411-3425. http://dx.doi.org/10.4238/2014.April.30.2 PMid:24841786.
    » http://dx.doi.org/10.4238/2014.April.30.2
  • FERREIRA, D.F., 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, vol. 35, no. 6, pp. 1039-1042. http://dx.doi.org/10.1590/S1413-70542011000600001
    » http://dx.doi.org/10.1590/S1413-70542011000600001
  • FREIRES, I.A., SARDI, J.C., CASTRO, R.D. and ROSALEN, P.L., 2017. Alternative animal and non-animal models for drug discovery and development: bonus or burden? Pharmaceutical Research, vol. 34, no. 4, pp. 681-686. http://dx.doi.org/10.1007/s11095-016-2069-z PMid:27858217.
    » http://dx.doi.org/10.1007/s11095-016-2069-z
  • FRESCURA, V.D., LAUGHINGHOUSE 4TH, I.V. and TEDESCO, S.B., 2012. Antiproliferative effect of the tree and medicinal species Luehea divaricata on the Allium cepa cell cycle. Caryologia, vol. 65, no. 1, pp. 27-33. http://dx.doi.org/10.1080/00087114.2012.678083
    » http://dx.doi.org/10.1080/00087114.2012.678083
  • GALLON, M.E., JAIYESIMI, O.A. and GOBBO-NETO, L., 2018. LC-UV-HRMS dereplication of secondary metabolites from Brazilian Vernonieae (Asteraceae) species supported through in-house database. Biochemical Systematics and Ecology, vol. 78, pp. 5-16. http://dx.doi.org/10.1016/j.bse.2018.03.002
    » http://dx.doi.org/10.1016/j.bse.2018.03.002
  • GUERRA-SANTOS, I.J., ROCHA, J.D., VALE, C.R., SOUSA, W.C., TELES, A.M., CHEN-CHEN, L., CARVALHO, S. and BAILÃO, E.F.L.C., 2016. Vernonanthura polyanthes leaves aqueous extract enhances doxorubicin genotoxicity in somatic cells of Drosophila melanogaster and presents no antifungal activity against Candida spp. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 76, no. 4, pp. 928-936. http://dx.doi.org/10.1590/1519-6984.04615 PMid:27143064.
    » http://dx.doi.org/10.1590/1519-6984.04615
  • IGUAL, M.O., MARTUCCI, M.E.P., COSTA, F.B. and GOBBO-NETO, L., 2013. Sesquiterpene lactones, chlorogenic acids and flavonoids from leaves of Vernonia polyanthes Less (Asteraceae). Biochemical Systematics and Ecology, vol. 51, pp. 94-97. http://dx.doi.org/10.1016/j.bse.2013.08.018
    » http://dx.doi.org/10.1016/j.bse.2013.08.018
  • ITO, T., AIMAITI, S., WIN, N.N., KODAMA, T. and MORITA, H., 2016. New sesquiterpene lactones, vernonilides A and B, from the seeds of Vernonia anthelmintica in Uyghur and their antiproliferative activities. Bioorganic & Medicinal Chemistry Letters, vol. 26, no. 15, pp. 3608-3611. https://doi.org/10.1016/j.bmcl.2016.06.009
    » https://doi.org/10.1016/j.bmcl.2016.06.009
  • JONES, P.H., CHRISTODOULOS, K., DOBBS, N., THAVASU, P., BALKWILL, F., BLANN, A.D., CAINE, G.J., KUMAR, S., KAKKAR, A.J., GOMPERTZ, N., TALBOT, D.C., GANESAN, T.S. and HARRIS, A.L., 2004. Combination antiangiogenesis therapy with marimastat, captopril and fragmin in patients with. British Journal of Cancer, vol. 91, no. 1, pp. 30-36. http://dx.doi.org/10.1038/sj.bjc.6601897 PMid:15162145.
    » http://dx.doi.org/10.1038/sj.bjc.6601897
  • JORGETTO, G.V., BORIOLO, M.F.G., SILVA, L.M., NOGUEIRA, D.A., JOSÉ, T.D.S. and RIBEIRO, G.E., 2011. Ensaios de atividade antimicrobiana in vitro e mutagênica in vivo com extrato de Vernonia polyanthes Less (Assa-peixe). Revista do Instituto Adolfo Lutz, vol. 70, no. 1, pp. 53-61.
  • LAMBERT, J., SRIVASTAVA, J. and VIETMAYER, N., 1997. Medicinal plants - rescuing a global heritage Washington DC: World Bank. Technical Paper, no. 355.
  • LEME, D.M. and MARIN-MORALES, M.A., 2009. Allium cepa test in environmental monitoring: A review on its application. Mutation Research, vol. 682, no. 1, pp. 71-81. http://dx.doi.org/10.1016/j.mrrev.2009.06.002 PMid:19577002.
    » http://dx.doi.org/10.1016/j.mrrev.2009.06.002
  • LORENZI, H. and MATOS, F.J.A., 2008. Plantas medicinais no brasil: nativas e exóticas 2nd ed. Nova Odessa: Instituto Plantarum, pp. 165-166.
  • LOWE, H.I., DALEY-BECKFORD, D., TOYANG, N.J., WATSON, C., HARTLEY, S. and BRYANT, J., 2014. The anti-cancer activity of Vernonia divaricata Sw against leukaemia, breast and prostate cancers in vitro The West Indian Medicinal Journal, vol. 63, n. 4, pp. 285-288.
  • MALLA, S., KOFFAS, M.A.G., KAZLAUSKAS, R.J. and KIM, B.G., 2012. Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli. Applied and Environmental Microbiology, vol. 78, no. 3, pp. 684-694. http://dx.doi.org/10.1128/AEM.06274-11 PMid:22101053.
    » http://dx.doi.org/10.1128/AEM.06274-11
  • MARTUCCI, M.E., DE VOS, R.C., CAROLLO, C.A. and GOBBO-NETO, L., 2014. Metabolomics as a potential chemotaxonomical tool: application in the genus Vernonia schreb. PLoS One, vol. 9, no. 4, pp. 1-8. http://dx.doi.org/10.1371/journal.pone.0093149 PMid:24736747.
    » http://dx.doi.org/10.1371/journal.pone.0093149
  • MATOS, F.J.A., 1988. Introdução à fitoquímica experimental Fortaleza: UFC, 128 p.
  • MATOS, J.M.D. and MATOS, M.E.O., 1989. Farmacognosia: curso teórico-prático. Fortaleza: UFC, 245 p.
  • MEYER, B.N., FERRIGNI, N.R., PUTNAM, J.E., JACOBSEN, L.B., NICHOLS, D.E. and MCLAUGHLIN, J.L., 1982. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Medica, vol. 45, no. 1, pp. 31-34. http://dx.doi.org/10.1055/s-2007-971236 PMid:7100305.
    » http://dx.doi.org/10.1055/s-2007-971236
  • MOREIRA, R.R.D., MARTINS, G.Z., VARANDAS, R., COGO, J., PEREGO, C.H., RONCOLI, G., SOUSA, M.D.C., NAKAMURA, C.V., SALGUEIRO, L. and CAVALEIRO, C., 2017. Composition and leishmanicidal activity of the essential oil of Vernonia polyanthes Less (Asteraceae). Natural Product Research, vol. 31, no. 24, pp. 2905-2908. http://dx.doi.org/10.1080/14786419.2017.1299723 PMid:28368666.
    » http://dx.doi.org/10.1080/14786419.2017.1299723
  • NEVES, E.S.B., FERREIRA, P.M., LIMA, L.H. and PERON, A.P., 2014. Action of aqueous extracts of Phyllantha niruri L (Euphorbiaceae) leaves on meristematic root cells of Allium cepa. Annals of the Brazilian Academy of Science, vol. 86, no. 3, pp. 1131-1137. http://dx.doi.org/10.1590/0001-3765201420130170 PMid:25098312.
    » http://dx.doi.org/10.1590/0001-3765201420130170
  • NOBLE, R.L., 1990. The discovery of the vinca alkaloids: chemotherapeutic agents against cancer. Biochemistry and Cell Biology, vol. 68, no. 12, pp. 1344-1351. http://dx.doi.org/10.1139/o90-197 PMid:2085431.
    » http://dx.doi.org/10.1139/o90-197
  • OLIVEIRA, A.K.M., OLIVEIRA, N.A., RESENDE, U.M. and MARTINS, P.F.R.B., 2011. Ethnobotany and traditional medicine of the inhabitants of the Pantanal Negro sub-region and the raizeiros of Miranda and Aquidauna, Mato Grosso do Sul, Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 71, no. 1, suppl. 1, pp. 28-289. http://dx.doi.org/10.1590/S1519-69842011000200007 PMid:21537601.
    » http://dx.doi.org/10.1590/S1519-69842011000200007
  • PADUCH, R., KANDEFER-SZERSZEN, M., TRYTEK, M. and FIEDUREK, J., 2007. Terpenes: substances useful in human healthcare. Archivum Immunologiae et Therapiae Experimentalis, vol. 55, no. 5, pp. 315-327.
  • PAGNO, T., BLIND, L.Z., BIAVATTI, M.W. and KREUGER, M.R., 2006. Cytotoxic activity of the dichloromethane fraction from Vernonia scorpioides (Lam.) Pers. (Asteraceae) against Ehrlich’s tumor cells in mice. Brazilian Journal of Medical and Biological Research, vol. 39, no. 11, pp. 1483-1491. http://dx.doi.org/10.1590/S0100-879X2006001100012 PMid:17146561.
    » http://dx.doi.org/10.1590/S0100-879X2006001100012
  • PERVEEN, S., 2018. Introductory chapter: terpenes and terpenoids London: IntechOpen. http://dx.doi.org/10.5772/intechopen.71175
    » http://dx.doi.org/10.5772/intechopen.71175
  • POUYFUNG, P., CHOONATE, S., WONGNOPPAVICH, A., RONGNOPARUT, P. and CHAIRATVIT, K., 2019. Anti-proliferative effect of 8α-tigloyloxyhirsutinolide-13-O-acetate (8αTGH) isolated from Vernonia cinerea on oral squamous cell carcinoma through inhibition of STAT3 and STAT2 phosphorylation. Phytomedicine, vol. 52, pp. 238-246. http://dx.doi.org/10.1016/j.phymed.2018.09.211 PMid:30599904.
    » http://dx.doi.org/10.1016/j.phymed.2018.09.211
  • PRAJITHA, V. and THOPPIL, J.E., 2017. Cytotoxic and apoptotic activities of extract of Amaranthus spinosus L. in Allium cepa and human erythrocytes. Cytotechnology, vol. 69, no. 1, pp. 123-133. http://dx.doi.org/10.1007/s10616-016-0044-5
    » http://dx.doi.org/10.1007/s10616-016-0044-5
  • RIBEIRO, T.P., SOUSA, T.R., ARRUDA, A.S., PEIXOTO, N., GONÇALVES, P.J. and ALMEIDA, L.M., 2016. Evaluation of cytotoxicity and genotoxicity of Hancornia speciosa latex in Allium cepa root model. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 76, no. 1, pp. 245-249. http://dx.doi.org/10.1590/1519-6984.20114 PMid:26909640.
    » http://dx.doi.org/10.1590/1519-6984.20114
  • ROBINSON, H., 1999. Generic and subtribal classification of American Vernonieae. Smithsonian Contributions to Botany, no. 89, pp. 1-116. https://doi.org/10.5479/si.0081024X.89
    » https://doi.org/10.5479/si.0081024X.89
  • RODRIGUES, K.C., CHIBLI, L.A., SANTOS, B.C., TEMPONI, V.S., PINTO, N.C., SCIO, E., DEL-VECHIO-VIEIRA, G., ALVES, M.S. and SOUSA, O.V., 2016. Evidence of bioactive compounds from Vernonia polyanthes leaves with topical anti-inflammatory potential. International Journal of Molecular Science, vol. 17, no. 12, 1929. PMid: 27916942.
  • ROLIM, A., MACIEL, C.P., KANEKO, T.M., CONSIGLIERI, V.O., SALGADO-SANTOS, I.M. and VELASCO, M.V., 2005. Validation assay for total flavonoids, as rutin equivalents, from Trichilia catigua Adr. Juss (Meliaceae) and Ptychopetalum olacoides Bentham (Olacaceae) commercial extract. Journal of AOAC International, vol. 88, no. 4, pp. 1015-1019. http://dx.doi.org/10.1093/jaoac/88.4.1015 PMid:16152916.
    » http://dx.doi.org/10.1093/jaoac/88.4.1015
  • ROMANEZI DA SILVEIRA, S., FOGLIO, M.A. and GONTIJO, J.A.R., 2003. Effect of the crude extract of Vernonia polyanthes Less. on blood pressure and renal sodium excretion in unanesthetized rats. Phytomedicine, vol. 10, no. 2-3, pp. 127-131. http://dx.doi.org/10.1078/094471103321659825 PMid:12725565.
    » http://dx.doi.org/10.1078/094471103321659825
  • SHAHIDI, F. and YEO, J.D., 2016. Insoluble-bound phenolics in food. Molecules, vol. 21, no. 9, pp. 1216. http://dx.doi.org/10.3390/molecules21091216
    » http://dx.doi.org/10.3390/molecules21091216
  • SHAKYA, A.K., 2016. Medicinal plants: future source of new drugs. International Journal of Herbal Medicine, vol. 4, no. 4, pp. 59-64.
  • SILVA, N.C.C., BARBOSA, L., SEITO, L.N. and FERNANDES JUNIOR, A., 2012. Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants. Natural Product Research, vol. 26, no. 16, pp. 1510-1514. http://dx.doi.org/10.1080/14786419.2011.564582 PMid:22007687.
    » http://dx.doi.org/10.1080/14786419.2011.564582
  • SOUSA, W.V., PAZ, A.T.S., CONCEIÇÃO, E.C., ALMEIDA, L.M., CHEN-CHEN, L., BORGES, L.L. and BAILÃO, E.F.L.C., 2017. In vivo assessment of cito/genotoxic, antigenotoxic and antifungal potential of Costus spiralis (Jacq.) roscoe leaves and stems. Anais da Academia Brasileira de Ciências, vol. 89, pp. 2043-2051.
  • SOUZA, F.A., SENA, J., MARANHO, L.T., OLIVEIRA, C.M.R. and GUIMAR, A.T.B., 2008. Caracterização fitoquímica preliminar de infusões populares obtidas das partes aéreas das espécies Apium leptophylum (Pers.) F. Muell. ex Benth. (Apiaceae), Elvira biflora L. (DC.) e Vernonia polyanthes Less. (Asteraceae). Revista Brasileira de Farmácia, vol. 89, no. 1, pp. 24-27.
  • STANTON, R.A., GERNERT, K.M., NETTLES, J.H. and ANEJA, R., 2011. Drugs that target dynamic microtubules: a new molecular perspective. Medicinal Research Reviews, vol. 31, no. 3, pp. 443-481. http://dx.doi.org/10.1002/med.20242 PMid:21381049.
    » http://dx.doi.org/10.1002/med.20242
  • TEDESCO, M., KUHN, A.W., FRESCURA, V.D., BOLIGON, A.A., ATHAYDE, M.L., TEDESCO, S.B. and SILVA, A.C.F.D., 2017. Assessment of the antiproliferative and antigenotoxic activity and phytochemical screening of aqueous extracts of Sambucus australis Cham. & Schltdl. (Adoxaceae). Anais da Academia Brasileira de Ciências, vol. 89, no. 3, (suppl.), pp. 2141-2154. http://dx.doi.org/10.1590/0001-3765201720150138 PMid:28876381.
    » http://dx.doi.org/10.1590/0001-3765201720150138
  • TEIXEIRA, R.O., CAMPAROTO, M.L., MANTOVANI, M.S. and VICENTINI, V.E.P., 2003. Assessment of two medicinal plants, Psidium guajava L. and Achillea millefolium L., in vitro and in vivo assays. Genetics and Molecular Biology, vol. 26, no. 4, pp. 551-555. http://dx.doi.org/10.1590/S1415-47572003000400021
    » http://dx.doi.org/10.1590/S1415-47572003000400021
  • TEMPONI, V.S., SILVA, J.B., ALVES, M.S., RIBEIRO, A., PINHO, J.J.R.G., YAMAMOTO, C.H., PINTO, M.A.O., DEL-VECHIO-VIEIRA, G. and SOUSA, O.V., 2012. Antinociceptive and anti-inflammatory effects of ethanol extract from Vernonia polyanthes leaves in rodents. International Journal of Molecular Sciences, vol. 13, no. 3, pp. 3887-3899. http://dx.doi.org/10.3390/ijms13033887 PMid:22489187.
    » http://dx.doi.org/10.3390/ijms13033887
  • THOMAS, E., GOPALAKRISHNAN, V., SOMASAGARA, R.R., CHOUDHARY, B. and RAGHAVAN, S.C., 2016. Extract of Vernonia condensata, inhibits tumor progression and improves survival of tumor-allograft bearing mouse. Scientific Reports, vol. 2, no. 2, pp. 23255. http://dx.doi.org/10.1038/srep23255 PMid:27009490.
    » http://dx.doi.org/10.1038/srep23255
  • THONGNEST, S., CHAWENGRUM, P., KEERATICHAMROEN, S., LIRDPRAPAMONGKOL, K., EURTIVONG, C., BOONSOMBAT, J., KITTAKOOP, P., SVASTI, J. and RUCHIRAWAT, S., 2019. Vernodalidimer L, a sesquiterpene lactone dimer from Vernonia extensa and anti-tumor effects of vernodalin, vernolepin, and vernolide on HepG2 liver cancer cells. Bioorganic Chemistry, vol. 92, pp. 103197. http://dx.doi.org/10.1016/j.bioorg.2019.103197 PMid:31445193.
    » http://dx.doi.org/10.1016/j.bioorg.2019.103197
  • VEGA, A.J. and DEMATTEIS, M., 2010. The transfer of Vernonia perangusta to the genus Vernonanthura (Vernonieae, Asteraceae) and the correct name for Vernonanthura phosphorica. Phytotaxa, vol. 8, no. 1, pp. 46-50. http://dx.doi.org/10.11646/phytotaxa.8.1.5
    » http://dx.doi.org/10.11646/phytotaxa.8.1.5
  • WATERMAN, P.G. and MOLE, S., 1994. Analysis of phenolic plant metabolites Oxford: Blackwell. Scientific Publication, 238 p.
  • YEDJOU, C.G., TCHOUNWOU, S.S., WILLIAMS, K. and TCHOUNWOU, P.B., 2018. Novel cellular staining protocol and antiproliferative effect of Vernonia amygdalina Delile on lung and prostate cancer cells. International Journal of Engineering Science & Research Technology, vol. 7, no. 8, pp. 552-556. PMid:30246001.
  • ZHU, M.Z., WU, W., JIAO, L.L., YANG, P.F. and GUO, M.Q., 2015. Analysis of flavonoids in lotus (Nelumbo nucifera) leaves and their antioxidant activity using macroporous resin chromatography coupled with LC-MS/MS and antioxidant biochemical assays. Molecules (Basel, Switzerland), vol. 20, no. 6, pp. 10553-10565. http://dx.doi.org/10.3390/molecules200610553 PMid:26060918.
    » http://dx.doi.org/10.3390/molecules200610553

Publication Dates

  • Publication in this collection
    14 Aug 2020
  • Date of issue
    Jul-Sep 2021

History

  • Received
    16 June 2019
  • Accepted
    01 Mar 2020
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br