Acessibilidade / Reportar erro

Resistance determinants of emerging pathogens isolated from an intensive care unit as a parameter of population health conditions of the Legal Amazon microregion

Determinantes de resistência a patógenos emergentes isolados de uma unidade de terapia intensiva como parâmetro das condições de saúde da população da microrregião da Amazônia Legal

Abstract

Bacteria responsible for causing infections are common in hospital environments, water, soil, and food products. The infection risk is intensified by the absence of public sanitation, poor quality of life, and food scarcity. These external factors promote the dissemination of pathogens by direct contamination or biofilm formation. In this work, we identified bacterial isolates obtained from intensive care units in the southern region of Tocantins, Brazil. We compared matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) techniques and 16S ribosomal ribonucleic acid (rRNA) molecular analysis; we also performed phenotypic characterization. Fifty-six isolates characterized using morphotinctorial tests were classified as gram-positive (80.4%; n = 45) and gram-negative (19.6%; n = 11) and were resistant to several antibiotic classes; notably, we identified the blaOXA-23 resistance gene in the ILH10 isolate. Microbial identification using MALDI-TOF MS resulted in the identification of Sphingomonas paucimobilis and Bacillus circulans. 16S rRNA sequencing revealed four isolates belonging to the genera Bacillus and Acinetobacter. The similarity was superior to 99% for Acinetobacter schindleri in the Basic Local Alignment Search Tool (BLAST), grouped in the clade superior to 90%. Several strains isolated from intensive care units (ICU) were resistant to various antibiotic classes. These techniques allowed for the identification of several microorganisms of importance in public health, enabling improvements in human infection control and proving the quality of inputs, food, and water.

Keywords:
multi-drug resistant bacteria; hospital environment; MALDI-TOF MS; 16S rRNA

Resumo

As bactérias responsáveis por causar infecções são comuns em ambientes hospitalares, água, solo e produtos alimentícios. O risco de infecção é intensificado pela ausência de saneamento público, má qualidade de vida e escassez de alimentos. Esses fatores externos promovem a disseminação de patógenos por contaminação direta ou formação de biofilme. Neste trabalho, identificamos isolados bacterianos obtidos de unidades de terapia intensiva na região sul do Tocantins, Brasil. Comparamos técnicas de espectrometria de massa de tempo de voo com ionização por dessorção a laser assistida por matriz (MALDI-TOF MS) e análise molecular de ácido ribonucleico ribossômico 16S (rRNA); também realizamos caracterização fenotípica. Cinquenta e seis isolados caracterizados por testes morfotintoriais foram classificados como gram-positivos (80,3%; n = 45) e gram-negativos (19,6%; n = 11) e foram resistentes a várias classes de antibióticos; notavelmente, identificamos o gene de resistência blaOXA-23 no isolado de ILH10. A identificação microbiana usando MALDI-TOF MS resultou na identificação de Sphingomonas paucimobilis e Bacillus circulans. O sequenciamento do 16S rRNA revelou quatro isolados pertencentes aos gêneros Bacillus e Acinetobacter. A similaridade foi superior a 99% para Acinetobacter schindleri no BLAST, agrupado no clado superior a 90%. Várias cepas isoladas de ICU foram resistentes a várias classes de antibióticos. Essas técnicas permitiram a identificação de diversos microrganismos de importância em saúde pública, possibilitando melhorias no controle de infecções humanas e comprovando a qualidade dos insumos, alimentos e água.

Palavras-chave:
bactéria multirresistente; ambiente hospitalar; MALDI-TOF MS; 16S rRNA

1. Introduction

Bacterial infections inside and outside hospital environments are the primary causes of illness. The excessive use of antimicrobial agents in humans and domestic animals has generated high rates of bacterial resistance and has become a severe problem worldwide (Bonelli et al., 2014BONELLI, R.R., MOREIRA, B.M. and PICÃO, R.C., 2014. Antimicrobial resistance among Enterobacteriaceae in South America: History, current dissemination status and associated socioeconomic factors. Drug Resistance Updates, vol. 17, no. 1-2, pp. 24-36. http://dx.doi.org/10.1016/j.drup.2014.02.001. PMid:24618111.
http://dx.doi.org/10.1016/j.drup.2014.02...
; Moretto et al., 2021MORETTO, V.T., BARTLEY, P.S., FERREIRA, V.M., SANTOS, C.S., SILVA, L.K., PONCE-TERASHIMA, R.A., BLANTON, R.E., REIS, M.G. and BARBOSA, L.M., 2021. Microbial source tracking and antimicrobial resistance in one river system of a rural community in Bahia, Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 82, pp. e231838. PMid:33681894.). Community and environmental factors contribute to the emergence of multi-drug resistant bacteria, promoted by the lack of adequate public sanitation and the transmission of domestic effluents to water sources. These phenomena contribute to the spread of pathogens, especially in regions with low human development indexes (Gallini et al., 2010GALLINI, A., DEGRIS, E., DESPLAS, M., BOURREL, R., ARCHAMBAUD, M., MONTASTRUC, J.L., LAPEYRE-MESTRE, M. and SOMMET, A., 2010. Influence of fluoroquinolone consumption in inpatients and outpatients on ciprofloxacin-resistant Escherichia coli in a university hospital. The Journal of Antimicrobial Chemotherapy, vol. 65, no. 12, pp. 2650-2657. http://dx.doi.org/10.1093/jac/dkq351. PMid:20876240.
http://dx.doi.org/10.1093/jac/dkq351...
; Bartley et al., 2019BARTLEY, P.S., DOMITROVIC, T.N., MORETTO, V.T., SANTOS, C.S., PONCE-TERASHIMA, R., REIS, M.G., BARBOSA, L.M., BLANTON, R.E., BONOMO, R.A. and PEREZ, F., 2019. Antibiotic resistance in Enterobacteriaceae from surface waters in urban Brazil highlights the risks of poor sanitation. The American Journal of Tropical Medicine and Hygiene, vol. 100, no. 6, pp. 1369-1377. PMid:30994094.; Moretto et al., 2021MORETTO, V.T., BARTLEY, P.S., FERREIRA, V.M., SANTOS, C.S., SILVA, L.K., PONCE-TERASHIMA, R.A., BLANTON, R.E., REIS, M.G. and BARBOSA, L.M., 2021. Microbial source tracking and antimicrobial resistance in one river system of a rural community in Bahia, Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 82, pp. e231838. PMid:33681894.).

The emergence of new resistance mechanisms may arise in vulnerable communities, leading to the dissemination of bacterial genes via conjugative plasmids (Meirelles-Pereira et al., 2002MEIRELLES-PEREIRA, F., PEREIRA, A.M.S., SILVA, M.C.G., GONÇALVES, V.D., BRUM, P.R., CASTRO, A.R., PEREIRA, A.A., ESTEVES, F.A. and PEREIRA, J.A.A., 2002. Ecological aspects of the antimicrobial resistance in bacteria of importance to human infections. Brazilian Journal of Microbiology, vol. 33, no. 4. http://dx.doi.org/10.1590/S1517-83822002000400002.
http://dx.doi.org/10.1590/S1517-83822002...
; Cerceo et al., 2016CERCEO, E., DEITELZWEIG, S.B., SHERMAN, B.M. and AMIN, A.N., 2016. Multidrug-resistant gram-negative bacterial infections in the hospital setting: overview, implications for clinical practice, and emerging treatment options. Microbial Drug Resistance (Larchmont, N.Y.), vol. 22, no. 5, pp. 412-431. http://dx.doi.org/10.1089/mdr.2015.0220. PMid:26866778.
http://dx.doi.org/10.1089/mdr.2015.0220...
). Among the primary multi-drug resistant bacteria (MDRs), including species in the genera Bacillus, Pseudomonas, Acinetobacter, Klebsiella, and enterobacteria that are commonly found in hospital environments, water, soil, and food products (Logan, 2012LOGAN, L.K., 2012. Carbapenem-resistant enterobacteriaceae: an emerging problem in children. Clinical Infectious Diseases, vol. 55, no. 6, pp. 852-859. http://dx.doi.org/10.1093/cid/cis543. PMid:22700827.
http://dx.doi.org/10.1093/cid/cis543...
; Smet et al., 2014SMET, A., COOLS, P., KRIZOVA, L., MAIXNEROVA, M., SEDO, O., HAESEBROUCK, F., KEMPF, M., NEMEC, A. and VANEECHOUTTE, M., 2014. Acinetobacter gandensis sp. nov. isolated from horse and cattle. International Journal of Systematic and Evolutionary Microbiology, vol. 64, no. 12, pp. 4007-4015. http://dx.doi.org/10.1099/ijs.0.068791-0. PMid:25225259.
http://dx.doi.org/10.1099/ijs.0.068791-0...
; Ferreira et al., 2019FERREIRA, R.L., DA SILVA, B.C.M., REZENDE, G.S., NAKAMURA-SILVA, R., PITONDO-SILVA, A., CAMPANINI, E.B., BRITO, M.C.A., DA SILVA, E.M.L., FREIRE, C.C.M., CUNHA, A.F. and PRANCHEVICIUS, M.-C.S., 2019. High prevalence of multidrug-resistant Klebsiella pneumoniae harboring several virulence and β-lactamase encoding genes in a Brazilian intensive care unit. Frontiers in Microbiology, vol. 9, pp. 3198. http://dx.doi.org/10.3389/fmicb.2018.03198. PMid:30723463.
http://dx.doi.org/10.3389/fmicb.2018.031...
; Arbab et al., 2021ARBAB, S., ULLAH, H., WEI, X., WANG, W., AHMAD, S.U. and ZHANG, J., 2021. Drug resistance and susceptibility testing of Gram negative bacterial isolates from healthy cattle with different β-Lactam resistance Phenotypes from Shandong province China. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, pp. e247061. http://dx.doi.org/10.1590/1519-6984.247061. PMid:34468524.
http://dx.doi.org/10.1590/1519-6984.2470...
; Adwan and Omar, 2021ADWAN, G. and OMAR, G., 2021. Phenotypic and molecular characterization of fluoroquinolone resistant Pseudomonas aeruginosa isolates in Palestine. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 82, pp. e239868. http://dx.doi.org/10.1590/1519-6984.239868. PMid:34190800.
http://dx.doi.org/10.1590/1519-6984.2398...
). Food is a potential transmission source between the community and clinical settings (Carvalheira et al., 2021CARVALHEIRA, A., SILVA, J. and TEIXEIRA, P., 2021. Acinetobacter spp. in food and drinking water-a review. Food Microbiology, vol. 95, pp. 103675. http://dx.doi.org/10.1016/j.fm.2020.103675. PMid:33397609.
http://dx.doi.org/10.1016/j.fm.2020.1036...
).

Another critical factor is the ability of bacteria to form a structural community of multiple bacterial cells (biofilm) characterized by high nutritional and metabolic versatility and adherence to living and non-living surfaces. These surfaces include glass, plastic, X-ray equipment, benches, beds, fans, and air circulation systems (Bernards et al., 2004BERNARDS, A.T., HARINCK, H.I.J., DIJKSHOORN, L., VAN DER REIJDEN, T.J.K. and VAN DEN BROEK, P.J., 2004. Persistent Acinetobacter baumannii? Look inside your medical equipment. Infection Control and Hospital Epidemiology, vol. 25, no. 11, pp. 1002-1004. http://dx.doi.org/10.1086/502335. PMid:15566039.
http://dx.doi.org/10.1086/502335...
; Gaddy et al., 2009GADDY, J.A., TOMARAS, A.P. and ACTIS, L.A., 2009. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infection and Immunity, vol. 77, no. 8, pp. 3150-3160. http://dx.doi.org/10.1128/IAI.00096-09. PMid:19470746.
http://dx.doi.org/10.1128/IAI.00096-09...
).

Resistance to antibiotics and chemicals (disinfectants) contributes to greater pathogenicity (Gaddy et al., 2009GADDY, J.A., TOMARAS, A.P. and ACTIS, L.A., 2009. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infection and Immunity, vol. 77, no. 8, pp. 3150-3160. http://dx.doi.org/10.1128/IAI.00096-09. PMid:19470746.
http://dx.doi.org/10.1128/IAI.00096-09...
; Nowak and Paluchowska, 2016NOWAK, P. and PALUCHOWSKA, P., 2016. Acinetobacter baumannii: biology and drug resistance - role of carbapenemases. Folia Histochemica et Cytobiologica, vol. 54, no. 2, pp. 61-74. PMid:27270503.). β-lactamases act as one of the primary mechanisms associated with resistance; β-lactam resistance is mediated by β-lactamases that inhibit antibiotics, including carbapenems, penicillins, cephalosporins, and monobactams. β-lactamases can be divided into class A (e.g. Klebsiella pneumoniae carbapenemase, class B metallo-β-lactamases [e.g. New Delhi metallo-β-lactamase, Verona integrin-encoded metallo-beta-lactamases, imipenem-resistant Pseudomonas]) and class D β-lactamases (e.g., oxacylinases) (Bush and Jacoby, 2010BUSH, K. and JACOBY, G.A., 2010. Updated functional classification of β-lactamases. Antimicrobial Agents and Chemotherapy, vol. 54, no. 3, pp. 969-976. http://dx.doi.org/10.1128/AAC.01009-09. PMid:19995920.
http://dx.doi.org/10.1128/AAC.01009-09...
; Logan, 2012LOGAN, L.K., 2012. Carbapenem-resistant enterobacteriaceae: an emerging problem in children. Clinical Infectious Diseases, vol. 55, no. 6, pp. 852-859. http://dx.doi.org/10.1093/cid/cis543. PMid:22700827.
http://dx.doi.org/10.1093/cid/cis543...
; Lee et al., 2016LEE, C.R., LEE, J.H., PARK, K.S., KIM, Y.B., JEONG, B.C. and LEE, S.H., 2016. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Frontiers in Microbiology, vol. 7, pp. 895. http://dx.doi.org/10.3389/fmicb.2016.00895. PMid:27379038.
http://dx.doi.org/10.3389/fmicb.2016.008...
).

Conventional methods for diagnosing pathogens involve isolating the organism in culture with subsequent analysis of its phenotypic characteristics (i.e., microscopic and macroscopic morphologies) and biochemical evaluations on various substrates (Stępień-Pyśniak et al., 2017STĘPIEŃ-PYŚNIAK, D., HAUSCHILD, T., RÓŻAŃSKI, P. and MAREK, A., 2017. MALDI-TOF Mass Spectrometry as a useful tool for identification of Enterococcus spp. from wild birds and differentiation of closely related species. Journal of Microbiology and Biotechnology, vol. 27, no. 6, pp. 1128-1137. http://dx.doi.org/10.4014/jmb.1612.12036. PMid:28285496.
http://dx.doi.org/10.4014/jmb.1612.12036...
). Other methods used in clinical microbiology laboratories include molecular methods with gene sequencing of 16S rRNA and 23S rRNA. MALDI-TOF MS is a rapid and accurate identification technique for bacteria isolated from biological specimens and can detect various proteins from microbial species (Angeletti, 2017ANGELETTI, S., 2017. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. Journal of Microbiological Methods, vol. 138, pp. 20-29. http://dx.doi.org/10.1016/j.mimet.2016.09.003. PMid:27613479.
http://dx.doi.org/10.1016/j.mimet.2016.0...
; Tsuchida et al., 2020TSUCHIDA, S., UMEMURA, H. and NAKAYAMA, T., 2020. Current status of matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) in clinical diagnostic microbiology. Molecules (Basel, Switzerland), vol. 25, no. 20, pp. 4775. http://dx.doi.org/10.3390/molecules25204775. PMid:33080897.
http://dx.doi.org/10.3390/molecules25204...
).

The analysis of microbial diversity in different environments and the multi-drug resistant bacteria profile have essential implications for hospitals stemming from the indiscriminate use of antibiotics. The present work aimed to characterize microbial sources phenotypically in intensive care units (ICUs) and identify isolates using the MALDI-TOF MS and 16S rRNA molecular methods. These techniques are critical for public health because they provide actions to control human infections and benefit the population.

2. Materials and Methods

2.1. Study location; sample processing; ethical and legal permissions.

The Gurupi Regional Hospital - Tocantins - Brazil (11°43'48” S and 49°04'08” W) is located in the Legal Amazon microregion. It is a referral center for 18 municipalities: Aliança do Tocantins, Araguaçu, Alvorada, Cariri do Tocantins, Crixás do Tocantins, Dueré, Figueirópolis, Formoso do Araguaia, Jau do Tocantins, Lagoa da Confusão, Palmeiropolis, Paranã, Peixe, Sandolândia, São Valério, São Salvador, Sucupira, and Talisman. We used samples from beds of patients hospitalized for more than 48 hours. The collection was performed using sterile swabs passed on the bed surface and transported in Cary Blair medium. Samples were cultured on tryptic soy agar (Kasvi, Italy) and incubated aerobically at 37 °C overnight. Bacterial isolates were phenotypically characterized using manual Gram staining methods and measuring motility properties, growth at 44 °C, citrate utilization, oxidase and urease production, and oxidation/fermentation (Castilho et al., 2017CASTILHO, S.R.A., GODOY, C.S.D.M., GUILARDE, A.O., CARDOSO, J.L., ANDRÉ, M.C.P., JUNQUEIRA-KIPNIS, A.P. and KIPNIS, A., 2017. Strains isolated from patients in intensive care units in Goiania, Brazil: molecular and drug susceptibility profiles. PLoS One, vol. 12, no. 5, pp. e0176790. http://dx.doi.org/10.1371/journal.pone.0176790. PMid:28475585.
http://dx.doi.org/10.1371/journal.pone.0...
). The Research Ethics Committee of the Federal University of Tocantins approved the work (protocol number 72773417.3.0000.5519). After issuing a substantiated opinion of this study, the protocol was forwarded to the Health Department of the State of Tocantins (SESAU/TO) in compliance with ordinance SES-391/2017.

2.2. Phenotypic analysis and resistance classification

We measured antibiotic sensitivity and resistance using the disk diffusion method, following the Clinical and Laboratory Standards Institute guidelines (CLSI, 2017CLINICAL AND LABORATORY STANDARDS INSTITUTE - CLSI, 2017. Performance standards for antimicrobial suceptibility testing (Supplement M100). 27th ed. Wayne: Clinical and Laboratory Standards Institute.). The isolates were cultured in 100 ml of TSB broth (soy peptone 17 g/l, casein 3 g/l, dextrose 5 g/l, and monobasic potassium phosphate 5 g/l), stirring at 120 rpm at 37 °C for 8 h. Growth was adjusted to 108 colony-forming units/ml and seeded on Mueller-Hinton agar (Kasvi, Italy) between 18 and 24 hours of incubation at 37 °C for recording halo formation (Castilho et al., 2017CASTILHO, S.R.A., GODOY, C.S.D.M., GUILARDE, A.O., CARDOSO, J.L., ANDRÉ, M.C.P., JUNQUEIRA-KIPNIS, A.P. and KIPNIS, A., 2017. Strains isolated from patients in intensive care units in Goiania, Brazil: molecular and drug susceptibility profiles. PLoS One, vol. 12, no. 5, pp. e0176790. http://dx.doi.org/10.1371/journal.pone.0176790. PMid:28475585.
http://dx.doi.org/10.1371/journal.pone.0...
). Antibiotics (Sensifar®-Brasil) included ampicillin/sulbactam (20 µg), amikacin (30 µg), ceftazidime (30 µg), cefepime (30 µg), ciprofloxacin (5 µg), cotrimoxazole (25 µg), gentamicin (10 µg), imipenem (10 µg), levofloxacin (5 µg), linezolid (30 µg), meropenem (10 µg), minocycline (30 µg), norfloxacin (10 µg), piperacillin/tazobactam (110 µg), polymyxin B (330 IU), tetracycline (30 µg), and vancomycin (30 µg). Halo inhibition data were measured and ranked, with resistance to ≥ 1 antimicrobial agent in ≥ 3 antimicrobial categories considered MDR. Resistance to ≥ 1 antimicrobial agent in all but two antimicrobial classes was considered extensively drug-resistant (Magiorakos et al., 2012MAGIORAKOS, A.-P., SRINIVASAN, A., CAREY, R.B., CARMELI, Y., FALAGAS, M.E., GISKE, C.G., HARBARTH, S., HINDLER, J.F., KAHLMETER, G., OLSSON-LILJEQUIST, B., PATERSON, D.L., RICE, L.B., STELLING, J., STRUELENS, M.J., VATOPOULOS, A., WEBER, J.T. and MONNET, D.L., 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, vol. 18, no. 3, pp. 268-281. http://dx.doi.org/10.1111/j.1469-0691.2011.03570.x. PMid:21793988.
http://dx.doi.org/10.1111/j.1469-0691.20...
).

2.3. Molecular analysis and detection of genes

The polymerase chain reaction (PCR) was performed using primers for OXA-51, OXA-23, OXA-40, OXA-58 and the insertion sequence (IS) of the ISAba1 (Sohrabi et al., 2012SOHRABI, N., FARAJNIA, S., AKHI, M.T., NAHAEI, M.R., NAGHILI, B., PEYMANI, A., AMIRI, Z., REZAEE, M.A. and SAEED, I.N., 2012. Prevalence of OXA-type β-lactamases among Acinetobacter baumannii isolates from Northwest of Iran. Microbial Drug Resistance (Larchmont, N.Y.), vol. 18, no. 4, pp. 385-389. http://dx.doi.org/10.1089/mdr.2011.0077. PMid:22352411.
http://dx.doi.org/10.1089/mdr.2011.0077...
) (Table 1). DNA extraction was performed using an extraction kit (Invitrogen-PureLink® Genomic DNA Kits. The PCR technique was used to amplify the fragments with a final volume of 20 μL containing 20 ng of DNA, 1.5 mM of MgCl2, 250 μM dNTP, 1U Taq DNA Polymerase (Promega, Madison, WI, USA), and 0.47 μM primer. Reactions were carried out in a Thermocycler (Biocycler MJ96G, Applied Biosystems) under the following conditions: denaturation at 95 °C for 4 min; 35 cycles of denaturation (90 °C, 30 seconds), alignment (50 °C, 40 seconds) and extension (72 °C, 1 min); final extension at 72 °C for 5 min. PCR products were separated by 1.5% agarose gel electrophoresis, stained with 0.5 μg/mL ethidium bromide, and visualized using Gel Doc System XR (Bio-Rad, Laboratories, Hercules, CA, USA).

Table 1
Target genes for PCR amplification, fragment size, and primer sequences.

2.4. Identification of emerging pathogens

2.4.1. DNA extraction and sequencing of the 16S rRNA gene

Bacterial isolates were cultured in brain heart broth (Merck, Germany) and incubated overnight at 37 °C with continuous shaking at 120 rpm. DNA extraction was performed using an extraction kit (Invitrogen-PureLink® Genomic DNA Kits). PCR of the rDNA16S region amplified the DNA. The sequence of primers 16SF and 16SR amplify a region of 400 bp (16SF-ACTGCTATCCACCCTCAAAC and 16SR CTGGGTGAAGTTGTAATCGG). The PCR product was purified using exonuclease I and shrimp alkaline phosphatase. The integrity of the genomic DNA was tested by electrophoresis.

The sequencing of the 16S gene was performed on a 3500 sequencer (Thermo Fisher Scientific). Sequencing reactions were set up with 20 ng of DNA, 0.5 µl Big Dye V3.1 (Thermo Fisher Scientific), 2.0 µl of 5X sequencing buffer, and 3.2 µmol of primer. The continuous sequences were compared with reference and outgroup sequences from the National Center for Biotechnology Information using the BLAST system to identify similarities. Phylogenetic analysis of the isolates was performed using the maximum likelihood method and the Tamura-Nei model (Tamura and Nei, 1993TAMURA, K. and NEI, M., 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, vol. 10, no. 3, pp. 512-526. PMid:8336541.) using a MEGA 11 (Tamura et al., 2021TAMURA, K., STECHER, G. and KUMAR, S., 2021. MEGA 11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution, vol. 38, no. 7, pp. 3022-3027. http://dx.doi.org/10.1093/molbev/msab120. PMid:33892491.
http://dx.doi.org/10.1093/molbev/msab120...
). Branch confidence was tested using 500 bootstrap repetitions.

2.4.2. Identification by MALDI-TOF MS

Isolates were seeded in Brain Heart Infusion (Merck, Germany), incubated at 37 ºC for 18 hours, and sent to Instituto Hermes Pardini (Belo Horizonte, Brazil) for microbial identification by automated mass spectrometry equipped with MALDI-TOF MS (BioMérieux, France). Briefly, a fresh colony was spread on a Vitek MS DS target slide, and the preparations were covered with 1 ml of VITEK MS-CHCA matrix solution (a saturated solution of α-cyano-4-hydroxycinnamic acid in 50% acetonitrile and trifluoroacetic acid at 2.5%). After drying, the target plate was loaded into the Vitek MS mass spectrometer and air-dried for 1 to 2 minutes at room temperature. Microbial identification was achieved by obtaining spectra using MALDI-TOF and analyzing the spectra using the VITEK MS database. The spectral peaks were compared with the characteristic pattern of a species, genus, or family of microorganisms, resulting in the identification (Dubois et al., 2012DUBOIS, D., GRARE, M., PRERE, M.F., SEGONDS, C., MARTY, N. and OSWALD, E., 2012. Performances of the MALDI-TOF mass spectrometry system VITEK MS for the rapid identification of bacteria in routine clinical microbiology. Journal of Clinical Microbiology, vol. 50, no. 8, pp. 2568-2576. PMid:22593596.; Moon et al., 2013MOON, H.W., LEE, S.H., CHUNG, H.S., LEE, M. and LEE, K., 2013. Performance of the Vitek MS matrix-assisted laser desorption ionization time-of-flight mass spectrometry system for identification of Gram-positive cocci routinely isolated in clinical microbiology laboratories. Journal of Medical Microbiology, vol. 62, no. 9, pp. 1301-1306. http://dx.doi.org/10.1099/jmm.0.062950-0. PMid:23764744.
http://dx.doi.org/10.1099/jmm.0.062950-0...
; Gonçalves et al., 2019GONÇALVES, G.G.A., FEITOSA, A.P.S., PORTELA-JUNIOR, N.C., OLIVEIRA, C.M.F., LIMA FILHO, J.L., BRAYNER, F.A. and ALVES, L.C., 2019. Use of MALDI-TOF MS to identify the culturable midgut microbiota of laboratory and wild mosquitoes. Acta Tropica, vol. 200, pp. 105174. http://dx.doi.org/10.1016/j.actatropica.2019.105174. PMid:31525322.
http://dx.doi.org/10.1016/j.actatropica....
). A percentage probability (99.9%) represents the similarity of specific peaks between the generated spectrum and the database spectra. Lower values ​​were designated as inconclusive

3. Results

3.1. Phenotypic characterization, susceptibility testing, and detection of resistance genes

We identified 677 colonies from ICU bed surfaces; 56 bacterial isolates were obtained for characterization (8.2%; n = 677) (Table 2). Of these, 80.3% were gram-positive (n = 45) and 19.6% were gram-negative (n = 11) (Table 2). Sensitivity analysis revealed a resistance rate for cotrimoxazole of 44%, ceftazidime of 32%, ciprofloxacin of 28%, norfloxacin of 25%, and cefepime of 23%. The lowest resistance rate was obtained for minocycline and amikacin (1.7%) (Figure 1). Five isolates (ILH10, ​​ILH14, ILH13, ILH16, and ILH2) were resistant to an antibiotic of various classes (penicillins, cephalosporins, quinolones, polymyxins, tetracycline, and sulfonamides) (Table 3). Another isolate (ILH11) showed resistance only to β-lactam class antibiotics (penicillin, cephalosporins, and carbapenems). There was no evidence for the presence of resistance genes related to blaOXA-51, blaOXA-40, blaOXA-58, or the ISAba1 element. By contrast, we identified blaOXA-23 genes in the ILH10 isolate. There was no evidence of blaOXA-23, blaOXA-51, blaOXA-40, blaOXA-58, or ISAba1 in the isolates ILH11, ILH13, ILH14, ILH16, and ILH2; however, these isolates were resistant to at least one penicillin, cephalosporin, or quinolone (Tables 3 and 4).

Table 2
Phenotypic characterization of isolates from hospital ICU beds in Tocantins, Brazil.
Figure 1
Antimicrobial rates of bacterial resistance isolated from ICU hospital bed surfaces (n = 56). Antibiotics: ceftazidime (CAZ), gentamicin (GEN), linezolid (LNZ), tetracycline (TET), minocycline (MIN), levofloxacin (LVX), imipenem (IPM), ciprofloxacin (CIP), polymyxin B (POL), vancomycin (VAN), norfloxacin (NOR), piperacillin/tazobactam (PPT), meropenem (MER), amikacin (AMI), cefepime (CPM), ampicillin/sulbactam (ASB), cotrimoxazole (sulfatrin) (SUT), imipenem (IPM)
Table 3
Antimicrobial resistance of isolates and 16S rRNA gene sequencing.
Table 4
Antimicrobial resistance of isolates and microbial identification by MALDI-TOF MS.

3.2. Bacterial identification using 16S rRNA and MALDI-TOF MS

The isolates ILH10, ​​ILH11, ILH13, and ILH2 were identified only in the sequencing of the 16S rRNA gene and belonged to the genera Acinetobacter and Bacillus (Table 3). The ILH10 isolate was subjected to phylogenetic analysis involving 19 nucleotide sequences from the genus Acinetobacter (Figure 2). All ambiguous positions were removed for each pair of sequences (pair deletion option). There were 1593 positions in the final dataset of the ILH10 isolate that showed more significant similarity with 99.3% to Acinetobacter schindleri in BLAST, grouping 90% in the clade with bootstrap higher than 90% (Table 3; Figure 2). The ILH13 isolate was subjected to phylogenetic analysis involving 18 nucleotide sequences from the genus Bacillus (Figure 2). All ambiguous positions were removed for each pair of sequences (pair deletion option). There were 1555 positions in the final dataset of the ILH13 isolate that showed more significant similarity with 100% to Bacillus cereus in BLAST, in the clade with bootstrap higher than 90% (Table 3; Figure 2). The ILH2 isolate was subjected to phylogenetic analysis involving 22 nucleotide sequences from the genus Bacillus (Figure 2). All ambiguous positions were removed for each pair of sequences (pair deletion option). There were 1561 positions in the final dataset of the ILH2 isolate that showed more significant similarity with 99,7% to Bacillus Licheniformis in BLAST, in the clade with bootstrap higher than 80% (Table 3; Figure 2). Only ILH14 and ILH 16 were identified using MALDI-TOF MS, revealing Sphingomonas paucimobilis and Bacillus circulans (Table 4; Figure 3). ILH10, ​​ILH11, ILH13, and ILH2 were not detected using the technique because the system did not include a reference database for identification (Table 4).

Figure 2
Phylogenetic tree obtained by maximum likelihood of the 16S rRNA gene sequences (400 bp) of the ILH10 isolate with identification of deposit in GenBank ON853562.1 (black arrow). ILH13 isolate with identification of deposit in GenBank ON853564.1 (black arrow). ILH2 isolate with identification of deposit in GenBank ON853570.1 (black arrow). Bootstrap values are indicated at the root of each branch.
Figure 3
Mass spectrometer with the proteomic profile of isolate ILH16 (B. circulans) by MALDI-TOF MS.

4. Discussion

The indiscriminate use of antibiotics inevitably leads to antimicrobial resistance, primarily through natural resistance and antibiotic residues in sewage and soils (Moretto et al., 2021MORETTO, V.T., BARTLEY, P.S., FERREIRA, V.M., SANTOS, C.S., SILVA, L.K., PONCE-TERASHIMA, R.A., BLANTON, R.E., REIS, M.G. and BARBOSA, L.M., 2021. Microbial source tracking and antimicrobial resistance in one river system of a rural community in Bahia, Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 82, pp. e231838. PMid:33681894.). The Gurupi Regional Hospital, the study site, is a referral center for 18 municipalities in the state of Tocantins, which can favor the dissemination of MDRs via dissemination between communities and environments through domestic effluents and food (Meirelles-Pereira et al., 2002MEIRELLES-PEREIRA, F., PEREIRA, A.M.S., SILVA, M.C.G., GONÇALVES, V.D., BRUM, P.R., CASTRO, A.R., PEREIRA, A.A., ESTEVES, F.A. and PEREIRA, J.A.A., 2002. Ecological aspects of the antimicrobial resistance in bacteria of importance to human infections. Brazilian Journal of Microbiology, vol. 33, no. 4. http://dx.doi.org/10.1590/S1517-83822002000400002.
http://dx.doi.org/10.1590/S1517-83822002...
; Cerceo et al., 2016CERCEO, E., DEITELZWEIG, S.B., SHERMAN, B.M. and AMIN, A.N., 2016. Multidrug-resistant gram-negative bacterial infections in the hospital setting: overview, implications for clinical practice, and emerging treatment options. Microbial Drug Resistance (Larchmont, N.Y.), vol. 22, no. 5, pp. 412-431. http://dx.doi.org/10.1089/mdr.2015.0220. PMid:26866778.
http://dx.doi.org/10.1089/mdr.2015.0220...
). This factor explains the presence of bacteria in the genera Bacillus, Acinetobacter and Sphingomonas, found in Gurupi Regional Hospital, also commonly found in water, soil, and food products (Logan 2012LOGAN, L.K., 2012. Carbapenem-resistant enterobacteriaceae: an emerging problem in children. Clinical Infectious Diseases, vol. 55, no. 6, pp. 852-859. http://dx.doi.org/10.1093/cid/cis543. PMid:22700827.
http://dx.doi.org/10.1093/cid/cis543...
; Smet et al., 2014SMET, A., COOLS, P., KRIZOVA, L., MAIXNEROVA, M., SEDO, O., HAESEBROUCK, F., KEMPF, M., NEMEC, A. and VANEECHOUTTE, M., 2014. Acinetobacter gandensis sp. nov. isolated from horse and cattle. International Journal of Systematic and Evolutionary Microbiology, vol. 64, no. 12, pp. 4007-4015. http://dx.doi.org/10.1099/ijs.0.068791-0. PMid:25225259.
http://dx.doi.org/10.1099/ijs.0.068791-0...
; Ferreira et al., 2019FERREIRA, R.L., DA SILVA, B.C.M., REZENDE, G.S., NAKAMURA-SILVA, R., PITONDO-SILVA, A., CAMPANINI, E.B., BRITO, M.C.A., DA SILVA, E.M.L., FREIRE, C.C.M., CUNHA, A.F. and PRANCHEVICIUS, M.-C.S., 2019. High prevalence of multidrug-resistant Klebsiella pneumoniae harboring several virulence and β-lactamase encoding genes in a Brazilian intensive care unit. Frontiers in Microbiology, vol. 9, pp. 3198. http://dx.doi.org/10.3389/fmicb.2018.03198. PMid:30723463.
http://dx.doi.org/10.3389/fmicb.2018.031...
; Arbab et al., 2021ARBAB, S., ULLAH, H., WEI, X., WANG, W., AHMAD, S.U. and ZHANG, J., 2021. Drug resistance and susceptibility testing of Gram negative bacterial isolates from healthy cattle with different β-Lactam resistance Phenotypes from Shandong province China. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, pp. e247061. http://dx.doi.org/10.1590/1519-6984.247061. PMid:34468524.
http://dx.doi.org/10.1590/1519-6984.2470...
; Carvalheira et al., 2021CARVALHEIRA, A., SILVA, J. and TEIXEIRA, P., 2021. Acinetobacter spp. in food and drinking water-a review. Food Microbiology, vol. 95, pp. 103675. http://dx.doi.org/10.1016/j.fm.2020.103675. PMid:33397609.
http://dx.doi.org/10.1016/j.fm.2020.1036...
).

Infections caused by nosocomial pathogens lead to morbidity and mortality in hospitalized patients with the emergence of MDR bacteria (Weber et al., 2010WEBER, D.J., RUTALA, W.A., MILLER, M.B., HUSLAGE, K. and SICKBERT-BENNETT, E., 2010. Role of hospital surfaces in the transmission of emerging health care-associated pathogens: norovirus, Clostridium difficile, and Acinetobacter species. American Journal of Infection Control, vol. 38, no. 5, suppl. 1, pp. S25-S33. http://dx.doi.org/10.1016/j.ajic.2010.04.196. PMid:20569853.
http://dx.doi.org/10.1016/j.ajic.2010.04...
; Otter et al., 2013OTTER, J.A., YEZLI, S., SALKELD, J.A. and FRENCH, G.L., 2013. Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings. American Journal of Infection Control, vol. 41, no. 5, (suppl.), pp. S6-S11. http://dx.doi.org/10.1016/j.ajic.2012.12.004. PMid:23622751.
http://dx.doi.org/10.1016/j.ajic.2012.12...
; Dancer, 2014DANCER, S.J., 2014. Controlling hospital-acquired infection: focus on the role of the environment and new technologies for decontamination. Clinical Microbiology Reviews, vol. 27, no. 4, pp. 665-690. http://dx.doi.org/10.1128/CMR.00020-14. PMid:25278571.
http://dx.doi.org/10.1128/CMR.00020-14...
; Sood and Perl, 2016SOOD, G. and PERL, T., 2016. Outbreaks in health care settings. Infectious Disease Clinics, vol. 30, no. 3, pp. 661-687. PMid:27515142.). Reports have shown that biofilm formation is favorable to the growth of persistent colonization with methicillin-resistant Staphylococcus aureus, Acinetobacter spp., Clostridium difficile, and Pseudomonas aeruginosa (Kramer et al., 2006KRAMER, A., SCHWEBKE, I. and KAMPF, G., 2006. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infectious Diseases, vol. 6, no. 1, pp. 130. http://dx.doi.org/10.1186/1471-2334-6-130. PMid:16914034.
http://dx.doi.org/10.1186/1471-2334-6-13...
; Boyce, 2007BOYCE, J.M., 2007. Environmental contamination makes an important contribution to hospital infection. The Journal of Hospital Infection, vol. 65, no. 2, suppl. 2, pp. 50-54. http://dx.doi.org/10.1016/S0195-6701(07)60015-2. PMid:17540242.
http://dx.doi.org/10.1016/S0195-6701(07)...
; Chemaly et al., 2014CHEMALY, R.F., SIMMONS, S., DALE JUNIOR, C., GHANTOJI, S.S., RODRIGUEZ, M., GUBB, J., STACHOWIAK, J. and STIBICH, M., 2014. The role of the healthcare environment in the spread of multidrug-resistant organisms: update on current best practices for containment. Therapeutic Advances in Infectious Disease, vol. 2, no. 3-4, pp. 79-90. http://dx.doi.org/10.1177/2049936114543287. PMid:25469234.
http://dx.doi.org/10.1177/20499361145432...
; Hu et al., 2015HU, H., JOHANI, K., GOSBELL, I.B., JACOMBS, A.S., ALMATROUDI, A., WHITELEY, G.S., DEVA, A.K., JENSEN, S. and VICKERY, K., 2015. Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in biofilms: combined results of conventional culture, pyrosequencing, scanning electron microscopy, and confocal laser microscopy. The Journal of Hospital Infection, vol. 91, no. 1, pp. 35-44. http://dx.doi.org/10.1016/j.jhin.2015.05.016. PMid:26187533.
http://dx.doi.org/10.1016/j.jhin.2015.05...
). Here, we verified the phenotypic and genotypic characterization of ICU bed surface isolates, showing the presence of MDR bacteria, description of resistance genes, and identification by MALDI-TOF MS and 16S rRNA sequencing.

Limitations regarding the database of protein profiles of isolates make it challenging to use MALDI-TOF MS to identify unconventional bacterial strains of medical interest. Studies have described the failure to identify strains due to the absence of a broad protein spectrum from a reference bank or even the capture of the technique of specific proteins necessary to define the species. (Bizzini et al., 2011BIZZINI, A., JATON, K., ROMO, D., BILLE, J., PROD’HOM, G. and GREUB, G., 2011. Matrix-assisted laser desorption ionization-time of flight mass spectrometry as an alternative to 16S rRNA gene sequencing for identification of difficult-to-identify bacterial strains. Journal of Clinical Microbiology, vol. 49, no. 2, pp. 693-696. http://dx.doi.org/10.1128/JCM.01463-10. PMid:21106794.
http://dx.doi.org/10.1128/JCM.01463-10...
; Alizadeh et al., 2021ALIZADEH, M., YOUSEFI, L., PAKDEL, F., GHOTASLOU, R., REZAEE, M.A., KHODADADI, E. and KAFIL, H.S., 2021. MALDI-TOF mass spectroscopy applications in clinical microbiology. Advances in Pharmacological and Pharmaceutical Sciences, vol. 2021, pp. 9928238. http://dx.doi.org/10.1155/2021/9928238. PMid:34041492.
http://dx.doi.org/10.1155/2021/9928238...
). However, data on its applicability reveal MALDI-TOF MS's importance in quickly typing subspecies of medical importance; the technique contributes to the proper management of antimicrobials and best hospital practices. On the other hand, its limitations highlight the need to increase reference data for reference banks (Croxatto et al., 2012CROXATTO, A., PROD’HOM, G. and GREUB, G., 2012. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiology Reviews, vol. 36, no. 2, pp. 380-407. http://dx.doi.org/10.1111/j.1574-6976.2011.00298.x. PMid:22092265.
http://dx.doi.org/10.1111/j.1574-6976.20...
; Angeletti, 2017ANGELETTI, S., 2017. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. Journal of Microbiological Methods, vol. 138, pp. 20-29. http://dx.doi.org/10.1016/j.mimet.2016.09.003. PMid:27613479.
http://dx.doi.org/10.1016/j.mimet.2016.0...
; Davies et al., 2021DAVIES, Y.M., FRANCO, L.S., BARBOSA, F.B., VANIN, C.L., GOMES, V.T.D.M., MORENO, L.Z., BARBOSA, M.R.F., SATO, M.I.Z., MORENO, A.M. and KNÖBL, T., 2021. Use of MALDI-TOF for identification and surveillance of gram-negative bacteria in captive wild psittacines. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 82, pp. e233523. http://dx.doi.org/10.1590/1519-6984.233523. PMid:33787713.
http://dx.doi.org/10.1590/1519-6984.2335...
).

16S rRNA gene sequencing allowed greater coverage and effectiveness in identifying microorganisms. The technique is used widely for the identification of most bacterial taxa. However, the technique entails substantial performance time and high processing costs (Clarridge III, 2004CLARRIDGE III, J.E., 2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews, vol. 17, no. 4, pp. 840-862. http://dx.doi.org/10.1128/CMR.17.4.840-862.2004. PMid:15489351.
http://dx.doi.org/10.1128/CMR.17.4.840-8...
; Bizzini et al., 2011BIZZINI, A., JATON, K., ROMO, D., BILLE, J., PROD’HOM, G. and GREUB, G., 2011. Matrix-assisted laser desorption ionization-time of flight mass spectrometry as an alternative to 16S rRNA gene sequencing for identification of difficult-to-identify bacterial strains. Journal of Clinical Microbiology, vol. 49, no. 2, pp. 693-696. http://dx.doi.org/10.1128/JCM.01463-10. PMid:21106794.
http://dx.doi.org/10.1128/JCM.01463-10...
; Church et al., 2020CHURCH, D.L., CERUTTI, L., GÜRTLER, A., GRIENER, T., ZELAZNY, A. and EMLER, S., 2020. Performance and application of 16S rRNA gene cycle sequencing for routine identification of bacteria in the clinical microbiology laboratory. Clinical Microbiology Reviews, vol. 33, no. 4, pp. e00053-e19. http://dx.doi.org/10.1128/CMR.00053-19. PMid:32907806.
http://dx.doi.org/10.1128/CMR.00053-19...
; Kosecka-Strojek et al., 2019KOSECKA-STROJEK, M., SABAT, A.J., AKKERBOOM, V., KOOISTRA-SMID, A., MIEDZOBRODZKI, J. and FRIEDRICH, A.W., 2019. Development of a reference data set for assigning Streptococcus and Enterococcus species based on next generation sequencing of the 16S-23S rRNA region. Antimicrobial Resistance and Infection Control, vol. 8, no. 1, pp. 178. http://dx.doi.org/10.1186/s13756-019-0622-3. PMid:31788235.
http://dx.doi.org/10.1186/s13756-019-062...
). Our work using the 16S rRNA technique effectively identified the bacterial isolates classified by similarity and construction of the phylogenetic profile.

For ILH-10 (A. schindleri), we observed phenotypes resistant to several antibiotics in different classes. The isolate was positive for OXA-23, which may be associated with a multi-resistance phenotype to beta-lactams. Acinetobacter are opportunistic pathogens, and most are clinically significant, typically causing severe nosocomial infections in immunocompromised hosts (Joly-Guillou, 2005JOLY-GUILLOU, M.L., 2005. Clinical impact and pathogenicity of Acinetobacter. Clinical Microbiology and Infection, vol. 11, no. 11, pp. 868-873. http://dx.doi.org/10.1111/j.1469-0691.2005.01227.x. PMid:16216100.
http://dx.doi.org/10.1111/j.1469-0691.20...
; Ibrahim et al., 2021IBRAHIM, S., AL-SARYI, N., AL-KADMY, I. and AZIZ, S.N., 2021. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Molecular Biology Reports, vol. 48, no. 10, pp. 6987-6998. http://dx.doi.org/10.1007/s11033-021-06690-6. PMid:34460060.
http://dx.doi.org/10.1007/s11033-021-066...
). Acinetobacter is often associated with the accumulation of different resistance mechanisms to commercially available antibiotics, including carbapenems (Fournier et al., 2006FOURNIER, P.E., RICHET, H. and WEINSTEIN, R.A., 2006. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clinical Infectious Diseases, vol. 42, no. 5, pp. 692-699. http://dx.doi.org/10.1086/500202. PMid:16447117.
http://dx.doi.org/10.1086/500202...
; Périchon et al., 2014PÉRICHON, B., GOUSSARD, S., WALEWSKI, V., KRIZOVA, L., CERQUEIRA, G., MURPHY, C., FELDGARDEN, M., WORTMAN, J., CLERMONT, D., NEMEC, A. and COURVALIN, P., 2014. Identification of 50 class D β-lactamases and 65 Acinetobacter-derived cephalosporinases in Acinetobacter spp. Antimicrobial Agents and Chemotherapy, vol. 58, no. 2, pp. 936-949. http://dx.doi.org/10.1128/AAC.01261-13. PMid:24277043.
http://dx.doi.org/10.1128/AAC.01261-13...
; Zander et al., 2014ZANDER, E., FERNÁNDEZ-GONZÁLEZ, A., SCHLEICHER, X., DAMMHAYN, C., KAMOLVIT, W., SEIFERT, H. and HIGGINS, P.G., 2014. Worldwide dissemination of acquired carbapenem-hydrolysing class D β-lactamases in Acinetobacter spp. other than Acinetobacter baumannii. International Journal of Antimicrobial Agents, vol. 43, no. 4, pp. 375-377. http://dx.doi.org/10.1016/j.ijantimicag.2014.01.012. PMid:24612983.
http://dx.doi.org/10.1016/j.ijantimicag....
). Species producing class D β-lactamases of the oxa gene type (e.g., A. baumannii, A. johnsonii, A. pittii, A. baylyi, and A. schindleri) have been reported worldwide (Boo et al., 2009BOO, T.W., WALSH, F. and CROWLEY, B., 2009. Molecular characterization of carbapenem-resistant Acinetobacter species in an Irish university hospital: predominance of Acinetobacter genomic species 3. Journal of Medical Microbiology, vol. 58, no. 2, pp. 209-216. http://dx.doi.org/10.1099/jmm.0.004911-0. PMid:19141738.
http://dx.doi.org/10.1099/jmm.0.004911-0...
; Zhou et al., 2011ZHOU, Z., DU, X., WANG, L., YANG, Q., FU, Y. and YU, Y., 2011. Clinical carbapenem-resistant Acinetobacter baylyi strain coharboring bla SIM-1 and bla OXA-23 from China. Antimicrobial Agents and Chemotherapy, vol. 55, no. 11, pp. 5347-5349. http://dx.doi.org/10.1128/AAC.00425-11. PMid:21876057.
http://dx.doi.org/10.1128/AAC.00425-11...
; Zander et al., 2014ZANDER, E., FERNÁNDEZ-GONZÁLEZ, A., SCHLEICHER, X., DAMMHAYN, C., KAMOLVIT, W., SEIFERT, H. and HIGGINS, P.G., 2014. Worldwide dissemination of acquired carbapenem-hydrolysing class D β-lactamases in Acinetobacter spp. other than Acinetobacter baumannii. International Journal of Antimicrobial Agents, vol. 43, no. 4, pp. 375-377. http://dx.doi.org/10.1016/j.ijantimicag.2014.01.012. PMid:24612983.
http://dx.doi.org/10.1016/j.ijantimicag....
; Smet et al., 2014SMET, A., COOLS, P., KRIZOVA, L., MAIXNEROVA, M., SEDO, O., HAESEBROUCK, F., KEMPF, M., NEMEC, A. and VANEECHOUTTE, M., 2014. Acinetobacter gandensis sp. nov. isolated from horse and cattle. International Journal of Systematic and Evolutionary Microbiology, vol. 64, no. 12, pp. 4007-4015. http://dx.doi.org/10.1099/ijs.0.068791-0. PMid:25225259.
http://dx.doi.org/10.1099/ijs.0.068791-0...
). Furthermore, it is essential to note that resistance genes in non-A. baumannii (A. schindleri) species can cause bacteremia due to carbapenem resistance in immunocompromised patients (Montaña et al., 2017MONTAÑA, S., PALOMBARANI, S., CARULLA, M., KUNST, A., RODRIGUEZ, C.H., NASTRO, M., VAY, C., RAMIREZ, M.S. and ALMUZARA, M., 2017. First case of bacteraemia due to Acinetobacter schindleri harbouring blaNDM-1 in an immunocompromised patient. New Microbes and New Infections, vol. 21, pp. 28-30. http://dx.doi.org/10.1016/j.nmni.2017.10.004. PMid:29201380.
http://dx.doi.org/10.1016/j.nmni.2017.10...
).

S. paucimobilis (ILH14) is an opportunistic pathogen involved in nosocomial infections; it can cause significant problems in clinical settings when resistant to antibiotics. Reports described S. paucimobilis in clinical specimens, blood, urine, endotracheal aspirates, bronchoalveolar lavage, and cerebrospinal fluid of patients with septicemia, meningitis, lower respiratory tract infections, and ventilator-associated pneumonia (Rohilla et al., 2021ROHILLA, R., RAINA, D., SINGH, M., PANDITA, A.K. and PATWAL, S., 2021. Evaluation of Sphingomonas paucimobilis as an emerging nosocomial pathogen in a teaching hospital in Uttarakhand. Iranian Journal of Microbiology, vol. 13, no. 5, pp. 617-623. http://dx.doi.org/10.18502/ijm.v13i5.7425. PMid:34900159.
http://dx.doi.org/10.18502/ijm.v13i5.742...
). Cases of early prosthetic valve infective endocarditis caused by MDR S. paucimobilis have been reported (Saboe et al., 2021SABOE, A., ADRIAN, Y., WIDYATMOKO, L., HASAN, M., COOL, C.J., HARTANTRI, Y. and RAHMADI, R.A., 2021. A fatal case of early prosthetic valve endocarditis caused by multidrug-resistant (MDR)-Sphingomonas paucimobilis. IDCases, vol. 24, pp. e01152. http://dx.doi.org/10.1016/j.idcr.2021.e01152. PMid:34026540.
http://dx.doi.org/10.1016/j.idcr.2021.e0...
). The S. paucimobilis (ILH14) isolated here was identified using the MALDI-TOF MS technique with phenotyping of MDR antibiotics the quinolone, penicillin, aminoglycoside, polymyxin, tetracycline, and oxazolidinone classes.

Bacillus sp. isolates (ILH11, ILH13, ILH2, and ILH16) showed resistance to clinically relevant antibiotics such as cephalosporins, quinolones, and penicillins. This genus is widely distributed in the environment, including soil, dust, air, fomites, water, and hospital environments (Bottone, 2010BOTTONE, E.J., 2010. Bacillus cereus, a volatile human pathogen. Clinical Microbiology Reviews, vol. 23, no. 2, pp. 382-398. http://dx.doi.org/10.1128/CMR.00073-09. PMid:20375358.
http://dx.doi.org/10.1128/CMR.00073-09...
). The broad diversity of Bacillus allows gene regulation that increases its pathogenicity (Bottone, 2010BOTTONE, E.J., 2010. Bacillus cereus, a volatile human pathogen. Clinical Microbiology Reviews, vol. 23, no. 2, pp. 382-398. http://dx.doi.org/10.1128/CMR.00073-09. PMid:20375358.
http://dx.doi.org/10.1128/CMR.00073-09...
). Previous studies identified MDR phenotypes in this group (Torkar and Bedenic, 2018TORKAR, K.G. and BEDENIĆ, B., 2018. Antimicrobial susceptibility and characterization of metallo-β-lactamases, extended-spectrum β-lactamases, and carbapenemases of Bacillus cereus isolates. Microbial Pathogenesis, vol. 118, pp. 140-145. http://dx.doi.org/10.1016/j.micpath.2018.03.026. PMid:29551437.
http://dx.doi.org/10.1016/j.micpath.2018...
; Liu et al., 2018LIU, T., ZHU, L., ZHANG, Z., JIANG, L. and HUANG, H., 2018. Draft genome sequence of Bacillus sp. M13 (2017), a multidrug-resistant subclass B1 blaNDM-producing, spore-forming bacterium isolated from China. Journal of Global Antimicrobial Resistance, vol. 14, pp. 152-153. http://dx.doi.org/10.1016/j.jgar.2018.07.002. PMid:30017730.
http://dx.doi.org/10.1016/j.jgar.2018.07...
, Mills et al., 2022MILLS, E., SULLIVAN, E. and KOVAC, J., 2022. Comparative analysis of Bacillus cereus group isolates’ resistance using disk diffusion and broth microdilution and the correlation between antimicrobial resistance phenotypes and genotypes. Applied and Environmental Microbiology, vol. 88, no. 6, pp. e0230221. http://dx.doi.org/10.1128/aem.02302-21. PMid:35225691.
http://dx.doi.org/10.1128/aem.02302-21...
). Some MDR strains of Bacillus sp obtained in the present study cause food poisoning. They can also cause localized wounds and eye infections; in a hospital environment, they can cause nosocomial bacteremia (Kuroki et al., 2009KUROKI, R., KAWAKAMI, K., QIN, L., KAJI, C., WATANABE, K., KIMURA, Y., ISHIGURO, C., TANIMURA, S., TSUCHIYA, Y., HAMAGUCHI, I., SAKAKURA, M., SAKABE, S., TSUJI, K., INOUE, M. and WATANABE, H., 2009. Nosocomial bacteremia caused by biofilm-forming Bacillus cereus and Bacillus thuringiensis. Internal Medicine (Tokyo, Japan), vol. 48, no. 10, pp. 791-796. http://dx.doi.org/10.2169/internalmedicine.48.1885. PMid:19443973.
http://dx.doi.org/10.2169/internalmedici...
, Ehling-Schulz et al., 2019EHLING-SCHULZ, M., LERECLUS, D. and KOEHLER, T.M., 2019. The Bacillus cereus group: bacillus species with pathogenic potential. Microbiology Spectrum, vol. 7, no. 3, pp. 7-3. http://dx.doi.org/10.1128/microbiolspec.GPP3-0032-2018. PMid:31111815.
http://dx.doi.org/10.1128/microbiolspec....
) and meningitis in immunocompromised patients (Gaur et al., 2001GAUR, A.H., PATRICK, C.C., MCCULLERS, J.A., FLYNN, P.M., PEARSON, T.A., RAZZOUK, B.I., THOMPSON, S.J. and SHENEP, J.L., 2001. Bacillus cereus bacteremia and meningitis in immunocompromised children. Clinical Infectious Diseases, vol. 32, no. 10, pp. 1456-1462. http://dx.doi.org/10.1086/320154. PMid:11317247.
http://dx.doi.org/10.1086/320154...
). Opportunistic infections by Bacillus circulans were identified in immunocompromised patients (Russo et al., 2021RUSSO, A., TARANTINO, U., D’ETTORRE, G., DELLA ROCCA, C., CECCARELLI, G., GASBARRA, E., VENDITTI, M. and IUNDUSI, R., 2021. First report of spondylodiscitis caused by Bacillus circulans in an immunocompetent patient: clinical case and review of the literature. IDCases, vol. 23, pp. e01058. http://dx.doi.org/10.1016/j.idcr.2021.e01058. PMid:33552902.
http://dx.doi.org/10.1016/j.idcr.2021.e0...
).

In summary, our findings suggest that several strains obtained from ICUs showed resistance to several classes of antimicrobials identified by molecular techniques and MALDI-TOF MS; however, the latter technique may be more relevant when associated with antimicrobial resistance phenotyping to assist antimicrobial management. Our findings reinforce the need to investigate resistance genes of the β-lactamase class. Finally, our findings suggest the need for amplification in detecting specific resistance genes. Our findings also contribute to identifying contamination sources responsible for increasing MDR organism levels. Monitoring these sources will improve environmental, food, and public health infection controls.

Acknowledgements

The authors would like to thank National Council of Scientific and Technological Development (CNPq) Project: CNPq 315095/2018-0 and CNPq 305589/2021-0, Tocantins State Foundation for Research (FAPT project PPSUS837598/2016), Biodiversity and Biotechnology Graduate Program and the Vice-Rectory of Research from the Federal University of Tocantins.

References

  • ADWAN, G. and OMAR, G., 2021. Phenotypic and molecular characterization of fluoroquinolone resistant Pseudomonas aeruginosa isolates in Palestine. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 82, pp. e239868. http://dx.doi.org/10.1590/1519-6984.239868 PMid:34190800.
    » http://dx.doi.org/10.1590/1519-6984.239868
  • ALIZADEH, M., YOUSEFI, L., PAKDEL, F., GHOTASLOU, R., REZAEE, M.A., KHODADADI, E. and KAFIL, H.S., 2021. MALDI-TOF mass spectroscopy applications in clinical microbiology. Advances in Pharmacological and Pharmaceutical Sciences, vol. 2021, pp. 9928238. http://dx.doi.org/10.1155/2021/9928238 PMid:34041492.
    » http://dx.doi.org/10.1155/2021/9928238
  • ANGELETTI, S., 2017. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. Journal of Microbiological Methods, vol. 138, pp. 20-29. http://dx.doi.org/10.1016/j.mimet.2016.09.003 PMid:27613479.
    » http://dx.doi.org/10.1016/j.mimet.2016.09.003
  • ARBAB, S., ULLAH, H., WEI, X., WANG, W., AHMAD, S.U. and ZHANG, J., 2021. Drug resistance and susceptibility testing of Gram negative bacterial isolates from healthy cattle with different β-Lactam resistance Phenotypes from Shandong province China. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, pp. e247061. http://dx.doi.org/10.1590/1519-6984.247061 PMid:34468524.
    » http://dx.doi.org/10.1590/1519-6984.247061
  • BARTLEY, P.S., DOMITROVIC, T.N., MORETTO, V.T., SANTOS, C.S., PONCE-TERASHIMA, R., REIS, M.G., BARBOSA, L.M., BLANTON, R.E., BONOMO, R.A. and PEREZ, F., 2019. Antibiotic resistance in Enterobacteriaceae from surface waters in urban Brazil highlights the risks of poor sanitation. The American Journal of Tropical Medicine and Hygiene, vol. 100, no. 6, pp. 1369-1377. PMid:30994094.
  • BERNARDS, A.T., HARINCK, H.I.J., DIJKSHOORN, L., VAN DER REIJDEN, T.J.K. and VAN DEN BROEK, P.J., 2004. Persistent Acinetobacter baumannii? Look inside your medical equipment. Infection Control and Hospital Epidemiology, vol. 25, no. 11, pp. 1002-1004. http://dx.doi.org/10.1086/502335 PMid:15566039.
    » http://dx.doi.org/10.1086/502335
  • BIZZINI, A., JATON, K., ROMO, D., BILLE, J., PROD’HOM, G. and GREUB, G., 2011. Matrix-assisted laser desorption ionization-time of flight mass spectrometry as an alternative to 16S rRNA gene sequencing for identification of difficult-to-identify bacterial strains. Journal of Clinical Microbiology, vol. 49, no. 2, pp. 693-696. http://dx.doi.org/10.1128/JCM.01463-10 PMid:21106794.
    » http://dx.doi.org/10.1128/JCM.01463-10
  • BONELLI, R.R., MOREIRA, B.M. and PICÃO, R.C., 2014. Antimicrobial resistance among Enterobacteriaceae in South America: History, current dissemination status and associated socioeconomic factors. Drug Resistance Updates, vol. 17, no. 1-2, pp. 24-36. http://dx.doi.org/10.1016/j.drup.2014.02.001 PMid:24618111.
    » http://dx.doi.org/10.1016/j.drup.2014.02.001
  • BOO, T.W., WALSH, F. and CROWLEY, B., 2009. Molecular characterization of carbapenem-resistant Acinetobacter species in an Irish university hospital: predominance of Acinetobacter genomic species 3. Journal of Medical Microbiology, vol. 58, no. 2, pp. 209-216. http://dx.doi.org/10.1099/jmm.0.004911-0 PMid:19141738.
    » http://dx.doi.org/10.1099/jmm.0.004911-0
  • BOTTONE, E.J., 2010. Bacillus cereus, a volatile human pathogen. Clinical Microbiology Reviews, vol. 23, no. 2, pp. 382-398. http://dx.doi.org/10.1128/CMR.00073-09 PMid:20375358.
    » http://dx.doi.org/10.1128/CMR.00073-09
  • BOYCE, J.M., 2007. Environmental contamination makes an important contribution to hospital infection. The Journal of Hospital Infection, vol. 65, no. 2, suppl. 2, pp. 50-54. http://dx.doi.org/10.1016/S0195-6701(07)60015-2 PMid:17540242.
    » http://dx.doi.org/10.1016/S0195-6701(07)60015-2
  • BUSH, K. and JACOBY, G.A., 2010. Updated functional classification of β-lactamases. Antimicrobial Agents and Chemotherapy, vol. 54, no. 3, pp. 969-976. http://dx.doi.org/10.1128/AAC.01009-09 PMid:19995920.
    » http://dx.doi.org/10.1128/AAC.01009-09
  • CARVALHEIRA, A., SILVA, J. and TEIXEIRA, P., 2021. Acinetobacter spp in food and drinking water-a review. Food Microbiology, vol. 95, pp. 103675. http://dx.doi.org/10.1016/j.fm.2020.103675 PMid:33397609.
    » http://dx.doi.org/10.1016/j.fm.2020.103675
  • CASTILHO, S.R.A., GODOY, C.S.D.M., GUILARDE, A.O., CARDOSO, J.L., ANDRÉ, M.C.P., JUNQUEIRA-KIPNIS, A.P. and KIPNIS, A., 2017. Strains isolated from patients in intensive care units in Goiania, Brazil: molecular and drug susceptibility profiles. PLoS One, vol. 12, no. 5, pp. e0176790. http://dx.doi.org/10.1371/journal.pone.0176790 PMid:28475585.
    » http://dx.doi.org/10.1371/journal.pone.0176790
  • CERCEO, E., DEITELZWEIG, S.B., SHERMAN, B.M. and AMIN, A.N., 2016. Multidrug-resistant gram-negative bacterial infections in the hospital setting: overview, implications for clinical practice, and emerging treatment options. Microbial Drug Resistance (Larchmont, N.Y.), vol. 22, no. 5, pp. 412-431. http://dx.doi.org/10.1089/mdr.2015.0220 PMid:26866778.
    » http://dx.doi.org/10.1089/mdr.2015.0220
  • CHEMALY, R.F., SIMMONS, S., DALE JUNIOR, C., GHANTOJI, S.S., RODRIGUEZ, M., GUBB, J., STACHOWIAK, J. and STIBICH, M., 2014. The role of the healthcare environment in the spread of multidrug-resistant organisms: update on current best practices for containment. Therapeutic Advances in Infectious Disease, vol. 2, no. 3-4, pp. 79-90. http://dx.doi.org/10.1177/2049936114543287 PMid:25469234.
    » http://dx.doi.org/10.1177/2049936114543287
  • CHURCH, D.L., CERUTTI, L., GÜRTLER, A., GRIENER, T., ZELAZNY, A. and EMLER, S., 2020. Performance and application of 16S rRNA gene cycle sequencing for routine identification of bacteria in the clinical microbiology laboratory. Clinical Microbiology Reviews, vol. 33, no. 4, pp. e00053-e19. http://dx.doi.org/10.1128/CMR.00053-19 PMid:32907806.
    » http://dx.doi.org/10.1128/CMR.00053-19
  • CLARRIDGE III, J.E., 2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews, vol. 17, no. 4, pp. 840-862. http://dx.doi.org/10.1128/CMR.17.4.840-862.2004 PMid:15489351.
    » http://dx.doi.org/10.1128/CMR.17.4.840-862.2004
  • CLINICAL AND LABORATORY STANDARDS INSTITUTE - CLSI, 2017. Performance standards for antimicrobial suceptibility testing (Supplement M100). 27th ed. Wayne: Clinical and Laboratory Standards Institute.
  • CROXATTO, A., PROD’HOM, G. and GREUB, G., 2012. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiology Reviews, vol. 36, no. 2, pp. 380-407. http://dx.doi.org/10.1111/j.1574-6976.2011.00298.x PMid:22092265.
    » http://dx.doi.org/10.1111/j.1574-6976.2011.00298.x
  • DANCER, S.J., 2014. Controlling hospital-acquired infection: focus on the role of the environment and new technologies for decontamination. Clinical Microbiology Reviews, vol. 27, no. 4, pp. 665-690. http://dx.doi.org/10.1128/CMR.00020-14 PMid:25278571.
    » http://dx.doi.org/10.1128/CMR.00020-14
  • DAVIES, Y.M., FRANCO, L.S., BARBOSA, F.B., VANIN, C.L., GOMES, V.T.D.M., MORENO, L.Z., BARBOSA, M.R.F., SATO, M.I.Z., MORENO, A.M. and KNÖBL, T., 2021. Use of MALDI-TOF for identification and surveillance of gram-negative bacteria in captive wild psittacines. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 82, pp. e233523. http://dx.doi.org/10.1590/1519-6984.233523 PMid:33787713.
    » http://dx.doi.org/10.1590/1519-6984.233523
  • DUBOIS, D., GRARE, M., PRERE, M.F., SEGONDS, C., MARTY, N. and OSWALD, E., 2012. Performances of the MALDI-TOF mass spectrometry system VITEK MS for the rapid identification of bacteria in routine clinical microbiology. Journal of Clinical Microbiology, vol. 50, no. 8, pp. 2568-2576. PMid:22593596.
  • EHLING-SCHULZ, M., LERECLUS, D. and KOEHLER, T.M., 2019. The Bacillus cereus group: bacillus species with pathogenic potential. Microbiology Spectrum, vol. 7, no. 3, pp. 7-3. http://dx.doi.org/10.1128/microbiolspec.GPP3-0032-2018 PMid:31111815.
    » http://dx.doi.org/10.1128/microbiolspec.GPP3-0032-2018
  • FERREIRA, R.L., DA SILVA, B.C.M., REZENDE, G.S., NAKAMURA-SILVA, R., PITONDO-SILVA, A., CAMPANINI, E.B., BRITO, M.C.A., DA SILVA, E.M.L., FREIRE, C.C.M., CUNHA, A.F. and PRANCHEVICIUS, M.-C.S., 2019. High prevalence of multidrug-resistant Klebsiella pneumoniae harboring several virulence and β-lactamase encoding genes in a Brazilian intensive care unit. Frontiers in Microbiology, vol. 9, pp. 3198. http://dx.doi.org/10.3389/fmicb.2018.03198 PMid:30723463.
    » http://dx.doi.org/10.3389/fmicb.2018.03198
  • FOURNIER, P.E., RICHET, H. and WEINSTEIN, R.A., 2006. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clinical Infectious Diseases, vol. 42, no. 5, pp. 692-699. http://dx.doi.org/10.1086/500202 PMid:16447117.
    » http://dx.doi.org/10.1086/500202
  • GADDY, J.A., TOMARAS, A.P. and ACTIS, L.A., 2009. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infection and Immunity, vol. 77, no. 8, pp. 3150-3160. http://dx.doi.org/10.1128/IAI.00096-09 PMid:19470746.
    » http://dx.doi.org/10.1128/IAI.00096-09
  • GALLINI, A., DEGRIS, E., DESPLAS, M., BOURREL, R., ARCHAMBAUD, M., MONTASTRUC, J.L., LAPEYRE-MESTRE, M. and SOMMET, A., 2010. Influence of fluoroquinolone consumption in inpatients and outpatients on ciprofloxacin-resistant Escherichia coli in a university hospital. The Journal of Antimicrobial Chemotherapy, vol. 65, no. 12, pp. 2650-2657. http://dx.doi.org/10.1093/jac/dkq351 PMid:20876240.
    » http://dx.doi.org/10.1093/jac/dkq351
  • GAUR, A.H., PATRICK, C.C., MCCULLERS, J.A., FLYNN, P.M., PEARSON, T.A., RAZZOUK, B.I., THOMPSON, S.J. and SHENEP, J.L., 2001. Bacillus cereus bacteremia and meningitis in immunocompromised children. Clinical Infectious Diseases, vol. 32, no. 10, pp. 1456-1462. http://dx.doi.org/10.1086/320154 PMid:11317247.
    » http://dx.doi.org/10.1086/320154
  • GONÇALVES, G.G.A., FEITOSA, A.P.S., PORTELA-JUNIOR, N.C., OLIVEIRA, C.M.F., LIMA FILHO, J.L., BRAYNER, F.A. and ALVES, L.C., 2019. Use of MALDI-TOF MS to identify the culturable midgut microbiota of laboratory and wild mosquitoes. Acta Tropica, vol. 200, pp. 105174. http://dx.doi.org/10.1016/j.actatropica.2019.105174 PMid:31525322.
    » http://dx.doi.org/10.1016/j.actatropica.2019.105174
  • HU, H., JOHANI, K., GOSBELL, I.B., JACOMBS, A.S., ALMATROUDI, A., WHITELEY, G.S., DEVA, A.K., JENSEN, S. and VICKERY, K., 2015. Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in biofilms: combined results of conventional culture, pyrosequencing, scanning electron microscopy, and confocal laser microscopy. The Journal of Hospital Infection, vol. 91, no. 1, pp. 35-44. http://dx.doi.org/10.1016/j.jhin.2015.05.016 PMid:26187533.
    » http://dx.doi.org/10.1016/j.jhin.2015.05.016
  • IBRAHIM, S., AL-SARYI, N., AL-KADMY, I. and AZIZ, S.N., 2021. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Molecular Biology Reports, vol. 48, no. 10, pp. 6987-6998. http://dx.doi.org/10.1007/s11033-021-06690-6 PMid:34460060.
    » http://dx.doi.org/10.1007/s11033-021-06690-6
  • JOLY-GUILLOU, M.L., 2005. Clinical impact and pathogenicity of Acinetobacter. Clinical Microbiology and Infection, vol. 11, no. 11, pp. 868-873. http://dx.doi.org/10.1111/j.1469-0691.2005.01227.x PMid:16216100.
    » http://dx.doi.org/10.1111/j.1469-0691.2005.01227.x
  • KOSECKA-STROJEK, M., SABAT, A.J., AKKERBOOM, V., KOOISTRA-SMID, A., MIEDZOBRODZKI, J. and FRIEDRICH, A.W., 2019. Development of a reference data set for assigning Streptococcus and Enterococcus species based on next generation sequencing of the 16S-23S rRNA region. Antimicrobial Resistance and Infection Control, vol. 8, no. 1, pp. 178. http://dx.doi.org/10.1186/s13756-019-0622-3 PMid:31788235.
    » http://dx.doi.org/10.1186/s13756-019-0622-3
  • KRAMER, A., SCHWEBKE, I. and KAMPF, G., 2006. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infectious Diseases, vol. 6, no. 1, pp. 130. http://dx.doi.org/10.1186/1471-2334-6-130 PMid:16914034.
    » http://dx.doi.org/10.1186/1471-2334-6-130
  • KUROKI, R., KAWAKAMI, K., QIN, L., KAJI, C., WATANABE, K., KIMURA, Y., ISHIGURO, C., TANIMURA, S., TSUCHIYA, Y., HAMAGUCHI, I., SAKAKURA, M., SAKABE, S., TSUJI, K., INOUE, M. and WATANABE, H., 2009. Nosocomial bacteremia caused by biofilm-forming Bacillus cereus and Bacillus thuringiensis. Internal Medicine (Tokyo, Japan), vol. 48, no. 10, pp. 791-796. http://dx.doi.org/10.2169/internalmedicine.48.1885 PMid:19443973.
    » http://dx.doi.org/10.2169/internalmedicine.48.1885
  • LEE, C.R., LEE, J.H., PARK, K.S., KIM, Y.B., JEONG, B.C. and LEE, S.H., 2016. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Frontiers in Microbiology, vol. 7, pp. 895. http://dx.doi.org/10.3389/fmicb.2016.00895 PMid:27379038.
    » http://dx.doi.org/10.3389/fmicb.2016.00895
  • LIU, T., ZHU, L., ZHANG, Z., JIANG, L. and HUANG, H., 2018. Draft genome sequence of Bacillus sp. M13 (2017), a multidrug-resistant subclass B1 blaNDM-producing, spore-forming bacterium isolated from China. Journal of Global Antimicrobial Resistance, vol. 14, pp. 152-153. http://dx.doi.org/10.1016/j.jgar.2018.07.002 PMid:30017730.
    » http://dx.doi.org/10.1016/j.jgar.2018.07.002
  • LOGAN, L.K., 2012. Carbapenem-resistant enterobacteriaceae: an emerging problem in children. Clinical Infectious Diseases, vol. 55, no. 6, pp. 852-859. http://dx.doi.org/10.1093/cid/cis543 PMid:22700827.
    » http://dx.doi.org/10.1093/cid/cis543
  • MAGIORAKOS, A.-P., SRINIVASAN, A., CAREY, R.B., CARMELI, Y., FALAGAS, M.E., GISKE, C.G., HARBARTH, S., HINDLER, J.F., KAHLMETER, G., OLSSON-LILJEQUIST, B., PATERSON, D.L., RICE, L.B., STELLING, J., STRUELENS, M.J., VATOPOULOS, A., WEBER, J.T. and MONNET, D.L., 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, vol. 18, no. 3, pp. 268-281. http://dx.doi.org/10.1111/j.1469-0691.2011.03570.x PMid:21793988.
    » http://dx.doi.org/10.1111/j.1469-0691.2011.03570.x
  • MEIRELLES-PEREIRA, F., PEREIRA, A.M.S., SILVA, M.C.G., GONÇALVES, V.D., BRUM, P.R., CASTRO, A.R., PEREIRA, A.A., ESTEVES, F.A. and PEREIRA, J.A.A., 2002. Ecological aspects of the antimicrobial resistance in bacteria of importance to human infections. Brazilian Journal of Microbiology, vol. 33, no. 4. http://dx.doi.org/10.1590/S1517-83822002000400002
    » http://dx.doi.org/10.1590/S1517-83822002000400002
  • MILLS, E., SULLIVAN, E. and KOVAC, J., 2022. Comparative analysis of Bacillus cereus group isolates’ resistance using disk diffusion and broth microdilution and the correlation between antimicrobial resistance phenotypes and genotypes. Applied and Environmental Microbiology, vol. 88, no. 6, pp. e0230221. http://dx.doi.org/10.1128/aem.02302-21 PMid:35225691.
    » http://dx.doi.org/10.1128/aem.02302-21
  • MONTAÑA, S., PALOMBARANI, S., CARULLA, M., KUNST, A., RODRIGUEZ, C.H., NASTRO, M., VAY, C., RAMIREZ, M.S. and ALMUZARA, M., 2017. First case of bacteraemia due to Acinetobacter schindleri harbouring blaNDM-1 in an immunocompromised patient. New Microbes and New Infections, vol. 21, pp. 28-30. http://dx.doi.org/10.1016/j.nmni.2017.10.004 PMid:29201380.
    » http://dx.doi.org/10.1016/j.nmni.2017.10.004
  • MOON, H.W., LEE, S.H., CHUNG, H.S., LEE, M. and LEE, K., 2013. Performance of the Vitek MS matrix-assisted laser desorption ionization time-of-flight mass spectrometry system for identification of Gram-positive cocci routinely isolated in clinical microbiology laboratories. Journal of Medical Microbiology, vol. 62, no. 9, pp. 1301-1306. http://dx.doi.org/10.1099/jmm.0.062950-0 PMid:23764744.
    » http://dx.doi.org/10.1099/jmm.0.062950-0
  • MORETTO, V.T., BARTLEY, P.S., FERREIRA, V.M., SANTOS, C.S., SILVA, L.K., PONCE-TERASHIMA, R.A., BLANTON, R.E., REIS, M.G. and BARBOSA, L.M., 2021. Microbial source tracking and antimicrobial resistance in one river system of a rural community in Bahia, Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 82, pp. e231838. PMid:33681894.
  • NOWAK, P. and PALUCHOWSKA, P., 2016. Acinetobacter baumannii: biology and drug resistance - role of carbapenemases. Folia Histochemica et Cytobiologica, vol. 54, no. 2, pp. 61-74. PMid:27270503.
  • OTTER, J.A., YEZLI, S., SALKELD, J.A. and FRENCH, G.L., 2013. Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings. American Journal of Infection Control, vol. 41, no. 5, (suppl.), pp. S6-S11. http://dx.doi.org/10.1016/j.ajic.2012.12.004 PMid:23622751.
    » http://dx.doi.org/10.1016/j.ajic.2012.12.004
  • PÉRICHON, B., GOUSSARD, S., WALEWSKI, V., KRIZOVA, L., CERQUEIRA, G., MURPHY, C., FELDGARDEN, M., WORTMAN, J., CLERMONT, D., NEMEC, A. and COURVALIN, P., 2014. Identification of 50 class D β-lactamases and 65 Acinetobacter-derived cephalosporinases in Acinetobacter spp. Antimicrobial Agents and Chemotherapy, vol. 58, no. 2, pp. 936-949. http://dx.doi.org/10.1128/AAC.01261-13 PMid:24277043.
    » http://dx.doi.org/10.1128/AAC.01261-13
  • ROHILLA, R., RAINA, D., SINGH, M., PANDITA, A.K. and PATWAL, S., 2021. Evaluation of Sphingomonas paucimobilis as an emerging nosocomial pathogen in a teaching hospital in Uttarakhand. Iranian Journal of Microbiology, vol. 13, no. 5, pp. 617-623. http://dx.doi.org/10.18502/ijm.v13i5.7425 PMid:34900159.
    » http://dx.doi.org/10.18502/ijm.v13i5.7425
  • RUSSO, A., TARANTINO, U., D’ETTORRE, G., DELLA ROCCA, C., CECCARELLI, G., GASBARRA, E., VENDITTI, M. and IUNDUSI, R., 2021. First report of spondylodiscitis caused by Bacillus circulans in an immunocompetent patient: clinical case and review of the literature. IDCases, vol. 23, pp. e01058. http://dx.doi.org/10.1016/j.idcr.2021.e01058 PMid:33552902.
    » http://dx.doi.org/10.1016/j.idcr.2021.e01058
  • SABOE, A., ADRIAN, Y., WIDYATMOKO, L., HASAN, M., COOL, C.J., HARTANTRI, Y. and RAHMADI, R.A., 2021. A fatal case of early prosthetic valve endocarditis caused by multidrug-resistant (MDR)-Sphingomonas paucimobilis. IDCases, vol. 24, pp. e01152. http://dx.doi.org/10.1016/j.idcr.2021.e01152 PMid:34026540.
    » http://dx.doi.org/10.1016/j.idcr.2021.e01152
  • SMET, A., COOLS, P., KRIZOVA, L., MAIXNEROVA, M., SEDO, O., HAESEBROUCK, F., KEMPF, M., NEMEC, A. and VANEECHOUTTE, M., 2014. Acinetobacter gandensis sp. nov. isolated from horse and cattle. International Journal of Systematic and Evolutionary Microbiology, vol. 64, no. 12, pp. 4007-4015. http://dx.doi.org/10.1099/ijs.0.068791-0 PMid:25225259.
    » http://dx.doi.org/10.1099/ijs.0.068791-0
  • SOHRABI, N., FARAJNIA, S., AKHI, M.T., NAHAEI, M.R., NAGHILI, B., PEYMANI, A., AMIRI, Z., REZAEE, M.A. and SAEED, I.N., 2012. Prevalence of OXA-type β-lactamases among Acinetobacter baumannii isolates from Northwest of Iran. Microbial Drug Resistance (Larchmont, N.Y.), vol. 18, no. 4, pp. 385-389. http://dx.doi.org/10.1089/mdr.2011.0077 PMid:22352411.
    » http://dx.doi.org/10.1089/mdr.2011.0077
  • SOOD, G. and PERL, T., 2016. Outbreaks in health care settings. Infectious Disease Clinics, vol. 30, no. 3, pp. 661-687. PMid:27515142.
  • STĘPIEŃ-PYŚNIAK, D., HAUSCHILD, T., RÓŻAŃSKI, P. and MAREK, A., 2017. MALDI-TOF Mass Spectrometry as a useful tool for identification of Enterococcus spp. from wild birds and differentiation of closely related species. Journal of Microbiology and Biotechnology, vol. 27, no. 6, pp. 1128-1137. http://dx.doi.org/10.4014/jmb.1612.12036 PMid:28285496.
    » http://dx.doi.org/10.4014/jmb.1612.12036
  • TAMURA, K. and NEI, M., 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, vol. 10, no. 3, pp. 512-526. PMid:8336541.
  • TAMURA, K., STECHER, G. and KUMAR, S., 2021. MEGA 11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution, vol. 38, no. 7, pp. 3022-3027. http://dx.doi.org/10.1093/molbev/msab120 PMid:33892491.
    » http://dx.doi.org/10.1093/molbev/msab120
  • TORKAR, K.G. and BEDENIĆ, B., 2018. Antimicrobial susceptibility and characterization of metallo-β-lactamases, extended-spectrum β-lactamases, and carbapenemases of Bacillus cereus isolates. Microbial Pathogenesis, vol. 118, pp. 140-145. http://dx.doi.org/10.1016/j.micpath.2018.03.026 PMid:29551437.
    » http://dx.doi.org/10.1016/j.micpath.2018.03.026
  • TSUCHIDA, S., UMEMURA, H. and NAKAYAMA, T., 2020. Current status of matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) in clinical diagnostic microbiology. Molecules (Basel, Switzerland), vol. 25, no. 20, pp. 4775. http://dx.doi.org/10.3390/molecules25204775 PMid:33080897.
    » http://dx.doi.org/10.3390/molecules25204775
  • WEBER, D.J., RUTALA, W.A., MILLER, M.B., HUSLAGE, K. and SICKBERT-BENNETT, E., 2010. Role of hospital surfaces in the transmission of emerging health care-associated pathogens: norovirus, Clostridium difficile, and Acinetobacter species. American Journal of Infection Control, vol. 38, no. 5, suppl. 1, pp. S25-S33. http://dx.doi.org/10.1016/j.ajic.2010.04.196 PMid:20569853.
    » http://dx.doi.org/10.1016/j.ajic.2010.04.196
  • ZANDER, E., FERNÁNDEZ-GONZÁLEZ, A., SCHLEICHER, X., DAMMHAYN, C., KAMOLVIT, W., SEIFERT, H. and HIGGINS, P.G., 2014. Worldwide dissemination of acquired carbapenem-hydrolysing class D β-lactamases in Acinetobacter spp other than Acinetobacter baumannii. International Journal of Antimicrobial Agents, vol. 43, no. 4, pp. 375-377. http://dx.doi.org/10.1016/j.ijantimicag.2014.01.012 PMid:24612983.
    » http://dx.doi.org/10.1016/j.ijantimicag.2014.01.012
  • ZHOU, Z., DU, X., WANG, L., YANG, Q., FU, Y. and YU, Y., 2011. Clinical carbapenem-resistant Acinetobacter baylyi strain coharboring bla SIM-1 and bla OXA-23 from China. Antimicrobial Agents and Chemotherapy, vol. 55, no. 11, pp. 5347-5349. http://dx.doi.org/10.1128/AAC.00425-11 PMid:21876057.
    » http://dx.doi.org/10.1128/AAC.00425-11

Publication Dates

  • Publication in this collection
    31 Mar 2023
  • Date of issue
    2023

History

  • Received
    22 Nov 2022
  • Accepted
    23 Feb 2023
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br