Acessibilidade / Reportar erro

Arthropods as possible loss or solution sources on Acacia mangium (Fabales: Fabaceae) saplings

Artrópodes como possíveis fontes de perda ou solução em mudas de Acacia mangium (Fabales: Fabaceae)

Abstract

Acacia mangium (Willd.) (Fabales: Fabaceae) tree shows applicability in programs to recover degraded areas due to its fast-growing, rustic, pioneer species, with the potential to fix nitrogen. However, this plant is attacked by pests. It is important to know, among them, the most important. This study aims to evaluate the herbivorous insects (loss sources) and their natural enemies (solution sources) on 48 A. mangium saplings. They were classified according to their ability to damage or reduce the source of damage on these saplings using the percentage of the Importance Index-Production Unknown (% I.I.-P.U.). The loss sources Trigona spinipes Fabr. (Hymenoptera: Apidae), Aleyrodidae (Hemiptera), Phenacoccus sp. (Hemiptera: Pseudococcidae), Aethalion reticulatum L. (Hemiptera: Aethalionidae), and Tropidacris collaris Stoll. (Orthoptera: Romaleidae), showed the highest % I.I.-P.U. on leaves of A. mangium saplings. The solution sources Oxyopidae (Araneae), Pseudomyrmex termitarius (Smith) (Hymenoptera: Formicidae), and Brachymyrmex sp. (Hymenoptera: Formicidae), showed the highest % I.I.-P.U. on leaves of A. mangium saplings. The number of Lordops sp. (Coleoptera: Curculionidae) was reduced per number of Brachymyrmex sp.; that of T. collaris those of Oxyopidae and Brachymyrmex sp.; and that of Tettigoniidae that of P. termitarius, totaling 8.93% of reduction of these herbivorous insects (numbers) on A. mangium saplings. These herbivorous insects turn into problems in commercial plantations of this plant since to are related to pests in some crops. These tending ants and Oxyopidae can be important on A. mangium commercial crops because they can reduce the number of these herbivorous insects.

Keywords:
abundance; aggregation; chi-squared test; constancy; frequency

Resumo

A Acacia mangium (Willd.) (Fabales: Fabaceae) apresenta aplicabilidade em programas de recuperação de áreas degradadas devido ao seu rápido crescimento, espécie rústica, pioneira, com potencial de fixação de nitrogênio. No entanto, esta planta é atacada por pragas. É importante saber, entre eles, o mais importante. Este estudo tem como objetivo avaliar os insetos herbívoros (fontes de perda) e seus inimigos naturais (fontes de solução) em 48 mudas A. mangium. Eles foram classificados de acordo com sua capacidade de danificar ou reduzir a fonte de dano nessas mudas usando o percentual do Índice de Importância-Produção Desconhecido (% I.I.-P.U.). As fontes de perda Trigona spinipes Fabr. (Hymenoptera: Apidae), Aleyrodidae (Hemiptera), Phenacoccus sp. (Hemiptera: Pseudococcidae), Aethalion reticulatum L. (Hemiptera: Aethalionidae) e Tropidacris Collaris Stoll. (Orthoptera: Romaleidae), apresentaram os maiores % I.I.-P.U. em folhas de mudas de A. mangium. As fontes de solução Oxyopidae (Araneae), Pseudomyrmex termitarius (Smith) (Hymenoptera: Formicidae) e Brachymyrmex sp. (Hymenoptera: Formicidae) apresentaram os maiores % I.I.-P.U. nas folhas de mudas de A. mangium. O número de Lordops sp. (Coleoptera: Curculionidae) foi reduzido pelo número de Brachymyrmex sp.; a de T. collaris pelos de Oxyopidae e Brachymyrmex sp.; e a de Tettigoniidae pelo de P. termitarius, totalizando 8,93% de redução destes insetos herbívoros (números) em mudas de A. mangium. Esses insetos herbívoros podem se tornar problemas em plantações comerciais desta planta, pois estes estão relacionados como pragas em algumas culturas. Essas formigas e Oxyopidae podem ser importantes em cultivos comerciais de A. mangium, pois podem reduzir o número desses insetos herbívoros.

Palavras-chave:
abundância; agregação; teste do qui-quadrado; constância; frequência

1. Introduction

Acacia mangium (Willd.) (Fabales: Fabaceae) tree is a fast-growing, rustic pioneer species with potential for nitrification due to symbiosis with diazotrophic bacteria, resulting in high litter production (Caldeira et al., 2018CALDEIRA, M.V.W., FAVALESSA, M., DELARMELINA, W.M., GONÇALVES, E.O.G. and MOURA, R.R.S., 2018. Sewage sludge assessment on growth of Acacia mangium seedlings by principal components analysis and orthogonal contrasts. Journal of Plant Nutrition, vol. 41, no. 10, pp. 1303-1311. http://dx.doi.org/10.1080/01904167.2018.1450421.
http://dx.doi.org/10.1080/01904167.2018....
; Eloy et al., 2018ELOY, E., SILVA, D.A., CARON, B.O., ELLI, E.F. and SCHWERZ, F., 2018. Effect of age and spacing on biomass production in forest plantations. Revista Árvore, vol. 42, no. 2, pp. 1-11. http://dx.doi.org/10.1590/1806-90882018000200014.
http://dx.doi.org/10.1590/1806-908820180...
; Paula et al., 2018PAULA, R.R., BOUILLET,, J.-P., GONÇALVES, J.L.M., TRIVELIN, P.C.O., BALIEIRO, F.C., NOUVELLON, Y., OLIVEIRA, J.C., DEUS JÚNIOR, J.C., BORDRON, B. and LACLAU, J.-P., 2018. Nitrogen fixation rate of Acacia mangium Wild at mid rotation in Brazil is higher in mixed plantations with Eucalyptus grandis Hill ex Maiden than in monocultures. Annals of Forest Science, vol. 75, no. 14, pp. 1-14. http://dx.doi.org/10.1007/s13595-018-0695-9.
http://dx.doi.org/10.1007/s13595-018-069...
). Acacia mangium is adapted to acidic and infertile soils makes this plant important for recovering degraded areas (Balieiro et al., 2004BALIEIRO, F.C., DIAS, L.E., FRANCO, A.A., CAMPELLO, E.F.C. and FARIA, S.M., 2004. Nutrient accumulation in the aboveground biomass, in the litter layer and phyllodies decomposition of Acacia mangium Willd. Ciência Florestal, vol. 14, no. 1, pp. 59-65. http://dx.doi.org/10.5902/198050981781.
http://dx.doi.org/10.5902/198050981781...
; Wang et al., 2013WANG, F., ZHU, W., ZOU, B., NEHER, D.A., FU, S., XIA, H. and LI, Z., 2013. Seedling growth and soil nutrient availability in exotic and native tree species: implications for afforestation in southern China. Plant and Soil, vol. 364, no. 1-2, pp. 207-218. http://dx.doi.org/10.1007/s11104-012-1353-x.
http://dx.doi.org/10.1007/s11104-012-135...
). Besides, its wood is used, for example, in the construction of furniture (Hegde et al., 2013HEGDE, M., PALANISAMY, K. and YI, J.S., 2013. Acacia mangium Willd. - a fast growing tree for tropical plantation. Journal of Forest and Environmental Science, vol. 29, no. 1, pp. 1-14. http://dx.doi.org/10.7747/JFS.2013.29.1.1.
http://dx.doi.org/10.7747/JFS.2013.29.1....
). However, this plant is attacked by different insect groups: sap-sucking, defoliators, stem apex chewing, and the wood-borer (Lemes et al., 2013LEMES, P.G., ANJOS, N. and JORGE, I.R., 2013. Bioecology of Oncideres ocularis Thomson (Coleoptera. Cerambycidae) on Acacia mangium Willd. (Fabaceae). Journal of the Kansas Entomological Society, vol. 86, no. 4, pp. 307-317. http://dx.doi.org/10.2317/JKES121121.1.
http://dx.doi.org/10.2317/JKES121121.1...
; Parreira et al., 2014PARREIRA, D.S., ZANUNCIO, J.C., MIELKE, O.H.H., WILCKEN, C.F., SERRÃO, J.E. and ZANUNCIO, T.V., 2014. Periphoba hircia (Lepidoptera: Saturniidae) defoliating plants of Acacia mangium in the State of Roraima, Brazil. The Florida Entomologist, vol. 97, no. 1, pp. 325-328. http://dx.doi.org/10.1653/024.097.0153.
http://dx.doi.org/10.1653/024.097.0153...
; Silva et al., 2015SILVA, F.W.S., LEITE, G.L.D., GUANABENS, R.E.M., SAMPAIO, R.A., GUSMÃO, C.A.G., SERRÃO, J.E. and ZANUNCIO, J.C., 2015. Seasonal abundance and diversity of arthropods on Acacia mangium (Fabales: Fabaceae) trees as windbreaks in the Cerrado. The Florida Entomologist, vol. 98, no. 1, pp. 170-174. http://dx.doi.org/10.1653/024.098.0129.
http://dx.doi.org/10.1653/024.098.0129...
, 2020SILVA, J.L., DEMOLIN-LEITE, G.L., TAVARES, W.S., SILVA, F.W.S., SAMPAIO, R.A., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C., 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area. Royal Society Open Science, vol. 7, no. 2, p. 191196. http://dx.doi.org/10.1098/rsos.191196. PMid:32257306.
http://dx.doi.org/10.1098/rsos.191196...
). On the other hand, A. mangium is visited and/or colonized by several predators such as ants, neuropteran, spiders, wasps, and others (Silva et al., 2020SILVA, J.L., DEMOLIN-LEITE, G.L., TAVARES, W.S., SILVA, F.W.S., SAMPAIO, R.A., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C., 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area. Royal Society Open Science, vol. 7, no. 2, p. 191196. http://dx.doi.org/10.1098/rsos.191196. PMid:32257306.
http://dx.doi.org/10.1098/rsos.191196...
; Gomes et al., 2023GOMES, G.N., LEITE, G.L.D., SOARES, M.A., GUANÃBENS, R.E.M., LEMES, P.G. and ZANUNCIO, J.C., 2023. Arthropod fauna on the abaxial and adaxial surfaces of Acacia mangium (Fabaceae) leaves. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, p. e245536. http://dx.doi.org/10.1590/1519-6984.245536. PMid:34669792.
http://dx.doi.org/10.1590/1519-6984.2455...
; Lima et al., 2024LIMA, J.S., LEITE, G.L.D., GUANABENS, P.F.S., SOARES, M.A., SILVA, J.L., MOTA, M.V.S., LEMES, P.G. and ZANUNCIO, J.C., 2024. Insects and spiders on Acacia mangium (Fabaceae) saplings as bioindicators for the recovery of tropical degraded areas. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, no. 4, p. e252088. http://dx.doi.org/10.1590/1519-6984.252088. PMid:34755814.
http://dx.doi.org/10.1590/1519-6984.2520...
). These arthropods can be loss and solution sources on A. mangium saplings. It is important to know, among them, the most important in each group.

The Importance Indice (I.I.) can determine the loss and solution sources on a system in some knowledge areas (e.g., agronomy), when production is known (Demolin-Leite, 2021DEMOLIN-LEITE, G.L., 2021 [viewed 14 March 2023]. Importance indice: loss estimates and solution effectiveness on production. Technical note. Cuban Journal of Agricultural Science [online], vol. 55, no. 2, pp. 1-7. Available from: http://scielo.sld.cu/pdf/cjas/v55n2/2079-3480-cjas-55-02-e10.pdf
http://scielo.sld.cu/pdf/cjas/v55n2/2079...
). Events (e.g., agricultural pest) can present different magnitudes (numerical measurements), frequencies, and distributions (aggregate, random, or regular) of event occurrence, and I.I. bases in this triplet (Demolin-Leite, 2021DEMOLIN-LEITE, G.L., 2021 [viewed 14 March 2023]. Importance indice: loss estimates and solution effectiveness on production. Technical note. Cuban Journal of Agricultural Science [online], vol. 55, no. 2, pp. 1-7. Available from: http://scielo.sld.cu/pdf/cjas/v55n2/2079-3480-cjas-55-02-e10.pdf
http://scielo.sld.cu/pdf/cjas/v55n2/2079...
). In general, the higher the magnitude and frequency, with aggregated distribution, the greater the problem or solution (e.g., natural enemies versus pests) for the system (Demolin-Leite, 2021DEMOLIN-LEITE, G.L., 2021 [viewed 14 March 2023]. Importance indice: loss estimates and solution effectiveness on production. Technical note. Cuban Journal of Agricultural Science [online], vol. 55, no. 2, pp. 1-7. Available from: http://scielo.sld.cu/pdf/cjas/v55n2/2079-3480-cjas-55-02-e10.pdf
http://scielo.sld.cu/pdf/cjas/v55n2/2079...
). However, the final production of the system is not always known or is difficult to determine (e.g., degraded area recovery). A derivation of the I.I. is the percentage of Importance Index-Production Unknown (% I.I.-P.U.) that can detect the loss or solution sources, when production is unknown, for the system (Demolin-Leite, 2024aDEMOLIN-LEITE, G.L., 2024a. Percentage of importance indice-production unknown: loss and solution sources identification on system. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, p. e253218. http://dx.doi.org/10.1590/1519-6984.253218. PMid:35019097.
http://dx.doi.org/10.1590/1519-6984.2532...
).

The objective of this study was to determine the loss (e.g., herbivores insects) and solution (e.g., natural enemies) sources, classifying them according to their importance regarding their ability to damage or mitigate the source of damage on 48 A. mangium saplings - system with production unknown.

2. Material and Methods

2.1. Experimental site

This study was carried out in a degraded area (≈ 1 ha) of the “Instituto de Ciências Agrárias da Universidade Federal de Minas Gerais (ICA/UFMG)” in the city of Montes Claros, Minas Gerais state, Brazil (latitude 16º 51' 38” S, longitude 44º 55' 00” W, altitude 943 m) for 24 months (April 2015 to March 2017). According to the Köppen climate classification, the climate of this area is tropical dry, with annual precipitation and temperature between 1,000 and 1,300 mm and ≥ 24ºC, respectively (Alvares et al., 2013ALVARES, C.A., STAPE, J.L., SENTELHAS, P.C., GONÇALVES, J.L.M. and SPAROVEK, G., 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, vol. 22, no. 6, pp. 711-728. http://dx.doi.org/10.1127/0941-2948/2013/0507.
http://dx.doi.org/10.1127/0941-2948/2013...
). The soil is Neosol Litolic with an Alic horizon (Silva et al., 2020SILVA, J.L., DEMOLIN-LEITE, G.L., TAVARES, W.S., SILVA, F.W.S., SAMPAIO, R.A., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C., 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area. Royal Society Open Science, vol. 7, no. 2, p. 191196. http://dx.doi.org/10.1098/rsos.191196. PMid:32257306.
http://dx.doi.org/10.1098/rsos.191196...
).

2.2. Experimental design

The A. mangium seedlings were prepared, in March 2014, in a nursery in plastic bags (16 x 24 cm) with reactive natural phosphate mixed with the substrate at a dosage of 160g and planted at the same time, in the final site in September of this year. Each A. mangium seedling was planted in a hole (40 x 40 x 40 cm) when they reached 30 cm high with a 2-meter spacing between them. The soil was corrected with dolomitic limestone with the base saturation increased to 50%, natural phosphate, gypsum, FTE (Fried Trace Elements), potassium chloride, and micronutrients based on the soil analysis. A single, 20 L dose of dehydrated sewage sludge with defined biochemical characteristics (Silva et al., 2020SILVA, J.L., DEMOLIN-LEITE, G.L., TAVARES, W.S., SILVA, F.W.S., SAMPAIO, R.A., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C., 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area. Royal Society Open Science, vol. 7, no. 2, p. 191196. http://dx.doi.org/10.1098/rsos.191196. PMid:32257306.
http://dx.doi.org/10.1098/rsos.191196...
) was placed per hole. The young 48 A. mangium saplings (young trees in the vegetative period) were irrigated twice a week until the beginning of the rainy season (October).

2.3. Counting the arthropods

The percentage of defoliation (leaf area loss) on a 0-100% scale with 5% increments for removed leaf area (Kogan and Turnipseed, 1980KOGAN, M. and TURNIPSEED, S.G., 1980. Soybean growth and assessment of damage by arthropods. In: M. KOGAN and D.C. HERZOG, eds. Sampling methods in soybean entomology. New York: Springer, pp. 3-29. http://dx.doi.org/10.1007/978-1-4612-9998-1_1.
http://dx.doi.org/10.1007/978-1-4612-999...
), and damage score from sap-sucking insects: I = non-damage; II = appearance of yellow chlorotic spots (leaf with 1% to 25% of attack symptoms); III = some yellow chlorotic spots and/or start of black sooty mold (leaf with 26% to 50% of attack symptoms); IV = several yellow chlorotic spots and/or severe blackening of leaves (leaf with 51% to 75% of attack symptoms); and V = yellowing or complete leaf drying (leaf with 76% to 100% of attack symptoms) (Demolin-Leite, 2024aDEMOLIN-LEITE, G.L., 2024a. Percentage of importance indice-production unknown: loss and solution sources identification on system. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, p. e253218. http://dx.doi.org/10.1590/1519-6984.253218. PMid:35019097.
http://dx.doi.org/10.1590/1519-6984.2532...
), were assessed visually, and all insects and spiders were counted, between 7:00 A.M. and 11:00 A.M., by visual observation, every two weeks on the adaxial and abaxial surfaces of the first 12 leaves expanded, per sapling [sampling unit (n) - one leaf]. Leaves were randomly assessed on the branch (one leaf per position) in the basal, middle, and apical parts of the canopy - vertical axis - (0 to 33%, 34 to 66%, and 67 to 100% of total sapling height, respectively) and in the north, south, east, and west directions - horizontal axis. A total of 12 leaves/sapling/evaluation were observed on 48 A. mangium saplings (age = 12 months) starting six months after transplantation for 24 months (27,648 total leaves), covering the entire sapling (vertical and horizontal axis), capturing the highest possible number of arthropods (insects and spiders), especially the rarest ones. In these saplings, the number of arthropods on the trunks was also assessed for each evaluation. The evaluator carefully approached, firstly assessing the adaxial leaf surface and, if it was not possible to visualize the abaxial one, with a delicate and slow movement, the leaf was lifted and visualized. The position of leaves of A. mangium saplings is generally tilted upwards, facilitating the visual assessment of arthropods on their leaf surfaces. Insects with greater mobility (e.g., Orthoptera), that flew on approach, were counted as they were recognized (e.g., Order). The arthropods (insects and spiders) were not removed from the saplings during the evaluation.

A few arthropod specimens (up to 3 individuals) per species were collected with an aspirator (two hours per week), at the beginning of the study (between transplantation and first evaluation), stored in flasks with 70% alcohol, separated into morph species, and sent to specialists for identification (see acknowledgments). Any visible arthropod, not yet computed in previous evaluations, was collected, coded, and sent to a taxonomist of each group (e.g., family).

The definition of what is a loss source or solution source was made by field observation (e.g., leaf damage), feed habits, and literature. The same was applied, as example, for prey-predator and sap-sucking insects- tending ant relationships.

2.4. Statistical analysis

Each replication is a sapling with the total individuals collected on 12 leaves (three heights and four sides of the sapling) for 24 months. The distribution type (aggregated, random, or regular) for the lost source (L.S.) or solution source (S.S.) was defined by the Chi-square test using the R-package ‘IIProductionUnknown’ (Demolin-Leite and Azevedo, 2022DEMOLIN-LEITE, G.L. and AZEVEDO, A.M., 2022 [viewed 14 March 2023]. IIProductionUnknown: analyzing data through of percentage of importance indice (production unknown) and its derivation [online]. R Development Core Team. Available from: https://CRAN.R-project.org/package=IIProductionUnknown
https://CRAN.R-project.org/package=IIPro...
) (Supplementary materials I and II). The data were subjected to simple regression analysis and their parameters were all significant (P< 0.05) using the R-package ‘IIProductionUnknown’ (Demolin-Leite and Azevedo, 2022DEMOLIN-LEITE, G.L. and AZEVEDO, A.M., 2022 [viewed 14 March 2023]. IIProductionUnknown: analyzing data through of percentage of importance indice (production unknown) and its derivation [online]. R Development Core Team. Available from: https://CRAN.R-project.org/package=IIProductionUnknown
https://CRAN.R-project.org/package=IIPro...
) (Supplementary material III). Simple equations were selected by observing the criteria: i) data distribution in the figures (linear or quadratic response), ii) the parameters used in these regressions were the most significant ones (P< 0.05), iii) P< 0.05 and F of the Analysis of Variance of these regressions, and iv) the coefficient of determination of these equations (R2). Only L.S. and S.S. with P< 0.05 were shown in Supplementary Materials (I-III). All the data above were used in the Percentage of Importance Index-Production Unknown (% I.I.-P.U.).

Percentage of Importance Indice-Production Unknown (% I.I.-P.U.) is: % I.I.-P.U.= [(ks1 x c1 x ds1)/Σ(ks1 x c1 x ds1)+(ks2 x c2 x ds2)+(ksn x cn x dsn)]x100 (Demolin-Leite, 2024aDEMOLIN-LEITE, G.L., 2024a. Percentage of importance indice-production unknown: loss and solution sources identification on system. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, p. e253218. http://dx.doi.org/10.1590/1519-6984.253218. PMid:35019097.
http://dx.doi.org/10.1590/1519-6984.2532...
).

Where:

  1. i

    the key source (ks) is: ks = damage (non-percentage) (Da.)/total n of the L.S. on the samples or ks = reduction of the total n. of L.S. (R.L.S)/total n. of the S.S on the samples (Demolin-Leite, 2024aDEMOLIN-LEITE, G.L., 2024a. Percentage of importance indice-production unknown: loss and solution sources identification on system. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, p. e253218. http://dx.doi.org/10.1590/1519-6984.253218. PMid:35019097.
    http://dx.doi.org/10.1590/1519-6984.2532...
    ). Where Da. or R.L.S. = R2 x (1 - P), when it is of the first degree, or ((R2 x (1 - P))x(β21), when it is of the second degree, where R2 = determination coefficient and P = significance of ANOVA, β1 = regression coefficient, and β2 = regression coefficient (variable2), of the simple regression equation of the loss source (L.S.) or solution source (S.S.) (Demolin-Leite, 2024aDEMOLIN-LEITE, G.L., 2024a. Percentage of importance indice-production unknown: loss and solution sources identification on system. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, p. e253218. http://dx.doi.org/10.1590/1519-6984.253218. PMid:35019097.
    http://dx.doi.org/10.1590/1519-6984.2532...
    ). When it is not possible to separate the Da. between two or more L.S., divide the Da. among the L.S. as a proportion of their respective “total n”. Da. = 0 when Da. was non-significant for damage or non-detected by L.S. on the system (Demolin-Leite, 2024aDEMOLIN-LEITE, G.L., 2024a. Percentage of importance indice-production unknown: loss and solution sources identification on system. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, p. e253218. http://dx.doi.org/10.1590/1519-6984.253218. PMid:35019097.
    http://dx.doi.org/10.1590/1519-6984.2532...
    ). When an S.S. operates in more than one L.S., that caused damage, its ks are summed. R.L.S. = 0 when Da. by L.S. or R.L.S. was non-significant for damage by L.S. or reduced L.S. by S.S. on the system (Demolin-Leite, 2024aDEMOLIN-LEITE, G.L., 2024a. Percentage of importance indice-production unknown: loss and solution sources identification on system. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, p. e253218. http://dx.doi.org/10.1590/1519-6984.253218. PMid:35019097.
    http://dx.doi.org/10.1590/1519-6984.2532...
    ).

  2. ii

    c (constancy) = Σ of occurrence of L.S. or S.S. on samples, where absence = 0 or presence = 1 (Demolin-Leite, 2021DEMOLIN-LEITE, G.L., 2021 [viewed 14 March 2023]. Importance indice: loss estimates and solution effectiveness on production. Technical note. Cuban Journal of Agricultural Science [online], vol. 55, no. 2, pp. 1-7. Available from: http://scielo.sld.cu/pdf/cjas/v55n2/2079-3480-cjas-55-02-e10.pdf
    http://scielo.sld.cu/pdf/cjas/v55n2/2079...
    ).

  3. iii

    ds (distribution source) = 1 - P of the chi-square test of L.S. or S.S. on the samples (Demolin-Leite, 2021DEMOLIN-LEITE, G.L., 2021 [viewed 14 March 2023]. Importance indice: loss estimates and solution effectiveness on production. Technical note. Cuban Journal of Agricultural Science [online], vol. 55, no. 2, pp. 1-7. Available from: http://scielo.sld.cu/pdf/cjas/v55n2/2079-3480-cjas-55-02-e10.pdf
    http://scielo.sld.cu/pdf/cjas/v55n2/2079...
    ). Counts (non-frequency) of L.S. or S.S. are used to perform the chi-square test.

These data, above, are obtained, by R-package ‘IIProductionUnknown’ (Demolin-Leite and Azevedo, 2022DEMOLIN-LEITE, G.L. and AZEVEDO, A.M., 2022 [viewed 14 March 2023]. IIProductionUnknown: analyzing data through of percentage of importance indice (production unknown) and its derivation [online]. R Development Core Team. Available from: https://CRAN.R-project.org/package=IIProductionUnknown
https://CRAN.R-project.org/package=IIPro...
).

Percentage of R.L.S. per S.S. (%R.L.S.S.S.) = (R.L.S.S.S./total n of the L.S. - abundance or damage) x 100, where R.L.S.S.S. = R.L.S. x total n of the S.S., with the R.L.S. not being summed in this case (Demolin-Leite, 2024aDEMOLIN-LEITE, G.L., 2024a. Percentage of importance indice-production unknown: loss and solution sources identification on system. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, p. e253218. http://dx.doi.org/10.1590/1519-6984.253218. PMid:35019097.
http://dx.doi.org/10.1590/1519-6984.2532...
). These data, above, are obtained, by R-package ‘IIProductionUnknown’ (Demolin-Leite and Azevedo, 2022DEMOLIN-LEITE, G.L. and AZEVEDO, A.M., 2022 [viewed 14 March 2023]. IIProductionUnknown: analyzing data through of percentage of importance indice (production unknown) and its derivation [online]. R Development Core Team. Available from: https://CRAN.R-project.org/package=IIProductionUnknown
https://CRAN.R-project.org/package=IIPro...
).

3. Results

The loss sources Trigona spinipes Fabr. (Hymenoptera: Apidae) (35.33%), Aleyrodidae (Hemiptera) (31.84%) (maximum score damage = II), Phenacoccus sp. (Hemiptera: Pseudococcidae) (18.66%) (maximum score damage = II), Aethalion reticulatum L. (Hemiptera: Aethalionidae) (9.17%) (maximum score damage = III), and Tropidacris collaris Stoll. (Orthoptera: Romaleidae) (1.36%), showed, among 43 herbivorous insects (≈ 0.10%), the highest % I.I.-P.U. on leaves of A. mangium saplings (Table 1).

Table 1
Total number (n), damage (Da.), key-source (ks), constancy (c), distribution source (ds), number of Importance Indice (n. I.I.), sum of n. I.I.-P.U.n. I.I.), and percentage of I.I. by loss source (L.S.) on 48 Acacia mangium (Fabaceae) saplings.

The solution sources Oxyopidae (Araneae) (97.32%), Pseudomyrmex termitarius (Smith) (Hymenoptera: Formicidae) (2.62%), and Brachymyrmex sp. (Hymenoptera: Formicidae) (0.06%), among 25 natural enemies (= 0.00%), revealed the highest % I.I.-P.U. on leaves of A. mangium saplings. The number of Lordops sp. (Coleoptera: Curculionidae) was reduced per number of Brachymyrmex sp. (3.99%); that of T. collaris those of Oxyopidae (2.14%) and Brachymyrmex sp. (0.91%); and that of Tettigoniidae that of P. termitarius (1.89%), totaling 8.93% of reduction of these herbivorous insects (numbers) on A. mangium sapling (Tables 2-3).

Table 2
Total number (n), reduction of L.S. (R.L.S.), key-source (ks), constancy (c), distribution source (ds), number of Importance Indice (n. I.I.), sum of n. I.I.-P.U.n. I.I.), and percentage of I.I. by solution source (S.S.) on 48 Acacia mangium (Fabaceae) saplings.
Table 3
Percentage of reduction in abundance (%R.) of loss source (L.S.) per solution source (S.S.), sum (Σ), and total of Σ of R.L.S. (T.Σ) on 48 Acacia mangium (Fabaceae) saplings.

4. Discussion

The loss sources T. spinipes, Aleyrodidae, Phenacoccus sp., A. reticulatum, and T. collaris, presented the highest % I.I.-P.U. on leaves of A. mangium saplings. The shoots and growth regions by Leucaena leucocephala (Lam.) de Wit. (Fabales: Fabaceae) are damaged for T. spinipes bees, which remove fibers to construct their nests (Damascena et al., 2017DAMASCENA, J.G., LEITE, G.L.D., SILVA, F.W.S., SOARES, M.A., GUAÑABENS, R.E.M., SAMPAIO, R.A. and ZANUNCIO, J.C., 2017. Spatial distribution of phytophagous insects, natural enemies, and pollinators on Leucaena leucocephala (Fabales: Fabaceae) trees in the Cerrado. The Florida Entomologist, vol. 100, no. 3, pp. 558-565. http://dx.doi.org/10.1653/024.100.0311.
http://dx.doi.org/10.1653/024.100.0311...
). Besides, this bee species damages flowers such as on Caryocar brasiliense Camb. (Malpighiales: Caryocaraceae) trees and Zantedeschia aethiopica (L.) Spreng. (Commelinales: Araceae) plants (Carvalho et al., 2018CARVALHO, L.M., LADEIRA, V.A., ALMEIDA, E.F.A., SANTA-CECILIA, L.C., BRIGHENTI, D.M. and RESENDE, E., 2018. Bagging to protect calla lily flowers against stingless bee (Trigona spinipes). Ornamental Horticulture, vol. 24, no. 4, pp. 353-360. http://dx.doi.org/10.14295/oh.v24i4.1193.
http://dx.doi.org/10.14295/oh.v24i4.1193...
; Demolin-Leite, 2024bDEMOLIN-LEITE, G.L., 2024b. Do arthropods and diseases affect the production of fruits on Caryocar brasiliense Camb. (Malpighiales: caryocaraceae)? Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, p. e253215. http://dx.doi.org/10.1590/1519-6984.253215.
http://dx.doi.org/10.1590/1519-6984.2532...
). In addition, T. spinipes can reduce pollination on Cucurbita moschata Dusch (Cucurbitales: Cucurbitaceae) plants owing to insufficient pollen transportation (small body size) and/or chasing other pollinators by flying in flocks and with aggressive behavior (Serra and Campos, 2010SERRA, B.D.V. and CAMPOS, L.A.O., 2010. Entomophilic pollination of squash, Cucurbita moschata (Cucurbitaceae). Neotropical Entomology, vol. 39, no. 2, pp. 153-159. http://dx.doi.org/10.1590/S1519-566X2010000200002. PMid:20498949.
http://dx.doi.org/10.1590/S1519-566X2010...
). Its control, traditionally, is the location and destruction of its nest (Demolin-Leite, 2024bDEMOLIN-LEITE, G.L., 2024b. Do arthropods and diseases affect the production of fruits on Caryocar brasiliense Camb. (Malpighiales: caryocaraceae)? Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, p. e253215. http://dx.doi.org/10.1590/1519-6984.253215.
http://dx.doi.org/10.1590/1519-6984.2532...
). Bemisia tabaci (Genn., 1889), Aleyrodidae family, is a pest of several plants, including sweet pepper Capsicum annuum L. (Solanales: Solanaceae), Cucumis melo L. (Cucurbitales: Cucurbitaceae), soybean Glycine max (L.) Merrill and common bean Phaseolus vulgaris L. (Fabales: Fabaceae), and tomato Solanum lycopersicon Mill. (Solanales: Solanaceae). This sap-sucking insect can inject toxins, transmit viruses, and favor the development of fumagine (Zhang et al., 2004ZHANG, W., MCAUSLANE, H.J. and SCHUSTER, D.J., 2004. Repellency of ginger oil to Bemisia argentifolii (Homoptera: Aleyrodidae) on tomato. Journal of Economic Entomology, vol. 97, no. 4, pp. 1310-1318. http://dx.doi.org/10.1093/jee/97.4.1310. PMid:15384342.
http://dx.doi.org/10.1093/jee/97.4.1310...
; Mansaray and Sundufu, 2009MANSARAY, A. and SUNDUFU, A.J., 2009. Oviposition, development and survivorship of the sweetpotato whitefly Bemisia tabaci on soybean, Glycine max, and the garden bean, Phaseolus vulgaris. Journal of Insect Science, vol. 9, no. 1, p. 1. http://dx.doi.org/10.1673/031.009.0101. PMid:19611218.
http://dx.doi.org/10.1673/031.009.0101...
; Kim et al., 2017KIM, S., JUNG, M., SONG, Y.J., KANG, C., KIM, B.Y., CHOI, I.J., KIM, H.G. and LEE, D.H., 2017. Evaluating the potential of the extract of Perilla sp. as a natural insecticide for Bemisia tabaci (Hemiptera: Aleyrodidae) on sweet peppers. Entomological Research, vol. 47, no. 3, pp. 208-216. http://dx.doi.org/10.1111/1748-5967.12211.
http://dx.doi.org/10.1111/1748-5967.1221...
; Felicio et al., 2019FELICIO, T.N.P., COSTA, T.L., SARMENTO, R.A., RAMOS, R.S., PEREIRA, P.S., SILVA, R.S. and PICANÇO, M.C., 2019. Surrounding vegetation, climatic elements, and predators affect the spatial dynamics of Bemisia tabaci (Hemiptera: Aleyrodidae) in commercial melon fields. Journal of Economic Entomology, vol. 112, no. 6, pp. 2774-2781. http://dx.doi.org/10.1093/jee/toz181. PMid:31265728.
http://dx.doi.org/10.1093/jee/toz181...
). Phenacoccus sp. was the most abundant phytophagous insect on Platycyamus regnellii (Benth) (Fabales: Fabaceae) trees fertilized with dehydrated sewage sludge (Souza et al., 2021SOUZA, G.F., LEITE, G.L.D., SILVA, F.W.S., SILVA, J.L., SAMPAIO, R.A., TEIXEIRA, G.L., SOARES, M.A. and ZANUNCIO, J.C., 2021. Bottom-up effects on arthropod communities in Platycyamus regnellii (Fabaceae) fertilized with dehydrated sewage sludge. Revista Colombiana de Entomología, vol. 47, no. 1, p. e8943. http://dx.doi.org/10.25100/socolen.v47i1.8943.
http://dx.doi.org/10.25100/socolen.v47i1...
). Besides, Phenacoccus sp. is related as a pest of Abelmoschus esculentus (L.) Moench. (Malvales: Malvaceae), Amaranthus flavus L. (Caryophyllales: Amaranthaceae), Bidens pilosa L. (Asterales: Asteraceae), Carica papaya L. (Violales: Caricaceae), Gossypium hirsutum L. (Malvales: Malvaceae), Manihot esculenta Crantz. (Malpighiales: Euphorbiaceae), S. lycopersicum, and Vitis vinifera L. (Vitales: Vitaceae). This insect causes necrosis in the apical tissues, reduces the photosynthetic rate, leaf growth (with yellowing and fall of these), negatively affecting the plant production (e.g., M. esculenta) (Schulthess et al., 1991SCHULTHESS, F., BAUMGÄRTNER, J.U., DELUCCHI, V. and GUTIERREZ, A.P., 1991. The influence of the cassava mealybug, Phenacoccus manihoti Mat.-Ferr. (Horn., Pseudococcidae) on yield formation of cassava, Manihot esculenta Crantz. Journal of Applied Entomology, vol. 111, no. 1-5, pp. 155-165. http://dx.doi.org/10.1111/j.1439-0418.1991.tb00306.x.
http://dx.doi.org/10.1111/j.1439-0418.19...
; Culik and Gullan, 2005CULIK, M.P. and GULLAN, P.J., 2005. A new pest of tomato and other records of mealybugs (Hemiptera: Pseudococcidae) from Espírito Santo, Brazil. Zootaxa, vol. 964, no. 1, pp. 1-8. http://dx.doi.org/10.11646/zootaxa.964.1.1.
http://dx.doi.org/10.11646/zootaxa.964.1...
; Culik et al., 2007CULIK, M.P., MARTINS, D.S., VENTURA, J.A., PERONTI, A.L.B.G., GULLAN, P.J. and KONDO, T., 2007. Coccidae, Pseudococcidae, Ortheziidae, and Monophlebidae (Hemiptera: Coccoidea) of Espírito Santo, Brazil. Biota Neotropica, vol. 7, no. 3, pp. 61-65. http://dx.doi.org/10.1590/S1676-06032007000300006.
http://dx.doi.org/10.1590/S1676-06032007...
; Rebolledo-Martínez et al., 2013REBOLLEDO-MARTÍNEZ, A., ANGEL-PÉREZ, A.L., PERALTA-ANTONIO, N. and DÍAZ-PADILLA, G., 2013 [viewed 14 March 2023]. Control de fumagina (Capnodium mangiferae Cooke & Brown) con biofungicidas en hojas y frutos de mango “manila”. Tropical and Subtropical Agroecosystems [online], vol. 16, no. 3, pp. 355-362. Available from: https://www.redalyc.org/articulo.oa?id=93929595007
https://www.redalyc.org/articulo.oa?id=9...
; Santos and Peronti, 2017SANTOS, R.S. and PERONTI, A.L.B.G., 2017. Occurrence of Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) in okra in Acre state, Brazil. EntomoBrasilis, vol. 10, no. 2, pp. 135-138. http://dx.doi.org/10.12741/ebrasilis.v10i2.684.
http://dx.doi.org/10.12741/ebrasilis.v10...
). The A. reticulatum is a pest that reduces the development of fruits and sprouts, leading to hypertrophy and cracks in the apex of seedlings and, possibly, killing plants of “mulungu” Erythrina speciosa Andrews (Fabales: Fabaceae) (Araújo et al., 2010ARAÚJO, V.A., BÁO, S.N., MOREIRA, J., NEVES, C.A. and LINO-NETO, J., 2010. Ultrastructural characterization of the spermatozoa of Aethalion reticulatum Linnaeus 1767 (Hemiptera: Auchenorrhyncha: Aethalionidae). Micron, vol. 41, no. 4, pp. 306-311. http://dx.doi.org/10.1016/j.micron.2009.12.001. PMid:20047835.
http://dx.doi.org/10.1016/j.micron.2009....
; Zanuncio et al., 2015ZANUNCIO, A.J.V., SERRÃO, J.E., PEREIRA, A.I.A., SOARES, M.A., WILCKEN, C.F., LEITE, G.L.D. and ZANUNCIO, J.C., 2015. Aethalion reticulatum (Hemiptera: Aethalionidae) feeding on Erythrina speciosa (Fabales: Fabaceae): first record of its host plant and damage characteristics. The Florida Entomologist, vol. 98, no. 1, pp. 175-177. http://dx.doi.org/10.1653/024.098.0130.
http://dx.doi.org/10.1653/024.098.0130...
). In addition, this sap-sucking insect damages A. mangium, Triplaris americana L. (Caryophyllales: Polygonaceae), and Vernonia condensata Baker (Asterales: Asteraceae) plants (Menezes et al., 2013MENEZES, C.W.G., BERTOLUCCI, S.K.V., PINTO, J.E.B.P., CARVALHO, G.A. and SOARES, M.A., 2013. First record of Aethalion reticulatum (Hemiptera: Aethalionidae) in Vernonia condensata (Asteraceae), a medicinal plant from Brazil. Phytoparasitica, vol. 41, no. 5, pp. 611-613. http://dx.doi.org/10.1007/s12600-013-0322-0.
http://dx.doi.org/10.1007/s12600-013-032...
; Pires et al., 2014PIRES, E.M., SILVA, L.C., BATIROLA, L.D., NOGUEIRA, R.M., BARRETO, M.R. and CORASSA, J.N., 2014. Triplaris americana L. (Polygonaceae), a new host plant for Aethalion reticulatum (Linnaeus, 1767) (Hemiptera: aethalionidae). Brazilian Archives of Biology and Technology, vol. 58, no. 1, pp. 31-33. http://dx.doi.org/10.1590/S1516-8913201400039.
http://dx.doi.org/10.1590/S1516-89132014...
; Silva et al., 2020SILVA, J.L., DEMOLIN-LEITE, G.L., TAVARES, W.S., SILVA, F.W.S., SAMPAIO, R.A., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C., 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area. Royal Society Open Science, vol. 7, no. 2, p. 191196. http://dx.doi.org/10.1098/rsos.191196. PMid:32257306.
http://dx.doi.org/10.1098/rsos.191196...
). Finally, the chewing insect T. collaris damages on A. mangium saplings confirms its polyphagy, which also attacks plants of Casuarina glauca Sieber (Casuarinales: Casuarinaceae), L. leucocephala, and Terminalia argentea Mart. (Myrtales: Combretaceae) (Poderoso et al., 2013PODEROSO, J.C.M., COSTA, M.K.M., CORREIA-OLIVEIRA, M.E., DANTAS, P.C., ZANUNCIO, J.C. and RIBEIRO, G.T., 2013. Occurrence of Tropidacris collaris (Orthoptera; Acridoidea; Romaleidae) damaging Casuarina glauca (Casuarinaceae) plants in the municipality of Central Bahia, Brazil. The Florida Entomologist, vol. 96, no. 1, pp. 268-269. http://dx.doi.org/10.1653/024.096.0143.
http://dx.doi.org/10.1653/024.096.0143...
; Damascena et al., 2017DAMASCENA, J.G., LEITE, G.L.D., SILVA, F.W.S., SOARES, M.A., GUAÑABENS, R.E.M., SAMPAIO, R.A. and ZANUNCIO, J.C., 2017. Spatial distribution of phytophagous insects, natural enemies, and pollinators on Leucaena leucocephala (Fabales: Fabaceae) trees in the Cerrado. The Florida Entomologist, vol. 100, no. 3, pp. 558-565. http://dx.doi.org/10.1653/024.100.0311.
http://dx.doi.org/10.1653/024.100.0311...
; Carvalho et al., 2020CARVALHO, J.C.N., SILVA, F.W.S., LEITE, G.L.D., AZEVEDO, A.M., TEIXEIRA, G.L., SOARES, M.A., ZANUNCIO, J.C. and LEGASPI, J.C., 2020. Does fertilization with dehydrated sewage sludge affect Terminalia argentea (Combretaceae) and associated arthropods community in a degraded area? Scientific Reports, vol. 10, no. 1, p. 11811. http://dx.doi.org/10.1038/s41598-020-68747-z. PMid:32678241.
http://dx.doi.org/10.1038/s41598-020-687...
).

The solution sources Oxyopidae, P. termitarius, and Brachymyrmex sp., showed the highest % I.I.-P.U. on leaves of A. mangium saplings. The numbers of Lordops sp., T. collaris, and Tettigoniidae were reduced per numbers of Brachymyrmex sp., Oxyopidae, and P. termitarius, with a total reduction of these herbivorous insects around 9% on A. mangium saplings. Spiders are important predators, as an example, on C. brasiliense trees and T. argentea (Leite et al., 2012LEITE, G.L.D., VELOSO, R.V.S., ZANUNCIO, J.C., ALMEIDA, C.I.M., FERREIRA, P.S.F., FERNANDES, G.W. and SOARES, M.A., 2012. Habitat complexity and Caryocar brasiliense herbivores (Insecta; Arachnida; Araneae). The Florida Entomologist, vol. 95, no. 4, pp. 819-830. http://dx.doi.org/10.1653/024.095.0402.
http://dx.doi.org/10.1653/024.095.0402...
; Carvalho et al., 2020CARVALHO, J.C.N., SILVA, F.W.S., LEITE, G.L.D., AZEVEDO, A.M., TEIXEIRA, G.L., SOARES, M.A., ZANUNCIO, J.C. and LEGASPI, J.C., 2020. Does fertilization with dehydrated sewage sludge affect Terminalia argentea (Combretaceae) and associated arthropods community in a degraded area? Scientific Reports, vol. 10, no. 1, p. 11811. http://dx.doi.org/10.1038/s41598-020-68747-z. PMid:32678241.
http://dx.doi.org/10.1038/s41598-020-687...
); on pastures and forests (Zografou et al., 2017ZOGRAFOU, K., ADAMIDIS, G.C., KOMNENOV, M., KATI, V., SOTIRAKOPOULOS, P., PITTA, E. and CHATZAKI, M., 2017. Diversity of spiders and orthopterans respond to intra-seasonal and spatial environmental changes. Journal of Insect Conservation, vol. 21, no. 3, pp. 531-543. http://dx.doi.org/10.1007/s10841-017-9993-z.
http://dx.doi.org/10.1007/s10841-017-999...
); in many agroecosystems in the USA (Landis et al., 2000LANDIS, D.A., WRATTEN, S.D. and GURR, G.M., 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, vol. 45, no. 1, pp. 175-201. http://dx.doi.org/10.1146/annurev.ento.45.1.175. PMid:10761575.
http://dx.doi.org/10.1146/annurev.ento.4...
) and Italy (Venturino et al., 2008VENTURINO, E., ISAIA, M., BONA, F., CHATTERJEE, S. and BADINO, G., 2008. Biological controls of intensive agroecosystems: wanderer spiders in the Langa astigiana. Ecological Complexity, vol. 5, no. 2, pp. 157-164. http://dx.doi.org/10.1016/j.ecocom.2007.10.003.
http://dx.doi.org/10.1016/j.ecocom.2007....
); and in 12 agricultural landscapes in the low mountain ranges of Central Hesse (Germany) (Öberg et al., 2008ÖBERG, S., MAYR, S. and DAUBER, J., 2008. Landscape effects on recolonisation patterns of spiders in arable fields. Agriculture, Ecosystems & Environment, vol. 123, no. 1-3, pp. 211-218. http://dx.doi.org/10.1016/j.agee.2007.06.005.
http://dx.doi.org/10.1016/j.agee.2007.06...
). And, finally, ants can reduce defoliation and fruit-boring insect populations (e.g., Coleoptera and Lepidoptera) (Leite et al., 2012LEITE, G.L.D., VELOSO, R.V.S., ZANUNCIO, J.C., ALMEIDA, C.I.M., FERREIRA, P.S.F., FERNANDES, G.W. and SOARES, M.A., 2012. Habitat complexity and Caryocar brasiliense herbivores (Insecta; Arachnida; Araneae). The Florida Entomologist, vol. 95, no. 4, pp. 819-830. http://dx.doi.org/10.1653/024.095.0402.
http://dx.doi.org/10.1653/024.095.0402...
; Gonthier et al., 2013GONTHIER, D.J., ENNIS, K.K., PHILPOTT, S.M., VANDERMEER, J. and PERFECTO, I., 2013. Ants defend coffee from berry borer colonization. BioControl, vol. 58, no. 6, pp. 815-820. http://dx.doi.org/10.1007/s10526-013-9541-z.
http://dx.doi.org/10.1007/s10526-013-954...
; Fagundes et al., 2017FAGUNDES, R., DÁTTILO, W., RIBEIRO, S.P., RICO-GRAY, V., JORDANO, P. and DEL-CLARO, K., 2017. Differences among ant species in plant protection are related to production of extrafloral nectar and degree of leaf herbivory. Biological Journal of the Linnean Society, vol. 122, no. 1, pp. 71-83. http://dx.doi.org/10.1093/biolinnean/blx059.
http://dx.doi.org/10.1093/biolinnean/blx...
; Dassou et al., 2019DASSOU, A.G., VODOUHÉ, S.D., BOKONON-GANTA, A., GOERGEN, G., CHAILLEUX, A., DANSI, A., CARVAL, D. and TIXIER, P., 2019. Associated cultivated plants in tomato cropping systems structure arthropod communities and increase the Helicoverpa armigera regulation. Bulletin of Entomological Research, vol. 109, no. 6, pp. 733-740. http://dx.doi.org/10.1017/S0007485319000117. PMid:30968787.
http://dx.doi.org/10.1017/S0007485319000...
). Besides, ants are bioindicators of the recovery of degraded areas (Sanchez, 2015SANCHEZ, A., 2015. Fidelity and promiscuity in an ant-plant mutualism: a case study of Triplaris and Pseudomyrmex. PLoS One, vol. 10, no. 12, p. e0143535. http://dx.doi.org/10.1371/journal.pone.0143535. PMid:26630384.
http://dx.doi.org/10.1371/journal.pone.0...
). Domatia, which are internal plant structures (e.g., stems and leaves), are adapted for habitation by ants (Janzen, 1966JANZEN, D.H., 1966. Coevolution of mutualism between ants and acacias in Central America. Evolution, vol. 20, no. 3, pp. 249-275. http://dx.doi.org/10.2307/2406628. PMid:28562970.
http://dx.doi.org/10.2307/2406628...
). Many different genera of plants offer these structures like the Acacia genus and their stems that are excavated by ants for use as housing structures (Janzen, 1966JANZEN, D.H., 1966. Coevolution of mutualism between ants and acacias in Central America. Evolution, vol. 20, no. 3, pp. 249-275. http://dx.doi.org/10.2307/2406628. PMid:28562970.
http://dx.doi.org/10.2307/2406628...
). Many myrmecophytes are defended from both herbivores and other competing plants by their ant counterparts like Acacia cornigera (L.) Willd. (Fabales: Fabaceae) (Rico-Gray and Oliveira, 2007RICO-GRAY, V. and OLIVEIRA, P.S., 2007. The ecology and evolution of ant-plant interactions. Chicago: University of Chicago Press, 320 p. http://dx.doi.org/10.7208/chicago/9780226713540.001.0001.
http://dx.doi.org/10.7208/chicago/978022...
). This plant is thoroughly guarded by its obligate ant partner, Pseudomyrmex ferruginea (Smith, 1877), which has more than 30,000 ants on a single colony, tending multiple Acacia trees (Rico-Gray and Oliveira, 2007RICO-GRAY, V. and OLIVEIRA, P.S., 2007. The ecology and evolution of ant-plant interactions. Chicago: University of Chicago Press, 320 p. http://dx.doi.org/10.7208/chicago/9780226713540.001.0001.
http://dx.doi.org/10.7208/chicago/978022...
). The soldier ants patrol the trees twenty-four hours a day with incredible aggression, and recruit more works, inside the horn domatia, with any disturbance to the tree (Rico-Gray and Oliveira, 2007RICO-GRAY, V. and OLIVEIRA, P.S., 2007. The ecology and evolution of ant-plant interactions. Chicago: University of Chicago Press, 320 p. http://dx.doi.org/10.7208/chicago/9780226713540.001.0001.
http://dx.doi.org/10.7208/chicago/978022...
). These ants keep the Acacia free from other insects and vertebrate herbivores with the bit, sting violently, and prune any trespassers, but also from invading fungi and other plants (Rico-Gray and Oliveira, 2007RICO-GRAY, V. and OLIVEIRA, P.S., 2007. The ecology and evolution of ant-plant interactions. Chicago: University of Chicago Press, 320 p. http://dx.doi.org/10.7208/chicago/9780226713540.001.0001.
http://dx.doi.org/10.7208/chicago/978022...
).

5. Conclusions

The loss sources T. spinipes, Aleyrodidae, Phenacoccus sp., A. reticulatum, and T. collaris, showed the highest % I.I.-P.U. on leaves of A. mangium saplings. These insects turn into problems in commercial plantations of this plant since to are related to pests in some crops. The solution sources Oxyopidae, P. termitarius, and Brachymyrmex sp., showed the highest % I.I.-P.U. on leaves of A. mangium saplings. These natural enemies can be important on A. mangium due to their capacity to reduce herbivorous damages (e.g., Oxyopidae versus T. collaris) reducing 9% of herbivorous insects on A. mangium sapling.

Acknowledgements

I wish to thank the taxonomists Dr. Antônio Domingos Brescovit (Butantan Institute, São Paulo state, Brazil - Arachnida), Dr. Ayr de Moura Bello (Oswaldo Cruz Foundation, Rio de Janeiro state, Brazil - Coleoptera), Dr. Carlos Matrangolo (University of Montes Claros, Minas Gerais state, Brazil - Formicidae), Dr. Ivan Cardoso Nascimento (EMBRAPA-ILHÉUS Cocoa Research Center, CEPLAC, Itabuna, Bahia state, Brazil - Formicidae), Dr. Luci Boa Nova Coelho (Federal University of Rio de Janeiro, Rio de Janeiro state, Brazil - Cicadellidae) and Dr. Paulo Sérgio Fiuza Ferreira (Federal University of Viçosa, Minas Gerais state, Brazil - Hemiptera) for the identification of specimens. The voucher numbers are 1595/02 and 1597/02 (CDZOO, Federal University of Paraná, Paraná state, Brazil).

References

  • ALVARES, C.A., STAPE, J.L., SENTELHAS, P.C., GONÇALVES, J.L.M. and SPAROVEK, G., 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, vol. 22, no. 6, pp. 711-728. http://dx.doi.org/10.1127/0941-2948/2013/0507
    » http://dx.doi.org/10.1127/0941-2948/2013/0507
  • ARAÚJO, V.A., BÁO, S.N., MOREIRA, J., NEVES, C.A. and LINO-NETO, J., 2010. Ultrastructural characterization of the spermatozoa of Aethalion reticulatum Linnaeus 1767 (Hemiptera: Auchenorrhyncha: Aethalionidae). Micron, vol. 41, no. 4, pp. 306-311. http://dx.doi.org/10.1016/j.micron.2009.12.001 PMid:20047835.
    » http://dx.doi.org/10.1016/j.micron.2009.12.001
  • BALIEIRO, F.C., DIAS, L.E., FRANCO, A.A., CAMPELLO, E.F.C. and FARIA, S.M., 2004. Nutrient accumulation in the aboveground biomass, in the litter layer and phyllodies decomposition of Acacia mangium Willd. Ciência Florestal, vol. 14, no. 1, pp. 59-65. http://dx.doi.org/10.5902/198050981781
    » http://dx.doi.org/10.5902/198050981781
  • CALDEIRA, M.V.W., FAVALESSA, M., DELARMELINA, W.M., GONÇALVES, E.O.G. and MOURA, R.R.S., 2018. Sewage sludge assessment on growth of Acacia mangium seedlings by principal components analysis and orthogonal contrasts. Journal of Plant Nutrition, vol. 41, no. 10, pp. 1303-1311. http://dx.doi.org/10.1080/01904167.2018.1450421
    » http://dx.doi.org/10.1080/01904167.2018.1450421
  • CARVALHO, J.C.N., SILVA, F.W.S., LEITE, G.L.D., AZEVEDO, A.M., TEIXEIRA, G.L., SOARES, M.A., ZANUNCIO, J.C. and LEGASPI, J.C., 2020. Does fertilization with dehydrated sewage sludge affect Terminalia argentea (Combretaceae) and associated arthropods community in a degraded area? Scientific Reports, vol. 10, no. 1, p. 11811. http://dx.doi.org/10.1038/s41598-020-68747-z PMid:32678241.
    » http://dx.doi.org/10.1038/s41598-020-68747-z
  • CARVALHO, L.M., LADEIRA, V.A., ALMEIDA, E.F.A., SANTA-CECILIA, L.C., BRIGHENTI, D.M. and RESENDE, E., 2018. Bagging to protect calla lily flowers against stingless bee (Trigona spinipes). Ornamental Horticulture, vol. 24, no. 4, pp. 353-360. http://dx.doi.org/10.14295/oh.v24i4.1193
    » http://dx.doi.org/10.14295/oh.v24i4.1193
  • CULIK, M.P. and GULLAN, P.J., 2005. A new pest of tomato and other records of mealybugs (Hemiptera: Pseudococcidae) from Espírito Santo, Brazil. Zootaxa, vol. 964, no. 1, pp. 1-8. http://dx.doi.org/10.11646/zootaxa.964.1.1
    » http://dx.doi.org/10.11646/zootaxa.964.1.1
  • CULIK, M.P., MARTINS, D.S., VENTURA, J.A., PERONTI, A.L.B.G., GULLAN, P.J. and KONDO, T., 2007. Coccidae, Pseudococcidae, Ortheziidae, and Monophlebidae (Hemiptera: Coccoidea) of Espírito Santo, Brazil. Biota Neotropica, vol. 7, no. 3, pp. 61-65. http://dx.doi.org/10.1590/S1676-06032007000300006
    » http://dx.doi.org/10.1590/S1676-06032007000300006
  • DAMASCENA, J.G., LEITE, G.L.D., SILVA, F.W.S., SOARES, M.A., GUAÑABENS, R.E.M., SAMPAIO, R.A. and ZANUNCIO, J.C., 2017. Spatial distribution of phytophagous insects, natural enemies, and pollinators on Leucaena leucocephala (Fabales: Fabaceae) trees in the Cerrado. The Florida Entomologist, vol. 100, no. 3, pp. 558-565. http://dx.doi.org/10.1653/024.100.0311
    » http://dx.doi.org/10.1653/024.100.0311
  • DASSOU, A.G., VODOUHÉ, S.D., BOKONON-GANTA, A., GOERGEN, G., CHAILLEUX, A., DANSI, A., CARVAL, D. and TIXIER, P., 2019. Associated cultivated plants in tomato cropping systems structure arthropod communities and increase the Helicoverpa armigera regulation. Bulletin of Entomological Research, vol. 109, no. 6, pp. 733-740. http://dx.doi.org/10.1017/S0007485319000117 PMid:30968787.
    » http://dx.doi.org/10.1017/S0007485319000117
  • DEMOLIN-LEITE, G.L. and AZEVEDO, A.M., 2022 [viewed 14 March 2023]. IIProductionUnknown: analyzing data through of percentage of importance indice (production unknown) and its derivation [online]. R Development Core Team. Available from: https://CRAN.R-project.org/package=IIProductionUnknown
    » https://CRAN.R-project.org/package=IIProductionUnknown
  • DEMOLIN-LEITE, G.L., 2021 [viewed 14 March 2023]. Importance indice: loss estimates and solution effectiveness on production. Technical note. Cuban Journal of Agricultural Science [online], vol. 55, no. 2, pp. 1-7. Available from: http://scielo.sld.cu/pdf/cjas/v55n2/2079-3480-cjas-55-02-e10.pdf
    » http://scielo.sld.cu/pdf/cjas/v55n2/2079-3480-cjas-55-02-e10.pdf
  • DEMOLIN-LEITE, G.L., 2024a. Percentage of importance indice-production unknown: loss and solution sources identification on system. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, p. e253218. http://dx.doi.org/10.1590/1519-6984.253218 PMid:35019097.
    » http://dx.doi.org/10.1590/1519-6984.253218
  • DEMOLIN-LEITE, G.L., 2024b. Do arthropods and diseases affect the production of fruits on Caryocar brasiliense Camb. (Malpighiales: caryocaraceae)? Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, p. e253215. http://dx.doi.org/10.1590/1519-6984.253215
    » http://dx.doi.org/10.1590/1519-6984.253215
  • ELOY, E., SILVA, D.A., CARON, B.O., ELLI, E.F. and SCHWERZ, F., 2018. Effect of age and spacing on biomass production in forest plantations. Revista Árvore, vol. 42, no. 2, pp. 1-11. http://dx.doi.org/10.1590/1806-90882018000200014
    » http://dx.doi.org/10.1590/1806-90882018000200014
  • FAGUNDES, R., DÁTTILO, W., RIBEIRO, S.P., RICO-GRAY, V., JORDANO, P. and DEL-CLARO, K., 2017. Differences among ant species in plant protection are related to production of extrafloral nectar and degree of leaf herbivory. Biological Journal of the Linnean Society, vol. 122, no. 1, pp. 71-83. http://dx.doi.org/10.1093/biolinnean/blx059
    » http://dx.doi.org/10.1093/biolinnean/blx059
  • FELICIO, T.N.P., COSTA, T.L., SARMENTO, R.A., RAMOS, R.S., PEREIRA, P.S., SILVA, R.S. and PICANÇO, M.C., 2019. Surrounding vegetation, climatic elements, and predators affect the spatial dynamics of Bemisia tabaci (Hemiptera: Aleyrodidae) in commercial melon fields. Journal of Economic Entomology, vol. 112, no. 6, pp. 2774-2781. http://dx.doi.org/10.1093/jee/toz181 PMid:31265728.
    » http://dx.doi.org/10.1093/jee/toz181
  • GOMES, G.N., LEITE, G.L.D., SOARES, M.A., GUANÃBENS, R.E.M., LEMES, P.G. and ZANUNCIO, J.C., 2023. Arthropod fauna on the abaxial and adaxial surfaces of Acacia mangium (Fabaceae) leaves. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, p. e245536. http://dx.doi.org/10.1590/1519-6984.245536 PMid:34669792.
    » http://dx.doi.org/10.1590/1519-6984.245536
  • GONTHIER, D.J., ENNIS, K.K., PHILPOTT, S.M., VANDERMEER, J. and PERFECTO, I., 2013. Ants defend coffee from berry borer colonization. BioControl, vol. 58, no. 6, pp. 815-820. http://dx.doi.org/10.1007/s10526-013-9541-z
    » http://dx.doi.org/10.1007/s10526-013-9541-z
  • HEGDE, M., PALANISAMY, K. and YI, J.S., 2013. Acacia mangium Willd. - a fast growing tree for tropical plantation. Journal of Forest and Environmental Science, vol. 29, no. 1, pp. 1-14. http://dx.doi.org/10.7747/JFS.2013.29.1.1
    » http://dx.doi.org/10.7747/JFS.2013.29.1.1
  • JANZEN, D.H., 1966. Coevolution of mutualism between ants and acacias in Central America. Evolution, vol. 20, no. 3, pp. 249-275. http://dx.doi.org/10.2307/2406628 PMid:28562970.
    » http://dx.doi.org/10.2307/2406628
  • KIM, S., JUNG, M., SONG, Y.J., KANG, C., KIM, B.Y., CHOI, I.J., KIM, H.G. and LEE, D.H., 2017. Evaluating the potential of the extract of Perilla sp. as a natural insecticide for Bemisia tabaci (Hemiptera: Aleyrodidae) on sweet peppers. Entomological Research, vol. 47, no. 3, pp. 208-216. http://dx.doi.org/10.1111/1748-5967.12211
    » http://dx.doi.org/10.1111/1748-5967.12211
  • KOGAN, M. and TURNIPSEED, S.G., 1980. Soybean growth and assessment of damage by arthropods. In: M. KOGAN and D.C. HERZOG, eds. Sampling methods in soybean entomology New York: Springer, pp. 3-29. http://dx.doi.org/10.1007/978-1-4612-9998-1_1
    » http://dx.doi.org/10.1007/978-1-4612-9998-1_1
  • LANDIS, D.A., WRATTEN, S.D. and GURR, G.M., 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, vol. 45, no. 1, pp. 175-201. http://dx.doi.org/10.1146/annurev.ento.45.1.175 PMid:10761575.
    » http://dx.doi.org/10.1146/annurev.ento.45.1.175
  • LEITE, G.L.D., VELOSO, R.V.S., ZANUNCIO, J.C., ALMEIDA, C.I.M., FERREIRA, P.S.F., FERNANDES, G.W. and SOARES, M.A., 2012. Habitat complexity and Caryocar brasiliense herbivores (Insecta; Arachnida; Araneae). The Florida Entomologist, vol. 95, no. 4, pp. 819-830. http://dx.doi.org/10.1653/024.095.0402
    » http://dx.doi.org/10.1653/024.095.0402
  • LEMES, P.G., ANJOS, N. and JORGE, I.R., 2013. Bioecology of Oncideres ocularis Thomson (Coleoptera. Cerambycidae) on Acacia mangium Willd. (Fabaceae). Journal of the Kansas Entomological Society, vol. 86, no. 4, pp. 307-317. http://dx.doi.org/10.2317/JKES121121.1
    » http://dx.doi.org/10.2317/JKES121121.1
  • LIMA, J.S., LEITE, G.L.D., GUANABENS, P.F.S., SOARES, M.A., SILVA, J.L., MOTA, M.V.S., LEMES, P.G. and ZANUNCIO, J.C., 2024. Insects and spiders on Acacia mangium (Fabaceae) saplings as bioindicators for the recovery of tropical degraded areas. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, no. 4, p. e252088. http://dx.doi.org/10.1590/1519-6984.252088 PMid:34755814.
    » http://dx.doi.org/10.1590/1519-6984.252088
  • MANSARAY, A. and SUNDUFU, A.J., 2009. Oviposition, development and survivorship of the sweetpotato whitefly Bemisia tabaci on soybean, Glycine max, and the garden bean, Phaseolus vulgaris. Journal of Insect Science, vol. 9, no. 1, p. 1. http://dx.doi.org/10.1673/031.009.0101 PMid:19611218.
    » http://dx.doi.org/10.1673/031.009.0101
  • MENEZES, C.W.G., BERTOLUCCI, S.K.V., PINTO, J.E.B.P., CARVALHO, G.A. and SOARES, M.A., 2013. First record of Aethalion reticulatum (Hemiptera: Aethalionidae) in Vernonia condensata (Asteraceae), a medicinal plant from Brazil. Phytoparasitica, vol. 41, no. 5, pp. 611-613. http://dx.doi.org/10.1007/s12600-013-0322-0
    » http://dx.doi.org/10.1007/s12600-013-0322-0
  • ÖBERG, S., MAYR, S. and DAUBER, J., 2008. Landscape effects on recolonisation patterns of spiders in arable fields. Agriculture, Ecosystems & Environment, vol. 123, no. 1-3, pp. 211-218. http://dx.doi.org/10.1016/j.agee.2007.06.005
    » http://dx.doi.org/10.1016/j.agee.2007.06.005
  • PARREIRA, D.S., ZANUNCIO, J.C., MIELKE, O.H.H., WILCKEN, C.F., SERRÃO, J.E. and ZANUNCIO, T.V., 2014. Periphoba hircia (Lepidoptera: Saturniidae) defoliating plants of Acacia mangium in the State of Roraima, Brazil. The Florida Entomologist, vol. 97, no. 1, pp. 325-328. http://dx.doi.org/10.1653/024.097.0153
    » http://dx.doi.org/10.1653/024.097.0153
  • PAULA, R.R., BOUILLET,, J.-P., GONÇALVES, J.L.M., TRIVELIN, P.C.O., BALIEIRO, F.C., NOUVELLON, Y., OLIVEIRA, J.C., DEUS JÚNIOR, J.C., BORDRON, B. and LACLAU, J.-P., 2018. Nitrogen fixation rate of Acacia mangium Wild at mid rotation in Brazil is higher in mixed plantations with Eucalyptus grandis Hill ex Maiden than in monocultures. Annals of Forest Science, vol. 75, no. 14, pp. 1-14. http://dx.doi.org/10.1007/s13595-018-0695-9
    » http://dx.doi.org/10.1007/s13595-018-0695-9
  • PIRES, E.M., SILVA, L.C., BATIROLA, L.D., NOGUEIRA, R.M., BARRETO, M.R. and CORASSA, J.N., 2014. Triplaris americana L. (Polygonaceae), a new host plant for Aethalion reticulatum (Linnaeus, 1767) (Hemiptera: aethalionidae). Brazilian Archives of Biology and Technology, vol. 58, no. 1, pp. 31-33. http://dx.doi.org/10.1590/S1516-8913201400039
    » http://dx.doi.org/10.1590/S1516-8913201400039
  • PODEROSO, J.C.M., COSTA, M.K.M., CORREIA-OLIVEIRA, M.E., DANTAS, P.C., ZANUNCIO, J.C. and RIBEIRO, G.T., 2013. Occurrence of Tropidacris collaris (Orthoptera; Acridoidea; Romaleidae) damaging Casuarina glauca (Casuarinaceae) plants in the municipality of Central Bahia, Brazil. The Florida Entomologist, vol. 96, no. 1, pp. 268-269. http://dx.doi.org/10.1653/024.096.0143
    » http://dx.doi.org/10.1653/024.096.0143
  • REBOLLEDO-MARTÍNEZ, A., ANGEL-PÉREZ, A.L., PERALTA-ANTONIO, N. and DÍAZ-PADILLA, G., 2013 [viewed 14 March 2023]. Control de fumagina (Capnodium mangiferae Cooke & Brown) con biofungicidas en hojas y frutos de mango “manila”. Tropical and Subtropical Agroecosystems [online], vol. 16, no. 3, pp. 355-362. Available from: https://www.redalyc.org/articulo.oa?id=93929595007
    » https://www.redalyc.org/articulo.oa?id=93929595007
  • RICO-GRAY, V. and OLIVEIRA, P.S., 2007. The ecology and evolution of ant-plant interactions Chicago: University of Chicago Press, 320 p. http://dx.doi.org/10.7208/chicago/9780226713540.001.0001
    » http://dx.doi.org/10.7208/chicago/9780226713540.001.0001
  • SANCHEZ, A., 2015. Fidelity and promiscuity in an ant-plant mutualism: a case study of Triplaris and Pseudomyrmex. PLoS One, vol. 10, no. 12, p. e0143535. http://dx.doi.org/10.1371/journal.pone.0143535 PMid:26630384.
    » http://dx.doi.org/10.1371/journal.pone.0143535
  • SANTOS, R.S. and PERONTI, A.L.B.G., 2017. Occurrence of Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) in okra in Acre state, Brazil. EntomoBrasilis, vol. 10, no. 2, pp. 135-138. http://dx.doi.org/10.12741/ebrasilis.v10i2.684
    » http://dx.doi.org/10.12741/ebrasilis.v10i2.684
  • SCHULTHESS, F., BAUMGÄRTNER, J.U., DELUCCHI, V. and GUTIERREZ, A.P., 1991. The influence of the cassava mealybug, Phenacoccus manihoti Mat.-Ferr. (Horn., Pseudococcidae) on yield formation of cassava, Manihot esculenta Crantz. Journal of Applied Entomology, vol. 111, no. 1-5, pp. 155-165. http://dx.doi.org/10.1111/j.1439-0418.1991.tb00306.x
    » http://dx.doi.org/10.1111/j.1439-0418.1991.tb00306.x
  • SERRA, B.D.V. and CAMPOS, L.A.O., 2010. Entomophilic pollination of squash, Cucurbita moschata (Cucurbitaceae). Neotropical Entomology, vol. 39, no. 2, pp. 153-159. http://dx.doi.org/10.1590/S1519-566X2010000200002 PMid:20498949.
    » http://dx.doi.org/10.1590/S1519-566X2010000200002
  • SILVA, F.W.S., LEITE, G.L.D., GUANABENS, R.E.M., SAMPAIO, R.A., GUSMÃO, C.A.G., SERRÃO, J.E. and ZANUNCIO, J.C., 2015. Seasonal abundance and diversity of arthropods on Acacia mangium (Fabales: Fabaceae) trees as windbreaks in the Cerrado. The Florida Entomologist, vol. 98, no. 1, pp. 170-174. http://dx.doi.org/10.1653/024.098.0129
    » http://dx.doi.org/10.1653/024.098.0129
  • SILVA, J.L., DEMOLIN-LEITE, G.L., TAVARES, W.S., SILVA, F.W.S., SAMPAIO, R.A., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C., 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area. Royal Society Open Science, vol. 7, no. 2, p. 191196. http://dx.doi.org/10.1098/rsos.191196 PMid:32257306.
    » http://dx.doi.org/10.1098/rsos.191196
  • SOUZA, G.F., LEITE, G.L.D., SILVA, F.W.S., SILVA, J.L., SAMPAIO, R.A., TEIXEIRA, G.L., SOARES, M.A. and ZANUNCIO, J.C., 2021. Bottom-up effects on arthropod communities in Platycyamus regnellii (Fabaceae) fertilized with dehydrated sewage sludge. Revista Colombiana de Entomología, vol. 47, no. 1, p. e8943. http://dx.doi.org/10.25100/socolen.v47i1.8943
    » http://dx.doi.org/10.25100/socolen.v47i1.8943
  • VENTURINO, E., ISAIA, M., BONA, F., CHATTERJEE, S. and BADINO, G., 2008. Biological controls of intensive agroecosystems: wanderer spiders in the Langa astigiana. Ecological Complexity, vol. 5, no. 2, pp. 157-164. http://dx.doi.org/10.1016/j.ecocom.2007.10.003
    » http://dx.doi.org/10.1016/j.ecocom.2007.10.003
  • WANG, F., ZHU, W., ZOU, B., NEHER, D.A., FU, S., XIA, H. and LI, Z., 2013. Seedling growth and soil nutrient availability in exotic and native tree species: implications for afforestation in southern China. Plant and Soil, vol. 364, no. 1-2, pp. 207-218. http://dx.doi.org/10.1007/s11104-012-1353-x
    » http://dx.doi.org/10.1007/s11104-012-1353-x
  • ZANUNCIO, A.J.V., SERRÃO, J.E., PEREIRA, A.I.A., SOARES, M.A., WILCKEN, C.F., LEITE, G.L.D. and ZANUNCIO, J.C., 2015. Aethalion reticulatum (Hemiptera: Aethalionidae) feeding on Erythrina speciosa (Fabales: Fabaceae): first record of its host plant and damage characteristics. The Florida Entomologist, vol. 98, no. 1, pp. 175-177. http://dx.doi.org/10.1653/024.098.0130
    » http://dx.doi.org/10.1653/024.098.0130
  • ZHANG, W., MCAUSLANE, H.J. and SCHUSTER, D.J., 2004. Repellency of ginger oil to Bemisia argentifolii (Homoptera: Aleyrodidae) on tomato. Journal of Economic Entomology, vol. 97, no. 4, pp. 1310-1318. http://dx.doi.org/10.1093/jee/97.4.1310 PMid:15384342.
    » http://dx.doi.org/10.1093/jee/97.4.1310
  • ZOGRAFOU, K., ADAMIDIS, G.C., KOMNENOV, M., KATI, V., SOTIRAKOPOULOS, P., PITTA, E. and CHATZAKI, M., 2017. Diversity of spiders and orthopterans respond to intra-seasonal and spatial environmental changes. Journal of Insect Conservation, vol. 21, no. 3, pp. 531-543. http://dx.doi.org/10.1007/s10841-017-9993-z
    » http://dx.doi.org/10.1007/s10841-017-9993-z

Publication Dates

  • Publication in this collection
    17 Apr 2023
  • Date of issue
    2023

History

  • Received
    22 Aug 2022
  • Accepted
    14 Mar 2023
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br