Acessibilidade / Reportar erro

Phytophagous insects and natural enemies on Sapindus saponaria L. (Sapindales: Sapindaceae) plants fertilized with or without dehydrated sewage sludge

Insetos fitófagos e inimigos naturais em plantas de Sapindus saponaria (Sapindales: Sapindaceae) adubadas com ou sem lodo de esgoto desidratado

Abstract

Management programs and efficient techniques are necessary to recover degraded ecosystems. The sewage sludge is rich in nitrogen (N) and with the potential to fertilize Sapindus saponaria L. (Sapinales: Sapindaceae), used in the recovery of degraded areas; this can affect the insect fauna. The study's objective was to evaluate, for 24 months, the abundance of chewing insects, dipterans, pollinators, and predators on S. saponaria plants fertilized with or without dehydrated sewage sludge in a degraded area. The experimental design was completely randomized (with the same characteristics) with two treatments (with or without dehydrated sewage sludge) and 24 replicates, each with one plant. The abundance of Anastrepha sp. (Tephritidae), Cerotoma sp. (Chrysomelidae), Curculionidae, Musca domestica L. (Muscidae), Mantis religiosa L. (Mantodea: Mantidae), Oxyopidae, Salticidae, Tettigoniidae (Orthoptera), and Teudis sp. (Anyphaenidae) was higher on fertilized plants. The abundances of Teudis sp. and Tmarus sp. (Thomisidae) and M. religiosa and Teudis sp. were positively correlated with chewing insects and Diptera, respectively. The population increase of insects and spiders on S. saponaria plants fertilized with dehydrated sewage sludge (bigger crowns) has shown to be suitable for recovering degraded areas with a higher number of niches and better food quality, improving the ecological indices of the area.

Keywords:
arthropods; biodiversity; litter production; spiders

Resumo

A degradação de ecossistemas torna necessário programas de manejo e técnicas eficientes para recuperá-los. O lodo de esgoto é rico em nitrogênio e com potencial para adubar Sapindus saponaria L. (Sapinales: Sapindaceae), utilizada na recuperação de áreas degradadas, mas isto pode afetar a fauna de insetos. O objetivo foi avaliar, durante 24 meses, abundância de insetos mastigadores, dípteros, polinizadores e predadores em plantas de S. saponaria fertilizadas ou não com lodo de esgoto desidratado, em área degradada. O delineamento experimental foi inteiramente casualisado com dois tratamentos (com ou sem lodo desidratado de esgoto) e 24 repetições, cada uma com uma planta. A abundância de Anastrepha sp. (Tephritidae), Cerotoma sp. (Chrysomelidae), Curculionidae, Musca domestica L. (Muscidae), Mantis religiosa L. (Mantodea: Mantidae), Oxyopidae, Salticidae, Tettigoniidae (Orthoptera) e Teudis sp. (Anyphaenidae) foi maior em plantas adubadas. A abundância de Teudis sp. e Tmarus sp. (Thomisidae) e M. religiosa e Teudis sp. foi, positivamente, correlacionada com as de insetos mastigadores e Diptera, respectivamente. O aumento populacional de insetos e aranhas em plantas de S. saponaria, adubada com lodo desidratado de esgoto (maiores copas), mostra ser adequado para a recuperação de áreas degradadas, tendo essas plantas um maior número de nichos e com alimento de melhor qualidade, melhorando os índices ecológicos na área.

Palavras-chave:
artrópodes; biodiversidade; serapilheira; aranhas

1. Introduction

Sapindus saponaria L. (Sapindales: Sapindaceae), a late secondary forest species up to 8 m tall (Lorenzi, 2008LORENZI, H., 2008. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 5ª ed. Nova Odessa: Instituto Plantarum, 384 p.; Goebes et al., 2015GOEBES, P., BRUELHEIDE, H., HÄRDTLE, W., KRÖBER, W., KÜHN, P., LI, Y., SEITZ, S., OHEIMB, G. and SCHOLTEN, T., 2015. Species-specific effects on through fall kinetic energy in subtropical forest plantations are related to leaf traits and tree architecture. PLoS One, vol. 10, no. 6, pp. e0128084. http://dx.doi.org/10.1371/journal.pone.0128084. PMid:26079260.
http://dx.doi.org/10.1371/journal.pone.0...
), occurs from the state of Pará to Rio Grande do Sul, Brazil. This plant is used to recover degraded areas, in Brazilian and indigenous folk medicine, and its fruits in washing clothes due to the chemical compound saponin (Tsuzuki et al., 2007TSUZUKI, J.K., SVIDZINSKI, T.I.E., SHINOBU, C.S., SILVA, L.F.A., RODRIGUES-FILHO, E., CORTEZ, D.A.G. and FERREIRA, I.C.P., 2007. Antifungal activity of the extracts and saponins from Sapindus saponaria L. Anais da Academia Brasileira de Ciências, vol. 79, no. 4, pp. 577-583. http://dx.doi.org/10.1590/S0001-37652007000400002. PMid:18066429.
http://dx.doi.org/10.1590/S0001-37652007...
; Lorenzi, 2008LORENZI, H., 2008. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 5ª ed. Nova Odessa: Instituto Plantarum, 384 p.). Insects associated with S. saponaria are poorly studied, but insecticidal properties (e.g., trypsin inhibitors) of leaf and fruit extracts of this plant were toxic to Trigona spinipes (Fabr.) (Hymenoptera: Apidae) (Macedo et al., 2011MACEDO, M.L.R., DIZ FILHO, E.B.S., FREIRE, M.G.M., OLIVA, M.L.V., SUMIKAWA, J.T., TOYAMA, M.H. and MARANGONI, S., 2011. A trypsin inhibitor from Sapindus saponaria L. seeds: purification, characterization, and activity towards pest insect digestive enzyme. The Protein Journal, vol. 30, no. 1, pp. 9-19. http://dx.doi.org/10.1007/s10930-010-9296-7. PMid:21127952.
http://dx.doi.org/10.1007/s10930-010-929...
).

Sewage sludge, a residue rich in organic matter, has the potential for fertilization or the production of forest seedlings. This material is indicated for forest plantations and in the recovery of degraded areas to minimize the risk of toxic elements entering the human food chain (Kimberley et al., 2004KIMBERLEY, M.O., WANG, H., WILKS, P.J., FISHER, C.R. and MAGESAN, G.N., 2004. Economic analysis of growth response from a pine plantation forest applied with biosolids. Forest Ecology and Management, vol. 189, no. 1-3, pp. 345-351. http://dx.doi.org/10.1016/j.foreco.2003.09.003.
http://dx.doi.org/10.1016/j.foreco.2003....
; Martins et al., 2016MARTINS, M.N.C., SOUZA, V.V. and SOUZA, T.S., 2016. Genotoxic and mutagenic effects of sewage sludge on higher plants. Ecotoxicology and Environmental Safety, vol. 124, pp. 489-496. http://dx.doi.org/10.1016/j.ecoenv.2015.11.031.
http://dx.doi.org/10.1016/j.ecoenv.2015....
), but its use can affect the fauna of insects (e.g., > N) (Jansson and Ekbom, 2002JANSSON, J. and EKBOM, B., 2002. The effect of different plant nutrient regimes on the aphid Macrosiphum euphorbiae growing on petunia. Entomologia Experimentalis et Applicata, vol. 104, no. 1, pp. 109-116. http://dx.doi.org/10.1046/j.1570-7458.2002.00997.x.
http://dx.doi.org/10.1046/j.1570-7458.20...
; Leite et al., 2011LEITE, G.L.D., PICANÇO, M., ZANUNCIO, J.C., MOREIRA, M.D. and JHAM, G.N., 2011. Hosting capacity of horticultural plants for insect pests in Brazil. Chilean Journal of Agricultural Research, vol. 71, no. 3, pp. 383-389. http://dx.doi.org/10.4067/S0718-58392011000300006.
http://dx.doi.org/10.4067/S0718-58392011...
; Taiz et al., 2017TAIZ, L., ZEIGER, E., MOLLER, I.M. and MURPHY, A., 2017. Fisiologia e desenvolvimento vegetal. 6ª ed. Porto Alegre: Artmed, 888 p.). As a fertilizer, sewage sludge in agriculture and forestry can reduce production costs and environmental problems (Caldeira et al., 2014CALDEIRA, M.V.W., FAVALESSA, M., GONÇALVES, E.O., DEMAELARMELINA, W.M.F., SANTOS, E.V. and VIEIRA, M., 2014. Lodo de esgoto como componente de substrato para produção de mudas de Acacia mangium Wild. Comunicata Scientiae, vol. 5, no. 1, pp. 34-43.; Martins et al., 2016MARTINS, M.N.C., SOUZA, V.V. and SOUZA, T.S., 2016. Genotoxic and mutagenic effects of sewage sludge on higher plants. Ecotoxicology and Environmental Safety, vol. 124, pp. 489-496. http://dx.doi.org/10.1016/j.ecoenv.2015.11.031.
http://dx.doi.org/10.1016/j.ecoenv.2015....
).

Insect diversity can be used to monitor the recovery of degraded areas as they respond to environmental changes through mutualistic relationships and pollination (Santos et al., 2006SANTOS, M.S., LOUZADA, J.N.C., DIAS, N., ZANETTI, R., DELABIE, J.H.C. and NASCIMENTO, I.C., 2006. Riqueza de formigas (Hymenoptera, Formicidade) da serapilheira em fragmentos de floresta semidecídua da Mata Atlântica na região do Alto do Rio Grande, MG, Brasil. Iheringia. Série Zoologia, vol. 96, no. 1, pp. 95-101. http://dx.doi.org/10.1590/S0073-47212006000100017.
http://dx.doi.org/10.1590/S0073-47212006...
; Barah and Bones, 2015BARAH, P. and BONES, A.M., 2015. Multidimensional approaches for studying plant defense against insects: from ecology to omics and synthetic biology. Journal of Experimental Botany, vol. 66, no. 2, pp. 479-493. http://dx.doi.org/10.1093/jxb/eru489. PMid:25538257.
http://dx.doi.org/10.1093/jxb/eru489...
; Kishi et al., 2017KISHI, S., SAKURA, N., YOSHIKAWA, T., HIRAIWA, M.K. and KATOH, K., 2017. Interaction between insects and insect-pollinated plants on Myake Island after a recent volcanic eruption: a comparison between vegetation types. Journal of Asia-Pacific Entomology, vol. 20, no. 3, pp. 964-970. http://dx.doi.org/10.1016/j.aspen.2017.07.006.
http://dx.doi.org/10.1016/j.aspen.2017.0...
). With large numbers of families and species, Coleoptera, Lepidoptera, and Hymenoptera (e.g., ants and bees) are indicators of the recovery of degraded areas (Barbieri Junior and Dias, 2012BARBIERI JUNIOR, C.A. and DIAS, A.M.P., 2012. Braconidae (Hymenoptera) fauna in native, degraded and restoration areas of the Vale do Paraíba, São Paulo state, Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 72, no. 2, pp. 305-310. http://dx.doi.org/10.1590/S1519-69842012000200011.
http://dx.doi.org/10.1590/S1519-69842012...
; Komonen et al., 2015KOMONEN, A., ÖVERMARK, E., HYTÖNEN, J. and HALME, P., 2015. Tree species influences diversity of ground-dwelling insects in afforested fields. Forest Ecology and Management, vol. 349, no. 1, pp. 12-19. http://dx.doi.org/10.1016/j.foreco.2015.04.014.
http://dx.doi.org/10.1016/j.foreco.2015....
; Kishi et al., 2017KISHI, S., SAKURA, N., YOSHIKAWA, T., HIRAIWA, M.K. and KATOH, K., 2017. Interaction between insects and insect-pollinated plants on Myake Island after a recent volcanic eruption: a comparison between vegetation types. Journal of Asia-Pacific Entomology, vol. 20, no. 3, pp. 964-970. http://dx.doi.org/10.1016/j.aspen.2017.07.006.
http://dx.doi.org/10.1016/j.aspen.2017.0...
). Nutritional indices, chemical defenses, and factors, such as fertilization and age of host plants, impact the diversity of phytophagous insects and their natural enemies, including spiders (Bowers and Stamp, 1993BOWERS, M.D. and STAMP, N.E., 1993. Effects of plant-age, genotype, and herbivory on Plantago performance and chemistry. Ecology, vol. 74, no. 6, pp. 1778-1791. http://dx.doi.org/10.2307/1939936.
http://dx.doi.org/10.2307/1939936...
; Coley and Barone, 1996COLEY, P.D. and BARONE, J.A., 1996. Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, vol. 27, no. 1, pp. 305-335. http://dx.doi.org/10.1146/annurev.ecolsys.27.1.305.
http://dx.doi.org/10.1146/annurev.ecolsy...
; Leite et al., 2011LEITE, G.L.D., PICANÇO, M., ZANUNCIO, J.C., MOREIRA, M.D. and JHAM, G.N., 2011. Hosting capacity of horticultural plants for insect pests in Brazil. Chilean Journal of Agricultural Research, vol. 71, no. 3, pp. 383-389. http://dx.doi.org/10.4067/S0718-58392011000300006.
http://dx.doi.org/10.4067/S0718-58392011...
). Sewage sludge increases plant development because it is rich in phosphorus and nitrogen - macroelements - and Cu and Zn - micronutrients, and consequently affects insects (Mass, 2010MASS, K.D.B., 2010. Biossólido como substrato na produção de mudas de timburi. Cuiabá: Universidade Federal de Mato Grosso, 45 p. Dissertação de Mestrado em Ciências Florestais e Ambientais.).

The diversity and abundance of herbivorous insects and their natural enemies are generally greater in larger trees (Ferrier and Price, 2004FERRIER, S.M. and PRICE, P.W., 2004. Oviposition preference and larval performance of a rare bud-galling sawfly (Hymenoptera: Tenthredinidae) on willow in Northern Arizona. Environmental Entomology, vol. 33, no. 3, pp. 700-708. http://dx.doi.org/10.1603/0046-225X-33.3.700.
http://dx.doi.org/10.1603/0046-225X-33.3...
; Espírito-Santo et al., 2007ESPÍRITO-SANTO, M.M., NEVES, F.S., ANDRADE-NETO, F.R. and FERNANDES, G.W., 2007. Plant architecture and meristem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia, vol. 153, no. 2, pp. 353-364. http://dx.doi.org/10.1007/s00442-007-0737-8. PMid:17453251.
http://dx.doi.org/10.1007/s00442-007-073...
; Leite et al., 2017LEITE, G.L.D., VELOSO, R.V., ZANUNCIO, J.C., AZEVEDO, A.M., SILVA, J.L., WILCKEN, C.F. and SOARES, M.A., 2017. Architectural diversity and galling insects on Caryocar brasiliense trees. Scientific Reports, vol. 7, no. 1, pp. 16677. http://dx.doi.org/10.1038/s41598-017-16954-6. PMid:29192234.
http://dx.doi.org/10.1038/s41598-017-169...
). Plants of this type function as biogeographic islands (i.e., biogeographic island theory - BGI), on a small scale, with greater probabilities of extinction of rarer species in smaller BGIs (Kitahara and Fujii, 1997KITAHARA, M. and FUJII, K., 1997. An island biogeographical approach to the analysis of butterfly community patterns in newly designed parks. Population Ecology, vol. 39, no. 1, pp. 23-35. http://dx.doi.org/10.1007/BF02765247.
http://dx.doi.org/10.1007/BF02765247...
; Burns, 2016BURNS, K.C., 2016. Native-exotic richness relationships: a biogeographic approach using turnover in island plant populations. Ecology, vol. 97, no. 11, pp. 2932-2938. http://dx.doi.org/10.1002/ecy.1579. PMid:27870029.
http://dx.doi.org/10.1002/ecy.1579...
; Leite et al., 2017LEITE, G.L.D., VELOSO, R.V., ZANUNCIO, J.C., AZEVEDO, A.M., SILVA, J.L., WILCKEN, C.F. and SOARES, M.A., 2017. Architectural diversity and galling insects on Caryocar brasiliense trees. Scientific Reports, vol. 7, no. 1, pp. 16677. http://dx.doi.org/10.1038/s41598-017-16954-6. PMid:29192234.
http://dx.doi.org/10.1038/s41598-017-169...
; Carvalho et al., 2020CARVALHO, J.C.N., SILVA, F.W.S., LEITE, G.L.D., AZEVEDO, A.M., TEIXEIRA, G.L., SOARES, M.A. and LEGASPI, J.C., 2020. Does fertilization with dehydrated sewage sludge affect Terminalia argentea (Combretaceae) and associated arthropods community in a degraded area? Scientific Reports, vol. 10, pp. 11811. http://dx.doi.org/10.1038/s41598-020-68747-z. PMid:32678241.
http://dx.doi.org/10.1038/s41598-020-687...
; Dourado et al., 2020DOURADO, L.R., DEMOLIN-LEITE, G.L., SOARES, M.A., TEIXEIRA, G.L., SILVA, F.W.S., SAMPAIO, R.A., ZANUNCIO, J.C. and LEGASPI, J.C., 2020. Ecological indices of phytophagous Hemiptera and their natural enemies on Acacia auriculiformis (Fabales: Fabaceae) plants with or without dehydrated sewage sludge application in a degraded area. PLoS One, vol. 15, no. 8, e0237261. http://dx.doi.org/10.1371/journal.pone.0237261.
http://dx.doi.org/10.1371/journal.pone.0...
; Silva et al., 2020SILVA, J.L., LEITE, G.L.D., TAVARES, W.S., SILVA, F.W.S., ARRUDA, R.S., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C., 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in a degraded area. Royal Society Open Science, vol. 7, no. 2, pp. 191196. http://dx.doi.org/10.1098/rsos.191196. PMid:32257306.
http://dx.doi.org/10.1098/rsos.191196...
, 2021SILVA, J.L., LEITE, G.L.D., GUANABENS, R.E.M., AZEVEDO, A.M., FERNANDES, G.W. and ZANUNCIO, J.C., 2021. Fertilization with dehydrated sewage sludge affects the phytophagous Hemiptera, tending ants, and Sternorryncha predators on Acacia mangium (Fabaceae). Annals of Applied Biology, vol. 179, no. 3, pp. 345-353. http://dx.doi.org/10.1111/aab.12706.
http://dx.doi.org/10.1111/aab.12706...
; Mota et al., 2021MOTA, M.V.S., DEMOLIN-LEITE, G.L., GUANABENS, P.F.S., TEIXEIRA, G.L., SOARES, M.A., SILVA, J.L., SAMPAIO, R.A. and ZANUNCIO, J.C., 2021. Chewing insects, pollinators, and predators on Acacia auriculiformis A. Cunn. ex Beth (Fabales: Fabaceae) plants fertilized with dehydrated sewage sludge. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e248305. http://dx.doi.org/10.1590/1519-6984.248305. PMid:34669795.
http://dx.doi.org/10.1590/1519-6984.2483...
).

This study aimed to evaluate the abundance of chewing insects, dipterans, pollinators, and predators on S. saponaria plants and its defoliation by insects when fertilized with or without dehydrated sewage sludge, for 24 months, in a degraded area. The hypotheses tested were: i) fertilized plants will be larger (> BGI) with a higher abundance of phytophagous insects (Ferrier and Price, 2004FERRIER, S.M. and PRICE, P.W., 2004. Oviposition preference and larval performance of a rare bud-galling sawfly (Hymenoptera: Tenthredinidae) on willow in Northern Arizona. Environmental Entomology, vol. 33, no. 3, pp. 700-708. http://dx.doi.org/10.1603/0046-225X-33.3.700.
http://dx.doi.org/10.1603/0046-225X-33.3...
; Espírito-Santo et al., 2007ESPÍRITO-SANTO, M.M., NEVES, F.S., ANDRADE-NETO, F.R. and FERNANDES, G.W., 2007. Plant architecture and meristem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia, vol. 153, no. 2, pp. 353-364. http://dx.doi.org/10.1007/s00442-007-0737-8. PMid:17453251.
http://dx.doi.org/10.1007/s00442-007-073...
; Leite et al., 2017LEITE, G.L.D., VELOSO, R.V., ZANUNCIO, J.C., AZEVEDO, A.M., SILVA, J.L., WILCKEN, C.F. and SOARES, M.A., 2017. Architectural diversity and galling insects on Caryocar brasiliense trees. Scientific Reports, vol. 7, no. 1, pp. 16677. http://dx.doi.org/10.1038/s41598-017-16954-6. PMid:29192234.
http://dx.doi.org/10.1038/s41598-017-169...
) and ii) the predators follow their prey (Auslander et al., 2003AUSLANDER, M., NEVO, E. and INBAR, M., 2003. The effects of slope orientation on plant growth, developmental instability, and susceptibility to herbivores. Journal of Arid Environments, vol. 55, no. 3, pp. 405-416. http://dx.doi.org/10.1016/S0140-1963(02)00281-1.
http://dx.doi.org/10.1016/S0140-1963(02)...
; Leite et al., 2017LEITE, G.L.D., VELOSO, R.V., ZANUNCIO, J.C., AZEVEDO, A.M., SILVA, J.L., WILCKEN, C.F. and SOARES, M.A., 2017. Architectural diversity and galling insects on Caryocar brasiliense trees. Scientific Reports, vol. 7, no. 1, pp. 16677. http://dx.doi.org/10.1038/s41598-017-16954-6. PMid:29192234.
http://dx.doi.org/10.1038/s41598-017-169...
).

2. Materials and Methods

2.1. Experimental site

The study was carried out in a degraded area at the “Instituto de Ciências Agrárias (ICA)” of the “Universidade Federal de Minas Gerais (UFMG),” municipality of Montes Claros, Minas Gerais state, Brazil (latitude 16º51'38 S, longitude 44º55'00 “W, altitude 943 m) from March 2015 to February 2017 (24 months; insect collection period). The area is degraded by soil losses and changes in soil chemistry or hydrology (Milton et al., 1994MILTON, S.J., DEAN, W.R.J., DU PLESSIS, M.A. and SIEGFRIED, W.R., 1994. A conceptual model of arid rangeland degradation. Bioscience, vol. 44, no. 2, pp. 70-76. http://dx.doi.org/10.2307/1312204.
http://dx.doi.org/10.2307/1312204...
; Whisenant, 1999WHISENANT, S., 1999. Repairing damaged wildlands: a process-orientated, landscape-scale approach: biological conservation, restoration, and sustainability. Cambridge: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511612565.
http://dx.doi.org/10.1017/CBO97805116125...
). Köppen’s climate (Alvares et al., 2013ALVARES, C.A., STAPE, J.L., SENTELHAS, P.C., GONÇALVES, J.L.M. and SPAROVEK, G., 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, vol. 22, no. 6, pp. 711-728. http://dx.doi.org/10.1127/0941-2948/2013/0507.
http://dx.doi.org/10.1127/0941-2948/2013...
) classifies this area as a tropical dry climate, with an annual rainfall of 1000 - 1300 mm and dry winter. The soil is of litolic neosoil type (Santana et al., 2016SANTANA, P.H.L., FRAZÃO, L.A., SANTOS, L.D.F., FERNANDES, L.A. and SAMPAIO, R.A., 2016. Soil attributes and production of Eucalyptus in monoculture and silvopastoral systems in the north of Minas Gerais, Brazil. Journal of Agricultural Science and Technology B, vol. 6, no. 1, pp. 361-370. http://dx.doi.org/10.17265/2161-6264/2016.06.001.
http://dx.doi.org/10.17265/2161-6264/201...
) with average texture, total sand= 42.0 dags.kg-1, silt= 36.0 dag.kg-1, clay= 22.0 dag.kg-1, pH-H2O= 5.0, organic matter= 4.4 dag.kg-1, P= 1.5 mg.dm-3, K= 92.0 mg.dm-3, Ca= 1.9 cmolc.dm-3, Mg= 0.8 cmolc.dm-3, Al= 2.4 cmolc.dm-3, H + Al= 6.7 cmolc.dm-3, cation-exchange capacity (CEC)= 5.3 cmolc.dm-3, and CEC at natural pH 7.0= 9.6 cmolc.dm-3.

2.2. Experimental design

Sapindus saponaria seedlings were produced from seeds of trees grown at the ICA/UFMG. Seedlings were planted in plastic bags (8 x 12 cm) in a nursery with a substrate mixed with 30% organic compost, 30% clay soil, 30% sand, and 10% reactive natural phosphate (160 g seedling-1) in March 2014. The organic compost consisted of three parts by volume: two parts of gardening pruning debris (≤ 5 cm) and one part of tanned bovine manure. The soil pH in the pits (40 × 40 × 40 cm) was corrected with dolomitic limestone, increasing the base saturation to 50% (Kopittke and Menzies, 2007KOPITTKE, P.M. and MENZIES, N.W., 2007. A review of the use of the basic cation saturation ratio and the “ideal” soil. Soil Science Society of America Journal, vol. 71, no. 2, pp. 259-265. http://dx.doi.org/10.2136/sssaj2006.0186.
http://dx.doi.org/10.2136/sssaj2006.0186...
). Natural phosphate, gypsum, fritted trace elements (FTE), potassium chloride, and micronutrients were added according to the soil analysis (Nouvellon et al., 2012NOUVELLON, Y., LACLAU, J.P., EPRON, D., LE MAIRE, G., BONNEFOND, J.M., GONÇALVES, J.L.M. and BOUILLET, J.P., 2012. Production and carbon allocation in monocultures and mixed-species plantations of Eucalyptus grandis and Acacia mangium in Brazil. Tree Physiology, vol. 32, no. 6, pp. 680-695. http://dx.doi.org/10.1093/treephys/tps041. PMid:22588515.
http://dx.doi.org/10.1093/treephys/tps04...
). One 30 cm high S. saponaria seedling was planted per pit spaced 2 m between them, in six parallel lines on flat terrain (similar characteristics), spaced 2 m between lines, four plants with and four without fertilization with dehydrated sewage sludge/line, in September 2014. These seedlings were irrigated twice a week from the beginning of the rainy season until no additional water was provided. The plants were pruned with a razor sterilized per plant when their branches reached 5 cm long, eliminating the additional ones and those up to 1/3 of crown height, leaving only the best stem. The pruned parts of each plant were left between their respective planting lines. The experimental design was completely randomized with two treatments (20 L of dehydrated sewage sludge/pit or no dehydrated sewage sludge) and 24 replications with one plant each. Twenty liters of dehydrated sewage sludge were placed per pit in a single dose during planting.

Dehydrated sewage sludge (5% moisture content) was collected at the sewage treatment plant - “Estação de Tratamento de Esgoto (ETE)” in the municipality of Juramento, Minas Gerais State, Brazil, about 40 km from the S. saponaria experimental site. The ETE is operated by the Minas Gerais Sanitation Company - “Companhia de Saneamento de Minas Gerais S.A. (COPASA)” with the capacity to treat 217 m3 sewage day-1. This system removes more than 90% of the organic matter. The sewage sludge passes through a solarization process in coarse sand tanks during three months in the ETE, which reduces the thermotolerant coliforms to a level accepted by the National Council for the Environment - “Conselho Nacional do Meio Ambiente (CONAMA)” (Resolution Nº 498) of the Ministry of the Environment- “Ministério do Meio Ambiente” of Brazil (http://conama.mma.gov.br/?option=com_sisconama&task=arquivo.download&id=797) for use in agriculture, which is <103 most likely number g-1 of total solids. The main chemical and biological characteristics of the dehydrated sewage sludge of this company were: pH-H2O= 4.40, N= 10.4 mg.kg-1, P= 2.9 mg.kg-1, K= 5.8 mg.kg-1, Cd= 0.1 µg.g-1, Pb= 56.9 µg.g-1, Cr= 46.7 µg.g-1, and fecal coliforms= 4.35, most likely number g-1 (Nogueira et al., 2007NOGUEIRA, T.A.R., SAMPAIO, R.A., FONSECA, I.M., FERREIRA, C.S., SANTOS, S.E., FERREIRA, L.C., GOMES, E. and FERNANDES, L.A., 2007. Heavy metals and pathogens in maize and cowpea intercropped, fertilized with sewage sludge. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 11, no. 3, pp. 331-338. http://dx.doi.org/10.1590/S1415-43662007000300014.
http://dx.doi.org/10.1590/S1415-43662007...
).

2.3. Insects and spiders

Insects and spiders were counted by visual observation biweekly on the leaf adaxial and abaxial surfaces between 7:00 and 11:00 A.M. at the apical, middle, and basal canopy parts in the northern, southern, eastern, and western directions, with 12 leaves/plant/evaluation on the six months old 48 S. saponaria saplings (young trees) during 24 months. Insects and spiders were not removed from the plants during the assessment. The total sample effort was 27,648 leaves covering the entire plant (vertical and horizontal axes) to capture as many insect and spider species as possible, including the rarest. Insects and spiders found on the trunk (chest height) were collected, and defoliation was evaluated visually by the leaf area losses on a 0-100% scale with 5% increments for the leaf area removed (Sastawa et al., 2004SASTAWA, B.M., LAWAN, M. and MAINA, Y.T., 2004. Management of insect pests of soybean: effects of sowing date and intercropping on damage and grain yield in the Nigerian Sudan savanna. Crop Protection, vol. 23, no. 2, pp. 155-161. http://dx.doi.org/10.1016/j.cropro.2003.07.007.
http://dx.doi.org/10.1016/j.cropro.2003....
; Mizumachi et al., 2006MIZUMACHI, E., MORI, A., OSAWA, N., AKIYAMA, R. and TOKUCHI, N., 2006. Shoot development and extension of Quercus serrata saplings in response to insect damage and nutrient conditions. Annals of Botany, vol. 98, no. 1, pp. 219-226. http://dx.doi.org/10.1093/aob/mcl091. PMid:16709576.
http://dx.doi.org/10.1093/aob/mcl091...
) for the 48 saplings/evaluation.

The evaluator approached carefully, firstly assessing the adaxial leaf surface and, if it was impossible to visualize the abaxial one, with a delicate and slow movement, lifting the leaf to visualize it. Insects with greater mobility that flew on approach were counted as long as they were recognized (e.g., Order). During the evaluation, the arthropods (insects and spiders) were not removed from the saplings. A few arthropod specimens (up to 3 individuals) per species were collected using an aspirator (two hours per week) at the beginning of the study (between transplantation and first evaluation, six months after), stored in flasks with 70% alcohol, separated into morphospecies, and sent to specialists for identification. Any visible arthropod not yet computed in previous evaluations was collected, coded, and sent to a taxonomist of its group.

2.4. Ecological Indices

Each replication (saplings) is the individuals collected on 12 leaves (three heights and four sides of the saplings). The ecological indices of abundance were calculated per group, for example, pollinators and treatment (with or without dehydrated sewage sludge)/tree using the BioDiversity Professional© software, Version 2 (1997) (Krebs, 1989KREBS, C.J., 1989 [viewed 30 June 2016]. Bray-Curtis Cluster analysis [online]. Available from: https://biodiversity-pro.software.informer.com/
https://biodiversity-pro.software.inform...
). Abundance was the total number of individuals (Begon et al., 2007BEGON, M., TOWNSEND, C.R. and HARPER, J.L., 2007. Ecologia: de indivíduos a ecossistemas. 4ª ed. Porto Alegre: Artmed, 752 p.) per tree.

2.5. Statistics

Data of percentage of defoliation, numbers of chewing, defoliator, Diptera, pollinator, spiders, and predator insect species were submitted to the non-parametric statistical hypothesis, Wilcoxon signed-rank test (P< 0.05) (Wilcoxon, 1945WILCOXON, F., 1945. Individual comparisons by ranking methods. Biometrics Bulletin, vol. 1, no. 6, pp. 80-83. http://dx.doi.org/10.2307/3001968.
http://dx.doi.org/10.2307/3001968...
) using the statistical analysis program “Sistema para Análises Estatísticas e Genéticas (SAEG),” version 9.1 (UFV, 2007UNIVERSIDADE FEDERAL DE VIÇOSA - UFV, 2007 [viewed 30 June 2016]. Sistema para Análises Estatísticas (SAEG) versão 9.1 [online]. Viçosa: Fundação Arthur Bernardes, UFV. Available from: http://arquivo.ufv.br/saeg/
http://arquivo.ufv.br/saeg/...
) (Supplier: “Universidade Federal de Viçosa”). The data collected did not present a normal distribution. For this reason, they were analyzed using the non-parametric Wilcoxon test as the most powerful test locally among all the classification methods (Salov, 2014SALOV, G.I., 2014. On the power of a new statistical test and two-sample Wilcoxon test. Optoelectronics, Instrumentation and Data Processing, vol. 50, no. 1, pp. 36-48. http://dx.doi.org/10.3103/S8756699014010051.
http://dx.doi.org/10.3103/S8756699014010...
). Interactions between groups of phytophagous insects and their predators were analyzed by regression (P <0.05) with this statistical program. Simple equations (linear and quadratic responses) were selected based on the criteria: i) distribution of the data in the figures, ii) the parameters used in these regressions were the most significant ones (P <0.05), iii) P <0.05 and F of the analysis of variance of these regressions, and iv) the determination coefficient of these equations (R2). The Spearman correlation matrix (linear response) was calculated among the most significant characteristics.

The matrices were submitted to correlation networks (Epskamp et al., 2012EPSKAMP, S., CRAMER, A.O.J., WALDORP, L.J., SCHMITTMANN, V.D. and BORSBOOM, D., 2012. QGRAPH: network visualizations of relationships in psychometric data. Journal of Statistical Software, vol. 48, no. 4, pp. 1-18. http://dx.doi.org/10.18637/jss.v048.i04.
http://dx.doi.org/10.18637/jss.v048.i04...
). The edge thickness was controlled by applying a cut of 0.26 value (from which the Spearman correlation became significant, meaning that only edges with |rij|≥ 0.26 were highlighted). These analyses were performed using the R software version 3.4.1 (R Core Team, 2014R CORE TEAM, 2014 [viewed 30 June 2016]. R: a language and environment for statistical computing [online]. Vienna: R Foundation for Statistical Computing. Available from: http://www. R-project.org/
http://www. ...
). The correlation network procedure was performed using the package qgraph (Epskamp et al., 2012EPSKAMP, S., CRAMER, A.O.J., WALDORP, L.J., SCHMITTMANN, V.D. and BORSBOOM, D., 2012. QGRAPH: network visualizations of relationships in psychometric data. Journal of Statistical Software, vol. 48, no. 4, pp. 1-18. http://dx.doi.org/10.18637/jss.v048.i04.
http://dx.doi.org/10.18637/jss.v048.i04...
).

3. Results

3.1. Fertilized plants × phytophagous insects

The percentage of defoliation by chewing insects and the abundance of individuals of Anastrepha sp. (Diptera: Tephritidae), Cerotoma sp. (Coleoptera: Chrysomelidae), Curculionidae (Coleoptera), Musca domestica L. (Diptera: Muscidae) and Tettigoniidae (Orthoptera) were higher on S. saponaria plants fertilized with dehydrated sewage sludge. In contrast, the numbers of Stereoma anchoralis Lacordaire (Coleoptera: Chrysomelidae) were higher on unfertilized plants. The abundance of Nasutitermes sp. (Blattodea: Termitidae), whose major visible damage was the formation of galleries on the plant trunk, was similar between treatments (Table 1). The number of leaves/saplings was positively correlated with those of Cerotoma sp., Curculionidae, and defoliation (Figure 1).

Table 1
Abundance of phytophagous insects and defoliation (%) on Sapindus saponaria saplings (mean ± SE) with or without dehydrated sewage sludge.
Figure 1
Estimated network structures based on Spearman correlation (P< 0.05) generated for the abundance of Cerotoma sp., Curculionidae, Mantis religiosa, and total leaves/tree and defoliation (%) on Sapindus saponaria saplings. n= 48.

3.2. Fertilized plants × natural enemies and pollinators

The abundances of individuals of Aranea, Mantis religiosa L. (Mantodea: Mantidae), Oxyopidae (Araneae), total protocooperative ants (Hymenoptera: Formicidae), Salticidae (Araneae), and Teudis sp. (Araneae: Anyphaenidae) were higher on S. saponaria plants fertilized with dehydrated sewage sludge. The abundance of Tetragonisca angustula Latreille and Trigona spinipes Fabr. (Hymenoptera: Apidae) on leaves of this plant was similar between treatments (Table 2). Diptera total and Curculionidae increased the abundance of M. religiosa. The highest abundances of chewing insects favored Teudis sp. and Tmarus sp. (Thomisidae), and that of Diptera increased Teudis sp. numbers (Table 3, Figure 1).

Table 2
Abundance of spiders and predators and pollinators insects on Sapindus saponaria saplings (mean ± SE) with or without dehydrated sewage sludge.
Table 3
Simple regression analysis between the numbers of Mantis religiosa (Mrel.) with Diptera (Dip.); Teudis sp. (Teud.) with total chewing insects (Chew.) and Dip.; Tmarus sp. (Tma.) with Chew. on Sapindus saponaria/saplings.

4. Discussion

The greater abundance of phytophagous arthropods Cerotoma sp., Curculionidae, and Tettigoniidae and defoliation in fertilized plants is due to the greater number of leaves/plant (>BGI), confirming the first hypothesis: >BGI> phytophagous insects (Ferrier and Price, 2004FERRIER, S.M. and PRICE, P.W., 2004. Oviposition preference and larval performance of a rare bud-galling sawfly (Hymenoptera: Tenthredinidae) on willow in Northern Arizona. Environmental Entomology, vol. 33, no. 3, pp. 700-708. http://dx.doi.org/10.1603/0046-225X-33.3.700.
http://dx.doi.org/10.1603/0046-225X-33.3...
; Leite et al., 2017LEITE, G.L.D., VELOSO, R.V., ZANUNCIO, J.C., AZEVEDO, A.M., SILVA, J.L., WILCKEN, C.F. and SOARES, M.A., 2017. Architectural diversity and galling insects on Caryocar brasiliense trees. Scientific Reports, vol. 7, no. 1, pp. 16677. http://dx.doi.org/10.1038/s41598-017-16954-6. PMid:29192234.
http://dx.doi.org/10.1038/s41598-017-169...
). Fertilization increases the size of trees and, consequently, the diversity and abundance of phytophagous insects (Ferrier and Price, 2004FERRIER, S.M. and PRICE, P.W., 2004. Oviposition preference and larval performance of a rare bud-galling sawfly (Hymenoptera: Tenthredinidae) on willow in Northern Arizona. Environmental Entomology, vol. 33, no. 3, pp. 700-708. http://dx.doi.org/10.1603/0046-225X-33.3.700.
http://dx.doi.org/10.1603/0046-225X-33.3...
; Espírito-Santo et al., 2007ESPÍRITO-SANTO, M.M., NEVES, F.S., ANDRADE-NETO, F.R. and FERNANDES, G.W., 2007. Plant architecture and meristem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia, vol. 153, no. 2, pp. 353-364. http://dx.doi.org/10.1007/s00442-007-0737-8. PMid:17453251.
http://dx.doi.org/10.1007/s00442-007-073...
; Leite et al., 2017LEITE, G.L.D., VELOSO, R.V., ZANUNCIO, J.C., AZEVEDO, A.M., SILVA, J.L., WILCKEN, C.F. and SOARES, M.A., 2017. Architectural diversity and galling insects on Caryocar brasiliense trees. Scientific Reports, vol. 7, no. 1, pp. 16677. http://dx.doi.org/10.1038/s41598-017-16954-6. PMid:29192234.
http://dx.doi.org/10.1038/s41598-017-169...
) as they function, on a smaller scale, as a biogeographic island, where rare species are less likely to go extinct (Kitahara and Fujii, 1997KITAHARA, M. and FUJII, K., 1997. An island biogeographical approach to the analysis of butterfly community patterns in newly designed parks. Population Ecology, vol. 39, no. 1, pp. 23-35. http://dx.doi.org/10.1007/BF02765247.
http://dx.doi.org/10.1007/BF02765247...
; Burns, 2016BURNS, K.C., 2016. Native-exotic richness relationships: a biogeographic approach using turnover in island plant populations. Ecology, vol. 97, no. 11, pp. 2932-2938. http://dx.doi.org/10.1002/ecy.1579. PMid:27870029.
http://dx.doi.org/10.1002/ecy.1579...
; Leite et al., 2017LEITE, G.L.D., VELOSO, R.V., ZANUNCIO, J.C., AZEVEDO, A.M., SILVA, J.L., WILCKEN, C.F. and SOARES, M.A., 2017. Architectural diversity and galling insects on Caryocar brasiliense trees. Scientific Reports, vol. 7, no. 1, pp. 16677. http://dx.doi.org/10.1038/s41598-017-16954-6. PMid:29192234.
http://dx.doi.org/10.1038/s41598-017-169...
). The damage by Cerotoma sp. and Curculionidae, defoliators, or boring pests of plants such as Casuarina glauca Sieber (Casuarinaceae), Leucaena leucocephala (Lam.) De Wit (Fabaceae), Glycine max (L.) Merrill (Fabaceae) and Zea mays L. (Gramineae) (Augustin et al., 2012AUGUSTIN, S., BOONHAM, N., DE KOGEL, W.J., DONNER, P., FACCOLI, M., LEES, D.C., MARINI, L., MORI, N., TOFFOLO, E.P., QUILICI, S., ROQUES, A., YART, A. and BATTISTI, A., 2012. A review of pest surveillance techniques for detecting quarantine pests in Europe. Bulletin OEPP. EPPO Bulletin. European and Mediterranean Plant Protection Organisation, vol. 42, no. 3, pp. 515-551. http://dx.doi.org/10.1111/epp.2600.
http://dx.doi.org/10.1111/epp.2600...
; Lawal et al., 2014LAWAL, O.A., OGUNWANDE, I.A., SALVADOR, A.F., SANNI, A.A. and OPOKU, A.R., 2014. Pachira glabra Pasq. essential oil: chemical constituents, antimicrobial and insecticidal activities. Journal of Oleo Science, vol. 63, no. 6, pp. 629-635. http://dx.doi.org/10.5650/jos.ess13179. PMid:24881772.
http://dx.doi.org/10.5650/jos.ess13179...
), on S. saponaria was low (≈5%, < control level = 20%). Despite the incidence of termites in both treatments, no damage was detected on the plants, similar to that on Acacia auriculiformis A. Cunn plants. ex Beth and Acacia mangium Willd. (Fabales: Fabaceae), fertilized with sewage sludge, where the increase in the number of leaves per tree favored the increase of Nasutitermes sp. (Dourado et al., 2020DOURADO, L.R., DEMOLIN-LEITE, G.L., SOARES, M.A., TEIXEIRA, G.L., SILVA, F.W.S., SAMPAIO, R.A., ZANUNCIO, J.C. and LEGASPI, J.C., 2020. Ecological indices of phytophagous Hemiptera and their natural enemies on Acacia auriculiformis (Fabales: Fabaceae) plants with or without dehydrated sewage sludge application in a degraded area. PLoS One, vol. 15, no. 8, e0237261. http://dx.doi.org/10.1371/journal.pone.0237261.
http://dx.doi.org/10.1371/journal.pone.0...
; Silva et al., 2020SILVA, J.L., LEITE, G.L.D., TAVARES, W.S., SILVA, F.W.S., ARRUDA, R.S., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C., 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in a degraded area. Royal Society Open Science, vol. 7, no. 2, pp. 191196. http://dx.doi.org/10.1098/rsos.191196. PMid:32257306.
http://dx.doi.org/10.1098/rsos.191196...
; Mota et al., 2021MOTA, M.V.S., DEMOLIN-LEITE, G.L., GUANABENS, P.F.S., TEIXEIRA, G.L., SOARES, M.A., SILVA, J.L., SAMPAIO, R.A. and ZANUNCIO, J.C., 2021. Chewing insects, pollinators, and predators on Acacia auriculiformis A. Cunn. ex Beth (Fabales: Fabaceae) plants fertilized with dehydrated sewage sludge. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e248305. http://dx.doi.org/10.1590/1519-6984.248305. PMid:34669795.
http://dx.doi.org/10.1590/1519-6984.2483...
). This was attributed to the greater contribution of organic matter in the sewage sludge (Dourado et al., 2020DOURADO, L.R., DEMOLIN-LEITE, G.L., SOARES, M.A., TEIXEIRA, G.L., SILVA, F.W.S., SAMPAIO, R.A., ZANUNCIO, J.C. and LEGASPI, J.C., 2020. Ecological indices of phytophagous Hemiptera and their natural enemies on Acacia auriculiformis (Fabales: Fabaceae) plants with or without dehydrated sewage sludge application in a degraded area. PLoS One, vol. 15, no. 8, e0237261. http://dx.doi.org/10.1371/journal.pone.0237261.
http://dx.doi.org/10.1371/journal.pone.0...
; Silva et al., 2020SILVA, J.L., LEITE, G.L.D., TAVARES, W.S., SILVA, F.W.S., ARRUDA, R.S., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C., 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in a degraded area. Royal Society Open Science, vol. 7, no. 2, pp. 191196. http://dx.doi.org/10.1098/rsos.191196. PMid:32257306.
http://dx.doi.org/10.1098/rsos.191196...
; Mota et al., 2021MOTA, M.V.S., DEMOLIN-LEITE, G.L., GUANABENS, P.F.S., TEIXEIRA, G.L., SOARES, M.A., SILVA, J.L., SAMPAIO, R.A. and ZANUNCIO, J.C., 2021. Chewing insects, pollinators, and predators on Acacia auriculiformis A. Cunn. ex Beth (Fabales: Fabaceae) plants fertilized with dehydrated sewage sludge. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e248305. http://dx.doi.org/10.1590/1519-6984.248305. PMid:34669795.
http://dx.doi.org/10.1590/1519-6984.2483...
) as well as higher litter production per plant (Dourado et al., 2020DOURADO, L.R., DEMOLIN-LEITE, G.L., SOARES, M.A., TEIXEIRA, G.L., SILVA, F.W.S., SAMPAIO, R.A., ZANUNCIO, J.C. and LEGASPI, J.C., 2020. Ecological indices of phytophagous Hemiptera and their natural enemies on Acacia auriculiformis (Fabales: Fabaceae) plants with or without dehydrated sewage sludge application in a degraded area. PLoS One, vol. 15, no. 8, e0237261. http://dx.doi.org/10.1371/journal.pone.0237261.
http://dx.doi.org/10.1371/journal.pone.0...
; Silva et al., 2020SILVA, J.L., LEITE, G.L.D., TAVARES, W.S., SILVA, F.W.S., ARRUDA, R.S., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C., 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in a degraded area. Royal Society Open Science, vol. 7, no. 2, pp. 191196. http://dx.doi.org/10.1098/rsos.191196. PMid:32257306.
http://dx.doi.org/10.1098/rsos.191196...
). Termites can damage living or dead trees, including root systems and processed wood (Albuquerque et al., 2014ALBUQUERQUE, A.C., MATIAS, G.R.R.S., OLIVEIRA, M.A.P., COUTO, A.A.V.O. and VASCONCELLOS, A., 2014. Urban termites of Recife, Northeast Brazil (Isoptera). Sociobiology, vol. 59, no. 1, pp. 183-188. http://dx.doi.org/10.13102/sociobiology.v59i1.675.
http://dx.doi.org/10.13102/sociobiology....
). Despite the construction of galleries, in this study, the termites did not damage the trunks or cause the death of plants.

The greater abundance of natural enemies (e.g., spiders) is due to the high number of leaves/plant (> BGI) and, consequently, of their prey following them (Auslander et al., 2003AUSLANDER, M., NEVO, E. and INBAR, M., 2003. The effects of slope orientation on plant growth, developmental instability, and susceptibility to herbivores. Journal of Arid Environments, vol. 55, no. 3, pp. 405-416. http://dx.doi.org/10.1016/S0140-1963(02)00281-1.
http://dx.doi.org/10.1016/S0140-1963(02)...
), confirming the second hypothesis: >BGI> predators (Ferrier and Price, 2004FERRIER, S.M. and PRICE, P.W., 2004. Oviposition preference and larval performance of a rare bud-galling sawfly (Hymenoptera: Tenthredinidae) on willow in Northern Arizona. Environmental Entomology, vol. 33, no. 3, pp. 700-708. http://dx.doi.org/10.1603/0046-225X-33.3.700.
http://dx.doi.org/10.1603/0046-225X-33.3...
; Leite et al., 2017LEITE, G.L.D., VELOSO, R.V., ZANUNCIO, J.C., AZEVEDO, A.M., SILVA, J.L., WILCKEN, C.F. and SOARES, M.A., 2017. Architectural diversity and galling insects on Caryocar brasiliense trees. Scientific Reports, vol. 7, no. 1, pp. 16677. http://dx.doi.org/10.1038/s41598-017-16954-6. PMid:29192234.
http://dx.doi.org/10.1038/s41598-017-169...
). The BGI theory states that larger islands tend to support greater diversities and abundance of insects due to greater food availability, with a balance between the immigration of new species and the extinction of resident species (Gotelli, 2001GOTELLI, N.J., 2001. A primer of ecology. 3rd ed. Massachusetts: Sinauer Associates, 265 p.; Begon et al., 2007BEGON, M., TOWNSEND, C.R. and HARPER, J.L., 2007. Ecologia: de indivíduos a ecossistemas. 4ª ed. Porto Alegre: Artmed, 752 p.; Silva et al., 2021SILVA, J.L., LEITE, G.L.D., GUANABENS, R.E.M., AZEVEDO, A.M., FERNANDES, G.W. and ZANUNCIO, J.C., 2021. Fertilization with dehydrated sewage sludge affects the phytophagous Hemiptera, tending ants, and Sternorryncha predators on Acacia mangium (Fabaceae). Annals of Applied Biology, vol. 179, no. 3, pp. 345-353. http://dx.doi.org/10.1111/aab.12706.
http://dx.doi.org/10.1111/aab.12706...
). This theory has been used in smaller-scale environments, such as treetops (Patiño et al., 2017PATIÑO, J., WHITTAKER, R.J., BORGES, P.A.V., FERNÁNDEZ-PALACIOS, J.M., AH-PENG, C., ARAÚJO, M.B. and EMERSON, B.C., 2017. A roadmap for island biology: 50 fundamental questions after 50 years of The Theory of island biogeography. Journal of Biogeography, vol. 44, no. 5, pp. 963-983. http://dx.doi.org/10.1111/jbi.12986.
http://dx.doi.org/10.1111/jbi.12986...
) on plants of A. auriculiformis (Dourado et al., 2020DOURADO, L.R., DEMOLIN-LEITE, G.L., SOARES, M.A., TEIXEIRA, G.L., SILVA, F.W.S., SAMPAIO, R.A., ZANUNCIO, J.C. and LEGASPI, J.C., 2020. Ecological indices of phytophagous Hemiptera and their natural enemies on Acacia auriculiformis (Fabales: Fabaceae) plants with or without dehydrated sewage sludge application in a degraded area. PLoS One, vol. 15, no. 8, e0237261. http://dx.doi.org/10.1371/journal.pone.0237261.
http://dx.doi.org/10.1371/journal.pone.0...
), A. mangium (Silva et al., 2020SILVA, J.L., LEITE, G.L.D., TAVARES, W.S., SILVA, F.W.S., ARRUDA, R.S., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C., 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in a degraded area. Royal Society Open Science, vol. 7, no. 2, pp. 191196. http://dx.doi.org/10.1098/rsos.191196. PMid:32257306.
http://dx.doi.org/10.1098/rsos.191196...
, 2021SILVA, J.L., LEITE, G.L.D., GUANABENS, R.E.M., AZEVEDO, A.M., FERNANDES, G.W. and ZANUNCIO, J.C., 2021. Fertilization with dehydrated sewage sludge affects the phytophagous Hemiptera, tending ants, and Sternorryncha predators on Acacia mangium (Fabaceae). Annals of Applied Biology, vol. 179, no. 3, pp. 345-353. http://dx.doi.org/10.1111/aab.12706.
http://dx.doi.org/10.1111/aab.12706...
; Mota et al., 2021MOTA, M.V.S., DEMOLIN-LEITE, G.L., GUANABENS, P.F.S., TEIXEIRA, G.L., SOARES, M.A., SILVA, J.L., SAMPAIO, R.A. and ZANUNCIO, J.C., 2021. Chewing insects, pollinators, and predators on Acacia auriculiformis A. Cunn. ex Beth (Fabales: Fabaceae) plants fertilized with dehydrated sewage sludge. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e248305. http://dx.doi.org/10.1590/1519-6984.248305. PMid:34669795.
http://dx.doi.org/10.1590/1519-6984.2483...
), Caryocar brasiliense A. St.-Hil. (Malpighiales: Caryocaraceae) (Leite et al., 2017LEITE, G.L.D., VELOSO, R.V., ZANUNCIO, J.C., AZEVEDO, A.M., SILVA, J.L., WILCKEN, C.F. and SOARES, M.A., 2017. Architectural diversity and galling insects on Caryocar brasiliense trees. Scientific Reports, vol. 7, no. 1, pp. 16677. http://dx.doi.org/10.1038/s41598-017-16954-6. PMid:29192234.
http://dx.doi.org/10.1038/s41598-017-169...
), and Terminalia argentea Mart. and Zucc (Combretaceae) (Carvalho et al., 2020CARVALHO, J.C.N., SILVA, F.W.S., LEITE, G.L.D., AZEVEDO, A.M., TEIXEIRA, G.L., SOARES, M.A. and LEGASPI, J.C., 2020. Does fertilization with dehydrated sewage sludge affect Terminalia argentea (Combretaceae) and associated arthropods community in a degraded area? Scientific Reports, vol. 10, pp. 11811. http://dx.doi.org/10.1038/s41598-020-68747-z. PMid:32678241.
http://dx.doi.org/10.1038/s41598-020-687...
). The abundance of spiders (ex.: Aranea and Salticidae) on S. saponaria plants fertilized with dehydrated sewage sludge is probably due to the greater number of chewing insects (ex.: > Tmarus sp. spider), with the predators following their prey (Silva et al., 2020SILVA, J.L., LEITE, G.L.D., TAVARES, W.S., SILVA, F.W.S., ARRUDA, R.S., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C., 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in a degraded area. Royal Society Open Science, vol. 7, no. 2, pp. 191196. http://dx.doi.org/10.1098/rsos.191196. PMid:32257306.
http://dx.doi.org/10.1098/rsos.191196...
). Spiders reduced defoliation (r= -0.73; P= 0.003) by beetles, and the number of Lepidoptera mines (r= -0.62; P= 0.01) on C. brasiliense (Leite et al., 2012aLEITE, G.L.D., VELOSO, R.V.D.S., ZANUNCIO, J.C., ALMEIDA, C.I.M.E., FERREIRA, P.S.F., FERNANDES, G.W. and SOARES, M.A., 2012a. Habitat Complexity and Caryocar brasiliense Herbivores (Insecta: Arachnida: Araneae). The Florida Entomologist, vol. 95, no. 4, pp. 819-830. http://dx.doi.org/10.1653/024.095.0402.
http://dx.doi.org/10.1653/024.095.0402...
,bLEITE, G.L.D., VELOSO, R.V.D.S., MARTINS, E.R., ZANUNCIO, J.C., FERNANDES, G.W., ALMEIDA, C.I.M., RAMALHO, F.S. and SERRÃO, J.E., 2012b. Population of herbivores insects on different sides of Caryocar brasiliense (Caryocaraceae) trees in the Brazilian Cerrado Region. Journal of Medicinal Plants Research, vol. 6, no. 43, pp. 5557-5565. http://dx.doi.org/10.5897/JMPR11.1355.
http://dx.doi.org/10.5897/JMPR11.1355...
). Spiders sampled on S. saponaria plants are obligatory predators, mainly of defoliating insect pests in tropical regions (Landis et al., 2000LANDIS, D., WRATTEN, S.D. and GURR, G.M., 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, vol. 45, no. 1, pp. 175-201. http://dx.doi.org/10.1146/annurev.ento.45.1.175. PMid:10761575.
http://dx.doi.org/10.1146/annurev.ento.4...
; Langellotto, 2002LANGELLOTTO, G.A., 2002. Aggregation of invertebrate predators in complex-structured habitats: role of altered cannibalism, intraguild predation, prey availability, and microclimate. College Park, Md: Department of Entomology, University of Maryland, 208 p. Doctoral Dissertation in Philosophy.; Halaj et al., 2008HALAJ, J., HALPERN, C.B. and YI, H., 2008. Responses of litter-dwelling spiders and carabid beetles to varying levels and patterns of green-tree retention. Forest Ecology and Management, vol. 255, no. 3, pp. 887-900. http://dx.doi.org/10.1016/j.foreco.2007.09.083.
http://dx.doi.org/10.1016/j.foreco.2007....
; Leite et al., 2012bLEITE, G.L.D., VELOSO, R.V.D.S., MARTINS, E.R., ZANUNCIO, J.C., FERNANDES, G.W., ALMEIDA, C.I.M., RAMALHO, F.S. and SERRÃO, J.E., 2012b. Population of herbivores insects on different sides of Caryocar brasiliense (Caryocaraceae) trees in the Brazilian Cerrado Region. Journal of Medicinal Plants Research, vol. 6, no. 43, pp. 5557-5565. http://dx.doi.org/10.5897/JMPR11.1355.
http://dx.doi.org/10.5897/JMPR11.1355...
). Spiders can help control pests such as Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae) on Malus domestica Bork (Rosaceae) and Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) on Citrus sinensis (L.) Osbeck (Rutaceae) (Amalin et al., 2001AMALIN, D.M., REISKIND, J., PEÑA, J.E. and MCSORLEY, R., 2001. Predatory behavior of three species of sac spiders attacking citrus leafminer. The Journal of Arachnology, vol. 29, no. 1, pp. 72-81. http://dx.doi.org/10.1636/0161-8202(2001)029[0072:PBOTSO]2.0.CO;2.
http://dx.doi.org/10.1636/0161-8202(2001...
; Hogg et al., 2017HOGG, B.N., MILLS, N.J. and DAANE, K.M., 2017. Temporal patterns in the abundance and species composition of spiders on host plants of the invasive moth Epiphyas postvittana (Lepidoptera: tortricidae). Environmental Entomology, vol. 46, no. 3, pp. 502-510. http://dx.doi.org/10.1093/ee/nvx065. PMid:28379400.
http://dx.doi.org/10.1093/ee/nvx065...
) preying on them or killing their prey attached to their webs (Sunderland and Samu, 2000SUNDERLAND, K. and SAMU, F., 2000. Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: a review. Entomologia Experimentalis et Applicata, vol. 95, no. 1, pp. 1-13. http://dx.doi.org/10.1046/j.1570-7458.2000.00635.x.
http://dx.doi.org/10.1046/j.1570-7458.20...
). The low density of bees (≈0.3 tree-1), ≈28% of T. angustula, in S. saponaria plants may be due to the evaluations not including flowers, as this bee pollinates this plant (Fierro et al., 2012FIERRO, M.M., CRUZ-LOPEZ, L., SANCHEZ, D., VILLANUEVA-GUTIERREZ, R. and VANDAME, R., 2012. Effect of biotic factors on the spatial distribution of stingless bees (Hymenoptera: Apidae, Meliponini) in fragmented neotropical habitats. Neotropical Entomology, vol. 41, no. 2, pp. 95-104. http://dx.doi.org/10.1007/s13744-011-0009-5. PMid:23950022.
http://dx.doi.org/10.1007/s13744-011-000...
). Ants protect trees in agroforestry systems from pests such as chewing insects (e.g., Coleoptera and Lepidoptera) (Fernandes et al., 2005FERNANDES, G.W., GONÇALVES-ALVIM, S.J. and CARNEIRO, M.A.A., 2005. Habitat-driven effects on the diversity of gall-inducing insects in the Brazilian Cerrado. In: A. Raman, C.W. Schaefer and T.M. Withers, eds, Biology, ecology, and evolution of gall-inducing arthropods. Washington, DC: Science Publishers, pp. 693-708.; Gonthier et al., 2013GONTHIER, D.J., ENNIS, K.K., PHILPOTT, S.M., VANDERMEER, J. and PERFECTO, I., 2013. Ants defend coffee from berry borer colonization. BioControl, vol. 58, no. 6, pp. 815-820. http://dx.doi.org/10.1007/s10526-013-9541-z.
http://dx.doi.org/10.1007/s10526-013-954...
) and, along with other natural enemies, are important in agrosystem balance (Fernandes et al., 2005FERNANDES, G.W., GONÇALVES-ALVIM, S.J. and CARNEIRO, M.A.A., 2005. Habitat-driven effects on the diversity of gall-inducing insects in the Brazilian Cerrado. In: A. Raman, C.W. Schaefer and T.M. Withers, eds, Biology, ecology, and evolution of gall-inducing arthropods. Washington, DC: Science Publishers, pp. 693-708.; Gonthier et al., 2013GONTHIER, D.J., ENNIS, K.K., PHILPOTT, S.M., VANDERMEER, J. and PERFECTO, I., 2013. Ants defend coffee from berry borer colonization. BioControl, vol. 58, no. 6, pp. 815-820. http://dx.doi.org/10.1007/s10526-013-9541-z.
http://dx.doi.org/10.1007/s10526-013-954...
; Lima Junior et al., 2013LIMA JUNIOR, I.D.S., DEGRANDE, P.E., BERTONCELLO, T.F., MELO, E.P. and SUEKANE, R., 2013. Avaliação quantitativa do impacto do algodão-Bt na população de Araneae, Carabidae e Formicidae predadores ocorrentes sobre o solo. Bioscience Journal, vol. 29, no. 1, pp. 32-40. Available from: https://seer.ufu.br/index.php/biosciencejournal/article/ view/13304
https://seer.ufu.br/index.php/bioscience...
). Mutualistic association between ants and plants reduced defoliation and the number of insect mines on leaves of Acacia mangium Willd. (Fabales: Fabaceae) and C. brasiliense (Leite et al., 2012aLEITE, G.L.D., VELOSO, R.V.D.S., ZANUNCIO, J.C., ALMEIDA, C.I.M.E., FERREIRA, P.S.F., FERNANDES, G.W. and SOARES, M.A., 2012a. Habitat Complexity and Caryocar brasiliense Herbivores (Insecta: Arachnida: Araneae). The Florida Entomologist, vol. 95, no. 4, pp. 819-830. http://dx.doi.org/10.1653/024.095.0402.
http://dx.doi.org/10.1653/024.095.0402...
,bLEITE, G.L.D., VELOSO, R.V.D.S., MARTINS, E.R., ZANUNCIO, J.C., FERNANDES, G.W., ALMEIDA, C.I.M., RAMALHO, F.S. and SERRÃO, J.E., 2012b. Population of herbivores insects on different sides of Caryocar brasiliense (Caryocaraceae) trees in the Brazilian Cerrado Region. Journal of Medicinal Plants Research, vol. 6, no. 43, pp. 5557-5565. http://dx.doi.org/10.5897/JMPR11.1355.
http://dx.doi.org/10.5897/JMPR11.1355...
, 2016LEITE, G.L.D., VELOSO, R.V.D.S., ZANUNCIO, J.C., ALONSO, J., FERREIRA, P.S.F., ALMEIDA, C.I.M. and SERRÃO, J.E., 2016. Diversity of Hemiptera (Arthropoda: Insecta) and their natural enemies on Caryocar brasiliense (Malpighiales: Caryocaraceae) trees in the Brazilian Cerrado. The Florida Entomologist, vol. 99, no. 2, pp. 239-247. http://dx.doi.org/10.1653/024.099.0213.
http://dx.doi.org/10.1653/024.099.0213...
; Bertuol et al., 2008BERTUOL, T.J., GALBIATI, C., PEREIRA, M.J.B. and AMARAL, A.M., 2008. Avaliação de mutualismo entre Acacia mangium Willd (Mimosaceae) e formigas (Hymenoptera: formicidae). Revista Brasileira de Agroecologia, vol. 3, no. 1, pp. 41-47.). These mutualistic relationships are important since ants protect trees from chewing insects (e.g., Coleoptera and Lepidoptera) and thus reduce damage by herbivory (Gonthier et al., 2013GONTHIER, D.J., ENNIS, K.K., PHILPOTT, S.M., VANDERMEER, J. and PERFECTO, I., 2013. Ants defend coffee from berry borer colonization. BioControl, vol. 58, no. 6, pp. 815-820. http://dx.doi.org/10.1007/s10526-013-9541-z.
http://dx.doi.org/10.1007/s10526-013-954...
; Silva et al., 2021SILVA, J.L., LEITE, G.L.D., GUANABENS, R.E.M., AZEVEDO, A.M., FERNANDES, G.W. and ZANUNCIO, J.C., 2021. Fertilization with dehydrated sewage sludge affects the phytophagous Hemiptera, tending ants, and Sternorryncha predators on Acacia mangium (Fabaceae). Annals of Applied Biology, vol. 179, no. 3, pp. 345-353. http://dx.doi.org/10.1111/aab.12706.
http://dx.doi.org/10.1111/aab.12706...
). Solenopsis invicta (Buren) (Hymenoptera: Formicidae) preyed eggs, small larvae, and pupae of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) on Gossypium hirsutum L. (Malvaceae) and G. max; and Pheidole sp. (Hymenoptera: Formicidae) and Solenopsis geminata F. (Hymenoptera: Formicidae) preyed pests on Oryza sativa L. (Poaceae) and Musa paradisiaca L. (Musaceae) (Ruberson et al., 1994RUBERSON, J.R., HERZOG, G.A., LAMBERT, W.R. and LEWIS, J., 1994. Management of the beet armyworm (Lepidoptera, Noctuidae) in cotton: role of natural enemies. The Florida Entomologist, vol. 77, no. 4, pp. 440-453. http://dx.doi.org/10.2307/3495698.
http://dx.doi.org/10.2307/3495698...
; Eubanks, 2001EUBANKS, M.D., 2001. Estimates of the direct and indirect effects of red imported fire ants on biological control in field crops. Biological Control, vol. 21, no. 1, pp. 35-43. http://dx.doi.org/10.1006/bcon.2001.0923.
http://dx.doi.org/10.1006/bcon.2001.0923...
; Way et al., 2002WAY, M.J., JAVIER, G. and HEONG, K.L., 2002. The role of ants, especially the fire ant Solenopsis geminata (Hymenoptera: Formicidae), in the biological control of tropical upland rice pests. Bulletin of Entomological Research, vol. 92, no. 5, pp. 431-437. http://dx.doi.org/10.1079/BER2002185.
http://dx.doi.org/10.1079/BER2002185...
; Abera-Kalibata et al., 2008ABERA-KALIBATA, A.M., GOLD, C.S. and VAN DRIESHE, R.V., 2008. Experimental evaluation of the impacts of two ant species on banana weevil in Uganda. Biological Control, vol. 46, no. 2, pp. 147-157. http://dx.doi.org/10.1016/j.biocontrol.2008.04.017.
http://dx.doi.org/10.1016/j.biocontrol.2...
). The greater abundance and richness of mutualistic ant species on A. mangium plants fertilized with dehydrated sewage sludge corroborates ant response through mutualistic relationships (Pérez-Lachaud and Lachaud, 2014PÉREZ-LACHAUD, G. and LACHAUD, J.P., 2014. Arboreal ant colonies as ‘hot-points’ of cryptic diversity for Myrmecophiles: the weaver ant Camponotus sp. aff. textor and its interaction network with associates. PLoS One, vol. 9, no. 6, pp. e100155. http://dx.doi.org/10.1371/journal.pone.0100155. PMid:24941047.
http://dx.doi.org/10.1371/journal.pone.0...
; Chomicki et al., 2015CHOMICKI, G., WARD, P.S. and RENNER, S.S., 2015. Macroevolutionary assembly of ant/plant symbioses: pseudomyrmex ants and their ant-housing plants in the Neotropics. Proceedings. Biological Sciences, vol. 282, no. 18-19, pp. 20152200. http://dx.doi.org/10.1098/rspb.2015.2200.
http://dx.doi.org/10.1098/rspb.2015.2200...
; Sanches, 2015SANCHES, A., 2015. Fidelity and promiscuity in an ant-plant mutualism: a case study of Triplaris and Pseudomyrmex. PLoS One, vol. 10, no. 12, pp. e0143535. http://dx.doi.org/10.1371/journal.pone.0143535. PMid:26630384.
http://dx.doi.org/10.1371/journal.pone.0...
; Silva et al., 2021SILVA, J.L., LEITE, G.L.D., GUANABENS, R.E.M., AZEVEDO, A.M., FERNANDES, G.W. and ZANUNCIO, J.C., 2021. Fertilization with dehydrated sewage sludge affects the phytophagous Hemiptera, tending ants, and Sternorryncha predators on Acacia mangium (Fabaceae). Annals of Applied Biology, vol. 179, no. 3, pp. 345-353. http://dx.doi.org/10.1111/aab.12706.
http://dx.doi.org/10.1111/aab.12706...
). The response of ants on trees fertilized with sewage sludge is important because these insects are indicators in degraded or recovering areas due to their mutualistic relationships (Economo et al., 2015ECONOMO, E.P., KLIMOV, P., SARNAT, E.M., GUENARD, B., WEISER, M.D., LECROQ, B. and KNOWLES, L.L., 2015. Global phylogenetic structure of the hyperdiverse ant genus Pheidole reveals the repeated evolution of macroecological patterns. Proceedings. Biological Sciences, vol. 282, no. 1798, pp. 20141416. http://dx.doi.org/10.1098/rspb.2014.1416.
http://dx.doi.org/10.1098/rspb.2014.1416...
; Pérez-Lachaud and Lachaud, 2014PÉREZ-LACHAUD, G. and LACHAUD, J.P., 2014. Arboreal ant colonies as ‘hot-points’ of cryptic diversity for Myrmecophiles: the weaver ant Camponotus sp. aff. textor and its interaction network with associates. PLoS One, vol. 9, no. 6, pp. e100155. http://dx.doi.org/10.1371/journal.pone.0100155. PMid:24941047.
http://dx.doi.org/10.1371/journal.pone.0...
; Chomicki et al., 2015CHOMICKI, G., WARD, P.S. and RENNER, S.S., 2015. Macroevolutionary assembly of ant/plant symbioses: pseudomyrmex ants and their ant-housing plants in the Neotropics. Proceedings. Biological Sciences, vol. 282, no. 18-19, pp. 20152200. http://dx.doi.org/10.1098/rspb.2015.2200.
http://dx.doi.org/10.1098/rspb.2015.2200...
; Sanches, 2015SANCHES, A., 2015. Fidelity and promiscuity in an ant-plant mutualism: a case study of Triplaris and Pseudomyrmex. PLoS One, vol. 10, no. 12, pp. e0143535. http://dx.doi.org/10.1371/journal.pone.0143535. PMid:26630384.
http://dx.doi.org/10.1371/journal.pone.0...
; Dourado et al., 2020DOURADO, L.R., DEMOLIN-LEITE, G.L., SOARES, M.A., TEIXEIRA, G.L., SILVA, F.W.S., SAMPAIO, R.A., ZANUNCIO, J.C. and LEGASPI, J.C., 2020. Ecological indices of phytophagous Hemiptera and their natural enemies on Acacia auriculiformis (Fabales: Fabaceae) plants with or without dehydrated sewage sludge application in a degraded area. PLoS One, vol. 15, no. 8, e0237261. http://dx.doi.org/10.1371/journal.pone.0237261.
http://dx.doi.org/10.1371/journal.pone.0...
; Silva et al., 2021SILVA, J.L., LEITE, G.L.D., GUANABENS, R.E.M., AZEVEDO, A.M., FERNANDES, G.W. and ZANUNCIO, J.C., 2021. Fertilization with dehydrated sewage sludge affects the phytophagous Hemiptera, tending ants, and Sternorryncha predators on Acacia mangium (Fabaceae). Annals of Applied Biology, vol. 179, no. 3, pp. 345-353. http://dx.doi.org/10.1111/aab.12706.
http://dx.doi.org/10.1111/aab.12706...
).

5. Conclusions

The largest canopy of S. saponaria (>BGI) fertilized with dehydrated sewage sludge increased soil cover (e.g., litter) and the abundance of phytophagous insects and their predators on these plants, indicating that it is a promising method to recover degraded areas. The plants fertilized with dehydrated sewage sludge host a high number of chewing insects, pollinators, and predators, due to the greater number of niches and better food quality, improving the ecological indices of the area.

Acknowledgements

To Dr. Antônio Domingos Brescovit (Instituto Butantan, São Paulo, Brazil- Aracnidae) and Dr. Ayr de Moura Bello (Fundação Oswaldo Cruz, Rio de Janeiro, Brazil- Coleoptera) for arthropod species identifications. The voucher number for spiders is IBSP 36921-36924 (Instituto Butantan, São Paulo, Brazil), and that for insects is 1595/02 and 1597/02 (Centro de Estudos Faunísticos e Ambientais, Universidade Federal do Paraná, Curitiba, Paraná, Brazil). To the Brazilian agencies “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq),” Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES),” “Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG),” and “Programa Cooperativo sobre Proteção Florestal (PROTEF)” of the “Instituto de Estudos e Pesquisas Florestais (IPEF)” for financial support. This work was supported by the “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq) [grant number 305057/2018-9] and “Fundação de Amparo à Pesquisa do Estado de Minas Gerais” (FAPEMIG) [grant number PPM-00080-17], Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) [Financing Code 001].

References

  • ABERA-KALIBATA, A.M., GOLD, C.S. and VAN DRIESHE, R.V., 2008. Experimental evaluation of the impacts of two ant species on banana weevil in Uganda. Biological Control, vol. 46, no. 2, pp. 147-157. http://dx.doi.org/10.1016/j.biocontrol.2008.04.017
    » http://dx.doi.org/10.1016/j.biocontrol.2008.04.017
  • ALBUQUERQUE, A.C., MATIAS, G.R.R.S., OLIVEIRA, M.A.P., COUTO, A.A.V.O. and VASCONCELLOS, A., 2014. Urban termites of Recife, Northeast Brazil (Isoptera). Sociobiology, vol. 59, no. 1, pp. 183-188. http://dx.doi.org/10.13102/sociobiology.v59i1.675
    » http://dx.doi.org/10.13102/sociobiology.v59i1.675
  • ALVARES, C.A., STAPE, J.L., SENTELHAS, P.C., GONÇALVES, J.L.M. and SPAROVEK, G., 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, vol. 22, no. 6, pp. 711-728. http://dx.doi.org/10.1127/0941-2948/2013/0507
    » http://dx.doi.org/10.1127/0941-2948/2013/0507
  • AMALIN, D.M., REISKIND, J., PEÑA, J.E. and MCSORLEY, R., 2001. Predatory behavior of three species of sac spiders attacking citrus leafminer. The Journal of Arachnology, vol. 29, no. 1, pp. 72-81. http://dx.doi.org/10.1636/0161-8202(2001)029[0072:PBOTSO]2.0.CO;2
    » http://dx.doi.org/10.1636/0161-8202(2001)029[0072:PBOTSO]2.0.CO;2
  • AUGUSTIN, S., BOONHAM, N., DE KOGEL, W.J., DONNER, P., FACCOLI, M., LEES, D.C., MARINI, L., MORI, N., TOFFOLO, E.P., QUILICI, S., ROQUES, A., YART, A. and BATTISTI, A., 2012. A review of pest surveillance techniques for detecting quarantine pests in Europe. Bulletin OEPP. EPPO Bulletin. European and Mediterranean Plant Protection Organisation, vol. 42, no. 3, pp. 515-551. http://dx.doi.org/10.1111/epp.2600
    » http://dx.doi.org/10.1111/epp.2600
  • AUSLANDER, M., NEVO, E. and INBAR, M., 2003. The effects of slope orientation on plant growth, developmental instability, and susceptibility to herbivores. Journal of Arid Environments, vol. 55, no. 3, pp. 405-416. http://dx.doi.org/10.1016/S0140-1963(02)00281-1
    » http://dx.doi.org/10.1016/S0140-1963(02)00281-1
  • BARAH, P. and BONES, A.M., 2015. Multidimensional approaches for studying plant defense against insects: from ecology to omics and synthetic biology. Journal of Experimental Botany, vol. 66, no. 2, pp. 479-493. http://dx.doi.org/10.1093/jxb/eru489 PMid:25538257.
    » http://dx.doi.org/10.1093/jxb/eru489
  • BARBIERI JUNIOR, C.A. and DIAS, A.M.P., 2012. Braconidae (Hymenoptera) fauna in native, degraded and restoration areas of the Vale do Paraíba, São Paulo state, Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 72, no. 2, pp. 305-310. http://dx.doi.org/10.1590/S1519-69842012000200011
    » http://dx.doi.org/10.1590/S1519-69842012000200011
  • BEGON, M., TOWNSEND, C.R. and HARPER, J.L., 2007. Ecologia: de indivíduos a ecossistemas 4ª ed. Porto Alegre: Artmed, 752 p.
  • BERTUOL, T.J., GALBIATI, C., PEREIRA, M.J.B. and AMARAL, A.M., 2008. Avaliação de mutualismo entre Acacia mangium Willd (Mimosaceae) e formigas (Hymenoptera: formicidae). Revista Brasileira de Agroecologia, vol. 3, no. 1, pp. 41-47.
  • BOWERS, M.D. and STAMP, N.E., 1993. Effects of plant-age, genotype, and herbivory on Plantago performance and chemistry. Ecology, vol. 74, no. 6, pp. 1778-1791. http://dx.doi.org/10.2307/1939936
    » http://dx.doi.org/10.2307/1939936
  • BURNS, K.C., 2016. Native-exotic richness relationships: a biogeographic approach using turnover in island plant populations. Ecology, vol. 97, no. 11, pp. 2932-2938. http://dx.doi.org/10.1002/ecy.1579 PMid:27870029.
    » http://dx.doi.org/10.1002/ecy.1579
  • CALDEIRA, M.V.W., FAVALESSA, M., GONÇALVES, E.O., DEMAELARMELINA, W.M.F., SANTOS, E.V. and VIEIRA, M., 2014. Lodo de esgoto como componente de substrato para produção de mudas de Acacia mangium Wild. Comunicata Scientiae, vol. 5, no. 1, pp. 34-43.
  • CARVALHO, J.C.N., SILVA, F.W.S., LEITE, G.L.D., AZEVEDO, A.M., TEIXEIRA, G.L., SOARES, M.A. and LEGASPI, J.C., 2020. Does fertilization with dehydrated sewage sludge affect Terminalia argentea (Combretaceae) and associated arthropods community in a degraded area? Scientific Reports, vol. 10, pp. 11811. http://dx.doi.org/10.1038/s41598-020-68747-z PMid:32678241.
    » http://dx.doi.org/10.1038/s41598-020-68747-z
  • CHOMICKI, G., WARD, P.S. and RENNER, S.S., 2015. Macroevolutionary assembly of ant/plant symbioses: pseudomyrmex ants and their ant-housing plants in the Neotropics. Proceedings. Biological Sciences, vol. 282, no. 18-19, pp. 20152200. http://dx.doi.org/10.1098/rspb.2015.2200
    » http://dx.doi.org/10.1098/rspb.2015.2200
  • COLEY, P.D. and BARONE, J.A., 1996. Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, vol. 27, no. 1, pp. 305-335. http://dx.doi.org/10.1146/annurev.ecolsys.27.1.305
    » http://dx.doi.org/10.1146/annurev.ecolsys.27.1.305
  • DOURADO, L.R., DEMOLIN-LEITE, G.L., SOARES, M.A., TEIXEIRA, G.L., SILVA, F.W.S., SAMPAIO, R.A., ZANUNCIO, J.C. and LEGASPI, J.C., 2020. Ecological indices of phytophagous Hemiptera and their natural enemies on Acacia auriculiformis (Fabales: Fabaceae) plants with or without dehydrated sewage sludge application in a degraded area. PLoS One, vol. 15, no. 8, e0237261. http://dx.doi.org/10.1371/journal.pone.0237261
    » http://dx.doi.org/10.1371/journal.pone.0237261
  • ECONOMO, E.P., KLIMOV, P., SARNAT, E.M., GUENARD, B., WEISER, M.D., LECROQ, B. and KNOWLES, L.L., 2015. Global phylogenetic structure of the hyperdiverse ant genus Pheidole reveals the repeated evolution of macroecological patterns. Proceedings. Biological Sciences, vol. 282, no. 1798, pp. 20141416. http://dx.doi.org/10.1098/rspb.2014.1416
    » http://dx.doi.org/10.1098/rspb.2014.1416
  • EPSKAMP, S., CRAMER, A.O.J., WALDORP, L.J., SCHMITTMANN, V.D. and BORSBOOM, D., 2012. QGRAPH: network visualizations of relationships in psychometric data. Journal of Statistical Software, vol. 48, no. 4, pp. 1-18. http://dx.doi.org/10.18637/jss.v048.i04
    » http://dx.doi.org/10.18637/jss.v048.i04
  • ESPÍRITO-SANTO, M.M., NEVES, F.S., ANDRADE-NETO, F.R. and FERNANDES, G.W., 2007. Plant architecture and meristem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia, vol. 153, no. 2, pp. 353-364. http://dx.doi.org/10.1007/s00442-007-0737-8 PMid:17453251.
    » http://dx.doi.org/10.1007/s00442-007-0737-8
  • EUBANKS, M.D., 2001. Estimates of the direct and indirect effects of red imported fire ants on biological control in field crops. Biological Control, vol. 21, no. 1, pp. 35-43. http://dx.doi.org/10.1006/bcon.2001.0923
    » http://dx.doi.org/10.1006/bcon.2001.0923
  • FERNANDES, G.W., GONÇALVES-ALVIM, S.J. and CARNEIRO, M.A.A., 2005. Habitat-driven effects on the diversity of gall-inducing insects in the Brazilian Cerrado. In: A. Raman, C.W. Schaefer and T.M. Withers, eds, Biology, ecology, and evolution of gall-inducing arthropods Washington, DC: Science Publishers, pp. 693-708.
  • FERRIER, S.M. and PRICE, P.W., 2004. Oviposition preference and larval performance of a rare bud-galling sawfly (Hymenoptera: Tenthredinidae) on willow in Northern Arizona. Environmental Entomology, vol. 33, no. 3, pp. 700-708. http://dx.doi.org/10.1603/0046-225X-33.3.700
    » http://dx.doi.org/10.1603/0046-225X-33.3.700
  • FIERRO, M.M., CRUZ-LOPEZ, L., SANCHEZ, D., VILLANUEVA-GUTIERREZ, R. and VANDAME, R., 2012. Effect of biotic factors on the spatial distribution of stingless bees (Hymenoptera: Apidae, Meliponini) in fragmented neotropical habitats. Neotropical Entomology, vol. 41, no. 2, pp. 95-104. http://dx.doi.org/10.1007/s13744-011-0009-5 PMid:23950022.
    » http://dx.doi.org/10.1007/s13744-011-0009-5
  • GOEBES, P., BRUELHEIDE, H., HÄRDTLE, W., KRÖBER, W., KÜHN, P., LI, Y., SEITZ, S., OHEIMB, G. and SCHOLTEN, T., 2015. Species-specific effects on through fall kinetic energy in subtropical forest plantations are related to leaf traits and tree architecture. PLoS One, vol. 10, no. 6, pp. e0128084. http://dx.doi.org/10.1371/journal.pone.0128084 PMid:26079260.
    » http://dx.doi.org/10.1371/journal.pone.0128084
  • GONTHIER, D.J., ENNIS, K.K., PHILPOTT, S.M., VANDERMEER, J. and PERFECTO, I., 2013. Ants defend coffee from berry borer colonization. BioControl, vol. 58, no. 6, pp. 815-820. http://dx.doi.org/10.1007/s10526-013-9541-z
    » http://dx.doi.org/10.1007/s10526-013-9541-z
  • GOTELLI, N.J., 2001. A primer of ecology 3rd ed. Massachusetts: Sinauer Associates, 265 p.
  • HALAJ, J., HALPERN, C.B. and YI, H., 2008. Responses of litter-dwelling spiders and carabid beetles to varying levels and patterns of green-tree retention. Forest Ecology and Management, vol. 255, no. 3, pp. 887-900. http://dx.doi.org/10.1016/j.foreco.2007.09.083
    » http://dx.doi.org/10.1016/j.foreco.2007.09.083
  • HOGG, B.N., MILLS, N.J. and DAANE, K.M., 2017. Temporal patterns in the abundance and species composition of spiders on host plants of the invasive moth Epiphyas postvittana (Lepidoptera: tortricidae). Environmental Entomology, vol. 46, no. 3, pp. 502-510. http://dx.doi.org/10.1093/ee/nvx065 PMid:28379400.
    » http://dx.doi.org/10.1093/ee/nvx065
  • JANSSON, J. and EKBOM, B., 2002. The effect of different plant nutrient regimes on the aphid Macrosiphum euphorbiae growing on petunia. Entomologia Experimentalis et Applicata, vol. 104, no. 1, pp. 109-116. http://dx.doi.org/10.1046/j.1570-7458.2002.00997.x
    » http://dx.doi.org/10.1046/j.1570-7458.2002.00997.x
  • KIMBERLEY, M.O., WANG, H., WILKS, P.J., FISHER, C.R. and MAGESAN, G.N., 2004. Economic analysis of growth response from a pine plantation forest applied with biosolids. Forest Ecology and Management, vol. 189, no. 1-3, pp. 345-351. http://dx.doi.org/10.1016/j.foreco.2003.09.003
    » http://dx.doi.org/10.1016/j.foreco.2003.09.003
  • KISHI, S., SAKURA, N., YOSHIKAWA, T., HIRAIWA, M.K. and KATOH, K., 2017. Interaction between insects and insect-pollinated plants on Myake Island after a recent volcanic eruption: a comparison between vegetation types. Journal of Asia-Pacific Entomology, vol. 20, no. 3, pp. 964-970. http://dx.doi.org/10.1016/j.aspen.2017.07.006
    » http://dx.doi.org/10.1016/j.aspen.2017.07.006
  • KITAHARA, M. and FUJII, K., 1997. An island biogeographical approach to the analysis of butterfly community patterns in newly designed parks. Population Ecology, vol. 39, no. 1, pp. 23-35. http://dx.doi.org/10.1007/BF02765247
    » http://dx.doi.org/10.1007/BF02765247
  • KOMONEN, A., ÖVERMARK, E., HYTÖNEN, J. and HALME, P., 2015. Tree species influences diversity of ground-dwelling insects in afforested fields. Forest Ecology and Management, vol. 349, no. 1, pp. 12-19. http://dx.doi.org/10.1016/j.foreco.2015.04.014
    » http://dx.doi.org/10.1016/j.foreco.2015.04.014
  • KOPITTKE, P.M. and MENZIES, N.W., 2007. A review of the use of the basic cation saturation ratio and the “ideal” soil. Soil Science Society of America Journal, vol. 71, no. 2, pp. 259-265. http://dx.doi.org/10.2136/sssaj2006.0186
    » http://dx.doi.org/10.2136/sssaj2006.0186
  • KREBS, C.J., 1989 [viewed 30 June 2016]. Bray-Curtis Cluster analysis [online]. Available from: https://biodiversity-pro.software.informer.com/
    » https://biodiversity-pro.software.informer.com/
  • LANDIS, D., WRATTEN, S.D. and GURR, G.M., 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, vol. 45, no. 1, pp. 175-201. http://dx.doi.org/10.1146/annurev.ento.45.1.175 PMid:10761575.
    » http://dx.doi.org/10.1146/annurev.ento.45.1.175
  • LANGELLOTTO, G.A., 2002. Aggregation of invertebrate predators in complex-structured habitats: role of altered cannibalism, intraguild predation, prey availability, and microclimate College Park, Md: Department of Entomology, University of Maryland, 208 p. Doctoral Dissertation in Philosophy.
  • LAWAL, O.A., OGUNWANDE, I.A., SALVADOR, A.F., SANNI, A.A. and OPOKU, A.R., 2014. Pachira glabra Pasq. essential oil: chemical constituents, antimicrobial and insecticidal activities. Journal of Oleo Science, vol. 63, no. 6, pp. 629-635. http://dx.doi.org/10.5650/jos.ess13179 PMid:24881772.
    » http://dx.doi.org/10.5650/jos.ess13179
  • LEITE, G.L.D., PICANÇO, M., ZANUNCIO, J.C., MOREIRA, M.D. and JHAM, G.N., 2011. Hosting capacity of horticultural plants for insect pests in Brazil. Chilean Journal of Agricultural Research, vol. 71, no. 3, pp. 383-389. http://dx.doi.org/10.4067/S0718-58392011000300006
    » http://dx.doi.org/10.4067/S0718-58392011000300006
  • LEITE, G.L.D., VELOSO, R.V., ZANUNCIO, J.C., AZEVEDO, A.M., SILVA, J.L., WILCKEN, C.F. and SOARES, M.A., 2017. Architectural diversity and galling insects on Caryocar brasiliense trees. Scientific Reports, vol. 7, no. 1, pp. 16677. http://dx.doi.org/10.1038/s41598-017-16954-6 PMid:29192234.
    » http://dx.doi.org/10.1038/s41598-017-16954-6
  • LEITE, G.L.D., VELOSO, R.V.D.S., MARTINS, E.R., ZANUNCIO, J.C., FERNANDES, G.W., ALMEIDA, C.I.M., RAMALHO, F.S. and SERRÃO, J.E., 2012b. Population of herbivores insects on different sides of Caryocar brasiliense (Caryocaraceae) trees in the Brazilian Cerrado Region. Journal of Medicinal Plants Research, vol. 6, no. 43, pp. 5557-5565. http://dx.doi.org/10.5897/JMPR11.1355
    » http://dx.doi.org/10.5897/JMPR11.1355
  • LEITE, G.L.D., VELOSO, R.V.D.S., ZANUNCIO, J.C., ALMEIDA, C.I.M.E., FERREIRA, P.S.F., FERNANDES, G.W. and SOARES, M.A., 2012a. Habitat Complexity and Caryocar brasiliense Herbivores (Insecta: Arachnida: Araneae). The Florida Entomologist, vol. 95, no. 4, pp. 819-830. http://dx.doi.org/10.1653/024.095.0402
    » http://dx.doi.org/10.1653/024.095.0402
  • LEITE, G.L.D., VELOSO, R.V.D.S., ZANUNCIO, J.C., ALONSO, J., FERREIRA, P.S.F., ALMEIDA, C.I.M. and SERRÃO, J.E., 2016. Diversity of Hemiptera (Arthropoda: Insecta) and their natural enemies on Caryocar brasiliense (Malpighiales: Caryocaraceae) trees in the Brazilian Cerrado. The Florida Entomologist, vol. 99, no. 2, pp. 239-247. http://dx.doi.org/10.1653/024.099.0213
    » http://dx.doi.org/10.1653/024.099.0213
  • LIMA JUNIOR, I.D.S., DEGRANDE, P.E., BERTONCELLO, T.F., MELO, E.P. and SUEKANE, R., 2013. Avaliação quantitativa do impacto do algodão-Bt na população de Araneae, Carabidae e Formicidae predadores ocorrentes sobre o solo. Bioscience Journal, vol. 29, no. 1, pp. 32-40. Available from: https://seer.ufu.br/index.php/biosciencejournal/article/ view/13304
    » https://seer.ufu.br/index.php/biosciencejournal/article/
  • LORENZI, H., 2008. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil 5ª ed. Nova Odessa: Instituto Plantarum, 384 p.
  • MACEDO, M.L.R., DIZ FILHO, E.B.S., FREIRE, M.G.M., OLIVA, M.L.V., SUMIKAWA, J.T., TOYAMA, M.H. and MARANGONI, S., 2011. A trypsin inhibitor from Sapindus saponaria L. seeds: purification, characterization, and activity towards pest insect digestive enzyme. The Protein Journal, vol. 30, no. 1, pp. 9-19. http://dx.doi.org/10.1007/s10930-010-9296-7 PMid:21127952.
    » http://dx.doi.org/10.1007/s10930-010-9296-7
  • MARTINS, M.N.C., SOUZA, V.V. and SOUZA, T.S., 2016. Genotoxic and mutagenic effects of sewage sludge on higher plants. Ecotoxicology and Environmental Safety, vol. 124, pp. 489-496. http://dx.doi.org/10.1016/j.ecoenv.2015.11.031
    » http://dx.doi.org/10.1016/j.ecoenv.2015.11.031
  • MASS, K.D.B., 2010. Biossólido como substrato na produção de mudas de timburi. Cuiabá: Universidade Federal de Mato Grosso, 45 p. Dissertação de Mestrado em Ciências Florestais e Ambientais.
  • MILTON, S.J., DEAN, W.R.J., DU PLESSIS, M.A. and SIEGFRIED, W.R., 1994. A conceptual model of arid rangeland degradation. Bioscience, vol. 44, no. 2, pp. 70-76. http://dx.doi.org/10.2307/1312204
    » http://dx.doi.org/10.2307/1312204
  • MIZUMACHI, E., MORI, A., OSAWA, N., AKIYAMA, R. and TOKUCHI, N., 2006. Shoot development and extension of Quercus serrata saplings in response to insect damage and nutrient conditions. Annals of Botany, vol. 98, no. 1, pp. 219-226. http://dx.doi.org/10.1093/aob/mcl091 PMid:16709576.
    » http://dx.doi.org/10.1093/aob/mcl091
  • MOTA, M.V.S., DEMOLIN-LEITE, G.L., GUANABENS, P.F.S., TEIXEIRA, G.L., SOARES, M.A., SILVA, J.L., SAMPAIO, R.A. and ZANUNCIO, J.C., 2021. Chewing insects, pollinators, and predators on Acacia auriculiformis A. Cunn. ex Beth (Fabales: Fabaceae) plants fertilized with dehydrated sewage sludge. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e248305. http://dx.doi.org/10.1590/1519-6984.248305 PMid:34669795.
    » http://dx.doi.org/10.1590/1519-6984.248305
  • NOGUEIRA, T.A.R., SAMPAIO, R.A., FONSECA, I.M., FERREIRA, C.S., SANTOS, S.E., FERREIRA, L.C., GOMES, E. and FERNANDES, L.A., 2007. Heavy metals and pathogens in maize and cowpea intercropped, fertilized with sewage sludge. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 11, no. 3, pp. 331-338. http://dx.doi.org/10.1590/S1415-43662007000300014
    » http://dx.doi.org/10.1590/S1415-43662007000300014
  • NOUVELLON, Y., LACLAU, J.P., EPRON, D., LE MAIRE, G., BONNEFOND, J.M., GONÇALVES, J.L.M. and BOUILLET, J.P., 2012. Production and carbon allocation in monocultures and mixed-species plantations of Eucalyptus grandis and Acacia mangium in Brazil. Tree Physiology, vol. 32, no. 6, pp. 680-695. http://dx.doi.org/10.1093/treephys/tps041 PMid:22588515.
    » http://dx.doi.org/10.1093/treephys/tps041
  • PATIÑO, J., WHITTAKER, R.J., BORGES, P.A.V., FERNÁNDEZ-PALACIOS, J.M., AH-PENG, C., ARAÚJO, M.B. and EMERSON, B.C., 2017. A roadmap for island biology: 50 fundamental questions after 50 years of The Theory of island biogeography. Journal of Biogeography, vol. 44, no. 5, pp. 963-983. http://dx.doi.org/10.1111/jbi.12986
    » http://dx.doi.org/10.1111/jbi.12986
  • PÉREZ-LACHAUD, G. and LACHAUD, J.P., 2014. Arboreal ant colonies as ‘hot-points’ of cryptic diversity for Myrmecophiles: the weaver ant Camponotus sp. aff. textor and its interaction network with associates. PLoS One, vol. 9, no. 6, pp. e100155. http://dx.doi.org/10.1371/journal.pone.0100155 PMid:24941047.
    » http://dx.doi.org/10.1371/journal.pone.0100155
  • R CORE TEAM, 2014 [viewed 30 June 2016]. R: a language and environment for statistical computing [online]. Vienna: R Foundation for Statistical Computing. Available from: http://www. R-project.org/
    » http://www.
  • RUBERSON, J.R., HERZOG, G.A., LAMBERT, W.R. and LEWIS, J., 1994. Management of the beet armyworm (Lepidoptera, Noctuidae) in cotton: role of natural enemies. The Florida Entomologist, vol. 77, no. 4, pp. 440-453. http://dx.doi.org/10.2307/3495698
    » http://dx.doi.org/10.2307/3495698
  • SALOV, G.I., 2014. On the power of a new statistical test and two-sample Wilcoxon test. Optoelectronics, Instrumentation and Data Processing, vol. 50, no. 1, pp. 36-48. http://dx.doi.org/10.3103/S8756699014010051
    » http://dx.doi.org/10.3103/S8756699014010051
  • SANCHES, A., 2015. Fidelity and promiscuity in an ant-plant mutualism: a case study of Triplaris and Pseudomyrmex. PLoS One, vol. 10, no. 12, pp. e0143535. http://dx.doi.org/10.1371/journal.pone.0143535 PMid:26630384.
    » http://dx.doi.org/10.1371/journal.pone.0143535
  • SANTANA, P.H.L., FRAZÃO, L.A., SANTOS, L.D.F., FERNANDES, L.A. and SAMPAIO, R.A., 2016. Soil attributes and production of Eucalyptus in monoculture and silvopastoral systems in the north of Minas Gerais, Brazil. Journal of Agricultural Science and Technology B, vol. 6, no. 1, pp. 361-370. http://dx.doi.org/10.17265/2161-6264/2016.06.001
    » http://dx.doi.org/10.17265/2161-6264/2016.06.001
  • SANTOS, M.S., LOUZADA, J.N.C., DIAS, N., ZANETTI, R., DELABIE, J.H.C. and NASCIMENTO, I.C., 2006. Riqueza de formigas (Hymenoptera, Formicidade) da serapilheira em fragmentos de floresta semidecídua da Mata Atlântica na região do Alto do Rio Grande, MG, Brasil. Iheringia. Série Zoologia, vol. 96, no. 1, pp. 95-101. http://dx.doi.org/10.1590/S0073-47212006000100017
    » http://dx.doi.org/10.1590/S0073-47212006000100017
  • SASTAWA, B.M., LAWAN, M. and MAINA, Y.T., 2004. Management of insect pests of soybean: effects of sowing date and intercropping on damage and grain yield in the Nigerian Sudan savanna. Crop Protection, vol. 23, no. 2, pp. 155-161. http://dx.doi.org/10.1016/j.cropro.2003.07.007
    » http://dx.doi.org/10.1016/j.cropro.2003.07.007
  • SILVA, J.L., LEITE, G.L.D., GUANABENS, R.E.M., AZEVEDO, A.M., FERNANDES, G.W. and ZANUNCIO, J.C., 2021. Fertilization with dehydrated sewage sludge affects the phytophagous Hemiptera, tending ants, and Sternorryncha predators on Acacia mangium (Fabaceae). Annals of Applied Biology, vol. 179, no. 3, pp. 345-353. http://dx.doi.org/10.1111/aab.12706
    » http://dx.doi.org/10.1111/aab.12706
  • SILVA, J.L., LEITE, G.L.D., TAVARES, W.S., SILVA, F.W.S., ARRUDA, R.S., AZEVEDO, A.M., SERRÃO, J.E. and ZANUNCIO, J.C., 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in a degraded area. Royal Society Open Science, vol. 7, no. 2, pp. 191196. http://dx.doi.org/10.1098/rsos.191196 PMid:32257306.
    » http://dx.doi.org/10.1098/rsos.191196
  • SUNDERLAND, K. and SAMU, F., 2000. Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: a review. Entomologia Experimentalis et Applicata, vol. 95, no. 1, pp. 1-13. http://dx.doi.org/10.1046/j.1570-7458.2000.00635.x
    » http://dx.doi.org/10.1046/j.1570-7458.2000.00635.x
  • TAIZ, L., ZEIGER, E., MOLLER, I.M. and MURPHY, A., 2017. Fisiologia e desenvolvimento vegetal 6ª ed. Porto Alegre: Artmed, 888 p.
  • TSUZUKI, J.K., SVIDZINSKI, T.I.E., SHINOBU, C.S., SILVA, L.F.A., RODRIGUES-FILHO, E., CORTEZ, D.A.G. and FERREIRA, I.C.P., 2007. Antifungal activity of the extracts and saponins from Sapindus saponaria L. Anais da Academia Brasileira de Ciências, vol. 79, no. 4, pp. 577-583. http://dx.doi.org/10.1590/S0001-37652007000400002 PMid:18066429.
    » http://dx.doi.org/10.1590/S0001-37652007000400002
  • UNIVERSIDADE FEDERAL DE VIÇOSA - UFV, 2007 [viewed 30 June 2016]. Sistema para Análises Estatísticas (SAEG) versão 9.1 [online]. Viçosa: Fundação Arthur Bernardes, UFV. Available from: http://arquivo.ufv.br/saeg/
    » http://arquivo.ufv.br/saeg/
  • WAY, M.J., JAVIER, G. and HEONG, K.L., 2002. The role of ants, especially the fire ant Solenopsis geminata (Hymenoptera: Formicidae), in the biological control of tropical upland rice pests. Bulletin of Entomological Research, vol. 92, no. 5, pp. 431-437. http://dx.doi.org/10.1079/BER2002185
    » http://dx.doi.org/10.1079/BER2002185
  • WHISENANT, S., 1999. Repairing damaged wildlands: a process-orientated, landscape-scale approach: biological conservation, restoration, and sustainability Cambridge: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511612565
    » http://dx.doi.org/10.1017/CBO9780511612565
  • WILCOXON, F., 1945. Individual comparisons by ranking methods. Biometrics Bulletin, vol. 1, no. 6, pp. 80-83. http://dx.doi.org/10.2307/3001968
    » http://dx.doi.org/10.2307/3001968

Publication Dates

  • Publication in this collection
    15 May 2023
  • Date of issue
    2023

History

  • Received
    26 Jan 2023
  • Accepted
    13 Mar 2023
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br