Acessibilidade / Reportar erro

Antifungal activity of terpenes isolated from the Brazilian Caatinga: a review

Atividade antifúngica de terpenos isolados da caatinga: uma revisão

Abstract

Terpenoids, also named terpenes or isoprenoids, are a family of natural products found in all living organisms. Many plants produce terpenoids as secondary metabolites, and these make up a large part of essential oils. One of most important characteristic is that the compounds are volatile, have odor and can be used in a variety of applications in different industrial segments and traditional medicine. Brazil has a rich and diverse flora that can be used as a source of research for obtaining new molecules. Within the Brazilian flora, it is worth mentioning the Caatinga as an exclusively Brazilian biome where plants adapt to a specific series of weather conditions and therefore become a great storehouse of the terpenoid compounds to be described herein. Fungal infections have become increasingly common, and a great demand for new agents with low toxicity and side effects has thus emerged. Scientists must search for new molecules exhibiting antifungal activity to develop new drugs. This review aims to analyze scientific data from the principal published studies describing the use of terpenes and their biological applications as antifungals.

Keywords:
terpenoids; antifungal activity; Brazil; Northeast; essential oils

Resumo

Os terpenóides, também chamados terpenos ou isoprenóides, são uma família de produtos naturais encontrados em todos os organismos vivos. Muitas plantas são produtoras destes metabolitos secundários, que constituem uma grande parte dos óleos essenciais. Uma das características mais importantes é que os compostos são voláteis, têm odor e podem ser utilizados numa variedade de aplicações em diferentes segmentos industriais ou na medicina tradicional. O Brasil tem uma flora rica e diversificada que pode ser utilizada como fonte de pesquisa para a obtenção de novas moléculas. Dentro desta flora, vale a pena mencionar a Caatinga como um bioma exclusivamente brasileiro que possui plantas adaptadas a uma série de condições climáticas e, portanto, um armazém de compostos a serem descritos. As infecções fúngicas são doenças cada vez mais comuns, devido a isso existe uma grande procura de novos agentes com baixa toxicidade e efeitos secundários. Os cientistas devem procurar novas moléculas que exibam atividade antifúngica para o desenvolvimento de novos medicamentos contra as infecções fúngicas. Esta revisão visa analisar dados científicos dos principais estudos publicados que descrevem o uso de terpenóides e as suas aplicações biológicas como antifúngicos.

Palavras-chave:
terpenóides; atividade antifúngica; Brasil; Nordeste; óleos essenciais

1. Introduction

The Caatinga's phytogeographic domains are primarily in Brazil's northeast and contain a significant number of native flora species. Plants from the Caatinga, present a considerable variety of secondary metabolites, phytoconstituents, and essential oils, and have thus stood out in the pharmaceutical industry (Moura et al., 2020MOURA, D.F., ROCHA, T.A., MELO BARROS, D., SILVA, M.M., OLIVEIRA FERREIRA, S.A., MARTINS, R.D. and SILVA, M.V., 2020. Avaliação ponderal e screening hipocrático de camundongos tratados com Nerolidol. Brazilian Journal of Development, vol. 6, no. 1, pp. 5172-5183. http://dx.doi.org/10.34117/bjdv6n1-375.
http://dx.doi.org/10.34117/bjdv6n1-375...
).

These compounds are produced by plants in defense against disease, and can be classified into primary and secondary metabolites. Primary metabolites involve sugars, amino acids, proteins, and chlorophyll among others, while secondary metabolites involve alkaloids, terpenoids, and phenolic compounds, as well as flavonoids, and tannins, (Duduku et al., 2007DUDUKU, K., ROSALAM, S. and AWANG, B., 2007. Phytochemical antioxidants for health and medicine - A move towards nature. Biotechnology and Molecular Biology Reviews, vol. 2, no. 4, pp. 97-104.).

Essential oils (EOs) are characterized as complex mixtures of compounds derived from the secondary metabolism of plants. Usually, volatiles present odors and may contain hundreds individual molecules formed essentially by monoterpenes, sesquiterpenes, phenylpropanoids, and isothiocyanates (Felipe and Bicas, 2017FELIPE, L.O. and BICAS, J.L., 2017. Terpenos, aromas e a química dos compostos naturais. Química Nova na Escola, vol. 39, no. 2, pp. 120-130. http://dx.doi.org/10.21577/0104-8899.20160068.
http://dx.doi.org/10.21577/0104-8899.201...
).

In general, monoterpenes, and sesquiterpenes, and their oxygenated derivatives are principal components of EOs. The concentration of these molecules varies, and some molecules can make up to 70% of the EO total, being thus principal components and therefore responsible for the EO´s attributed biological activity (Sharifi-Rad et al., 2017SHARIFI-RAD, J., SUREDA, A., TENORE, G.C., DAGLIA, M., SHARIFI-RAD, M., VALUSSI, M., TUNDIS, R., SHARIFI-RAD, M., LOIZZO, M.R., ADEMILUYI, A.O., SHARIFI-RAD, R., AYATOLLAHI, S.A. and IRITI, M., 2017. Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules (Basel, Switzerland), vol. 22, no. 1, pp. 70. http://dx.doi.org/10.3390/molecules22010070. PMid:28045446.
http://dx.doi.org/10.3390/molecules22010...
).

Increases in fungal resistance and the lack of therapeutic options to treat fungal infections has contributed to the advent of new, more effective, and less toxic therapies (Singh and Sharma, 2015SINGH, B., and SHARMA, R. A., 2015. Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech, vol. 5, no. 2, pp. 129-151. http://dx.doi.org/10.1007/s13205-014-0220-2. PMID: 28324581.
http://dx.doi.org/10.1007/s13205-014-022...
). In the northeastern Caatinga, medicinal plants are widely used in folk medicine by local communities due to the presence of terpenes (Alves et al., 2016ALVES, M.F., CASTRO NIZIO, D.A., SAMPAIO, T.S., NASCIMENTO JUNIOR, A.F., ANDRADE BRITO, F., MELO, J.O., BLANK, M.F.A., GAGLIARDI, P.R., MACHADO, S.M.F. and BLANK, A.F., 2016. Myrcia lundiana Kiaersk native populations have different essential oil composition and antifungal activity against Lasiodiplodia theobromae. Industrial Crops and Products, vol. 85, pp. 266-273. http://dx.doi.org/10.1016/j.indcrop.2016.03.039.
http://dx.doi.org/10.1016/j.indcrop.2016...
).

In addition to the development of fungal resistance, whether inherent or acquired, pharmacotherapy for fungal infections has been limited due to host toxicity, the struggle is to find an effective drug against eukaryotic fungal cells (Silva et al., 2012SILVA, S., NEGRI, M., HENRIQUES, M., OLIVEIRA, R., WILLIAMS, D.W. and AZEREDO, J., 2012. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiology Reviews, vol. 36, no. 2, pp. 288-305. http://dx.doi.org/10.1111/j.1574-6976.2011.00278.x. PMid:21569057.
http://dx.doi.org/10.1111/j.1574-6976.20...
). This review aims to analyze scientific data from the principal published studies describing the use of terpenoids from Caatinga plants and their biological applications as antifungal agents.

2. Material and Methods

Our study consisted of a bibliographic review based on the following descriptors: Terpenoids, Antifungal activity, Caatinga, Northeast, and Essential Oils. The results were collected through the electronic databases Medline/PubMed and Science Direct, in Portuguese and English. Research inclusion criteria related to antifungal activity found in Brazilian Caatinga vegetation species were considered. However, the exclusion criteria were not applied, as articles are scarce. Papers with classic citations in the area between the years 1976 - 1995 were collected; and recent literature from 2003 to 2021 was also analyzed.

3. Results and Discussion

3.1. Caatinga ethnopharmacology

Many cultures maintain millennial traditions of using medicinal plants for different purposes and in different ways (Rodrigues et al., 2018RODRIGUES, F.F.G., COLARES, A.V., NONATO, C.D.F.A., GALVÃO-RODRIGUES, F.F., MOTA, M.L., BRAGA, M.F.B.M. and COSTA, J.G.M., 2018. In vitro antimicrobial activity of the essential oil from Vanillosmopsis arborea Barker (Asteraceae) and its major constituent, α-bisabolol. Microbial Pathogenesis, vol. 125, pp. 144-149. http://dx.doi.org/10.1016/j.micpath.2018.09.024. PMid:30219391.
http://dx.doi.org/10.1016/j.micpath.2018...
). In ethnopharmacology, scientific proof concerning active principles and pharmacological activities of plant-derived products (which combat pathologies) can be obtained, and the manufacture of new medicines becomes possible (Dantas et al., 2018DANTAS, T. L., LUCENA NOGUEIRA, P., ARRUDA, T. A., CATÃO, R. M. R., and MORAIS, M. R., 2018. Estudo etnofarmacológico de plantas medicinais: atividade antimicrobiana de extratos de Allium sativum L. (alho) e Bixa orellana L. (urucum). Journal of Biology & Pharmacy and Agricultural Management, vol. 14, no. 1, pp. 36-42.). The current growth in demand for natural products, in addition to social factors and economic constraints in needy communities and regional cultures, are related to the great diversity of pharmacological compounds being used today (Macedo et al., 2020MACEDO, G.F., ALMEIDA-BEZERRA, J.W., DA SILVA, V.B., LIMA, E.E., DE MENEZES, S.A., PORTELA, B.Y.M., BRAGA, B.L.P., BEZERRA, J.S., OLIVEIRA, M.G., ALENCAR, D.R., COSTA, A.R., SOUZA, M.A., CRUZ NETO, J., PEREIRA, T.C. and SILVA, F.S.H., 2020. Eremanthus arboreus (Gardner) MacLeish (Candeeiro): natural source of α-Bisabolol. Research, Social Development, vol. 9, no. 10, pp. e9599109270. http://dx.doi.org/10.33448/rsd-v9i10.9270.
http://dx.doi.org/10.33448/rsd-v9i10.927...
).

The botanical diversity found in Brazil favors the use of medicinal plants, and the Caatinga is the only exclusive Brazilian domain containing these plants. The Caatinga represents about 10% of the national territory and about 60% of Northeastern Brazil. The Caatinga is characterized by its great diversity, (its diverse and endemic flora is composed mainly of annual herbaceous and woody shrub species, with 932 plant species recorded in the region, and of which 380 are endemic). Yet the Caatinga still suffers from a scarcity of ethnopharmacological study and/or scientific characterization (Torres et al., 2021TORRES, S.B., DOS SANTOS, A.N.A., BARBOSA, M.V.C. and CABRAL, A.G.S., 2021. Potencial terapêutico das ervas medicinais da caatinga região do nordeste brasileiro: therapeutic potential of medicinal herbs from the caatinga region of northeastern Brazil. Archives of Health, vol. 2, no. 4, pp. 1301-1304.), and legislative and practical problems in maintaining the biome are still frequently encountered (Vasconcelos et al., 2017VASCONCELOS, A. D. M., HENRIQUES, I. G. N., SOUZA, M. P., SOUSA SANTOS, W., SOUSA SANTOS, W., and RAMOS, G. G., 2017. Caracterização florística e fitossociológica em área de Caatinga para fins de manejo florestal no município de São Francisco-PI. Agropecuária Científica no Semiárido, vol. 13, no. 4, pp. 329-337. http://dx.doi.org/10.30969/acsa.v13i4.967.
http://dx.doi.org/10.30969/acsa.v13i4.96...
).

Exploring the ethnobotanical diversity of the Caatinga, Roque et al. (2010)ROQUE, A.D.A., ROCHA, R.D.M. and LOIOLA, M.I.B., 2010. Uso e diversidade de plantas medicinais da Caatinga na comunidade rural de Laginhas, município de Caicó, Rio Grande do Norte (nordeste do Brasil). Revista Brasileira de Plantas Medicinais, vol. 12, no. 1, pp. 31-42. http://dx.doi.org/10.1590/S1516-05722010000100006.
http://dx.doi.org/10.1590/S1516-05722010...
recorded the use of 62 native plants suitable for a pharmacological application based on the common knowledge of a rural community in the municipality of Caicó, Rio Grande do Norte. The most commonly mentioned species were aroeira (Myracrodruon urundeuva Alemão), cumaru (Amburana cearensis), marmeleiro (Croton blanchetianus), quebra-pedra (Phyllanthus niruri), and carrapicho (Acanthospermum hispidum).

Due to the known bioactive potential of their chemical compounds, certain Caatinga species have demonstrated pharmacological activity. Emiliano and Balliano (2019)EMILIANO, S.A. and BALLIANO, T.L., 2019. Prospecção de artigos e patentes sobre plantas medicinais presentes na caatinga brasileira. Cadernos de Prospecção, vol. 12, no. 3, pp. 615. http://dx.doi.org/10.9771/cp.v12i3.27324.
http://dx.doi.org/10.9771/cp.v12i3.27324...
evaluated the pharmacological activities of Croton heliotropiifolius and Croton argyrophyllus, which are traditionally used as antifungal and anti-inflammatory drugs, while Neri et al. (2021)NERI, T.S., SILVA, K.W.L., MAIOR, L.P.S., OLIVEIRA-SILVA, S.K., AZEVEDO, P.V.M., GOMES, D.C.S., SOUZA, M.A., PAVÃO, J.M.S.J., COSTA, J.G., CUNHA, A.L., FERREIRA-JÚNIOR, G.C., MATOS-ROCHA, T.J., SANTOS, A.F. and FONSECA, S.A., 2021. Phytochemical characterization, antioxidant potential and antibacterial activity of the Croton argyrophylloides Muell. Arg. (Euphorbiaceae). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, pp. e236649. http://dx.doi.org/10.1590/1519-6984.236649. PMid:34669789.
http://dx.doi.org/10.1590/1519-6984.2366...
evaluated the antioxidant activity of Croton argyrophyllus. Previously used in popular medicine as anti-inflammatories, another 15 plants from the Caatinga have also shown potential for sun protection.

3.2. Phytochemistry

Many different phytochemical compounds are present in high concentrations in the Caatinga flora (Moura et al., 2019MOURA, D.F., MARTINS, R.D. and SILVA, M.V., 2019. Nerolidol: Fitoconstituinte de óleos essenciais de plantas da caatinga. Brazilian Journal of Development, vol. 5, no. 12, pp. 33402-33416. http://dx.doi.org/10.34117/bjdv5n12-384.
http://dx.doi.org/10.34117/bjdv5n12-384...
). The application of laboratory analysis, phytochemical typology, and experimental studies can determine the medicinal efficacy of their use, which is culturally disseminated by local populations. Secondary metabolites, the main phytochemical constituents with bioactive properties, combat many types of microorganisms, including filamentous fungi, yeasts, and bacteria. The principal secondary metabolites listed in the literature are the terpenes, phenolic compounds, nitrogen and organosulfur compounds, and alkaloids. However, in many medicinal plant groups, the terpene group (terpenoids) are prominent (Verruck et al., 2018VERRUCK, S., PRUDENCIO, E.S. and SILVEIRA, S.M., 2018. Compostos bioativos com capacidade antioxidante e antimicrobiana em frutas. Revista do Congresso Sul Brasileiro de Engenharia de Alimentos, vol. 4, no. 1, pp. 111-124. http://dx.doi.org/10.5965/24473650412018111.
http://dx.doi.org/10.5965/24473650412018...
).

3.3. Terpenoids

Terpenoids, are mostly found in plants as secondary metabolites, although they can also be found in animals as sterols and squalene. Currently, there are at least 60,000 terpenoids, making them the most significant and oldest family of natural products found on earth. (Cox-Georgian et al., 2019COX-GEORGIAN, D., RAMADOSS, N., DONA, C. and BASU, C., 2019. Therapeutic and medicinal uses of terpenes. In: N. JOSHEE, S. DHEKNEY and P. PARAJULI, eds.Medicinal plants. Cham: Springer, pp. 333-359. http://dx.doi.org/10.1007/978-3-030-31269-5_15.
http://dx.doi.org/10.1007/978-3-030-3126...
).

Terpenes play many roles in living organisms, they protect microorganisms, animals, and plants from both abiotic and biotic stress. Terpenoid compounds can help ward off pathogens, predators, and other natural plant competitors (Gershenzon; Dudareva, 2007GERSHENZON, J. and DUDAREVA, N., 2007. The function of terpene natural products in the natural world. Nature Chemical Biology, vol. 3, no. 7, pp. 408-414. http://dx.doi.org/10.1038/nchembio.2007.5. PMid:17576428.
http://dx.doi.org/10.1038/nchembio.2007....
), as well as serve medicinal purposes.

3.4. Classifications

Terpenes are classified according to the number of isoprene (C5 H8) units (Figure 1) present in their molecule, which can be: hemiterpenes (C5 H8), monoterpenes (C10 H16) sesquiterpenes (C15 H24), diterpenes (C20 H32), sesquiterpenes (C25 H40), triterpenes (C30 H48), tetraterpenes (C40 H64) or polyterpenes (C50 or >, and H50-80 or >) (Mcgarvey and Croteau', 1995MCGARVEY, D.J. and CROTEAU, R., 1995. Terpenoid metabolism. The Plant Cell, vol. 7, no. 7, pp. 1015-1026. PMid:7640522.).

Figure 1
Formula of isoprene (Felipe and Bicas, 2017FELIPE, L.O. and BICAS, J.L., 2017. Terpenos, aromas e a química dos compostos naturais. Química Nova na Escola, vol. 39, no. 2, pp. 120-130. http://dx.doi.org/10.21577/0104-8899.20160068.
http://dx.doi.org/10.21577/0104-8899.201...
).

3.5. Monoterpenes

The vast part of monoterpenes are volatile and primary constituents of essential oils or essences, such as menthol, linalool, and citral. Monoterpenes constitute 90% of essential oils and have many pharmacological activities already described in the literature, such as analgesic, anti-inflammatory, antidepressant, and anticonvulsant activity (Peixoto‐Neves et al., 2010PEIXOTO‐NEVES, D., SILVA‐ALVES, K. S., GOMES, M. D. M., LIMA, F. C., LAHLOU, S., MAGALHÃES, P. J. C., CECCATTO, V. M., COELHO-DE-SOUZA, A. N., and LEAL‐CARDOSO, J. H., 2010. Efeitos vasorelaxantes dos isômeros do fenol monoterpênico, carvacrol e timol, na aorta isolada de ratos. Farmacologia Fundamental e Clínica, vol. 24, no. 3, pp. 341-350.). Two monoterpenes that stand out for their antifungal activity and known in the literature are thymol and carvacrol (Figure 2) which are aromatic monoterpenes very present in plants such as Lippia sidoides (Verbenaceae) (Baldim et al., 2022BALDIM, I., PAZIANI, M.H., BARIÃO, P.H.G., KRESS, M.R.Z. and OLIVEIRA, W.P., 2022. Nanostructured lipid carriers loaded with lippia sidoides essential oil as a strategy to combat the multidrug-resistant Candida auris. Pharmaceutics, vol. 14, no. 1, pp. 180. http://dx.doi.org/10.3390/pharmaceutics14010180. PMid:35057078.
http://dx.doi.org/10.3390/pharmaceutics1...
).

Figure 2
Formula of thymol and carvacrol (Felipe and Bicas, 2017FELIPE, L.O. and BICAS, J.L., 2017. Terpenos, aromas e a química dos compostos naturais. Química Nova na Escola, vol. 39, no. 2, pp. 120-130. http://dx.doi.org/10.21577/0104-8899.20160068.
http://dx.doi.org/10.21577/0104-8899.201...
).

3.6. Diterpenes

Diterpenes are part of a large and diverse class of unique metabolites that can be considered the result of natural factors, they can provide chemical defense against predators, mechanical injury, phytophages, pathogens, mechanical injury, and ecological interactions They often represent an alternative metabolic strategy to increase the average life of certain organic substances inside the cell, as well as other environmental factors. Diterpenes, mainly polycyclic with a carboxyl group, are present in various plant resins, such as copaiba (Copaifera langsdorfii, Fabaceae). There are several studies investigating and evaluating the activities of diterpenes isolated from copaifera, including copalic acid (Figure 3) as a therapeutic alternative for fighting against microorganisms. (Abrão et al., 2015ABRÃO, F., ARAÚJO COSTA, L.D., ALVES, J.M., SENEDESE, J.M., CASTRO, P.T., AMBRÓSIO, S.R., VENEZIANI, R.C.S., BASTOS, J.K., TAVARES, D.C. and MARTINS, C.H.G., 2015. Copaifera langsdorffii oleoresin and its isolated compounds: antibacterial effect and antiproliferative activity in cancer cell lines. BMC Complementary and Alternative Medicine, vol. 15, pp. 443. http://dx.doi.org/10.1186/s12906-015-0961-4. PMid:26691920.
http://dx.doi.org/10.1186/s12906-015-096...
).

Figure 3
Molecular structure of copalic acid diterpene (Medeiros et al., 2021MEDEIROS, V.G., DURÁN, F.J. and LANG, K.L., 2021. Copalic acid: occurrence, chemistry, and biological activities. Revista Brasileira de Farmacognosia, vol. 31, no. 4, pp. 375-386. http://dx.doi.org/10.1007/s43450-021-00173-2.
http://dx.doi.org/10.1007/s43450-021-001...
).

3.7. Sesquiterpenes

The structural diversity of sesquiterpenes promotes a variety of pharmacological activities, not only through discovery of new molecules but also through improvements in drug development against emerging threats. Although sesquiterpenes are a class of terpenes, they can be categorized according to their biosynthetic origin, for example, carotenoids (MEP pathway cleavage products), drimanes, farnesene, and cyclic sesquiterpenes (FPP) (Chappell et al., 2010CHAPPELL, J., COATES, R.M., LEW, M. and HUNG-WEN, L., 2010. Sesquiterpenes. In: L. MANDER and H.-W. LI, eds. Comprehensive natural products II. Chemistry and biology. USA: Elsevier, vol. 1, pp. 609-641.).

Some compounds originating from the MEP pathway (Figure 4), such as β-caryophyllene, can be found in a variety of plants, as an example, one of the most prominent constituents of the essential oils of Pterodon emarginatus and Schinopsis brasiliensis, exhibits antioxidant and anticancer activity (Donati et al., 2015DONATI, M., MONDIN, A., CHEN, Z., MIRANDA, F.M., NASCIMENTO JUNIOR, B.B., SCHIRATO, G., PASTORE, P. and FROLDI, G., 2015. Radical scavenging and antimicrobial activities of Croton zehntneri, Pterodon emarginatus and Schinopsis brasiliensis essential oils and their major constituents: estragole, trans-anethole, β-caryophyllene and myrcene. Natural Product Research, vol. 29, no. 10, pp. 939-946. http://dx.doi.org/10.1080/14786419.2014.964709. PMid:25280163.
http://dx.doi.org/10.1080/14786419.2014....
). β-caryophyllene, also found in Croton zehntneri and Eugenia uniflora essential oils, presents antifungal activity (Santos et al., 2020SANTOS, A.R.B., LANJEIRA, D., DIAS, L.R.C., SOUSA, E.S., MELO, C.D.S., LIMA, S.G., SILVA, P.H.S. and SOBRINHO, C.A., 2020. Chemical composition and control of Sclerotium rolfsii Sacc by essential oils. African Journal of Microbiological Research, vol. 14, no. 4, pp. 119-128. http://dx.doi.org/10.5897/AJMR2020.9286.
http://dx.doi.org/10.5897/AJMR2020.9286...
; Costa et al., 2022COSTA, J.S., CRUZ, E.N.S., SETZER, W.N., SILVA, J.K.R., MAIA, J.G.S. and FIGUEIREDO, P.L.B., 2022. Essentials oils from BrazilianEugeniaandSyzygiumspecies and their biological activities. Biomolecules, vol. 10, no. 8, pp. 1155. http://dx.doi.org/10.3390/biom10081155. PMID: 32781744
http://dx.doi.org/10.3390/biom10081155...
).

Figure 4
Sesquiterpene molecule (Dias and Amaro, 2020DIAS, C. and AMARO, L., 2020. Strategies to preserve postharvest quality of horticultural crops and superficial scald control: from diphenylamine antioxidant usage to more recent approaches. Antioxidants, vol. 9, no. 4, pp. 356. http://dx.doi.org/10.3390/antiox9040356. PMid:32344588.
http://dx.doi.org/10.3390/antiox9040356...
).

3.8. Triterpenes

Triterpenes are hydrocarbons that have relatively complex cyclic structures formed by the condensation of two FPPs, such as squalene (Figure 5). These are principally found in nature as 1-5 ring systems, and are formed in plants, animals, and fungi by numerous terpene synthases such as: squalene synthase, triterpene synthase, and oxidosqualene cyclase (OSC) (Garg et al., 2020GARG, A., SHARMA, R., DEY, P., KUNDU, A., KIM, H.S., BHAKTA, T. and KUMAR, A., 2020. Analysis of triterpenes and triterpenoids. In: A.S. SILVA, S.F. NABAVI, M. SAEEDI and S.M. NABAVI, eds. Recent advances in natural products analysis. Amsterdam: Elsevier, pp. 393-426. http://dx.doi.org/10.1016/B978-0-12-816455-6.00011-1.
http://dx.doi.org/10.1016/B978-0-12-8164...
).

Figure 5
Structure of squalene (Dias and Amaro, 2020DIAS, C. and AMARO, L., 2020. Strategies to preserve postharvest quality of horticultural crops and superficial scald control: from diphenylamine antioxidant usage to more recent approaches. Antioxidants, vol. 9, no. 4, pp. 356. http://dx.doi.org/10.3390/antiox9040356. PMid:32344588.
http://dx.doi.org/10.3390/antiox9040356...
).

3.9. Antifungal activity

There are a variety of terpenes that present antifungal activity. In Table 1, the results of the most recent studies can be found, summarized about terpenes whether extracted from Caatinga plants, or through synthetic processes. These molecules: terpinene-4-ol, limonene, γ-terpinene, E-cinnamaldehyde, Linalool, α terpineol, (-)-borneol, β-caryophyllene, germacrene D, and bicyclogermacrene present good antifungal activity, with significant biotechnological potential. However, overall, their mechanisms of action still need evaluation.

Table 1
Terpenes isolated from Caatinga species and related antimicrobial activities.

Zheng et al. (2015)ZHENG, S., JING, G., WANG, X., OUYANG, Q., JIA, L. and TAO, N., 2015. Citral exerts its antifungal activity against Penicillium digitatum by affecting the mitochondrial morphology and function. Food Chemistry, vol. 178, pp. 76-81. http://dx.doi.org/10.1016/j.foodchem.2015.01.077. PMid:25704686.
http://dx.doi.org/10.1016/j.foodchem.201...
investigated Citral´s action mechanism against Penicillium digitatum. Mitochondria were extracted and visualized using scanning electron microscopy. Intracellular and extracellular ATP levels were evaluated, as well as effects on respiratory metabolism, citric acid (CA), and enzymatic activity related to TCA metabolism. The study results revealed that citral was involved in inhibiting respiratory metabolism by affecting mitochondrial morphology and function. According to the study, citral diminished enzymatic activity related to TCA and its metabolic functions. The same species, P. digitatum, presented sensibility against another terpene, citronellal. However, its mechanism of action was different. Ouyang et al. (2021)OUYANG, Q., LIU, Y., OKETCH, O.R., ZHANG, M., SHAO, X. and TAO, N., 2021. Citronellal exerts its antifungal activity by targeting ergosterol biosynthesis in Penicillium digitatum. Journal of Fungi (Basel, Switzerland), vol. 7, no. 6, pp. 432. http://dx.doi.org/10.3390/jof7060432. PMid:34072578.
http://dx.doi.org/10.3390/jof7060432...
showed that P. digitatum membrane integrity was affected in cells treated with citronellal, and ergosterol biosynthesis was modified.

Further, citronellal inhibitory activity was diminished when exogenous ergosterol was added to restore ergosterol to normal levels. Consequently, membrane structure was also restored, and an accumulation of ergosta-7,22-dienol was observed, which made the authors suppose that this terpene, citronellal, down regulates the ERG3 gene. The ERG3 gene is involved in lanosterol conversion into ergosterol, a fundamental component of the fungal membrane. Therefore, through this mechanism, citronellal interferes in fungal plasmatic membrane integrity. These examples show how certain terpenes act depending on their molecular structures and the peculiarity of the targeted cell.

As shown before, the same cell can be affected differently by distinct molecules with differing mechanisms. Shi et al. (2019)SHI, Y., SI, H., WANG, P., CHEN, S., SHANG, S., ZHANQIAN, C., WANG, Z. and LIAO, S., 2019. Derivatization of natural compound β-pinene enhances its in vitro antifungal activity against plant pathogens. Molecules (Basel, Switzerland), vol. 24, no. 17, pp. 3144. http://dx.doi.org/10.3390/molecules24173144. PMid:31470567.
http://dx.doi.org/10.3390/molecules24173...
demonstrated how derivatives of the same molecule, β-pinene, can act differently. This type of study helps to understand which portion of a molecule interacts with the target cell. The β-pinene derivatives presented better results against some species than others. The study also showed both moderate and significant antifungal activity through pinene skeleton fusion with the amide portion of acylthiourea. In analysis of structure-activity relationships, it was shown that a trifluoromethyl group at the benzene ring of the derivatives, or a fluor atom and nitro group, could significantly improve activity.

Brilhante et al. (2019)BRILHANTE, R.S.N., PEREIRA, V.S., OLIVEIRA, J.S., RODRIGUES, A., DE CAMARGO, Z.P., PEREIRA-NETO, W.A., NASCIMENTO, N.R.F., CASTELO-BRANCO, D.S.C.M., CORDEIRO, R.A., SIDRIM, J.J.C. and ROCHA, M.F.G., 2019. Terpinen-4-ol inhibits the growth of Sporothrix schenckii complex and exhibits synergism with antifungal agents. Future Microbiology, vol. 14, no. 14, pp. 1221-1233. http://dx.doi.org/10.2217/fmb-2019-0146. PMid:31625442.
http://dx.doi.org/10.2217/fmb-2019-0146...
demonstrated the effects of Terpinen-4-ol against species of Sporothrix schenckii complex, a human pathogen that causes sporotrichosis. The authors investigated its effects against the planktonic and biofilm forms of S. schenckii. Terpinen-4-ol was effective against both fungi forms, being responsible for membrane alterations through ergosterol reductions. The authors also combined the terpene with other drugs, such as ergosterol synthesis inhibitors, such as ITC (14-α-demethylase inhibitor), and TRB (squalene epoxidase inhibitor). Synergism was observed for both associations, with distinct inhibition points in the ergosterol biosynthesis cascade.

Besides the mechanisms discussed here, many others still need elucidation. Research for alternatives to infections caused by drug-resistant strains makes this field of research fundamental. It is also essential to focus on combination therapeutics, as was discussed in the literature (Brilhante et al., 2019BRILHANTE, R.S.N., PEREIRA, V.S., OLIVEIRA, J.S., RODRIGUES, A., DE CAMARGO, Z.P., PEREIRA-NETO, W.A., NASCIMENTO, N.R.F., CASTELO-BRANCO, D.S.C.M., CORDEIRO, R.A., SIDRIM, J.J.C. and ROCHA, M.F.G., 2019. Terpinen-4-ol inhibits the growth of Sporothrix schenckii complex and exhibits synergism with antifungal agents. Future Microbiology, vol. 14, no. 14, pp. 1221-1233. http://dx.doi.org/10.2217/fmb-2019-0146. PMid:31625442.
http://dx.doi.org/10.2217/fmb-2019-0146...
), it is a worldwide tendency, and is becoming an important focus in modern pharmacology. Since terpenes represent a class of molecules with diverse structures and many activities that still need elucidation, they are also a promising discovery field for further research.

4. Future Perspectives

Knowledge concerning bioactive molecules has increased significantly over the past few years, and phytochemicals isolated from plants can be found which have various applications in the food, cosmetics, and pharmaceutical industries (antifungal applications). Terpenoids are found in such diverse applications, this review analyzes data from studies describing the fungicidal activity of terpenes and prospects for future use. Terpenoids present differing mechanisms of action, and can interfere with microbial membrane functions, or suppress virulence factors such as production of enzymes and toxins, or by acting against fungal biofilm formation.

Due to its large territory, Brazil has a rich and diverse flora that can be studied and explored. The Caatinga, as a Brazilian exclusivity, still presents plants that are little known. Such resources may provide new molecules and a diversity of applications for industry. Preservation of this biome and new bio-prospective research of its grand potential are of great importance.

References

  • ABRÃO, F., ARAÚJO COSTA, L.D., ALVES, J.M., SENEDESE, J.M., CASTRO, P.T., AMBRÓSIO, S.R., VENEZIANI, R.C.S., BASTOS, J.K., TAVARES, D.C. and MARTINS, C.H.G., 2015. Copaifera langsdorffii oleoresin and its isolated compounds: antibacterial effect and antiproliferative activity in cancer cell lines. BMC Complementary and Alternative Medicine, vol. 15, pp. 443. http://dx.doi.org/10.1186/s12906-015-0961-4 PMid:26691920.
    » http://dx.doi.org/10.1186/s12906-015-0961-4
  • ALVES, M.F., CASTRO NIZIO, D.A., SAMPAIO, T.S., NASCIMENTO JUNIOR, A.F., ANDRADE BRITO, F., MELO, J.O., BLANK, M.F.A., GAGLIARDI, P.R., MACHADO, S.M.F. and BLANK, A.F., 2016. Myrcia lundiana Kiaersk native populations have different essential oil composition and antifungal activity against Lasiodiplodia theobromae. Industrial Crops and Products, vol. 85, pp. 266-273. http://dx.doi.org/10.1016/j.indcrop.2016.03.039
    » http://dx.doi.org/10.1016/j.indcrop.2016.03.039
  • ARAÚJO, J.M.S., DE SIQUEIRA, A.C.P., BLANK, A.F., NARAIN, N. and DE AQUINO SANTANA, L.C.L., 2018. A cassava starch–chitosan edible coating enriched with Lippia sidoides Cham. essential oil and pomegranate peel extract for preservation of Italian tomatoes (Lycopersicon esculentum Mill.) stored at room temperature. Food and Bioprocess Technology, vol. 11, no. 9, pp. 1750-1760. http://dx.doi.org/10.1007/s11947-018-2139-9
    » http://dx.doi.org/10.1007/s11947-018-2139-9
  • ARRUDA, R.D.C.O., VICTÓRIO, C.P., BOARETTO, A.G., CAROLLO, C.A., DA SILVA FARIAS, C., MARCHETTI, C.R. and SILVA, D.B., 2019. Essential oil composition, antifungal activity and leaf anatomy of Lippia alba (Verbenaceae) from Brazilian Chaco. Journal of Medicinal Plants Research, vol. 13, no. 4, pp. 79-88. http://dx.doi.org/10.5897/JMPR2018.6700
    » http://dx.doi.org/10.5897/JMPR2018.6700
  • BALDIM, I., PAZIANI, M.H., BARIÃO, P.H.G., KRESS, M.R.Z. and OLIVEIRA, W.P., 2022. Nanostructured lipid carriers loaded with lippia sidoides essential oil as a strategy to combat the multidrug-resistant Candida auris. Pharmaceutics, vol. 14, no. 1, pp. 180. http://dx.doi.org/10.3390/pharmaceutics14010180 PMid:35057078.
    » http://dx.doi.org/10.3390/pharmaceutics14010180
  • BIASI-GARBIN, R.P., DEMITTO, F.D.O., AMARAL, R.C.R.D., FERREIRA, M.R.A., SOARES, L.A.L., SVIDZINSKI, T.I.E. and YAMADA-OGATTA, S.F., 2016. Antifungal potential of plant species from Brazilian Caatinga against dermatophytes. Revista do Instituto de Medicina Tropical de São Paulo, vol. 58, pp. 18. http://dx.doi.org/10.1590/S1678-9946201658018 PMid:27007561.
    » http://dx.doi.org/10.1590/S1678-9946201658018
  • BRILHANTE, R.S.N., PEREIRA, V.S., OLIVEIRA, J.S., RODRIGUES, A., DE CAMARGO, Z.P., PEREIRA-NETO, W.A., NASCIMENTO, N.R.F., CASTELO-BRANCO, D.S.C.M., CORDEIRO, R.A., SIDRIM, J.J.C. and ROCHA, M.F.G., 2019. Terpinen-4-ol inhibits the growth of Sporothrix schenckii complex and exhibits synergism with antifungal agents. Future Microbiology, vol. 14, no. 14, pp. 1221-1233. http://dx.doi.org/10.2217/fmb-2019-0146 PMid:31625442.
    » http://dx.doi.org/10.2217/fmb-2019-0146
  • CHAPPELL, J., COATES, R.M., LEW, M. and HUNG-WEN, L., 2010. Sesquiterpenes. In: L. MANDER and H.-W. LI, eds. Comprehensive natural products II. Chemistry and biology USA: Elsevier, vol. 1, pp. 609-641.
  • COSTA, J.S., CRUZ, E.N.S., SETZER, W.N., SILVA, J.K.R., MAIA, J.G.S. and FIGUEIREDO, P.L.B., 2022. Essentials oils from BrazilianEugeniaandSyzygiumspecies and their biological activities. Biomolecules, vol. 10, no. 8, pp. 1155. http://dx.doi.org/10.3390/biom10081155 PMID: 32781744
    » http://dx.doi.org/10.3390/biom10081155
  • COX-GEORGIAN, D., RAMADOSS, N., DONA, C. and BASU, C., 2019. Therapeutic and medicinal uses of terpenes. In: N. JOSHEE, S. DHEKNEY and P. PARAJULI, eds.Medicinal plants Cham: Springer, pp. 333-359. http://dx.doi.org/10.1007/978-3-030-31269-5_15
    » http://dx.doi.org/10.1007/978-3-030-31269-5_15
  • CRUZ, E.M., MENDONÇA, M.C., BLANK, A.F., SAMPAIO, T.S., PINTO, J.A., GAGLIARDI, P.R. and WARWICK, D.R., 2018. Lippia gracilis Schauer essential oil nanoformulation prototype for the control of Thielaviopis paradoxa. Industrial Crops and Products, vol. 117, pp. 245-251. http://dx.doi.org/10.1016/j.indcrop.2018.02.068
    » http://dx.doi.org/10.1016/j.indcrop.2018.02.068
  • DANTAS, T. L., LUCENA NOGUEIRA, P., ARRUDA, T. A., CATÃO, R. M. R., and MORAIS, M. R., 2018. Estudo etnofarmacológico de plantas medicinais: atividade antimicrobiana de extratos de Allium sativum L. (alho) e Bixa orellana L. (urucum). Journal of Biology & Pharmacy and Agricultural Management, vol. 14, no. 1, pp. 36-42.
  • DIAS, C. and AMARO, L., 2020. Strategies to preserve postharvest quality of horticultural crops and superficial scald control: from diphenylamine antioxidant usage to more recent approaches. Antioxidants, vol. 9, no. 4, pp. 356. http://dx.doi.org/10.3390/antiox9040356 PMid:32344588.
    » http://dx.doi.org/10.3390/antiox9040356
  • DONATI, M., MONDIN, A., CHEN, Z., MIRANDA, F.M., NASCIMENTO JUNIOR, B.B., SCHIRATO, G., PASTORE, P. and FROLDI, G., 2015. Radical scavenging and antimicrobial activities of Croton zehntneri, Pterodon emarginatus and Schinopsis brasiliensis essential oils and their major constituents: estragole, trans-anethole, β-caryophyllene and myrcene. Natural Product Research, vol. 29, no. 10, pp. 939-946. http://dx.doi.org/10.1080/14786419.2014.964709 PMid:25280163.
    » http://dx.doi.org/10.1080/14786419.2014.964709
  • DUARTE, A.E., DE MENEZES, I.R.A., BEZERRA MORAIS BRAGA, M.F., LEITE, N.F., BARROS, L.M., WACZUK, E.P. and ESCOBAR BURGER, M., 2016. Antimicrobial activity and Modulatory effect of essential oil from the leaf of Rhaphiodon echinus (Nees & Mart) Schauer on some antimicrobial drugs. Molecules (Basel, Switzerland), vol. 21, no. 6, pp. 743. http://dx.doi.org/10.3390/molecules21060743 PMid:27338314.
    » http://dx.doi.org/10.3390/molecules21060743
  • DUDUKU, K., ROSALAM, S. and AWANG, B., 2007. Phytochemical antioxidants for health and medicine - A move towards nature. Biotechnology and Molecular Biology Reviews, vol. 2, no. 4, pp. 97-104.
  • EMILIANO, S.A. and BALLIANO, T.L., 2019. Prospecção de artigos e patentes sobre plantas medicinais presentes na caatinga brasileira. Cadernos de Prospecção, vol. 12, no. 3, pp. 615. http://dx.doi.org/10.9771/cp.v12i3.27324
    » http://dx.doi.org/10.9771/cp.v12i3.27324
  • FELIPE, L.O. and BICAS, J.L., 2017. Terpenos, aromas e a química dos compostos naturais. Química Nova na Escola, vol. 39, no. 2, pp. 120-130. http://dx.doi.org/10.21577/0104-8899.20160068
    » http://dx.doi.org/10.21577/0104-8899.20160068
  • FREIRE, J.C.P., JÚNIOR, J.K.D.O., SILVA, D.D.F., SOUSA, J.P.D., GUERRA, F.Q.S. and DE OLIVEIRA LIMA, E., 2017. Antifungal activity of essential oils against Candida albicans strains isolated from users of dental prostheses. Evidence-Based Complementary and Alternative Medicine, vol. 2017, pp. 7158756. http://dx.doi.org/10.1155/2017/7158756 PMid:29234423.
    » http://dx.doi.org/10.1155/2017/7158756
  • GARG, A., SHARMA, R., DEY, P., KUNDU, A., KIM, H.S., BHAKTA, T. and KUMAR, A., 2020. Analysis of triterpenes and triterpenoids. In: A.S. SILVA, S.F. NABAVI, M. SAEEDI and S.M. NABAVI, eds. Recent advances in natural products analysis Amsterdam: Elsevier, pp. 393-426. http://dx.doi.org/10.1016/B978-0-12-816455-6.00011-1
    » http://dx.doi.org/10.1016/B978-0-12-816455-6.00011-1
  • GERSHENZON, J. and DUDAREVA, N., 2007. The function of terpene natural products in the natural world. Nature Chemical Biology, vol. 3, no. 7, pp. 408-414. http://dx.doi.org/10.1038/nchembio.2007.5 PMid:17576428.
    » http://dx.doi.org/10.1038/nchembio.2007.5
  • MACEDO, G.F., ALMEIDA-BEZERRA, J.W., DA SILVA, V.B., LIMA, E.E., DE MENEZES, S.A., PORTELA, B.Y.M., BRAGA, B.L.P., BEZERRA, J.S., OLIVEIRA, M.G., ALENCAR, D.R., COSTA, A.R., SOUZA, M.A., CRUZ NETO, J., PEREIRA, T.C. and SILVA, F.S.H., 2020. Eremanthus arboreus (Gardner) MacLeish (Candeeiro): natural source of α-Bisabolol. Research, Social Development, vol. 9, no. 10, pp. e9599109270. http://dx.doi.org/10.33448/rsd-v9i10.9270
    » http://dx.doi.org/10.33448/rsd-v9i10.9270
  • MACIEL, A.J., LACERDA, C.P., DANIELLI, L.J., BORDIGNON, S.A., FUENTEFRIA, A.M. and APEL, M.A., 2019. Antichemotactic and antifungal action of the essential oils from Cryptocarya aschersoniana, Schinus terebinthifolia, and Cinnamomum amoenum. Chemistry & Biodiversity, vol. 16, no. 8, pp. e1900204. http://dx.doi.org/10.1002/cbdv.201900204 PMid:31298500.
    » http://dx.doi.org/10.1002/cbdv.201900204
  • MCGARVEY, D.J. and CROTEAU, R., 1995. Terpenoid metabolism. The Plant Cell, vol. 7, no. 7, pp. 1015-1026. PMid:7640522.
  • MEDEIROS, V.G., DURÁN, F.J. and LANG, K.L., 2021. Copalic acid: occurrence, chemistry, and biological activities. Revista Brasileira de Farmacognosia, vol. 31, no. 4, pp. 375-386. http://dx.doi.org/10.1007/s43450-021-00173-2
    » http://dx.doi.org/10.1007/s43450-021-00173-2
  • MIRANDA, F.M., BRAGA DO NASCIMENTO JUNIOR, B., AGUIAR, R.M., PEREIRA, R.S., DE OLIVEIRA TEIXEIRA, A., DE OLIVEIRA, D.M. and FROLDI, G., 2019. Promising antifungal activity of Croton tricolor stem essential oil against Candida yeasts. The Journal of Essential Oil Research, vol. 31, no. 3, pp. 223-227. http://dx.doi.org/10.1080/10412905.2018.1539416
    » http://dx.doi.org/10.1080/10412905.2018.1539416
  • MOURA, D.F., MARTINS, R.D. and SILVA, M.V., 2019. Nerolidol: Fitoconstituinte de óleos essenciais de plantas da caatinga. Brazilian Journal of Development, vol. 5, no. 12, pp. 33402-33416. http://dx.doi.org/10.34117/bjdv5n12-384
    » http://dx.doi.org/10.34117/bjdv5n12-384
  • MOURA, D.F., ROCHA, T.A., MELO BARROS, D., SILVA, M.M., OLIVEIRA FERREIRA, S.A., MARTINS, R.D. and SILVA, M.V., 2020. Avaliação ponderal e screening hipocrático de camundongos tratados com Nerolidol. Brazilian Journal of Development, vol. 6, no. 1, pp. 5172-5183. http://dx.doi.org/10.34117/bjdv6n1-375
    » http://dx.doi.org/10.34117/bjdv6n1-375
  • NERI, T.S., SILVA, K.W.L., MAIOR, L.P.S., OLIVEIRA-SILVA, S.K., AZEVEDO, P.V.M., GOMES, D.C.S., SOUZA, M.A., PAVÃO, J.M.S.J., COSTA, J.G., CUNHA, A.L., FERREIRA-JÚNIOR, G.C., MATOS-ROCHA, T.J., SANTOS, A.F. and FONSECA, S.A., 2021. Phytochemical characterization, antioxidant potential and antibacterial activity of the Croton argyrophylloides Muell. Arg. (Euphorbiaceae). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, pp. e236649. http://dx.doi.org/10.1590/1519-6984.236649 PMid:34669789.
    » http://dx.doi.org/10.1590/1519-6984.236649
  • OLIVEIRA, T.N.S., SILVA‐FILHO, C.M.S., MALVEIRA, E.A., AGUIAR, T.K.B., SANTOS, H.S., ALBUQUERQUE, C.C. and VASCONCELOS, M.A., 2021. Antifungal and antibiofilm activities of the essential oil of leaves from Lippia gracilis Schauer against phytopathogenic fungi. Journal of Applied Microbiology, vol. 130, no. 4, pp. 1117-1129. http://dx.doi.org/10.1111/jam.14857 PMid:32961612.
    » http://dx.doi.org/10.1111/jam.14857
  • OUYANG, Q., LIU, Y., OKETCH, O.R., ZHANG, M., SHAO, X. and TAO, N., 2021. Citronellal exerts its antifungal activity by targeting ergosterol biosynthesis in Penicillium digitatum. Journal of Fungi (Basel, Switzerland), vol. 7, no. 6, pp. 432. http://dx.doi.org/10.3390/jof7060432 PMid:34072578.
    » http://dx.doi.org/10.3390/jof7060432
  • PEIXOTO‐NEVES, D., SILVA‐ALVES, K. S., GOMES, M. D. M., LIMA, F. C., LAHLOU, S., MAGALHÃES, P. J. C., CECCATTO, V. M., COELHO-DE-SOUZA, A. N., and LEAL‐CARDOSO, J. H., 2010. Efeitos vasorelaxantes dos isômeros do fenol monoterpênico, carvacrol e timol, na aorta isolada de ratos. Farmacologia Fundamental e Clínica, vol. 24, no. 3, pp. 341-350.
  • RODRIGUES, F.F.G., COLARES, A.V., NONATO, C.D.F.A., GALVÃO-RODRIGUES, F.F., MOTA, M.L., BRAGA, M.F.B.M. and COSTA, J.G.M., 2018. In vitro antimicrobial activity of the essential oil from Vanillosmopsis arborea Barker (Asteraceae) and its major constituent, α-bisabolol. Microbial Pathogenesis, vol. 125, pp. 144-149. http://dx.doi.org/10.1016/j.micpath.2018.09.024 PMid:30219391.
    » http://dx.doi.org/10.1016/j.micpath.2018.09.024
  • ROQUE, A.D.A., ROCHA, R.D.M. and LOIOLA, M.I.B., 2010. Uso e diversidade de plantas medicinais da Caatinga na comunidade rural de Laginhas, município de Caicó, Rio Grande do Norte (nordeste do Brasil). Revista Brasileira de Plantas Medicinais, vol. 12, no. 1, pp. 31-42. http://dx.doi.org/10.1590/S1516-05722010000100006
    » http://dx.doi.org/10.1590/S1516-05722010000100006
  • SANTOS, A.R.B., LANJEIRA, D., DIAS, L.R.C., SOUSA, E.S., MELO, C.D.S., LIMA, S.G., SILVA, P.H.S. and SOBRINHO, C.A., 2020. Chemical composition and control of Sclerotium rolfsii Sacc by essential oils. African Journal of Microbiological Research, vol. 14, no. 4, pp. 119-128. http://dx.doi.org/10.5897/AJMR2020.9286
    » http://dx.doi.org/10.5897/AJMR2020.9286
  • SANTOS, J.F.S., ROCHA, J.E., BEZERRA, C.F., DO NASCIMENTO SILVA, M.K., DE MATOS, Y.M.L.S., DE FREITAS, T.S. and MORAIS-BRAGA, M.F.B., 2018. Chemical composition, antifungal activity and potential anti-virulence evaluation of the Eugenia uniflora essential oil against Candida spp. Food Chemistry, vol. 261, pp. 233-239. http://dx.doi.org/10.1016/j.foodchem.2018.04.015 PMid:29739588.
    » http://dx.doi.org/10.1016/j.foodchem.2018.04.015
  • SANTOS, N.O.D., PASCON, R.C., VALLIM, M.A., FIGUEIREDO, C.R., SOARES, M.G., LAGO, J.H.G. and SARTORELLI, P., 2016. Cytotoxic and antimicrobial constituents from the essential oil of Lippia alba (Verbenaceae). Medicines (Basel, Switzerland), vol. 3, no. 3, pp. 22. http://dx.doi.org/10.3390/medicines3030022 PMid:28930132.
    » http://dx.doi.org/10.3390/medicines3030022
  • SHARIFI-RAD, J., SUREDA, A., TENORE, G.C., DAGLIA, M., SHARIFI-RAD, M., VALUSSI, M., TUNDIS, R., SHARIFI-RAD, M., LOIZZO, M.R., ADEMILUYI, A.O., SHARIFI-RAD, R., AYATOLLAHI, S.A. and IRITI, M., 2017. Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules (Basel, Switzerland), vol. 22, no. 1, pp. 70. http://dx.doi.org/10.3390/molecules22010070 PMid:28045446.
    » http://dx.doi.org/10.3390/molecules22010070
  • SHI, Y., SI, H., WANG, P., CHEN, S., SHANG, S., ZHANQIAN, C., WANG, Z. and LIAO, S., 2019. Derivatization of natural compound β-pinene enhances its in vitro antifungal activity against plant pathogens. Molecules (Basel, Switzerland), vol. 24, no. 17, pp. 3144. http://dx.doi.org/10.3390/molecules24173144 PMid:31470567.
    » http://dx.doi.org/10.3390/molecules24173144
  • SILVA, S., NEGRI, M., HENRIQUES, M., OLIVEIRA, R., WILLIAMS, D.W. and AZEREDO, J., 2012. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiology Reviews, vol. 36, no. 2, pp. 288-305. http://dx.doi.org/10.1111/j.1574-6976.2011.00278.x PMid:21569057.
    » http://dx.doi.org/10.1111/j.1574-6976.2011.00278.x
  • SINGH, B., and SHARMA, R. A., 2015. Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech, vol. 5, no. 2, pp. 129-151. http://dx.doi.org/10.1007/s13205-014-0220-2 PMID: 28324581.
    » http://dx.doi.org/10.1007/s13205-014-0220-2
  • TORRES, S.B., DOS SANTOS, A.N.A., BARBOSA, M.V.C. and CABRAL, A.G.S., 2021. Potencial terapêutico das ervas medicinais da caatinga região do nordeste brasileiro: therapeutic potential of medicinal herbs from the caatinga region of northeastern Brazil. Archives of Health, vol. 2, no. 4, pp. 1301-1304.
  • VASCONCELOS, A. D. M., HENRIQUES, I. G. N., SOUZA, M. P., SOUSA SANTOS, W., SOUSA SANTOS, W., and RAMOS, G. G., 2017. Caracterização florística e fitossociológica em área de Caatinga para fins de manejo florestal no município de São Francisco-PI. Agropecuária Científica no Semiárido, vol. 13, no. 4, pp. 329-337. http://dx.doi.org/10.30969/acsa.v13i4.967
    » http://dx.doi.org/10.30969/acsa.v13i4.967
  • VERAS, B.O., DOS SANTOS, Y.Q., OLIVEIRA, F.G.D.S., ALMEIDA, J.R.G.D.S., DA SILVA, A.G., CORREIA, M.T.D.S. and DA SILVA, M.V., 2020. Algrizea Minor Sobral, Faria & Proença (Myrteae, Myrtaceae): chemical composition, antinociceptive, antimicrobial and antioxidant activity of essential oil. Natural Product Research, vol. 34, no. 20, pp. 3013-3017. http://dx.doi.org/10.1080/14786419.2019.1602832 PMid:31014086.
    » http://dx.doi.org/10.1080/14786419.2019.1602832
  • VERRUCK, S., PRUDENCIO, E.S. and SILVEIRA, S.M., 2018. Compostos bioativos com capacidade antioxidante e antimicrobiana em frutas. Revista do Congresso Sul Brasileiro de Engenharia de Alimentos, vol. 4, no. 1, pp. 111-124. http://dx.doi.org/10.5965/24473650412018111
    » http://dx.doi.org/10.5965/24473650412018111
  • XAVIER, J.K.A., ALVES, N.S.F., SETZER, W.N. and DA SILVA, J.K.R., 2020. Chemical diversity and Rogical activities of essential oils from Licaria, Nectrandra and Ocotea Species (Lauraceae) with occurrence in Brazilian biomes. Biomolecules, vol. 10, no. 6, pp. 869. http://dx.doi.org/10.3390/biom10060869 PMid:32517106.
    » http://dx.doi.org/10.3390/biom10060869
  • ZHENG, S., JING, G., WANG, X., OUYANG, Q., JIA, L. and TAO, N., 2015. Citral exerts its antifungal activity against Penicillium digitatum by affecting the mitochondrial morphology and function. Food Chemistry, vol. 178, pp. 76-81. http://dx.doi.org/10.1016/j.foodchem.2015.01.077 PMid:25704686.
    » http://dx.doi.org/10.1016/j.foodchem.2015.01.077

Publication Dates

  • Publication in this collection
    02 June 2023
  • Date of issue
    2023

History

  • Received
    08 Jan 2023
  • Accepted
    10 May 2023
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br