Acessibilidade / Reportar erro

Protective effect of Mucuna pruriens (L.) DC. var. pruriens seed extract on apoptotic germ cells in ethanolic male rats

Efeito protetor de Mucuna pruriens (L.) DC. var. extrato de semente de pruriens, em células germinativas apoptóticas em ratos machos etanólicos

Abstract

Thai Mucuna pruriens (L.) DC. var pruriens (T-MP) seed containing levodopa (L-DOPA) and antioxidant capacity has been shown to improve sexual behavior and male reproductive parameters in rats treated with ethanol (Eth). However, its protective effect on testicular apoptotic germ cells has never been reported. This study aimed to investigate the potential effects of T-MP seed extract on expressions of caspase, proliferating cell nuclear antigen (PCNA), and dopamine D2 receptor (D2R) proteins in Eth rats. Thirty-six male Wistar rats were divided into four groups (9 animals/group), including control, Eth, T-MP150+Eth, and T-MP300+Eth, respectively. Control rats received distilled water, and Eth rats received Eth (3g/kg BW; 40%v/v). The T-MP groups were treated with T-MP seed extract at a dose of 150 or 300 mg/kg before Eth administration for 56 consecutive days. The results showed that the seminiferous tubule diameter and epithelial height were significantly increased in both T-MP treated groups compared to the Eth group. Additionally, the caspase-9 and -3, and PCNA expressions were decreased, but D2R expression was markedly increased in T-MP groups. It was concluded that T-MP seed extract could protect testicular apoptosis induced by Eth via changes in caspase, PCNA, and D2R protein expressions.

Keywords:
Mucuna pruriens; ethanol; testis; apoptosis; dopamine receptor

Resumo

Thai Mucuna pruriens (L.) DC. var pruriens (T-MP) contendo levodopa (L-DOPA) e capacidade antioxidante demonstrou melhorar o comportamento sexual e os parâmetros reprodutivos masculinos em ratos tratados com etanol (Eth). No entanto, seu efeito protetor sobre células germinativas apoptóticas testiculares nunca foi relatado. Este estudo teve como objetivo investigar os efeitos potenciais do extrato de semente de T-MP na expressão de proteínas de caspase, antígeno nuclear de proliferação celular (PCNA) e receptor de dopamina D2 (D2R) em ratos Eth. Trinta e seis ratos Wistar machos foram divididos em quatro grupos (9 animais/grupo), incluindo controle, Eth, T-MP150+Eth e T-MP300+Eth, respectivamente. Ratos controle receberam água destilada e ratos Eth receberam Eth (3g/kg PC; 40%v/v). Os grupos T-MP foram tratados com extrato de semente de T-MP na dose de 150 ou 300 mg/kg antes da administração de Eth por 56 dias consecutivos. Os resultados mostraram que o diâmetro dos túbulos seminíferos e a altura epitelial foram significativamente aumentados em ambos os grupos tratados com T-MP em comparação com o grupo Eth. Além disso, as expressões de caspase-9 e -3 e de PCNA diminuíram, mas a expressão de D2R aumentou acentuadamente nos grupos T-MP. Concluiu-se que o extrato de semente de T-MP pode proteger a apoptose testicular induzida por Eth através de alterações na expressão de proteínas caspase, PCNA e D2R.

Palavras-chave:
Mucuna pruriens; etanol; testículo; apoptose; receptor de dopamina

1. Introduction

It is well known that chronic ethanol abuse is a major cause of sexual dysfunction and male infertility in both men and animal models (Stutz et al., 2004STUTZ, G., ZAMUDIO, J., SANTILLÁN, M.E., VINCENTI, L., DE CUNEO, M.F. and RUIZ, R.D., 2004. The effect of alcohol, tobacco, and aspirin consumption on seminal quality among healthy young men. Archives of Environmental Health, vol. 59, no. 11, pp. 548-552. http://dx.doi.org/10.1080/00039890409603432. PMid:16599001.
http://dx.doi.org/10.1080/00039890409603...
; Ulanov, 2016ULANOV, V.S., 2016. The morphological features of the testicles under conditions of experimental acute and chronic alcohol intoxication. Sudebno-Meditsinskaia Ekspertiza, vol. 59, no. 5, pp. 25-27. http://dx.doi.org/10.17116/sudmed201659525-27. PMid:27763588.
http://dx.doi.org/10.17116/sudmed2016595...
; Tangsrisakda et al., 2022TANGSRISAKDA, N., KAMOLLERD, T., TAOTO, C., BUNSUEB, S., CHAIMONTRI, C., CHOOWONG-IN, P., LAPYUNEYONG, N., WU, A.T., THUKHAMMEE, W., WATTANATHORN, J., ARUN, S., SAWATPANICH, T. and IAMSAARD, S., 2022. Seed extract of Thai Mucuna pruriens (L.) DC. var. pruriens enhances sexual performance and improves male reproductive damages in ethanol-induced rats. Journal of Ethnopharmacology, vol. 292, pp. 115219. http://dx.doi.org/10.1016/j.jep.2022.115219. PMid:35339625.
http://dx.doi.org/10.1016/j.jep.2022.115...
). Indeed, ethanol can cause reductions in gonadotropin and androgen levels, resulting in male subfertility (Maneesh et al., 2006MANEESH, M., DUTTA, S., CHAKRABARTI, A. and VASUDEVAN, D.M., 2006. Alcohol abuse-duration dependent decrease in plasma testosterone and antioxidants in males. Indian Journal of Physiology and Pharmacology, vol. 50, no. 3, pp. 291-296. PMid:17193902.; Akomolafe et al., 2017AKOMOLAFE, S.F., OBOH, G., AKINDAHUNSI, A.A. and AFOLAYAN, A.J., 2017. Ethanol-induced male infertility: effects of aqueous leaf extract of Tetracarpidium conophorum. Andrologia, 49(10), pp. e12759. http://dx.doi.org/10.1111/and.12759.
http://dx.doi.org/10.1111/and.12759...
; Akbari et al., 2017AKBARI, A., NASIRI, K., HEYDARI, M., MOSAVAT, S.H. and IRAJI, A., 2017. The protective effect of hydroalcoholic extract of Zingiber officinale Roscoe (Ginger) on ethanol-induced reproductive toxicity in male rats. Journal of Evidence-Based Complementary & Alternative Medicine, vol. 22, no. 4, pp. 609-617. http://dx.doi.org/10.1177/2156587216687696. PMid:29228791.
http://dx.doi.org/10.1177/21565872166876...
). In rodents, many studies have shown that ethanol consumption decreased the male reproductive organ weight (Nishi et al., 2018NISHI, K., RAMAKRISHNAN, S., GUNASEKARAN, V.P., PARKASH, K., RAMAKRISHNAN, A., VIJAYAKUMAR, N. and GANESHAN, M., 2018. Protective effects of p-coumaric acid on ethanol induced male reproductive toxicity. Life Sciences, vol. 209, pp. 1-8. http://dx.doi.org/10.1016/j.lfs.2018.07.045. PMid:30048695.
http://dx.doi.org/10.1016/j.lfs.2018.07....
), testosterone level (Uygur et al., 2014UYGUR, R., YAGMURCA, M., ALKOC, O.A., GENC, A., SONGUR, A., UCOK, K. and OZEN, O.A., 2014. Effects of quercetin and fish n-3 fatty acids on testicular injury induced by ethanol in rats. Andrologia, vol. 46, no. 4, pp. 356-369. http://dx.doi.org/10.1111/and.12085. PMid:23488863.
http://dx.doi.org/10.1111/and.12085...
; Nishi et al., 2018NISHI, K., RAMAKRISHNAN, S., GUNASEKARAN, V.P., PARKASH, K., RAMAKRISHNAN, A., VIJAYAKUMAR, N. and GANESHAN, M., 2018. Protective effects of p-coumaric acid on ethanol induced male reproductive toxicity. Life Sciences, vol. 209, pp. 1-8. http://dx.doi.org/10.1016/j.lfs.2018.07.045. PMid:30048695.
http://dx.doi.org/10.1016/j.lfs.2018.07....
; Yari et al., 2018YARI, S., KARAMIAN, R., ASADBEGY, M., HOSEINI, E. and MOAZZAMI FARIDA, S.H., 2018. The protective effects of Arctium lappa L. extract on testicular injuries induced by ethanol in rats. Andrologia, vol. 50, no. 9, pp. e13086. http://dx.doi.org/10.1111/and.13086. PMid:30003584.
http://dx.doi.org/10.1111/and.13086...
; Tangsrisakda and Iamsaard, 2020TANGSRISAKDA, N. and IAMSAARD, S., 2020. Effect of ethanol on the changes in testicular protein expression in adult male rats. Andrologia, vol. 52, no. 10, pp. e13784. http://dx.doi.org/10.1111/and.13784. PMid:32721052.
http://dx.doi.org/10.1111/and.13784...
), and sperm qualities including count, morphology, viability, motility, and acrosome reaction status (Siervo et al., 2015SIERVO, G.E., VIEIRA, H.R., OGO, F.M., FERNANDEZ, C.D., GONÇALVES, G.D., MESQUITA, S.F., ANSELMO-FRANCI, J.A., CECCHINI, R., GUARNIER, F.A. and FERNANDES, G.S., 2015. Spermatic and testicular damages in rats exposed to ethanol: influence of lipid peroxidation but not testosterone. Toxicology, vol. 330, pp. 1-8. http://dx.doi.org/10.1016/j.tox.2015.01.016. PMid:25637669.
http://dx.doi.org/10.1016/j.tox.2015.01....
; Akomolafe et al., 2017AKOMOLAFE, S.F., OBOH, G., AKINDAHUNSI, A.A. and AFOLAYAN, A.J., 2017. Ethanol-induced male infertility: effects of aqueous leaf extract of Tetracarpidium conophorum. Andrologia, 49(10), pp. e12759. http://dx.doi.org/10.1111/and.12759.
http://dx.doi.org/10.1111/and.12759...
; Tangsrisakda and Iamsaard, 2020TANGSRISAKDA, N. and IAMSAARD, S., 2020. Effect of ethanol on the changes in testicular protein expression in adult male rats. Andrologia, vol. 52, no. 10, pp. e13784. http://dx.doi.org/10.1111/and.13784. PMid:32721052.
http://dx.doi.org/10.1111/and.13784...
; Tangsrisakda et al., 2022TANGSRISAKDA, N., KAMOLLERD, T., TAOTO, C., BUNSUEB, S., CHAIMONTRI, C., CHOOWONG-IN, P., LAPYUNEYONG, N., WU, A.T., THUKHAMMEE, W., WATTANATHORN, J., ARUN, S., SAWATPANICH, T. and IAMSAARD, S., 2022. Seed extract of Thai Mucuna pruriens (L.) DC. var. pruriens enhances sexual performance and improves male reproductive damages in ethanol-induced rats. Journal of Ethnopharmacology, vol. 292, pp. 115219. http://dx.doi.org/10.1016/j.jep.2022.115219. PMid:35339625.
http://dx.doi.org/10.1016/j.jep.2022.115...
). It also could inhibit seminiferous germ cell proliferation (Koh and Kim, 2006KOH, P.O. and KIM, M.O., 2006. Ethanol exposure decreases cell proliferation and increases apoptosis in rat testes. The Journal of Veterinary Medical Science, vol. 68, no. 10, pp. 1013-1017. http://dx.doi.org/10.1292/jvms.68.1013. PMid:17085877.
http://dx.doi.org/10.1292/jvms.68.1013...
). Additionally, ethanol was demonstrated to increase apoptotic germ cells (8, 13), which is corroborated by the increase of apoptotic markers such as caspase-3, -7, -8, and -9 (Eid et al., 2002EID, N.A., SHIBATA, M.A., ITO, Y., KUSAKABE, K., HAMMAD, H. and OTSUKI, Y., 2002. Involvement of Fas system and active caspases in apoptotic signalling in testicular germ cells of ethanol-treated rats. International Journal of Andrology, vol. 25, no. 3, pp. 159-167. http://dx.doi.org/10.1046/j.1365-2605.2002.00341.x. PMid:12031044.
http://dx.doi.org/10.1046/j.1365-2605.20...
; Koh and Kim, 2006KOH, P.O. and KIM, M.O., 2006. Ethanol exposure decreases cell proliferation and increases apoptosis in rat testes. The Journal of Veterinary Medical Science, vol. 68, no. 10, pp. 1013-1017. http://dx.doi.org/10.1292/jvms.68.1013. PMid:17085877.
http://dx.doi.org/10.1292/jvms.68.1013...
; Jana et al., 2010JANA, K., JANA, N., DE, D.K. and GUHA, S.K., 2010. Ethanol induces mouse spermatogenic cell apoptosis in vivo through over-expression of Fas/Fas-L, p53, and caspase-3 along with cytochrome c translocation and glutathione depletion. Molecular Reproduction and Development, vol. 77, no. 9, pp. 820-833. http://dx.doi.org/10.1002/mrd.21227. PMid:20803734.
http://dx.doi.org/10.1002/mrd.21227...
; Nishi et al., 2018NISHI, K., RAMAKRISHNAN, S., GUNASEKARAN, V.P., PARKASH, K., RAMAKRISHNAN, A., VIJAYAKUMAR, N. and GANESHAN, M., 2018. Protective effects of p-coumaric acid on ethanol induced male reproductive toxicity. Life Sciences, vol. 209, pp. 1-8. http://dx.doi.org/10.1016/j.lfs.2018.07.045. PMid:30048695.
http://dx.doi.org/10.1016/j.lfs.2018.07....
).

The seed of Mucuna pruriens (MP) has been used in traditional Ayurvedic Indian medicine to treat Parkinson's disease and male infertility (Katzenschlager et al., 2004KATZENSCHLAGER, R., EVANS, A., MANSON, A., PATSALOS, P.N., RATNARAJ, N., WATT, H., TIMMERMANN, L., VAN DER GIESSEN, R. and LEES, A.J., 2004. Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study. Journal of Neurology, Neurosurgery, and Psychiatry, vol. 75, no. 12, pp. 1672-1677. http://dx.doi.org/10.1136/jnnp.2003.028761. PMid:15548480.
http://dx.doi.org/10.1136/jnnp.2003.0287...
; Suresh et al., 2009SURESH, S., PRITHIVIRAJ, E. and PRAKASH, S., 2009. Dose- and time-dependent effects of ethanolic extract of Mucuna pruriens Linn. seed on sexual behaviour of normal male rats. Journal of Ethnopharmacology, vol. 122, no. 3, pp. 497-501. http://dx.doi.org/10.1016/j.jep.2009.01.032. PMid:19429319.
http://dx.doi.org/10.1016/j.jep.2009.01....
; Suresh et al., 2013SURESH, S., PRITHIVIRAJ, E., LAKSHMI, N.V., GANESH, M.K., GANESH, L. and PRAKASH, S., 2013. Effect of Mucuna pruriens (Linn.) on mitochondrial dysfunction and DNA damage in epididymal sperm of streptozotocin induced diabetic rat. Journal of Ethnopharmacology, vol. 145, no. 1, pp. 32-41. http://dx.doi.org/10.1016/j.jep.2012.10.030. PMid:23103904.
http://dx.doi.org/10.1016/j.jep.2012.10....
; Rai et al., 2017RAI, S.N., BIRLA, H., ZAHRA, W., SINGH, S.S. and SINGH, S.P., 2017. Immunomodulation of Parkinson’s disease using Mucuna pruriens (Mp). Journal of Chemical Neuroanatomy, vol. 85, pp. 27-35. http://dx.doi.org/10.1016/j.jchemneu.2017.06.005. PMid:28642128.
http://dx.doi.org/10.1016/j.jchemneu.201...
). In addition, MP seed is reported to possess the levodopa (L-DOPA, levo-3,4-dihydroxyphenylalanine), the dopamine precursor, that can move across the blood-brain barrier (Lampariello et al., 2012LAMPARIELLO, L.R., CORTELAZZO, A., GUERRANTI, R., STICOZZI, C. and VALACCHI, G., 2012. The magic velvet bean of Mucuna pruriens. Journal of Traditional and Complementary Medicine, vol. 2, no. 4, pp. 331-339. http://dx.doi.org/10.1016/S2225-4110(16)30119-5. PMid:24716148.
http://dx.doi.org/10.1016/S2225-4110(16)...
; Camargo et al., 2014CAMARGO, S.M., VUILLE-DIT-BILLE, R.N., MARIOTTA, L., RAMADAN, T., HUGGEL, K., SINGER, D., GÖTZE, O. and VERREY, F., 2014. The molecular mechanism of intestinal levodopa absorption and its possible implications for the treatment of Parkinson’s disease. The Journal of Pharmacology and Experimental Therapeutics, vol. 351, no. 1, pp. 114-123. http://dx.doi.org/10.1124/jpet.114.216317. PMid:25073474.
http://dx.doi.org/10.1124/jpet.114.21631...
; Pulikkalpura et al., 2015PULIKKALPURA, H., KURUP, R., MATHEW, P.J. and BABY, S., 2015. Levodopa in Mucuna pruriens and its degradation. Scientific Reports, vol. 5, no. 1, pp. 11078. http://dx.doi.org/10.1038/srep11078. PMid:26058043.
http://dx.doi.org/10.1038/srep11078...
). Moreover, L-DOPA in MP has been demonstrated to have an antioxidant capacity and could decrease apoptotic germ cells of male rats treated with ethinyl estradiol (Singh et al., 2013SINGH, A.P., SARKAR, S., TRIPATHI, M. and RAJENDER, S., 2013. Mucuna pruriens and its major constituent L-DOPA recover spermatogenic loss by combating ROS, loss of mitochondrial membrane potential and apoptosis. PLoS One, vol. 8, no. 1, pp. e54655. http://dx.doi.org/10.1371/journal.pone.0054655. PMid:23349947.
http://dx.doi.org/10.1371/journal.pone.0...
). In Thailand, there is a species of MP called Thai Mamui or Mucuna pruriens (L.) DC. var. pruriens (Fabaceae) (T-MP). The seed of T-MP has been believed and used in Thai folk medicine as a diuretic and aphrodisiac drug. A recent study has shown that the T-MP contained high antioxidant capacities without toxicity on vital organs in both male and female healthy rats (Iamsaard et al., 2020IAMSAARD, S., ARUN, S., BURAWAT, J., YANNASITHINON, S., TONGPAN, S., BUNSUEB, S., LAPYUNEYONG, N., CHOOWONG-IN, P., TANGSRISAKDA, N., CHAIMONTRI, C. and SUKHORUM, W., 2020. Evaluation of antioxidant capacity and reproductive toxicity of aqueous extract of Thai Mucuna pruriens seeds. Journal of Integrative Medicine, vol. 18, no. 3, pp. 265-273. http://dx.doi.org/10.1016/j.joim.2020.03.003. PMid:32249078.
http://dx.doi.org/10.1016/j.joim.2020.03...
). T-MP seed extract has been further reported to improve sperm quality, testosterone level, testicular histopathology, and testicular protein expressions involved in spermatogenesis. These markers included androgen receptor, heat shock protein 70, steroidogenic acute regulatory protein, tyrosine-phosphorylated protein, and apoptotic markers, caspase-3 and -9 in chronic stress models (Choowong-In et al., 2021CHOOWONG-IN, P., SATTAYASAI, J., BOONCHOONG, P., POODENDAEN, C., WU, A.T., TANGSRISAKDA, N., SAWATPANICH, T., ARUN, S., UABUNDIT, N. and IAMSAARD, S., 2021. Protective effects of Thai Mucuna pruriens (L.) DC. var. pruriens seeds on sexual behaviors and essential reproductive markers in chronic unpredictable mild stress mice. Journal of Traditional and Complementary Medicine, vol. 12, no. 4, pp. 402-413. http://dx.doi.org/10.1016/j.jtcme.2021.12.001. PMid:35747354.
http://dx.doi.org/10.1016/j.jtcme.2021.1...
; Lapyuneyong et al., 2022LAPYUNEYONG, N., TANGSRISAKDA, N., CHOOWONG-IN, P., CHAISIWAMONGKOL, K., UABUNDIT, N., SAWATPANICH, T., ARUN, S., WU, A.T. and IAMSAARD, S., 2022. Seed extract of Thai Mucuna pruriens reduced male reproductive damage in rats induced by chronic stress. Pharmaceutical Biology, vol. 60, no. 1, pp. 374-383. http://dx.doi.org/10.1080/13880209.2022.2034896. PMid:35180038.
http://dx.doi.org/10.1080/13880209.2022....
). Although testicular damages caused by ethanol administration and prevented by T-MP treatments have been reported (Tangsrisakda and Iamsaard, 2020TANGSRISAKDA, N. and IAMSAARD, S., 2020. Effect of ethanol on the changes in testicular protein expression in adult male rats. Andrologia, vol. 52, no. 10, pp. e13784. http://dx.doi.org/10.1111/and.13784. PMid:32721052.
http://dx.doi.org/10.1111/and.13784...
; Tangsrisakda et al., 2022TANGSRISAKDA, N., KAMOLLERD, T., TAOTO, C., BUNSUEB, S., CHAIMONTRI, C., CHOOWONG-IN, P., LAPYUNEYONG, N., WU, A.T., THUKHAMMEE, W., WATTANATHORN, J., ARUN, S., SAWATPANICH, T. and IAMSAARD, S., 2022. Seed extract of Thai Mucuna pruriens (L.) DC. var. pruriens enhances sexual performance and improves male reproductive damages in ethanol-induced rats. Journal of Ethnopharmacology, vol. 292, pp. 115219. http://dx.doi.org/10.1016/j.jep.2022.115219. PMid:35339625.
http://dx.doi.org/10.1016/j.jep.2022.115...
), its protective effects on testicular apoptosis still need to be elucidated. Therefore, this study aimed to investigate the protective effect of T-MP seed extract on apoptotic germ cells induced by ethanol in male rats.

2. Materials and Methods

2.1. Plant extraction

Thai Mucuna pruriens (T-MP) seed extract used in this study that its plant authentication has been previously proven (voucher code: S. Iamsaard 01, the herbarium database, Khon Kaen University) was kindly obtained from Dr. Sitthichai Iamsaard's laboratory and was determined for L-DOPA content and antioxidant capacity with no toxicity on vital and reproductive organs (Iamsaard et al., 2020IAMSAARD, S., ARUN, S., BURAWAT, J., YANNASITHINON, S., TONGPAN, S., BUNSUEB, S., LAPYUNEYONG, N., CHOOWONG-IN, P., TANGSRISAKDA, N., CHAIMONTRI, C. and SUKHORUM, W., 2020. Evaluation of antioxidant capacity and reproductive toxicity of aqueous extract of Thai Mucuna pruriens seeds. Journal of Integrative Medicine, vol. 18, no. 3, pp. 265-273. http://dx.doi.org/10.1016/j.joim.2020.03.003. PMid:32249078.
http://dx.doi.org/10.1016/j.joim.2020.03...
; Choowong-in et al., 2021CHOOWONG-IN, P., SATTAYASAI, J., BOONCHOONG, P., POODENDAEN, C., WU, A.T., TANGSRISAKDA, N., SAWATPANICH, T., ARUN, S., UABUNDIT, N. and IAMSAARD, S., 2021. Protective effects of Thai Mucuna pruriens (L.) DC. var. pruriens seeds on sexual behaviors and essential reproductive markers in chronic unpredictable mild stress mice. Journal of Traditional and Complementary Medicine, vol. 12, no. 4, pp. 402-413. http://dx.doi.org/10.1016/j.jtcme.2021.12.001. PMid:35747354.
http://dx.doi.org/10.1016/j.jtcme.2021.1...
; Tangsrisakda et al., 2022TANGSRISAKDA, N., KAMOLLERD, T., TAOTO, C., BUNSUEB, S., CHAIMONTRI, C., CHOOWONG-IN, P., LAPYUNEYONG, N., WU, A.T., THUKHAMMEE, W., WATTANATHORN, J., ARUN, S., SAWATPANICH, T. and IAMSAARD, S., 2022. Seed extract of Thai Mucuna pruriens (L.) DC. var. pruriens enhances sexual performance and improves male reproductive damages in ethanol-induced rats. Journal of Ethnopharmacology, vol. 292, pp. 115219. http://dx.doi.org/10.1016/j.jep.2022.115219. PMid:35339625.
http://dx.doi.org/10.1016/j.jep.2022.115...
).

2.2. Animal administration and ethic

Thirty-six adult male Wistar rats (10 weeks old, 280-360 g) were purchased from Nomura Siam International (Bangkok, Thailand) before acclimatizing for 7 days in the Northeast Laboratory Animal Center (Khon Kaen University, Thailand). Animals were housed in the plastic cage (37.5x48x21 cm) within environmental control room (dark/light cycle at 12 hours, temperature at 23±2 ºC, light intensity at 350-400 Lux, relative humidity at 30-60%, and sound level < 85 decibel). The commercial food pellets and sterile water were provided ad libitum. After acclimatization, rats were randomly divided into 4 groups (n = 9/group [4-5 amimals/ case]) including control, ethanol (Eth), T-MP150+Eth, and T-MP300+Eth groups, respectively. The control rats received distilled water (DW, 4 ml) while Eth-treated animals were administed with Eth at 3 g/kgBW (40% v/v, diluted in distilled DW) via gavage (Uygur et al., 2014UYGUR, R., YAGMURCA, M., ALKOC, O.A., GENC, A., SONGUR, A., UCOK, K. and OZEN, O.A., 2014. Effects of quercetin and fish n-3 fatty acids on testicular injury induced by ethanol in rats. Andrologia, vol. 46, no. 4, pp. 356-369. http://dx.doi.org/10.1111/and.12085. PMid:23488863.
http://dx.doi.org/10.1111/and.12085...
). In the T-MP treated groups, rats received T-MP seed extract dissolved in DW at 150 or 300 mg/kgBW for 1 hour before administered with Eth at 3 g/kgBW using gavage feeding needle (Iamsaard et al., 2020IAMSAARD, S., ARUN, S., BURAWAT, J., YANNASITHINON, S., TONGPAN, S., BUNSUEB, S., LAPYUNEYONG, N., CHOOWONG-IN, P., TANGSRISAKDA, N., CHAIMONTRI, C. and SUKHORUM, W., 2020. Evaluation of antioxidant capacity and reproductive toxicity of aqueous extract of Thai Mucuna pruriens seeds. Journal of Integrative Medicine, vol. 18, no. 3, pp. 265-273. http://dx.doi.org/10.1016/j.joim.2020.03.003. PMid:32249078.
http://dx.doi.org/10.1016/j.joim.2020.03...
; Tangsrisakda et al., 2022TANGSRISAKDA, N., KAMOLLERD, T., TAOTO, C., BUNSUEB, S., CHAIMONTRI, C., CHOOWONG-IN, P., LAPYUNEYONG, N., WU, A.T., THUKHAMMEE, W., WATTANATHORN, J., ARUN, S., SAWATPANICH, T. and IAMSAARD, S., 2022. Seed extract of Thai Mucuna pruriens (L.) DC. var. pruriens enhances sexual performance and improves male reproductive damages in ethanol-induced rats. Journal of Ethnopharmacology, vol. 292, pp. 115219. http://dx.doi.org/10.1016/j.jep.2022.115219. PMid:35339625.
http://dx.doi.org/10.1016/j.jep.2022.115...
). The interval time between T-MP and Eth treatments based on the previous studies (Tahir and Sultana, 2011TAHIR, M. and SULTANA, S., 2011. Chrysin modulates ethanol metabolism in Wistar rats: a promising role against organ toxicities. Alcohol and Alcoholism (Oxford, Oxfordshire), vol. 46, no. 4, pp. 383-392. http://dx.doi.org/10.1093/alcalc/agr038. PMid:21531755.
http://dx.doi.org/10.1093/alcalc/agr038...
; Nishi et al., 2018NISHI, K., RAMAKRISHNAN, S., GUNASEKARAN, V.P., PARKASH, K., RAMAKRISHNAN, A., VIJAYAKUMAR, N. and GANESHAN, M., 2018. Protective effects of p-coumaric acid on ethanol induced male reproductive toxicity. Life Sciences, vol. 209, pp. 1-8. http://dx.doi.org/10.1016/j.lfs.2018.07.045. PMid:30048695.
http://dx.doi.org/10.1016/j.lfs.2018.07....
). The concentration of Eth used in this study was based on the intoxication of Eth in rat model, ranging between 2-5 g/kgBW as described previously (Aronowski et al., 2003ARONOWSKI, J., STRONG, R., SHIRZADI, A. and GROTTA, J.C., 2003. Ethanol plus caffeine (caffeinol) for treatment of ischemic stroke: preclinical experience. Stroke, vol. 34, no. 5, pp. 1246-1251. http://dx.doi.org/10.1161/01.STR.0000068170.80517.B3. PMid:12690223.
http://dx.doi.org/10.1161/01.STR.0000068...
). This study was performed for 56 consecutive days based on rat spermatogenic cycle and sperm transit into the epididymis (Adler, 1996ADLER, I.D., 1996. Comparison of the duration of spermatogenesis between male rodents and humans. Mutation Research, vol. 352, no. 1-2, pp. 169-172. http://dx.doi.org/10.1016/0027-5107(95)00223-5. PMid:8676906.
http://dx.doi.org/10.1016/0027-5107(95)0...
; Creasy, 1997CREASY, D.M., 1997. Evaluation of testicular toxicity in safety evaluation studies: the appropriate use of spermatogenic staging. Toxicologic Pathology, vol. 25, no. 2, pp. 119-131. http://dx.doi.org/10.1177/019262339702500201. PMid:9125770.
http://dx.doi.org/10.1177/01926233970250...
). The animal ethic of this study was proven by the Institutional Animal Care and Use Committee of Khon Kaen University based on the Ethic of Animal Experimentation of National Research Council of Thailand (Record No: IACUC-KKU-85/64).

2.3. Measurements of seminiferous tubule morphometry

At the end of the experiment, rats were anesthetized and euthanized by intraperitoneal injection with thiopental sodium (80 mg/kg BW, Sigma-Aldrich, Inc., USA). Then, the right testis was collected to remove surrounding fat pads before fixation with 10% buffer formalin solution for 3 days. Fixed testis was routinely processed for paraffin block before sectioning at 5 μm thickness by using semi-automatic microtome (ERM 3,100, Heston, Australia). Testicular sections were further stained with commercial Mayer's hematoxylin (Merck KgaA, Germany) and 1% eosin Y aqueous solution (Merck KgaA, Germany). Subsequently, the stained sections were observed under light microscope (Nikon ECLIPSE E200) equipped with a DXM1200 digital camera (Nikon, Japan). The stage IX of seminiferous tubules was considered to perform the morphometric analysis using four axes of diameter and epithelial height, analyzed by the ImageJ program (Version 1.50i, National Institutes of Health).

2.4. Immunofluorescence staining

After deparaffinization, the testicular sections were soaked in citrate buffer (10 mM citric acid, 0.05% Tween-20, pH 6.0) before heating in the microwave (560 Watts, 5 minutes, 3 times) to retrieve the antigens on the tissue. Then, tissues were cooled down at room temperature before washing with PBS. The cell membranes on the section were permeabilized by incubation with 0.2% Triton X-100 (Fluka Chemical Corp., USA) for 10 minutes and washed with PBS. The endogenous peroxidase activity on tissues was blocked by incubation with 30% hydrogen peroxide (H2O2, Cat. No. 822287, Merck, Germany) for 20 minutes. Subsequently, the non-specific binding proteins on the section were blocked with 3% bovine serum albumin (BSA, Merck, Germany) for 30 minutes. Then, they were probed with rabbit anti-proliferating cell nuclear antigen (PCNA) (Cat. No. ab92552, Abcam, UK) diluted in PBS (1:100), 4 ºC for overnight in a moist chamber while the negative control section was omitted for the primary antibody. All sections were washed with PBS and incubated with goat anti-rabbit IgG (H+L) secondary antibody Alexa Fluor® 488 conjugate (Invitrogen, CA, USA) diluted in PBS (1:300) for 30 minutes. The tissues were counterstained with Hoechst 33342 (Cat. No. ab228551, Abcam, UK) diluted in PBS (1:10,000) for 5 minutes. After that, the stained sections were mounted with glycerol (Thermo Fisher Scientific, Australia). The fluorescence emission was detected and captured under Nikon ECLIPSE 80i fluorescence microscope equipped with Nikon DS Fi1c Camera (Nikon, Japan).

2.5. Testicular protein extraction

The left testis of each animal was stored at -20 ºC before protein extraction. In brief, the 200 mg of testicular tissue without tunica albuginea from each rat was added with 400 µl of 1X radioimmunoprecipitation assay (RIPA) buffer (Cell signaling Technology Inc., USA) containing protease inhibitor cocktails (Sigma-Aldrich, Inc., USA). Then, the samples were homogenized using a glass tissue grinder and sonicated with a sonicator probe (Ultrasonic Processor, Cole-Parmer Instrument Company, Thailand) on ice. After that, all samples were pooled as the same group before incubation on the shaker for 10 minutes on ice. Afterward, the testicular samples were sonicated again before centrifugation at 14,000 rpm, 10 minutes at 4 ºC. The supernatants were collected for determination of the total protein concentration of representative testis by using the NANO drop ND-100 Spectrophotometer (NanoDrop ND-1000 Spectrophotometer V3.5 User's Manual, NanoDrop Technologes Inc., USA) at a wavelength of 280 nm.

2.6. Immuno-Western blot

Each group's total testicular protein (150 µg) was added with 2X loading buffer before separation on 10% SDS-PAGE gel. Then, the separated proteins were blotted onto the nitrocellulose membrane (Bio-Rad Laboratories, Inc., Germany) at 110 volts for 120 minutes. Subsequently, the non-specific proteins were blocked by incubating with 5% skimmed milk (for dopamine D2 receptor (D2R) antibody) or 5% bovine serum albumin (BSA) dissolved in 0.1% PBST (for caspase-3 and caspase-9 antibodies) for 10 minutes at room temperature. Then, the whole membranes were incubated with the specific primary antibody, including rabbit anti-dopamine D2 receptor (D2R; Cat. No. AB5084P, Merck Millipore Co., CA, USA) mouse anti-caspase-3 (Cat. No. sc-7272, Santa Cruz Biotechnology, Dallas, Texas, USA) , rabbit anti proliferating cell nuclear antigen (PCNA) (Cat. No. ab92552, Abcam, UK) diluted in PBS (1:100), 4 ºC , or mouse anti-caspase-9 (Cat. No. sc-56076, Santa Cruz Biotechnology, Dallas, Texas, USA) at 4 ºC for overnight. The unbound antibodies on membranes were washed with 0.05% PBST before incubation with anti-rabbit IgG secondary antibody peroxidase (Cat. No. AP132P, Merck, Germany) conjugated with horseradish peroxidase for anti-D2R or anti mouse (Cat. No. AP160P, Merck Millipore Co., USA; 1:2,000) for caspase-3 and caspase-9 for 2 hours at room temperature. After washing, the antigen-antibody complexes on membrane were detected for the specific immunoreactivity by using the enhance chemiluminescence (ECL) substrate reagent kit (GE Healthcare Life Science, USA) and visualized by using Gel Documentation 4 (ImageQuant 400, GH HealthCare, USA).

2.7. Statistical analysis

All statistical analyses were carried out with IBM SPSS version 19.0 software (Statistical Package for the Social Sciences, SPSS Inc, Armonk, New York, USA, downloaded and installed from KKU Software Center, Khon Kaen University). The one-way analysis of variance (ANOVA) and least significant difference (LSD) test were used to examine the significant difference between groups. The results were expressed as the mean ± SD and the significant differences were considered when p value < 0.05.

3. Results

3.1. Effect of T-MP seed on seminiferous tubule morphometry

The results showed that the seminiferous tubule diameter and epithelial height of Eth group were significantly shorter than that of the control group (Figures 1A and 1B). After administration with T-MP extract, it was found that the diameter and epithelial height of T-MP plus Eth-treated groups were improved compared to the Eth group (Figures 1A and 1B).

Figure 1
Showing measurement of seminiferous morphometry. The seminiferous tubule diameter (A) and epithelial height (B) compared among control, Eth, T-MP140+Eth, and T-MP300+Eth groups. *p < 0.001 compared to control group and the #p < 0.001 compared to Eth group.

3.2. T-MP seed extract improved the expression of caspases 3 and 9

As revealed by SDS-PAGE (Figure 2A), all groups' protein profiles of testicular lysate were not different. However, the western blots showed an increase of caspase -9 and -3 expressions in the ethanolic group compared to the control group (Figure 2B). Those expressions were decreased in T-MP-treated rat testis, as shown in Figure 2B.

Figure 2
Comparison of testicular protein profiles among control and treated groups revealed by SDS-PAGE (A) and the expression of caspase -9 and -3, PCNA, and D2R (B). β- actin was used as an internal control; MW, molecular weight.

3.3. T-MP seed extract decreased proliferating cell nuclear antigen expression

The proliferating cell nuclear antigen (PCNA) expressions were observed and localized in the spermatogonial nuclei on the testicular section (revealed by green fluorescence) of all groups (Figure 3). Obviously. The expression of PCNA was increased in Eth testicular lysate compared to control but it was reduced in both doses of T-MP treated groups (Figure 2B).

Figure 3
Immunofluorescence staining against proliferating cell nuclear antigen (PCNA, green fluorescence) in the nuclei of spermatogonia of control (B-C), Eth (E-F), T-MP150+Eth (H-I), and T-MP300+Eth (K-L). Hoechst 33342 (blue fluorescence) used as counterstaining (A-C, D-F, G-I, and J- L). Scale bar is 50 µm.

3.4. T-MP seed extract enhanced the expression of D2-like receptors (D2R)

Figure 2B revealed that the D2R expression was increased in T-MP treated groups compared to that of control and Eth rats. Interestingly, the T-MP150 group has a higher expression of D2R in the testis than the T-MP300 group (Figure 2B).

4. Discussion

In the intrinsic apoptotic pathway, ethanol metabolism can induce the formation of reactive oxygen species (ROS) (Tsedensodnom et al., 2013TSEDENSODNOM, O., VACARU, A.M., HOWARTH, D.L., YIN, C. and SADLER, K.C., 2013. Ethanol metabolism and oxidative stress are required for unfolded protein response activation and steatosis in zebrafish with alcoholic liver disease. Disease Models & Mechanisms, vol. 6, no. 5, pp. 1213-1226. http://dx.doi.org/10.1242/dmm.012195. PMid:23798569.
http://dx.doi.org/10.1242/dmm.012195...
). Then, ROS mediates the translocation of Bcl-2 associated X (Bax), the pro-apoptotic proteins, to the outer mitochondria membrane to increase the permeability of cytochrome c. Subsequently, cytochrome c binds to apoptotic protease activating factor-1 (Apaf-1) and procaspase-9 in the cytoplasm to form apoptosome. Then, apoptosome recruits pro-caspase-9 to be cleaved form before activating the caspase-3 to stimulate apoptosis (Young et al., 2003YOUNG, C., KLOCKE, B.J., TENKOVA, T., CHOI, J., LABRUYERE, J., QIN, Y.Q., HOLTZMAN, D.M., ROTH, K.A. and OLNEY, J.W., 2003. Ethanol-induced neuronal apoptosis in vivo requires BAX in the developing mouse brain. Cell Death and Differentiation, vol. 10, no. 10, pp. 1148-1155. http://dx.doi.org/10.1038/sj.cdd.4401277. PMid:14502238.
http://dx.doi.org/10.1038/sj.cdd.4401277...
; Krzyzanski et al., 2007KRZYZANSKI, W., OBERDOESTER, J. and RABIN, R.A., 2007. Mechanism of ethanol enhancement of apoptosis and caspase activation in serum-deprived PC12 cells. Life Sciences, vol. 81, no. 9, pp. 756-764. http://dx.doi.org/10.1016/j.lfs.2007.07.011. PMid:17706724.
http://dx.doi.org/10.1016/j.lfs.2007.07....
; Muralidharan et al., 2013MURALIDHARAN, P., SARMAH, S., ZHOU, F.C. and MARRS, J.A., 2013. Fetal alcohol spectrum disorder (FASD) associated neural defects: complex mechanisms and potential therapeutic targets. Brain Sciences, vol. 3, no. 2, pp. 964-991. http://dx.doi.org/10.3390/brainsci3020964. PMid:24961433.
http://dx.doi.org/10.3390/brainsci302096...
; Qin et al., 2019QIN, S., YIN, J., HUANG, S., LIN, J., FANG, Z., ZHOU, Y. and HUANG, K., 2019. Astragaloside IV protects ethanol-induced gastric mucosal injury by preventing mitochondrial oxidative stress and the activation of mitochondrial pathway apoptosis in rats. Frontiers in Pharmacology, vol. 10, pp. 894. http://dx.doi.org/10.3389/fphar.2019.00894. PMid:31474858.
http://dx.doi.org/10.3389/fphar.2019.008...
). In this study, the increased caspase-9 and -3 expressions in the testicular tissue of ethanolic rats implied that ethanol could induce apoptosis in germ cells. Our results were consistent with the previous studies demonstrating that the expression of caspase proteins was increased after ethanol administration resulting in germ cell apoptosis (Zhu et al., 2000ZHU, Q., MEISINGER, J., EMANUELE, N.V., EMANUELE, M.A., LAPAGLIA, N. and VAN THIEL, D.H., 2000. Ethanol exposure enhances apoptosis within the testes. Alcoholism, Clinical and Experimental Research, vol. 24, no. 10, pp. 1550-1556. http://dx.doi.org/10.1111/j.1530-0277.2000.tb04574.x. PMid:11045864.
http://dx.doi.org/10.1111/j.1530-0277.20...
; Eid et al., 2002EID, N.A., SHIBATA, M.A., ITO, Y., KUSAKABE, K., HAMMAD, H. and OTSUKI, Y., 2002. Involvement of Fas system and active caspases in apoptotic signalling in testicular germ cells of ethanol-treated rats. International Journal of Andrology, vol. 25, no. 3, pp. 159-167. http://dx.doi.org/10.1046/j.1365-2605.2002.00341.x. PMid:12031044.
http://dx.doi.org/10.1046/j.1365-2605.20...
; Koh and Kim, 2006KOH, P.O. and KIM, M.O., 2006. Ethanol exposure decreases cell proliferation and increases apoptosis in rat testes. The Journal of Veterinary Medical Science, vol. 68, no. 10, pp. 1013-1017. http://dx.doi.org/10.1292/jvms.68.1013. PMid:17085877.
http://dx.doi.org/10.1292/jvms.68.1013...
). Interestingly, male rats treated with T-MP showed a decrease of caspase-9 and -3, which corresponded to the previous studies revealed in stress models (Choowong-in et al., 2021CHOOWONG-IN, P., SATTAYASAI, J., BOONCHOONG, P., POODENDAEN, C., WU, A.T., TANGSRISAKDA, N., SAWATPANICH, T., ARUN, S., UABUNDIT, N. and IAMSAARD, S., 2021. Protective effects of Thai Mucuna pruriens (L.) DC. var. pruriens seeds on sexual behaviors and essential reproductive markers in chronic unpredictable mild stress mice. Journal of Traditional and Complementary Medicine, vol. 12, no. 4, pp. 402-413. http://dx.doi.org/10.1016/j.jtcme.2021.12.001. PMid:35747354.
http://dx.doi.org/10.1016/j.jtcme.2021.1...
; Lapyuneyong et al., 2022LAPYUNEYONG, N., TANGSRISAKDA, N., CHOOWONG-IN, P., CHAISIWAMONGKOL, K., UABUNDIT, N., SAWATPANICH, T., ARUN, S., WU, A.T. and IAMSAARD, S., 2022. Seed extract of Thai Mucuna pruriens reduced male reproductive damage in rats induced by chronic stress. Pharmaceutical Biology, vol. 60, no. 1, pp. 374-383. http://dx.doi.org/10.1080/13880209.2022.2034896. PMid:35180038.
http://dx.doi.org/10.1080/13880209.2022....
). We assumed that the L-DOPA and other antioxidants contained in T-MP could potentially decrease ROS formation from ethanol metabolism, leading to suppressing the apoptotic process of germ cells. The increase of seminiferous tubule diameter confirmed it, and epithelial height in both T-MP treated groups. Also, a previous study demonstrated that sperm qualities, malondialdehyde (MDA) levels, spermatogenic proteins, and seminiferous tubule structure were improved after T-MP administration (Tangsrisakda et al., 2022TANGSRISAKDA, N., KAMOLLERD, T., TAOTO, C., BUNSUEB, S., CHAIMONTRI, C., CHOOWONG-IN, P., LAPYUNEYONG, N., WU, A.T., THUKHAMMEE, W., WATTANATHORN, J., ARUN, S., SAWATPANICH, T. and IAMSAARD, S., 2022. Seed extract of Thai Mucuna pruriens (L.) DC. var. pruriens enhances sexual performance and improves male reproductive damages in ethanol-induced rats. Journal of Ethnopharmacology, vol. 292, pp. 115219. http://dx.doi.org/10.1016/j.jep.2022.115219. PMid:35339625.
http://dx.doi.org/10.1016/j.jep.2022.115...
). These findings indicated that the antioxidant activities of T-MP extract could prevent the apoptotic process in germ cells induced by ethanol.

Proliferating cell nuclear antigen (PCNA), playing a role in DNA replication, has been shown to increase at late G1 and S phases, while it is absent at the G0 phase of cell cycles (Altay et al., 2003ALTAY, B., CETINKALP, S., DOGANAVŞARGIL, B., HEKIMGIL, M. and SEMERCI, B., 2003. Streptozotocin- induced diabetic effects on spermatogenesis with proliferative cell nuclear antigen immunostaining of adult rat testis. Fertility and Sterility, vol. 80, suppl. 2, pp. 828-831. http://dx.doi.org/10.1016/S0015-0282(03)00984-1. PMid:14505760.
http://dx.doi.org/10.1016/S0015-0282(03)...
; Koh and Kim, 2006KOH, P.O. and KIM, M.O., 2006. Ethanol exposure decreases cell proliferation and increases apoptosis in rat testes. The Journal of Veterinary Medical Science, vol. 68, no. 10, pp. 1013-1017. http://dx.doi.org/10.1292/jvms.68.1013. PMid:17085877.
http://dx.doi.org/10.1292/jvms.68.1013...
; Zhao et al., 2018ZHAO, W.P., WANG, H.W., LIU, J., TAN, P.P., LUO, X.L., ZHU, S.Q., CHEN, X.L. and ZHOU, B.H., 2018. Positive PCNA and Ki-67 expression in the testis correlates with spermatogenesis dysfunction in fluoride-treated rats. Biological Trace Element Research, vol. 186, no. 2, pp. 489-497. http://dx.doi.org/10.1007/s12011-018-1338-6. PMid:29748930.
http://dx.doi.org/10.1007/s12011-018-133...
). It is commonly used as a marker of spermatogenic cell proliferation (Zhao et al., 2018ZHAO, W.P., WANG, H.W., LIU, J., TAN, P.P., LUO, X.L., ZHU, S.Q., CHEN, X.L. and ZHOU, B.H., 2018. Positive PCNA and Ki-67 expression in the testis correlates with spermatogenesis dysfunction in fluoride-treated rats. Biological Trace Element Research, vol. 186, no. 2, pp. 489-497. http://dx.doi.org/10.1007/s12011-018-1338-6. PMid:29748930.
http://dx.doi.org/10.1007/s12011-018-133...
). This study showed the presence of PCNA in the spermatogonial nuclei, which is consistent with the previous studies (Koh and Kim, 2006KOH, P.O. and KIM, M.O., 2006. Ethanol exposure decreases cell proliferation and increases apoptosis in rat testes. The Journal of Veterinary Medical Science, vol. 68, no. 10, pp. 1013-1017. http://dx.doi.org/10.1292/jvms.68.1013. PMid:17085877.
http://dx.doi.org/10.1292/jvms.68.1013...
; D'Andrea et al., 2008D’ANDREA, M.R., LAWRENCE, D., NAGELE, R.G., WANG, C.Y. and DAMIANO, B.P., 2008. PCNA indexing as a preclinical immunohistochemical biomarker for testicular toxicity. Biotechnic & Histochemistry : Official Publication of the Biological Stain Commission, vol. 83, no. 5, pp. 211-220. http://dx.doi.org/10.1080/10520290802521804. PMid:19016366.
http://dx.doi.org/10.1080/10520290802521...
). However, PCNA expression increased in ethanolic rats compared to the control and T-MP-treated groups. This result disagreed with the previous study demonstrating that acute ethanol administration at low doses (1.5 and 3.0 g/kg) for 10 days could suppress the expression of PCNA (Koh and Kim, 2006KOH, P.O. and KIM, M.O., 2006. Ethanol exposure decreases cell proliferation and increases apoptosis in rat testes. The Journal of Veterinary Medical Science, vol. 68, no. 10, pp. 1013-1017. http://dx.doi.org/10.1292/jvms.68.1013. PMid:17085877.
http://dx.doi.org/10.1292/jvms.68.1013...
). Chronic ethanolic administration in our study possibly caused apoptosis in germ cells as confirmed by the increase of testicular caspase-9 and -3 expressions. As a result, non-apoptotic spermatogonia might try to accelerate the proliferation to maintain the number of testicular germ cells, leading to increased PCNA expression in the ethanolic group. We demonstrated the decreased expression of PCNA in T-MP treated groups which was corroborated by the decrease of caspase-9 and -3. It was assumed that the ROS formation in the ethanolic testis was suppressed by the L-DOPA and other antioxidants found in T-MP. Therefore, as shown in our investigation, it leads to the suppression of the testicular apoptotic process. Moreover, our previous study showed that sperm quality and daily sperm production (DSP) in ethanolic testis were improved after treatment with T-MP extract (Tangsrisakda et al., 2022TANGSRISAKDA, N., KAMOLLERD, T., TAOTO, C., BUNSUEB, S., CHAIMONTRI, C., CHOOWONG-IN, P., LAPYUNEYONG, N., WU, A.T., THUKHAMMEE, W., WATTANATHORN, J., ARUN, S., SAWATPANICH, T. and IAMSAARD, S., 2022. Seed extract of Thai Mucuna pruriens (L.) DC. var. pruriens enhances sexual performance and improves male reproductive damages in ethanol-induced rats. Journal of Ethnopharmacology, vol. 292, pp. 115219. http://dx.doi.org/10.1016/j.jep.2022.115219. PMid:35339625.
http://dx.doi.org/10.1016/j.jep.2022.115...
). A mechanism could explain such protection effects of T-MP extract in ethanol-treated rats via decreasing PCNA and apoptotic expressions.

Dopamine is known to play a role in the nervous system via D1-like (D1R) and D2-like receptors (D2R) (Martel and Gatti McArthur, 2020MARTEL, J.C. and GATTI MCARTHUR, S., 2020. Dopamine receptor subtypes, physiology and pharmacology: new ligands and concepts in Schizophrenia. Frontiers in Pharmacology, vol. 11, pp. 1003. http://dx.doi.org/10.3389/fphar.2020.01003. PMid:32765257.
http://dx.doi.org/10.3389/fphar.2020.010...
; Penedo et al., 2021PENEDO, M.A., RIVERA-BALTANÁS, T., PÉREZ-RODRÍGUEZ, D., ALLEN, J., BORRAJO, A., ALONSO- CRESPO, D., FERNÁNDEZ-PEREIRA, C., NIETO-ARAUJO, M., RAMOS-GARCÍA, S., BARREIRO VILLAR, C., CARUNCHO, H.J., OLIVARES, J.M. and AGÍS-BALBOA, R.C. (2021). The role of dopamine receptors in lymphocytes and their changes in schizophrenia. Brain, Behavior, & Immunity - Health, vol. 12, pp. 100199. http://dx.doi.org/10.1016/j.bbih.2021.100199.
http://dx.doi.org/10.1016/j.bbih.2021.10...
). Moreover, previous studies demonstrated the presence of dopamine receptors in the heart, kidney, lymphocytes, and testis (Otth et al., 2007OTTH, C., TORRES, M., RAMÍREZ, A., FERNANDEZ, J.C., CASTRO, M., RAUCH, M.C., BRITO, M., YAÑEZ, A.J., RODRÍGUEZ-GIL, J.E., SLEBE, J.C. and CONCHA, I.I., 2007. Novel identification of peripheral dopaminergic D2 receptor in male germ cells. Journal of Cellular Biochemistry, vol. 100, no. 1, pp. 141-150. http://dx.doi.org/10.1002/jcb.21037. PMid:16924680.
http://dx.doi.org/10.1002/jcb.21037...
; Cavallotti et al., 2010CAVALLOTTI, C., MANCONE, M., BRUZZONE, P., SABBATINI, M. and MIGNINI, F., 2010. Dopamine receptor subtypes in the native human heart. Heart and Vessels, vol. 25, no. 5, pp. 432-437. http://dx.doi.org/10.1007/s00380-009-1224-4. PMid:20676967.
http://dx.doi.org/10.1007/s00380-009-122...
; Olivares-Hernández et al., 2021OLIVARES-HERNÁNDEZ, A., FIGUERO-PÉREZ, L., CRUZ-HERNANDEZ, J.J., GONZÁLEZ SARMIENTO, R., USATEGUI-MARTIN, R. and MIRAMONTES-GONZÁLEZ, J.P., 2021. Dopamine receptors and the kidney: an overview of health- and pharmacological-targeted implications. Biomolecules, vol. 11, no. 2, pp. 254. http://dx.doi.org/10.3390/biom11020254. PMid:33578816.
http://dx.doi.org/10.3390/biom11020254...
; Penedo et al., 2021PENEDO, M.A., RIVERA-BALTANÁS, T., PÉREZ-RODRÍGUEZ, D., ALLEN, J., BORRAJO, A., ALONSO- CRESPO, D., FERNÁNDEZ-PEREIRA, C., NIETO-ARAUJO, M., RAMOS-GARCÍA, S., BARREIRO VILLAR, C., CARUNCHO, H.J., OLIVARES, J.M. and AGÍS-BALBOA, R.C. (2021). The role of dopamine receptors in lymphocytes and their changes in schizophrenia. Brain, Behavior, & Immunity - Health, vol. 12, pp. 100199. http://dx.doi.org/10.1016/j.bbih.2021.100199.
http://dx.doi.org/10.1016/j.bbih.2021.10...
). Especially in rat testis, Otth and coworkers (2007)OTTH, C., TORRES, M., RAMÍREZ, A., FERNANDEZ, J.C., CASTRO, M., RAUCH, M.C., BRITO, M., YAÑEZ, A.J., RODRÍGUEZ-GIL, J.E., SLEBE, J.C. and CONCHA, I.I., 2007. Novel identification of peripheral dopaminergic D2 receptor in male germ cells. Journal of Cellular Biochemistry, vol. 100, no. 1, pp. 141-150. http://dx.doi.org/10.1002/jcb.21037. PMid:16924680.
http://dx.doi.org/10.1002/jcb.21037...
investigated that the D2R was expressed in the spermatocyte, spermatid, and spermatozoa (Otth et al., 2007OTTH, C., TORRES, M., RAMÍREZ, A., FERNANDEZ, J.C., CASTRO, M., RAUCH, M.C., BRITO, M., YAÑEZ, A.J., RODRÍGUEZ-GIL, J.E., SLEBE, J.C. and CONCHA, I.I., 2007. Novel identification of peripheral dopaminergic D2 receptor in male germ cells. Journal of Cellular Biochemistry, vol. 100, no. 1, pp. 141-150. http://dx.doi.org/10.1002/jcb.21037. PMid:16924680.
http://dx.doi.org/10.1002/jcb.21037...
). In addition, a previous study showed the reduction of the D2R expression in spermatocytes, round spermatids, and Sertoli cells but an increase in the elongated spermatids of methamphetamine-treated rats (Thanoi et al., 2020THANOI, S., JANPHET, S. and NUDMAMUD-THANOI, S., 2020. Changes of dopamine D2, alpha1 adrenergic receptor expressions and developmental stages of seminiferous tubule in rat testis after methamphetamine administration: A preliminary study. Songklanakarin Journal of Science and Technology, vol. 42, no. 4, pp. 928-934.). It indicated that D2R might play a pivotal role in spermatogenesis. In this study, the increase of D2R and apoptotic markers (caspase-9 and -3) expressions in Eth testis might result from the overstimulation of germ cells to accelerate sperm production. After treatment with T-MP, the expression of D2R was markedly increased, whereas caspase-9 and 3 expressions were decreased compared to the Eth group. Indeed, the antioxidant capacity, including the L-DOPA component in T-MP, might improve such changes in D2R and caspase expressions as previously reported (Iamsaard et al., 2020IAMSAARD, S., ARUN, S., BURAWAT, J., YANNASITHINON, S., TONGPAN, S., BUNSUEB, S., LAPYUNEYONG, N., CHOOWONG-IN, P., TANGSRISAKDA, N., CHAIMONTRI, C. and SUKHORUM, W., 2020. Evaluation of antioxidant capacity and reproductive toxicity of aqueous extract of Thai Mucuna pruriens seeds. Journal of Integrative Medicine, vol. 18, no. 3, pp. 265-273. http://dx.doi.org/10.1016/j.joim.2020.03.003. PMid:32249078.
http://dx.doi.org/10.1016/j.joim.2020.03...
; Choowong-In et al., 2021CHOOWONG-IN, P., SATTAYASAI, J., BOONCHOONG, P., POODENDAEN, C., WU, A.T., TANGSRISAKDA, N., SAWATPANICH, T., ARUN, S., UABUNDIT, N. and IAMSAARD, S., 2021. Protective effects of Thai Mucuna pruriens (L.) DC. var. pruriens seeds on sexual behaviors and essential reproductive markers in chronic unpredictable mild stress mice. Journal of Traditional and Complementary Medicine, vol. 12, no. 4, pp. 402-413. http://dx.doi.org/10.1016/j.jtcme.2021.12.001. PMid:35747354.
http://dx.doi.org/10.1016/j.jtcme.2021.1...
; Tangsrisakda et al., 2022TANGSRISAKDA, N., KAMOLLERD, T., TAOTO, C., BUNSUEB, S., CHAIMONTRI, C., CHOOWONG-IN, P., LAPYUNEYONG, N., WU, A.T., THUKHAMMEE, W., WATTANATHORN, J., ARUN, S., SAWATPANICH, T. and IAMSAARD, S., 2022. Seed extract of Thai Mucuna pruriens (L.) DC. var. pruriens enhances sexual performance and improves male reproductive damages in ethanol-induced rats. Journal of Ethnopharmacology, vol. 292, pp. 115219. http://dx.doi.org/10.1016/j.jep.2022.115219. PMid:35339625.
http://dx.doi.org/10.1016/j.jep.2022.115...
). It could be explained that L-DOPA might be transformed to be dopamine before binding with the D2R in the germ cells to facilitate spermatogenesis, as confirmed by the improvement of the sperm quality, testicular morphometry, and essential proteins involved in spermatogenesis of rats treated with ethanol (Tangsrisakda et al., 2022TANGSRISAKDA, N., KAMOLLERD, T., TAOTO, C., BUNSUEB, S., CHAIMONTRI, C., CHOOWONG-IN, P., LAPYUNEYONG, N., WU, A.T., THUKHAMMEE, W., WATTANATHORN, J., ARUN, S., SAWATPANICH, T. and IAMSAARD, S., 2022. Seed extract of Thai Mucuna pruriens (L.) DC. var. pruriens enhances sexual performance and improves male reproductive damages in ethanol-induced rats. Journal of Ethnopharmacology, vol. 292, pp. 115219. http://dx.doi.org/10.1016/j.jep.2022.115219. PMid:35339625.
http://dx.doi.org/10.1016/j.jep.2022.115...
).

5. Conclusion

Therefore, it was concluded that the T-MP seed extract containing L-DOPA and antioxidants could protect testicular apoptosis induced by ethanol via changes of caspase (3 and 9), PCNA, and D2R protein expressions.

6. Future Prospects

These investigations have provided the preventive effects of T-MP consumption on testicular apoptosis caused from ethanol via improvement of caspase, PCNA and D2R protein expressions. Possibly, the seed of T-MP can be used as a potential dietary supplement for testicular health of alcoholism men to protect apoptosis.

Acknowledgements

This research work was financially supported by Research Assistantship (Grant Number AS64301), Faculty of Medicine, Khon Kaen University, Thailand to Dr. Nareelak Tangsrisak and Dr. Sitthichai Iamsaard.

References

  • ADLER, I.D., 1996. Comparison of the duration of spermatogenesis between male rodents and humans. Mutation Research, vol. 352, no. 1-2, pp. 169-172. http://dx.doi.org/10.1016/0027-5107(95)00223-5 PMid:8676906.
    » http://dx.doi.org/10.1016/0027-5107(95)00223-5
  • AKBARI, A., NASIRI, K., HEYDARI, M., MOSAVAT, S.H. and IRAJI, A., 2017. The protective effect of hydroalcoholic extract of Zingiber officinale Roscoe (Ginger) on ethanol-induced reproductive toxicity in male rats. Journal of Evidence-Based Complementary & Alternative Medicine, vol. 22, no. 4, pp. 609-617. http://dx.doi.org/10.1177/2156587216687696 PMid:29228791.
    » http://dx.doi.org/10.1177/2156587216687696
  • AKOMOLAFE, S.F., OBOH, G., AKINDAHUNSI, A.A. and AFOLAYAN, A.J., 2017. Ethanol-induced male infertility: effects of aqueous leaf extract of Tetracarpidium conophorum Andrologia, 49(10), pp. e12759. http://dx.doi.org/10.1111/and.12759
    » http://dx.doi.org/10.1111/and.12759
  • ALTAY, B., CETINKALP, S., DOGANAVŞARGIL, B., HEKIMGIL, M. and SEMERCI, B., 2003. Streptozotocin- induced diabetic effects on spermatogenesis with proliferative cell nuclear antigen immunostaining of adult rat testis. Fertility and Sterility, vol. 80, suppl. 2, pp. 828-831. http://dx.doi.org/10.1016/S0015-0282(03)00984-1 PMid:14505760.
    » http://dx.doi.org/10.1016/S0015-0282(03)00984-1
  • ARONOWSKI, J., STRONG, R., SHIRZADI, A. and GROTTA, J.C., 2003. Ethanol plus caffeine (caffeinol) for treatment of ischemic stroke: preclinical experience. Stroke, vol. 34, no. 5, pp. 1246-1251. http://dx.doi.org/10.1161/01.STR.0000068170.80517.B3 PMid:12690223.
    » http://dx.doi.org/10.1161/01.STR.0000068170.80517.B3
  • CAMARGO, S.M., VUILLE-DIT-BILLE, R.N., MARIOTTA, L., RAMADAN, T., HUGGEL, K., SINGER, D., GÖTZE, O. and VERREY, F., 2014. The molecular mechanism of intestinal levodopa absorption and its possible implications for the treatment of Parkinson’s disease. The Journal of Pharmacology and Experimental Therapeutics, vol. 351, no. 1, pp. 114-123. http://dx.doi.org/10.1124/jpet.114.216317 PMid:25073474.
    » http://dx.doi.org/10.1124/jpet.114.216317
  • CAVALLOTTI, C., MANCONE, M., BRUZZONE, P., SABBATINI, M. and MIGNINI, F., 2010. Dopamine receptor subtypes in the native human heart. Heart and Vessels, vol. 25, no. 5, pp. 432-437. http://dx.doi.org/10.1007/s00380-009-1224-4 PMid:20676967.
    » http://dx.doi.org/10.1007/s00380-009-1224-4
  • CHOOWONG-IN, P., SATTAYASAI, J., BOONCHOONG, P., POODENDAEN, C., WU, A.T., TANGSRISAKDA, N., SAWATPANICH, T., ARUN, S., UABUNDIT, N. and IAMSAARD, S., 2021. Protective effects of Thai Mucuna pruriens (L.) DC. var. pruriens seeds on sexual behaviors and essential reproductive markers in chronic unpredictable mild stress mice. Journal of Traditional and Complementary Medicine, vol. 12, no. 4, pp. 402-413. http://dx.doi.org/10.1016/j.jtcme.2021.12.001 PMid:35747354.
    » http://dx.doi.org/10.1016/j.jtcme.2021.12.001
  • CREASY, D.M., 1997. Evaluation of testicular toxicity in safety evaluation studies: the appropriate use of spermatogenic staging. Toxicologic Pathology, vol. 25, no. 2, pp. 119-131. http://dx.doi.org/10.1177/019262339702500201 PMid:9125770.
    » http://dx.doi.org/10.1177/019262339702500201
  • D’ANDREA, M.R., LAWRENCE, D., NAGELE, R.G., WANG, C.Y. and DAMIANO, B.P., 2008. PCNA indexing as a preclinical immunohistochemical biomarker for testicular toxicity. Biotechnic & Histochemistry : Official Publication of the Biological Stain Commission, vol. 83, no. 5, pp. 211-220. http://dx.doi.org/10.1080/10520290802521804 PMid:19016366.
    » http://dx.doi.org/10.1080/10520290802521804
  • EID, N.A., SHIBATA, M.A., ITO, Y., KUSAKABE, K., HAMMAD, H. and OTSUKI, Y., 2002. Involvement of Fas system and active caspases in apoptotic signalling in testicular germ cells of ethanol-treated rats. International Journal of Andrology, vol. 25, no. 3, pp. 159-167. http://dx.doi.org/10.1046/j.1365-2605.2002.00341.x PMid:12031044.
    » http://dx.doi.org/10.1046/j.1365-2605.2002.00341.x
  • IAMSAARD, S., ARUN, S., BURAWAT, J., YANNASITHINON, S., TONGPAN, S., BUNSUEB, S., LAPYUNEYONG, N., CHOOWONG-IN, P., TANGSRISAKDA, N., CHAIMONTRI, C. and SUKHORUM, W., 2020. Evaluation of antioxidant capacity and reproductive toxicity of aqueous extract of Thai Mucuna pruriens seeds. Journal of Integrative Medicine, vol. 18, no. 3, pp. 265-273. http://dx.doi.org/10.1016/j.joim.2020.03.003 PMid:32249078.
    » http://dx.doi.org/10.1016/j.joim.2020.03.003
  • JANA, K., JANA, N., DE, D.K. and GUHA, S.K., 2010. Ethanol induces mouse spermatogenic cell apoptosis in vivo through over-expression of Fas/Fas-L, p53, and caspase-3 along with cytochrome c translocation and glutathione depletion. Molecular Reproduction and Development, vol. 77, no. 9, pp. 820-833. http://dx.doi.org/10.1002/mrd.21227 PMid:20803734.
    » http://dx.doi.org/10.1002/mrd.21227
  • KATZENSCHLAGER, R., EVANS, A., MANSON, A., PATSALOS, P.N., RATNARAJ, N., WATT, H., TIMMERMANN, L., VAN DER GIESSEN, R. and LEES, A.J., 2004. Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study. Journal of Neurology, Neurosurgery, and Psychiatry, vol. 75, no. 12, pp. 1672-1677. http://dx.doi.org/10.1136/jnnp.2003.028761 PMid:15548480.
    » http://dx.doi.org/10.1136/jnnp.2003.028761
  • KOH, P.O. and KIM, M.O., 2006. Ethanol exposure decreases cell proliferation and increases apoptosis in rat testes. The Journal of Veterinary Medical Science, vol. 68, no. 10, pp. 1013-1017. http://dx.doi.org/10.1292/jvms.68.1013 PMid:17085877.
    » http://dx.doi.org/10.1292/jvms.68.1013
  • KRZYZANSKI, W., OBERDOESTER, J. and RABIN, R.A., 2007. Mechanism of ethanol enhancement of apoptosis and caspase activation in serum-deprived PC12 cells. Life Sciences, vol. 81, no. 9, pp. 756-764. http://dx.doi.org/10.1016/j.lfs.2007.07.011 PMid:17706724.
    » http://dx.doi.org/10.1016/j.lfs.2007.07.011
  • LAMPARIELLO, L.R., CORTELAZZO, A., GUERRANTI, R., STICOZZI, C. and VALACCHI, G., 2012. The magic velvet bean of Mucuna pruriens. Journal of Traditional and Complementary Medicine, vol. 2, no. 4, pp. 331-339. http://dx.doi.org/10.1016/S2225-4110(16)30119-5 PMid:24716148.
    » http://dx.doi.org/10.1016/S2225-4110(16)30119-5
  • LAPYUNEYONG, N., TANGSRISAKDA, N., CHOOWONG-IN, P., CHAISIWAMONGKOL, K., UABUNDIT, N., SAWATPANICH, T., ARUN, S., WU, A.T. and IAMSAARD, S., 2022. Seed extract of Thai Mucuna pruriens reduced male reproductive damage in rats induced by chronic stress. Pharmaceutical Biology, vol. 60, no. 1, pp. 374-383. http://dx.doi.org/10.1080/13880209.2022.2034896 PMid:35180038.
    » http://dx.doi.org/10.1080/13880209.2022.2034896
  • MANEESH, M., DUTTA, S., CHAKRABARTI, A. and VASUDEVAN, D.M., 2006. Alcohol abuse-duration dependent decrease in plasma testosterone and antioxidants in males. Indian Journal of Physiology and Pharmacology, vol. 50, no. 3, pp. 291-296. PMid:17193902.
  • MARTEL, J.C. and GATTI MCARTHUR, S., 2020. Dopamine receptor subtypes, physiology and pharmacology: new ligands and concepts in Schizophrenia. Frontiers in Pharmacology, vol. 11, pp. 1003. http://dx.doi.org/10.3389/fphar.2020.01003 PMid:32765257.
    » http://dx.doi.org/10.3389/fphar.2020.01003
  • MURALIDHARAN, P., SARMAH, S., ZHOU, F.C. and MARRS, J.A., 2013. Fetal alcohol spectrum disorder (FASD) associated neural defects: complex mechanisms and potential therapeutic targets. Brain Sciences, vol. 3, no. 2, pp. 964-991. http://dx.doi.org/10.3390/brainsci3020964 PMid:24961433.
    » http://dx.doi.org/10.3390/brainsci3020964
  • NISHI, K., RAMAKRISHNAN, S., GUNASEKARAN, V.P., PARKASH, K., RAMAKRISHNAN, A., VIJAYAKUMAR, N. and GANESHAN, M., 2018. Protective effects of p-coumaric acid on ethanol induced male reproductive toxicity. Life Sciences, vol. 209, pp. 1-8. http://dx.doi.org/10.1016/j.lfs.2018.07.045 PMid:30048695.
    » http://dx.doi.org/10.1016/j.lfs.2018.07.045
  • OLIVARES-HERNÁNDEZ, A., FIGUERO-PÉREZ, L., CRUZ-HERNANDEZ, J.J., GONZÁLEZ SARMIENTO, R., USATEGUI-MARTIN, R. and MIRAMONTES-GONZÁLEZ, J.P., 2021. Dopamine receptors and the kidney: an overview of health- and pharmacological-targeted implications. Biomolecules, vol. 11, no. 2, pp. 254. http://dx.doi.org/10.3390/biom11020254 PMid:33578816.
    » http://dx.doi.org/10.3390/biom11020254
  • OTTH, C., TORRES, M., RAMÍREZ, A., FERNANDEZ, J.C., CASTRO, M., RAUCH, M.C., BRITO, M., YAÑEZ, A.J., RODRÍGUEZ-GIL, J.E., SLEBE, J.C. and CONCHA, I.I., 2007. Novel identification of peripheral dopaminergic D2 receptor in male germ cells. Journal of Cellular Biochemistry, vol. 100, no. 1, pp. 141-150. http://dx.doi.org/10.1002/jcb.21037 PMid:16924680.
    » http://dx.doi.org/10.1002/jcb.21037
  • PENEDO, M.A., RIVERA-BALTANÁS, T., PÉREZ-RODRÍGUEZ, D., ALLEN, J., BORRAJO, A., ALONSO- CRESPO, D., FERNÁNDEZ-PEREIRA, C., NIETO-ARAUJO, M., RAMOS-GARCÍA, S., BARREIRO VILLAR, C., CARUNCHO, H.J., OLIVARES, J.M. and AGÍS-BALBOA, R.C. (2021). The role of dopamine receptors in lymphocytes and their changes in schizophrenia. Brain, Behavior, & Immunity - Health, vol. 12, pp. 100199. http://dx.doi.org/10.1016/j.bbih.2021.100199
    » http://dx.doi.org/10.1016/j.bbih.2021.100199
  • PULIKKALPURA, H., KURUP, R., MATHEW, P.J. and BABY, S., 2015. Levodopa in Mucuna pruriens and its degradation. Scientific Reports, vol. 5, no. 1, pp. 11078. http://dx.doi.org/10.1038/srep11078 PMid:26058043.
    » http://dx.doi.org/10.1038/srep11078
  • QIN, S., YIN, J., HUANG, S., LIN, J., FANG, Z., ZHOU, Y. and HUANG, K., 2019. Astragaloside IV protects ethanol-induced gastric mucosal injury by preventing mitochondrial oxidative stress and the activation of mitochondrial pathway apoptosis in rats. Frontiers in Pharmacology, vol. 10, pp. 894. http://dx.doi.org/10.3389/fphar.2019.00894 PMid:31474858.
    » http://dx.doi.org/10.3389/fphar.2019.00894
  • RAI, S.N., BIRLA, H., ZAHRA, W., SINGH, S.S. and SINGH, S.P., 2017. Immunomodulation of Parkinson’s disease using Mucuna pruriens (Mp). Journal of Chemical Neuroanatomy, vol. 85, pp. 27-35. http://dx.doi.org/10.1016/j.jchemneu.2017.06.005 PMid:28642128.
    » http://dx.doi.org/10.1016/j.jchemneu.2017.06.005
  • SIERVO, G.E., VIEIRA, H.R., OGO, F.M., FERNANDEZ, C.D., GONÇALVES, G.D., MESQUITA, S.F., ANSELMO-FRANCI, J.A., CECCHINI, R., GUARNIER, F.A. and FERNANDES, G.S., 2015. Spermatic and testicular damages in rats exposed to ethanol: influence of lipid peroxidation but not testosterone. Toxicology, vol. 330, pp. 1-8. http://dx.doi.org/10.1016/j.tox.2015.01.016 PMid:25637669.
    » http://dx.doi.org/10.1016/j.tox.2015.01.016
  • SINGH, A.P., SARKAR, S., TRIPATHI, M. and RAJENDER, S., 2013. Mucuna pruriens and its major constituent L-DOPA recover spermatogenic loss by combating ROS, loss of mitochondrial membrane potential and apoptosis. PLoS One, vol. 8, no. 1, pp. e54655. http://dx.doi.org/10.1371/journal.pone.0054655 PMid:23349947.
    » http://dx.doi.org/10.1371/journal.pone.0054655
  • STUTZ, G., ZAMUDIO, J., SANTILLÁN, M.E., VINCENTI, L., DE CUNEO, M.F. and RUIZ, R.D., 2004. The effect of alcohol, tobacco, and aspirin consumption on seminal quality among healthy young men. Archives of Environmental Health, vol. 59, no. 11, pp. 548-552. http://dx.doi.org/10.1080/00039890409603432 PMid:16599001.
    » http://dx.doi.org/10.1080/00039890409603432
  • SURESH, S., PRITHIVIRAJ, E. and PRAKASH, S., 2009. Dose- and time-dependent effects of ethanolic extract of Mucuna pruriens Linn. seed on sexual behaviour of normal male rats. Journal of Ethnopharmacology, vol. 122, no. 3, pp. 497-501. http://dx.doi.org/10.1016/j.jep.2009.01.032 PMid:19429319.
    » http://dx.doi.org/10.1016/j.jep.2009.01.032
  • SURESH, S., PRITHIVIRAJ, E., LAKSHMI, N.V., GANESH, M.K., GANESH, L. and PRAKASH, S., 2013. Effect of Mucuna pruriens (Linn.) on mitochondrial dysfunction and DNA damage in epididymal sperm of streptozotocin induced diabetic rat. Journal of Ethnopharmacology, vol. 145, no. 1, pp. 32-41. http://dx.doi.org/10.1016/j.jep.2012.10.030 PMid:23103904.
    » http://dx.doi.org/10.1016/j.jep.2012.10.030
  • TAHIR, M. and SULTANA, S., 2011. Chrysin modulates ethanol metabolism in Wistar rats: a promising role against organ toxicities. Alcohol and Alcoholism (Oxford, Oxfordshire), vol. 46, no. 4, pp. 383-392. http://dx.doi.org/10.1093/alcalc/agr038 PMid:21531755.
    » http://dx.doi.org/10.1093/alcalc/agr038
  • TANGSRISAKDA, N. and IAMSAARD, S., 2020. Effect of ethanol on the changes in testicular protein expression in adult male rats. Andrologia, vol. 52, no. 10, pp. e13784. http://dx.doi.org/10.1111/and.13784 PMid:32721052.
    » http://dx.doi.org/10.1111/and.13784
  • TANGSRISAKDA, N., KAMOLLERD, T., TAOTO, C., BUNSUEB, S., CHAIMONTRI, C., CHOOWONG-IN, P., LAPYUNEYONG, N., WU, A.T., THUKHAMMEE, W., WATTANATHORN, J., ARUN, S., SAWATPANICH, T. and IAMSAARD, S., 2022. Seed extract of Thai Mucuna pruriens (L.) DC. var. pruriens enhances sexual performance and improves male reproductive damages in ethanol-induced rats. Journal of Ethnopharmacology, vol. 292, pp. 115219. http://dx.doi.org/10.1016/j.jep.2022.115219 PMid:35339625.
    » http://dx.doi.org/10.1016/j.jep.2022.115219
  • THANOI, S., JANPHET, S. and NUDMAMUD-THANOI, S., 2020. Changes of dopamine D2, alpha1 adrenergic receptor expressions and developmental stages of seminiferous tubule in rat testis after methamphetamine administration: A preliminary study. Songklanakarin Journal of Science and Technology, vol. 42, no. 4, pp. 928-934.
  • TSEDENSODNOM, O., VACARU, A.M., HOWARTH, D.L., YIN, C. and SADLER, K.C., 2013. Ethanol metabolism and oxidative stress are required for unfolded protein response activation and steatosis in zebrafish with alcoholic liver disease. Disease Models & Mechanisms, vol. 6, no. 5, pp. 1213-1226. http://dx.doi.org/10.1242/dmm.012195 PMid:23798569.
    » http://dx.doi.org/10.1242/dmm.012195
  • ULANOV, V.S., 2016. The morphological features of the testicles under conditions of experimental acute and chronic alcohol intoxication. Sudebno-Meditsinskaia Ekspertiza, vol. 59, no. 5, pp. 25-27. http://dx.doi.org/10.17116/sudmed201659525-27 PMid:27763588.
    » http://dx.doi.org/10.17116/sudmed201659525-27
  • UYGUR, R., YAGMURCA, M., ALKOC, O.A., GENC, A., SONGUR, A., UCOK, K. and OZEN, O.A., 2014. Effects of quercetin and fish n-3 fatty acids on testicular injury induced by ethanol in rats. Andrologia, vol. 46, no. 4, pp. 356-369. http://dx.doi.org/10.1111/and.12085 PMid:23488863.
    » http://dx.doi.org/10.1111/and.12085
  • YARI, S., KARAMIAN, R., ASADBEGY, M., HOSEINI, E. and MOAZZAMI FARIDA, S.H., 2018. The protective effects of Arctium lappa L. extract on testicular injuries induced by ethanol in rats. Andrologia, vol. 50, no. 9, pp. e13086. http://dx.doi.org/10.1111/and.13086 PMid:30003584.
    » http://dx.doi.org/10.1111/and.13086
  • YOUNG, C., KLOCKE, B.J., TENKOVA, T., CHOI, J., LABRUYERE, J., QIN, Y.Q., HOLTZMAN, D.M., ROTH, K.A. and OLNEY, J.W., 2003. Ethanol-induced neuronal apoptosis in vivo requires BAX in the developing mouse brain. Cell Death and Differentiation, vol. 10, no. 10, pp. 1148-1155. http://dx.doi.org/10.1038/sj.cdd.4401277 PMid:14502238.
    » http://dx.doi.org/10.1038/sj.cdd.4401277
  • ZHAO, W.P., WANG, H.W., LIU, J., TAN, P.P., LUO, X.L., ZHU, S.Q., CHEN, X.L. and ZHOU, B.H., 2018. Positive PCNA and Ki-67 expression in the testis correlates with spermatogenesis dysfunction in fluoride-treated rats. Biological Trace Element Research, vol. 186, no. 2, pp. 489-497. http://dx.doi.org/10.1007/s12011-018-1338-6 PMid:29748930.
    » http://dx.doi.org/10.1007/s12011-018-1338-6
  • ZHU, Q., MEISINGER, J., EMANUELE, N.V., EMANUELE, M.A., LAPAGLIA, N. and VAN THIEL, D.H., 2000. Ethanol exposure enhances apoptosis within the testes. Alcoholism, Clinical and Experimental Research, vol. 24, no. 10, pp. 1550-1556. http://dx.doi.org/10.1111/j.1530-0277.2000.tb04574.x PMid:11045864.
    » http://dx.doi.org/10.1111/j.1530-0277.2000.tb04574.x

Publication Dates

  • Publication in this collection
    10 July 2023
  • Date of issue
    2023

History

  • Received
    05 Mar 2023
  • Accepted
    02 June 2023
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br