Acessibilidade / Reportar erro

Ecological importance of lepidopteran defoliators on eucalyptus plantations based in faunistic and natural enemy analyses

Importância ecológica de lepidópteros desfolhadores em cultivo de eucalipto baseado em análises faunísticas e inimigos naturais

Abstract

Areas planted with Eucalyptus urophylla S.T. Blake variety platyphylla F. Muell. (Myrtaceae) expand annually in most regions of Brazil. Many lepidopteran species defoliate this plant, but with damage varying per species. The objective of this study was to identify the pest status of lepidopteran defoliators based in the faunistic analysis of these insects and of their natural enemies on E. urophylla variety platyphylla plantations in a representative producing region of Brazil. Adult moths of lepidopterans and of their natural enemies were captured using a light trap, installed every two weeks, from September 2016 to August 2018. A total of 183, 10, three and 139 lepidopteran species was captured and classified as primary, secondary, without defined importance to eucalypt plants and non-identified with 1,419, seven, 465 and 876 individuals, respectively. Two primary pest species were constants, two accessories and six accidentals and all secondary ones were accidentals. Six primary pest species were common and dominant and four non-dominants. Faunistic indices indicated the main lepidopteran species that should be monitored in pest management programs. Seven hymenopteran species (65 individuals), three dipterans (49 individuals) and two hemipterans (four individuals) were the natural enemies collected using light traps. The monitoring of lepidopteran pests with light traps can contribute to the management and to reduce damage and control costs for these species, besides identifying natural enemies for biological control programs in Eucalyptus plantations.

Keywords:
defoliating caterpillar; forest pest; light trap; monitoring; population dynamic

Resumo

Áreas plantadas com Eucalyptus urophylla S.T. Blake variedade platyphylla F. Muell. (Myrtaceae) se expandem anualmente na maioria das regiões do Brasil. Muitas espécies de lepidópteros desfolham esta planta, mas com danos que variam de acordo com a espécie. O objetivo deste estudo foi identificar o status de praga de lepidópteros desfolhadores com base na análise faunística desses insetos e de seus inimigos naturais em plantios de E. urophylla variedade platyphylla em uma região produtora representativa do Brasil. As mariposas e seus inimigos naturais foram capturadas com armadilha luminosa, instalada quinzenalmente, de setembro de 2016 a agosto de 2018. Um total de 183, 10, três e 139 espécies de lepidópteros foram capturadas e classificadas como primária, secundária, sem importância definida para eucaliptocultura e não identificadas com 1419, sete, 465 e 876 indivíduos, respectivamente. Duas espécies de pragas primárias foram constantes, duas acessórias e seis acidentais e todas as secundárias foram acidentais. Seis espécies de pragas primárias foram comuns e dominantes e quatro não dominantes. Os índices faunísticos indicaram as principais espécies de lepidópteras que devem ser monitoradas em programas de manejo de pragas. Sete espécies de himenópteros (65 indivíduos), três dípteros (49 indivíduos) e dois hemípteros (quatro indivíduos) foram os inimigos naturais coletados com armadilha luminosa. O monitoramento de lepidópteros-praga com armadilha luminosa pode contribuir para o manejo e redução de danos e custos de controle para essas espécies, além de identificar inimigos naturais para programas de controle biológico em cultivos de eucalipto.

Palavras-chave:
lagarta desfolhadora; praga florestal; armadilha luminosa; monitoramento; dinâmica populacional

1. Introduction

Biotic, such as natural enemies, and abiotic, such as the environmental conditions and food availability, factors affect insect diversity (Kemp and Ellis, 2017KEMP, J.E. and ELLIS, A.G., 2017. Significant local-scale plant-insect species richness relationship independent of abiotic effects in the temperate Cape Floristic Region biodiversity hotspot. PLoS One, vol. 12, no. 1, pp. e0168033. http://dx.doi.org/10.1371/journal.pone.0168033. PMid:28076412.
http://dx.doi.org/10.1371/journal.pone.0...
; Agathokleous et al., 2020AGATHOKLEOUS, E., FENG, Z., OKSANEN, E., SICARD, P., WANG, Q., SAITANIS, C.J., ARAMINIENE, V., BLANDE, J.D., HAYES, F., CALATAYUD, V., DOMINGOS, M., VERESOGLOU, S.D., PEÑUELAS, J., WARDLE, D.A., DE MARCO, A., LI, Z., HARMENS, H., YUAN, X., VITALE, M. and PAOLETTI, E., 2020. Ozone affects plant, insect, and soil microbial communities: a threat to terrestrial ecosystems and biodiversity. Science Advances, vol. 6, no. 33, pp. eabc1176. http://dx.doi.org/10.1126/sciadv.abc1176. PMid:32851188.
http://dx.doi.org/10.1126/sciadv.abc1176...
) because individuals of the same or different species may require similar environment and food sources (Sharma et al., 2018SHARMA, A., JHA, P. and REDDY, G.V.P., 2018. Multidimensional relationships of herbicides with insect-crop food webs. The Science of the Total Environment, vol. 643, pp. 1522-1532. http://dx.doi.org/10.1016/j.scitotenv.2018.06.312. PMid:30189568.
http://dx.doi.org/10.1016/j.scitotenv.20...
; Gutiérrez et al., 2020GUTIÉRREZ, Y., FRESCH, M., OTT, D., BROCKMEYER, J. and SCHERBER, C., 2020. Diet composition and social environment determine food consumption, phenotype and fecundity in an omnivorous insect. Royal Society Open Science, vol. 7, no. 4, pp. 200100. http://dx.doi.org/10.1098/rsos.200100. PMid:32431901.
http://dx.doi.org/10.1098/rsos.200100...
). Insect species diversity is typically high in more diverse environments where competition between individuals for resources is lower (Muiruri et al., 2019MUIRURI, E.W., BARANTAL, S., IASON, G.R., SALMINEN, J.-P., PEREZ-FERNANDEZ, E. and KORICHEVA, J., 2019. Forest diversity effects on insect herbivores: do leaf traits matter? The New Phytologist, vol. 221, no. 4, pp. 2250-2260. http://dx.doi.org/10.1111/nph.15558. PMid:30347456.
http://dx.doi.org/10.1111/nph.15558...
; Lyu et al., 2020LYU, Y., WANG, X. and LUO, J., 2020. Geographic patterns of insect diversity across China’s nature reserves: the roles of niche conservatism and range overlapping. Ecology and Evolution, vol. 10, no. 7, pp. 3305-3317. http://dx.doi.org/10.1002/ece3.6097. PMid:32273988.
http://dx.doi.org/10.1002/ece3.6097...
).

Faunistic analysis can estimate insect diversity indices to generate information upon conservation and dominance besides interactions between species (Schneider and Azevedo Filho, 2017SCHNEIDER, N.A. and AZEVEDO FILHO, W.S., 2017. Population fluctuation and faunistic analysis of sharpshooters (Hemiptera: Cicadellidae: Cicadellinae) in plum orchards in the municipality of Protásio Alves, Rio Grande do Sul State, Brazil. Journal of the Kansas Entomological Society, vol. 90, no. 4, pp. 269-282. http://dx.doi.org/10.2317/JKES150406.1.
http://dx.doi.org/10.2317/JKES150406.1...
; Paiva et al., 2020PAIVA, I.G., AUAD, A.M., VERÍSSIMO, B.A. and SILVEIRA, L.C.P., 2020. Differences in the insect fauna associated to a monocultural pasture and a silvopasture in Southeastern Brazil. Scientific Reports, vol. 10, no. 1, pp. 12112. http://dx.doi.org/10.1038/s41598-020-68973-5. PMid:32694546.
http://dx.doi.org/10.1038/s41598-020-689...
). Entomofauna surveys in forest plantations include the collection of all possible insect stages with the necessity of rearing immatures until adults, used for their identification via external morphology (Pereira et al., 2001PEREIRA, J.M.M., ZANUNCIO, T.V., ZANUNCIO, J.C. and PALLINI, A., 2001. Lepidoptera pests collected in Eucalyptus urophylla (Myrtaceae) plantations during five years in Três Marias, State of Minas Gerais, Brazil. Revista de Biología Tropical, vol. 49, no. 3-4, pp. 1073-1082. PMid:12189789.; Pratissoli et al., 2003PRATISSOLI, D., ZANUNCIO, T.V., DE FREITAS, F.A. and ZANUNCIO, J.C., 2003. Population density of Lepidoptera in a plantation of Eucalyptus urophylla in the state of Minas Gerais, Brazil. Animal Biology (Leiden, Netherlands), vol. 53, no. 1, pp. 17-26. http://dx.doi.org/10.1163/157075603769682549.
http://dx.doi.org/10.1163/15707560376968...
; Zanuncio et al., 2006ZANUNCIO, T.V., ZANUNCIO, J.C., FREITAS, F.A., PRATISSOLI, D., SEDIYAMA, C.A.Z. and MAFFIA, V.P., 2006. Main lepidopteran pest species from an eucalyptus plantation in Minas Gerais, Brazil. Revista de Biología Tropical, vol. 54, no. 2, pp. 553-560. http://dx.doi.org/10.15517/rbt.v54i2.13922. PMid:18494322.
http://dx.doi.org/10.15517/rbt.v54i2.139...
). Faunistic analysis and species identification studies provide information on damage potential and the need of control measures (Jactel et al., 2002JACTEL, H., GOULARD, M., MENASSIEU, P. and GOUJON, G., 2002. Habitat diversity in forest plantations reduces infestations of the pine stem boner Dioryctria sylvestrella. Journal of Applied Ecology, vol. 39, no. 4, pp. 618-628. http://dx.doi.org/10.1046/j.1365-2664.2002.00742.x.
http://dx.doi.org/10.1046/j.1365-2664.20...
; Ribeiro et al., 2016RIBEIRO, G.T., ZANUNCIO, J.C. and TAVARES, W., 2016. Constancy, distribution, and frequency of Lepidoptera defoliators of Eucalyptus grandis and Eucalyptus urophylla (Myrtaceae) in four Brazilian regions. Neotropical Entomology, vol. 45, no. 6, pp. 629-636. http://dx.doi.org/10.1007/s13744-016-0410-1. PMid:27255768.
http://dx.doi.org/10.1007/s13744-016-041...
; Masson et al., 2017aMASSON, M.V., TAVARES, W., PEREIRA, D.W.V., MATOS, W.C., LOPES, F.A., FERREIRA-FILHO, P.J., WILCKEN, C.F. and ZANUNCIO, J.C., 2017a. Management of Hylesia nanus (Lepidoptera: Saturniidae) on Eucalyptus (Myrtaceae) plantations. The Florida Entomologist, vol. 100, no. 2, pp. 380-384. http://dx.doi.org/10.1653/024.100.0239.
http://dx.doi.org/10.1653/024.100.0239...
).

Collection using light trap can provide data on the effect of biotic and abiotic factors on the local entomofauna numbers and species per area (Guedes et al., 2000GUEDES, R.N.C., ZANUNCIO, T.V., ZANUNCIO, J.C. and MEDEIROS, A.G.B., 2000. Species richness and fluctuation of defoliator Lepidoptera populations in Brazilian plantations of Eucalyptus grandis as affected by plant age and weather factors. Forest Ecology and Management, vol. 137, no. 1-3, pp. 179-184. http://dx.doi.org/10.1016/S0378-1127(99)00326-6.
http://dx.doi.org/10.1016/S0378-1127(99)...
; Zanuncio et al., 2001ZANUNCIO, J.C., GUEDES, R.N.C., ZANUNCIO, T.V. and FABRES, A.S., 2001. Species richness and abundance of defoliating Lepidoptera associated with Eucalyptus grandis in Brazil and their response to plant age. Austral Ecology, vol. 26, no. 6, pp. 582-589. http://dx.doi.org/10.1046/j.1442-9993.2001.01126.x.
http://dx.doi.org/10.1046/j.1442-9993.20...
; Freitas et al., 2005FREITAS, F.A., ZANUNCIO, T.V., ZANUNCIO, J.C., CONCEIÇÃO, P.M., FIALHO, M.O.C.Q. and BERNARDINO, A.S., 2005. Effect of plant age, temperature and rainfall on Lepidoptera insect pests collected with light traps in a Eucalyptus grandis plantation in Brazil. Annals of Forest Science, vol. 62, no. 1, pp. 85-90. http://dx.doi.org/10.1051/forest:2004094.
http://dx.doi.org/10.1051/forest:2004094...
). Conventional traps are modified to meet local requirements such the use of vials filled with alcohol to reduce damage on insect bodies allowing species identification via external morphology (Zanuncio et al., 2014aZANUNCIO, J.C., LEMES, P.G., SANTOS, G.P., SOARES, M.A., WILCKEN, C.F. and SERRÃO, J.E., 2014a. Population dynamics of Lepidoptera pests in Eucalyptus urophylla plantations in the Brazilian Amazonia. Forests, vol. 5, no. 1, pp. 72-87. http://dx.doi.org/10.3390/f5010072.
http://dx.doi.org/10.3390/f5010072...
). In Brazil, lepidopteran species collected with traps allow to study their dynamics, diversity and distribution in commercial forest plantations (Dall’Oglio et al., 2013DALL’OGLIO, O.T., ZANUNCIO, T.V., TAVARES, W.S., SERRÃO, J.E., WILCKEN, C.F. and ZANUNCIO, J.C., 2013. Atlantic Rainforest remnant harbors greater biotic diversity but reduced lepidopteran populations compared to a Eucalyptus plantation. The Florida Entomologist, vol. 96, no. 3, pp. 887-896. http://dx.doi.org/10.1653/024.096.0324.
http://dx.doi.org/10.1653/024.096.0324...
; Zanuncio et al., 2014bZANUNCIO, J.C., LEMES, P.G., SANTOS, G.P., WILCKEN, C.F., ZACHÉ, B., PINTO, R. and SERRÃO, J.E., 2014b. Alpha and beta diversity of Lepidoptera in Eucalyptus plantations in the Amazonian Region of Brazil. The Florida Entomologist, vol. 97, no. 1, pp. 138-145. http://dx.doi.org/10.1653/024.097.0119.
http://dx.doi.org/10.1653/024.097.0119...
).

The propagation including root strike Eucalyptus urophylla S.T. Blake variety platyphylla F. Muell. (Myrtaceae) and its height growth, survival and productivity vary in commercial plantations according to environmental and management factors. Sustainable practices contribute to maintaing patterns of richness, abundance and interaction of entomofauna to keep the biodiversity in the Brazilian forest sector (Souza et al., 2012SOUZA, G.K., PIKART, T.G., PIKART, F.C., SERRÃO, J.E., WILCKEN, C.F. and ZANUNCIO, J.C., 2012. First record of a native heteropteran preying on the introduced Eucalyptus pest, Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae), in Brazil. The Florida Entomologist, vol. 95, no. 2, pp. 517-520. http://dx.doi.org/10.1653/024.095.0245.
http://dx.doi.org/10.1653/024.095.0245...
; Fernandes et al., 2014FERNANDES, B.V., BARCELOS, J.A.V., ANDRADE, H.B. and ZANUNCIO, J.C., 2014. Leptocybe invasa (Hymenoptera: Eulophidae), an exotic pest of Eucalyptus, in Minas Gerais State, Brazil. The Florida Entomologist, vol. 97, no. 2, pp. 824-826. http://dx.doi.org/10.1653/024.097.0270.
http://dx.doi.org/10.1653/024.097.0270...
).

Lepidopteran pest species, managed with different methods, can reduce the productivity of eucalypt plantations in Brazil and worldwide (Tachi et al., 2020TACHI, T., SHIMA, H. and TAVARES, W., 2020. A new species of Cossidophaga Baranov from Indonesia (Diptera: Tachinidae), a parasitoid of the carpenter moth, Polyphagozerra coffeae (Nietner) (Lepidoptera: Cossidae). Oriental Insects, vol. 54, no. 4, pp. 545-555. http://dx.doi.org/10.1080/00305316.2019.1697386.
http://dx.doi.org/10.1080/00305316.2019....
; Tavares et al., 2020TAVARES, W. S., KKADAN, S.K., HENDRIK, A.M., TARIGAN, M., ASFA, R., YAKOVLEV, R.V., TACHI, T., DURAN, A., WONG, C.Y. and SHARMA, M., 2020. Notes on the biology and natural enemies of Polyphagozerra coffeae (Nietner, 1861) infesting Eucalyptus pellita F. Muell. (Myrtaceae) trees in Riau, Indonesia (Lepidoptera: Cossidae, Zeuzerinae). SHILAP Revista de Lepidopterologia, vol. 48, no. 190, pp. 333-349. http://dx.doi.org/10.57065/shilap.398.
http://dx.doi.org/10.57065/shilap.398...
). Integrating insecticides with biological control to target insect stages make the control more successful with lower social and ecological impacts (Zanuncio et al., 2009ZANUNCIO, J.C., TORRES, J.B., SEDIYAMA, C.A.Z., PEREIRA, F.F., PASTORI, P.L., WERMELINGER, E.D. and RAMALHO, F.S., 2009. Mortality of the defoliator Euselasia eucerus (Lepidoptera: Riodinidae) by biotic factors in an Eucalyptus urophylla plantation in Minas Gerais State, Brazil. Anais da Academia Brasileira de Ciências, vol. 81, no. 1, pp. 61-66. http://dx.doi.org/10.1590/S0001-37652009000100008. PMid:19274332.
http://dx.doi.org/10.1590/S0001-37652009...
, 2014cZANUNCIO, J.C., TAVARES, W., FERNANDES, B.V., WILCKEN, C.F. and ZANUNCIO, T.V., 2014c. Production and use of Heteroptera predators for the biological control of Eucalyptus pests in Brazil. Ekoloji, vol. 23, no. 91, pp. 98-104. http://dx.doi.org/10.5053/ekoloji.2014.9112.
http://dx.doi.org/10.5053/ekoloji.2014.9...
; Dias et al., 2014DIAS, T.K.R., WILCKEN, C.F., SOLIMAN, E.P., BARBOSA, L.R., SERRÃO, J.E. and ZANUNCIO, J.C., 2014. Predation of Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) by Atopozelus opsimus (Hemiptera: Reduviidae) in Brazil. Invertebrate Survival Journal: ISJ, vol. 11, pp. 224-227.). Insecticides effective against lepidopteran pests in forest plantations may reduce populations of natural enemies, intoxicate applicators, contaminate the environment, and cause the emergence of resistant insects (Zanuncio et al., 1998ZANUNCIO, J.C., MEZZOMO, J.A., GUEDES, R.N.C. and OLIVEIRA, A.C., 1998. Influence of strips of native vegetation on Lepidoptera associated with Eucalyptus cloeziana in Brazil. Forest Ecology and Management, vol. 108, no. 1, pp. 85-90. http://dx.doi.org/10.1016/S0378-1127(98)00215-1.
http://dx.doi.org/10.1016/S0378-1127(98)...
; Kkadan et al., 2020KKADAN, S.K., SIRAIT, B.A., ASFA, R., TAVARES, W.S., TARIGAN, M., DURAN, A., WONG, C.Y. and SHARMA, M., 2020. Evaluation of a spinetoram-based insecticide against lepidopteran and thrips infesting acacia and eucalyptus in Sumatra, Indonesia. Journal of Entomology and Zoology Studies, vol. 8, no. 2, pp. 1345-1351.). Biological control, with release of predators and parasitoids and application of entomopathogens, can regulate the populations of insect pests at different stages (Dall’Oglio et al., 2000DALL’OGLIO, O.T., ZANUNCIO, J.C., AZEVEDO, C.O. and MEDEIROS, A.G.B., 2000. Survey of the Hymenoptera parasitoids in Eucalyptus grandis and in a native vegetation area in Ipaba, State of Minas Gerais, Brazil. Anais da Sociedade Entomológica do Brasil, vol. 29, no. 3, pp. 583-588. http://dx.doi.org/10.1590/S0301-80592000000300021.
http://dx.doi.org/10.1590/S0301-80592000...
; Masson et al., 2017bMASSON, M.V., TAVARES, W., LOPES, F.A., SOUZA, A.R., FERREIRA-FILHO, P.J., BARBOSA, L.R., WILCKEN, C.F. and ZANUNCIO, J.C., 2017b. Selitrichodes neseri (Hymenoptera: Eulophidae) recovered from Leptocybe invasa (Hymenoptera: Eulophidae) galls after initial release on Eucalyptus (Myrtaceae) in Brazil, and data on its biology. The Florida Entomologist, vol. 100, no. 3, pp. 589-593. http://dx.doi.org/10.1653/024.100.0316.
http://dx.doi.org/10.1653/024.100.0316...
).

The present work was developed on demand of Brazilian forest companies from the Midwest, Northeast, Southeast and South regions, where E. urophylla variety platyphylla is largely planted. The objective of this study was to identify lepidopteran pests and of their natural enemies, and classify them through faunistic and natural enemy analyses, in a region with large E. urophylla variety platyphylla plantations.

2. Materials and Methods

2.1. Study site

The insects were collected in an approximately six-year-old E. urophylla variety platyphylla stand with tree height from 28 to 30 m in an area of 582 ha in Salto de Pirapora, São Paulo State, Brazil (23°39’ S × 47°36’ O, 580 m altitude) with spacing between trees and rows of 2.5 and 3 m, respectively. The insects collected were analyzed at the Entomology Laboratory of the Federal University of São Carlos (UFSCar) in Sorocaba, São Paulo State. The study area was partially bordered by Zea mays L. (Poaceae) and soybean, Glycine max (L.) Merr. (Fabaceae) crops and perennial Citrus spp. (Rutaceae) during a part of the insect survey period.

The values of maximum and minimum temperatures (°C), rainfall (mm) and relative humidity (%) were obtained from the meteorological station of the Meteorological Database for Education and Research (BDMEP) – N°. 83851 in Sorocaba (23º30’ S × 47º27’ W, 645 m altitude). The National Institute of Meteorology (INMET) of the Ministry of Agriculture, Livestock and Food Supply (MAPA) of Brazil controls this station. The climate in the region is of Cfa type (humid temperate climate with hot summer), according to the Köppen-Geiger climate classification (Alvares et al., 2013ALVARES, C.A., STAPE, J.L., SENTELHAS, P.C. and GONÇALVES, J.L., 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift (Berlin), vol. 22, no. 6, pp. 711-728. http://dx.doi.org/10.1127/0941-2948/2013/0507.
http://dx.doi.org/10.1127/0941-2948/2013...
) with average annual temperature of 21.4 ºC, maximum of 30.1 ºC and minimum of 12.2 ºC and predominant red latosol soil (Silva 2008SILVA, A.M., 2008. Natural potential of erosion in the county of Sorocaba, São Paulo, Brazil. International Journal of Natural Disasters. Accidents and Civil Infrastucture, vol. 8, pp. 5-14.). The average annual rainfall is 1,311 mm. Silvicultural operations such as fertilization, leaf-cutting ant (Acromyrmex Mayr, 1865 and Atta F., 1805, Hymenoptera: Formicidae) and weed control were carried out following regular protocols used by the Brazilian forest companies (Stape et al., 2001STAPE, J.L., GONÇALVES, J.L.M. and GONÇALVES, A.N., 2001. Relationships between nursery practices and field performance for Eucalyptus plantations in Brazil. New Forests, vol. 22, no. 1, pp. 19-41. http://dx.doi.org/10.1023/A:1012271616115.
http://dx.doi.org/10.1023/A:101227161611...
, 2010STAPE, J.L., BINKLEY, D., RYAN, M.G., FONSECA, S., LOOS, R.A., TAKAHASHI, E.N., SILVA, C.R., SILVA, S.R., HAKAMADA, R.E., FERREIRA, J.M., LIMA, A.M.N., GAVA, J.L., LEITE, F.P., ANDRADE, H.B., ALVES, J.M., SILVA, G.G.C. and AZEVEDO, M.R., 2010. The Brazil Eucalyptus potential productivity project: influence of water, nutrients and stand uniformity on wood production. Forest Ecology and Management, vol. 259, no. 9, pp. 1684-1694. http://dx.doi.org/10.1016/j.foreco.2010.01.012.
http://dx.doi.org/10.1016/j.foreco.2010....
).

2.2. Lepidopterans and their natural enemy’ collection

Adult moths of lepidopteran defoliators and of their natural enemies were collected using an Al Intral® light trap (BioControle, Indaiatuba, São Paulo state, Brazil) with a light sensor and a 20 W white FT15T12 fluorescent Philips® lamp powered by a 12 V Moura® battery (Bernardi et al., 2011BERNARDI, O., GARCIA, M.S., ELY SILVA, E.J., ZAZYCKI, L.C.F., BERNARDI, D. and FINKENAUER, É., 2011. Survey population and fauna analysis of Lepidoptera in Eucalyptus spp. in the municipality of Pinheiro Machado, RS. Ciência Florestal, vol. 21, pp. 735-744. http://dx.doi.org/10.5902/198050984517.
http://dx.doi.org/10.5902/198050984517...
). An L-shaped wooden support, approximately, 50 m inwards from the edge of the stand and at the midpoint between of four E. urophylla variety platyphylla trees supported the hook of the trap top two meters above the ground (Zanuncio et al., 2018ZANUNCIO, J.C., CRUZ, A.P., RAMALHO, F.S., SERRÃO, J.E., WILCKEN, C.F., SILVA, W.M., SANTOS JÚNIOR, V.C. and FERREIRA-FILHO, P.J., 2018. Environmental determinants affecting the occurrence of defoliator caterpillars on Eucalyptus (Myrtaceae) plantations in the Brazilian Amazonian Region. The Florida Entomologist, vol. 101, no. 3, pp. 480-485. http://dx.doi.org/10.1653/024.101.0306.
http://dx.doi.org/10.1653/024.101.0306...
). Chemicals control of lepidopteran defoliators were not used in the plantation since six months before the first trap installation. A 3 L plastic container with a diameter of 12 cm was fixed to the trap bottom and filled with a solution of 200 mL of hydrated ethanol (70%) mixed with 3 mL of household detergent to quickly sacrifice, preserve and reduce the surface tension of the solution and the damage to insects besides reducing their escape (Mafia et al., 2018MAFIA, R.G., LOUREIRO, E.B., SILVA, J.B., SIMÕES, J.A.C., ZARPELON, T.G., BEZERRA JÚNIOR, N.S. and DAMACENA, M.B., 2018. A new light trap model as an alternative for controlling pests in Eucalyptus plantations. Neotropical Entomology, vol. 47, no. 2, pp. 326-328. http://dx.doi.org/10.1007/s13744-017-0541-z. PMid:28721608.
http://dx.doi.org/10.1007/s13744-017-054...
; Carvalho et al., 2021CARVALHO, M.W.M., HICKEL, E.R., BERTOLDI, B., KNABBEN, G.C. and NOVAES, Y.R., 2021. Design of a smart LED lamp to monitor insect populations in an integrated pest management approach. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 25, no. 4, pp. 270-276. http://dx.doi.org/10.1590/1807-1929/agriambi.v25n4p270-276.
http://dx.doi.org/10.1590/1807-1929/agri...
).

The light trap was installed every fortnight, in the late afternoon, and retrieved early morning of the following day, from September 2016 to August 2018. The insects collected were removed from the plastic container of the trap and placed in 150 mL glass containers with cotton pieces moistened with hydrated ethanol (70%) covering its inner base, labeled with the collection place and date. This material was transported to the UFSCar Entomology Laboratory, where they were sorted, fixed, identified, and quantified by external morphology analysis (Pratissoli et al., 2003PRATISSOLI, D., ZANUNCIO, T.V., DE FREITAS, F.A. and ZANUNCIO, J.C., 2003. Population density of Lepidoptera in a plantation of Eucalyptus urophylla in the state of Minas Gerais, Brazil. Animal Biology (Leiden, Netherlands), vol. 53, no. 1, pp. 17-26. http://dx.doi.org/10.1163/157075603769682549.
http://dx.doi.org/10.1163/15707560376968...
; Zanuncio et al., 2018ZANUNCIO, J.C., CRUZ, A.P., RAMALHO, F.S., SERRÃO, J.E., WILCKEN, C.F., SILVA, W.M., SANTOS JÚNIOR, V.C. and FERREIRA-FILHO, P.J., 2018. Environmental determinants affecting the occurrence of defoliator caterpillars on Eucalyptus (Myrtaceae) plantations in the Brazilian Amazonian Region. The Florida Entomologist, vol. 101, no. 3, pp. 480-485. http://dx.doi.org/10.1653/024.101.0306.
http://dx.doi.org/10.1653/024.101.0306...
).

2.3. Lepidopterans and their natural enemy’ classification

Faunistic analysis characterized the structure and abundance of the lepidopteran community and their natural enemies (Garlet et al., 2016GARLET, J., COSTA, E.C. and BOSCARDIN, J., 2016. Survey of insect in eucalyptus spp. plantation by light trap in São Francisco de Assis, RS. Ciência Florestal, vol. 26, no. 2, pp. 365-374. http://dx.doi.org/10.5902/1980509822737.
http://dx.doi.org/10.5902/1980509822737...
; Andrade and Teixeira, 2017ANDRADE, D.A. and TEIXEIRA, I.R. DO V., 2017. Diversity of Lepidoptera in a forest fragment in Muzambinho, Minas Gerais. Ciência Florestal, vol. 27, no. 04, pp. 1229-1241. http://dx.doi.org/10.5902/1980509830311.
http://dx.doi.org/10.5902/1980509830311...
). The lepidopteran collected were separated into four groups according to their importance to eucalypt plantations in Brazil (Ribeiro et al., 2016RIBEIRO, G.T., ZANUNCIO, J.C. and TAVARES, W., 2016. Constancy, distribution, and frequency of Lepidoptera defoliators of Eucalyptus grandis and Eucalyptus urophylla (Myrtaceae) in four Brazilian regions. Neotropical Entomology, vol. 45, no. 6, pp. 629-636. http://dx.doi.org/10.1007/s13744-016-0410-1. PMid:27255768.
http://dx.doi.org/10.1007/s13744-016-041...
; Zanuncio et al., 2018ZANUNCIO, J.C., CRUZ, A.P., RAMALHO, F.S., SERRÃO, J.E., WILCKEN, C.F., SILVA, W.M., SANTOS JÚNIOR, V.C. and FERREIRA-FILHO, P.J., 2018. Environmental determinants affecting the occurrence of defoliator caterpillars on Eucalyptus (Myrtaceae) plantations in the Brazilian Amazonian Region. The Florida Entomologist, vol. 101, no. 3, pp. 480-485. http://dx.doi.org/10.1653/024.101.0306.
http://dx.doi.org/10.1653/024.101.0306...
) as: group I- primary pest species (with outbreaks recorded in Eucalyptus L’Hér. plantations in Brazil), group II- species considered as secondary pests (seen on Eucalyptus plantations in Brazil, associated or not associated with primary pests, but without outbreaks), group III- other species identified, without record of damage to Eucalyptus plants in Brazil, group IV- unidentified species.

2.4. Data collection and statistics

The number of lepidopterans and of their natural enemy individuals captured in the light trap per family (mean ± standard deviation of the mean) was used to calculate the confidence intervals (CIs) at 1 and 5% significance, where x̅ ± z × (σ ÷ √n), being x̅= mean of the sample, σ= standard deviation of the population, n= size of the sample, z= appropriate value of the standard normal distribution for the desired CI.

Lepidopteran families were grouped in abundance classes according to CIs (Thomazini and Thomazini, 2002THOMAZINI, M. J. and THOMAZINI, A.P.B.W., 2002. Bee diversity (Hymenoptera: Apoidea) in inflorescences of Piper hispidinervum (C.DC.). Neotropical Entomology, vol. 31, no. 1, pp. 27-34. http://dx.doi.org/10.1590/S1519-566X2002000100004.
http://dx.doi.org/10.1590/S1519-566X2002...
; Silva et al., 2011SILVA, N.A.P., FIZZAS, M.R. and OLIVEIRA, C.M., 2011. Seasonality in insects abundance in the “Cerrado” of Goiás State, Brazil. Revista Brasileira de Entomologia, vol. 55, no. 5, pp. 79-87. http://dx.doi.org/10.1590/S0085-56262011000100013.
http://dx.doi.org/10.1590/S0085-56262011...
; Marsaro Júnior et al., 2012MARSARO JÚNIOR, A.L., NASCIMENTO, D.B., RONCHI-TELES, B. and ADAIME, R., 2012. Faunistic analysis of the species of Anastrepha Schiner (Diptera: Tephritidae) in three municipalities of the state of Roraima, Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 72, no. 4, pp. 813-819. http://dx.doi.org/10.1590/S1519-69842012000500006. PMid:23295509.
http://dx.doi.org/10.1590/S1519-69842012...
): ma= very abundant (number of individuals greater than the upper limit of the CI at 1%), abundant (a), common (c), dispersed (d) and rare (r), respectively, with number of individuals between the upper limits of the CI at 5 and 1%, within the CI at 5%, between the lower limits of the CI at 5 and 1%, and under the lower limit of the CI at 1%.

Percentage per family, genus and/or species in relation to the total number of individuals characterized the frequency index (F), where PI – ni ÷ N, being PI= frequency of each species, ni= number of individuals of species i, N= total number of individuals in the sample.

Families, genera and/or species were grouped according to ther CI of the mean of their frequencies at 5% significance (Thomazini and Thomazini, 2002THOMAZINI, M. J. and THOMAZINI, A.P.B.W., 2002. Bee diversity (Hymenoptera: Apoidea) in inflorescences of Piper hispidinervum (C.DC.). Neotropical Entomology, vol. 31, no. 1, pp. 27-34. http://dx.doi.org/10.1590/S1519-566X2002000100004.
http://dx.doi.org/10.1590/S1519-566X2002...
), in the classes: very frequent (vf), frequent (f) and infrequent (i), with a percentage of individuals greater than the upper limit of the CI at 5%, within the CI at 5% and under the lower limit of the CI at 5%.

The Simpson dominance index (D) of the species was determined with frequency values higher than those corresponding to D. The value calculated is dominant with frequency higher than 1 ÷ D, expresses the lower the diversity, the greater the value of D, where Sd= 1 ÷ D, being Sd= total number of individuals in the community (Uramoto et al., 2005URAMOTO, K., WALDER, J.M.M. and ZUCCHI, R.A., 2005. Quantitative analysis and distribution of the population of species in the genus Anastrepha (Diptera: Tephritidae) on Luiz de Queiroz Campus, Piracicaba, SP, Brazil. Neotropical Entomology, vol. 34, no. 1, pp. 33-39. http://dx.doi.org/10.1590/S1519-566X2005000100005.
http://dx.doi.org/10.1590/S1519-566X2005...
).

The percentage of samples with certain species, genus or family expresses the constancy index (C) (Zanuncio et al., 1998ZANUNCIO, J.C., MEZZOMO, J.A., GUEDES, R.N.C. and OLIVEIRA, A.C., 1998. Influence of strips of native vegetation on Lepidoptera associated with Eucalyptus cloeziana in Brazil. Forest Ecology and Management, vol. 108, no. 1, pp. 85-90. http://dx.doi.org/10.1016/S0378-1127(98)00215-1.
http://dx.doi.org/10.1016/S0378-1127(98)...
), where: C= (P × 100) ÷ N, being P= number of collections with certain species, genera or families captured, N= number of collections. The species were distributed into constancy classes as constant (w), accessory (y) and accidental (z) when present in more than 50%, from 25 to 50% and in less than 25% of the collections (Ramalho et al., 2000RAMALHO, F.S., ZANUNCIO, J.C., LOPES, E.T. and ZANUNCIO, T.V., 2000. Temporal variations of Lepidoptera collected in an Eucalyptus plantation in the State of Goiás, Brazil. Netherlands Journal of Zoology, vol. 50, no. 4, pp. 435-443. http://dx.doi.org/10.1163/156854200X00180.
http://dx.doi.org/10.1163/156854200X0018...
).

Species richness and equability or uniformity, when the entire community cannot be inventoried, were derived in samples and the data analyzed with the Shannon-Weaver diversity index (H’) (Shannon and Weaver, 1949SHANNON, C.E. and WEAVER, W., 1949. The mathematical theory of communication. Urbana-Champaign: University of Illinois Press.). This diversity index considers species as rare or abundant with the same weight (Melo, 2008MELO, A., 2008. What do we win ‘confounding’ species richness and evenness in a diversity index? Biota Neotropica, vol. 8, no. 3, pp. 21-27. http://dx.doi.org/10.1590/S1676-06032008000300001.
http://dx.doi.org/10.1590/S1676-06032008...
), where: H’= Σpi × ln pi, where pi= ni ÷ N, being pi= proportion of individuals in the i-th species, ln= logarithm of neperian base (e), ni= number of individuals sampled of species i, and N= total number of individuals.

The abundance of species was calculated using the Equability Index (J) (Magurran, 1988MAGURRAN, A.E., 1988. Ecological diversity and its measurement. Princeton: Princeton University Press. http://dx.doi.org/10.1007/978-94-015-7358-0.
http://dx.doi.org/10.1007/978-94-015-735...
) or Pielou uniformity (Pielou, 1975PIELOU, C.E., 1975. Ecological diversity. New York: John Wiley & Sons.). This index assumes a maximum value of one according to the species richness with direct relation to the diversity, where: J= H’ ÷ lnS, being lnS= H’ maximum (neperian logarithm of the total species).

3. Results

3.1. Faunistic analysis of lepidopteran defoliators

A total of 183 lepidopteran species with 1,419 individuals captured was separated into four groups per family, genus and species, when their identification was possible. Forty-four species of 13 families were identified, being 10, three and 31 from groups I, II and III, respectively, in addition to 139 species of group IV. The 13 species of groups I and II represented 7.61% of the total species collected (Table 1).

Table 1
Family, species, group (G), number of individuals (N), dominance classes (D), abundance (A), frequency (F) and constancy (C) of Lepidoptera captured in a Eucalyptus urophylla variety platyphylla (Myrtaceae) plantation in Salto de Pirapora, São Paulo State, Brazil from September 2016 to August 2018.

The number of species of the primary pests (57.14%) was higher for Geometridae (4.00%), followed by Arctiidae and Bombycidae (12.86% each), Lymantriidae (11.43%), Notodontidae (4.29%), Saturniidae (1.43%) and Riodinidae (1.43%) families. Secondary pest species were from Notodontidae and Saturniidae. The percentages of species in groups III and IV were 17.39 and 75.54%, respectively (Table 1).

Apatelodes sericea Schaus, 1895 (Bombycidae), Blera varana Schaus, 1856 (Notodontidae), Eupeudosoma involuta Sepp, 1855 (Arctiidae), Euselasia eucerus Hewitson, 1872 (Riodinidae), Fulgurodes sp., Glena unipennaria unipennaria Guenée, 1857, Melanolophia sp., Oxydia vesulia Cramer, 1779, Sabulodes caberata caberata Guenée, 1857 (Geometridae) and Sarsina violascens Herrich-Schäeffer, 1856 (Lymantriidae) were the primary pest species collected (Table 1).

The numbers of individuals collected, of groups I, II and III, were higher for O. vesulia, Automeris sp. (Saturniidae) and Nystalea ebalea Cramer, 1781 (Notodontidae) and Dirphia sp. (Saturniidae) with 16, three and two individuals and 22.86, 42.86 and 28.57% of the total, respectively. The number of individuals captured (246 and 45.81%) of group III was higher for Noctuidae (Table 1).

Anicla infecta Ochsenheimer, 1816 (Noctuidae), Automeris sp., B. varana, Dasylophia sp. (Notodontidae), Dinia eagrus Cramer, 1779, Dinia mena Hübner, 1827 (Erebidae), Dirphia sp., Dysschema sacrifice Hübner, 1825 (Erebidae), Fulgurodes sp., G. unipennaria unipennaria, Hyperchiria incisa Walker, 1855 (Saturniidae), Hypercompe scribonia Stoll, 1790 (Erebidae), Nomophila noctuella Denis & Schiffermüller, 1775 (Crambidae), N. ebalea, Polygrammodes ostrealis Guenné, 1854 (Crambidae), Rosema languida Schaus, 1892 (Notodontidae), Spodoptera dolichos F., 1794 (Noctuidae) and Syntomeida melanthus Cramer, 1779 (Erebidae) were dispersed species (Table 1).

Agaraea semivitrea Rothschild, 1909 (Erebidae), A. sericea, Argyria croceivittella Walker, 1863 (Crambidae), Cosmosoma auge L., 1767, Cosmosoma festivum Walker, 1854 (Erebidae), Diatraea albicrinella Box, 1931 (Crambidae), E.involuta, Gymnelia sp., Idalus sp. (Erebidae), Melanolophia sp., Mocislatipes Guenée, 1852 (Noctuidae), O. vesulia, S. caberata caberata, S. violascens and Tarchon trilunula Herrich-Schäffer, 1856 (Bombycidae) were common with a reduced number of individuals. The very abundant species represented 11.1% of the individuals captured (Table 1).

Aclytia punctata Butler, 1876 (Erebidae), Astrapes sp. (Hesperiidae), Eois sp. (Geometridae), Lepasta bractea Felder, 1874 (Notodontidae) and Olceclostera sp. (Bombycidae) were rare, with 13.3%, with E. eucerus (group I) represented by a single individual captured. Apatelodes sericea, E. involuta, Melanolophia sp., O. vesulia, S. caberata caberata and S. violascens were frequent (group I) and no species of group II was represented in this class. Cabralia trifasciata Moore, 1882, Cirphis sp. (Noctuidae), Correbia obtusa H. Druce, 1884 (Erebidae), Drepatelodes sp. (Bombycidae) and Pleuroptya silicalis Guenée, 1854 (Crambidae) from group III were very frequent (Table 1).

Dominant species were also abundant, while the non-dominant ones (57.8%) were infrequent, dispersed or rare. In group I, B. varana, E. eucerus, Fulgurodes sp. and G. unipennaria unipennaria were non-dominant. No species of the group II was dominant (Table 1).

A total of 22.2% of the constant species was dominant, including O. vesulia and S. caberata caberata (group I). Eight of the accessory species were identified, representing 15.6% of them, being E. involuta and A. sericea (group I) accessories and important for eucalypt plants. These species were not constant and, therefore, they were classified as accidental. The remaining accessory species were from group III (Table 1).

Accidental species (62.2%) were more than half of the records including B. varana, E. eucerus, Fulgurodes sp., G. unipennaria unipennaria, Melanolophia sp. and S. violascens, from group I and Automeris sp., Dirphia sp. and N. abalea from group II (Table 1).

The H’ value= 2.7942 and the H’CI, calculated for the general composition of identified species (P= 0.05)=> [2.788969, 2.799341], was from 1.5 to 3.5. This demonstrates sufficiency of the number of samples to determine the species diversity. The value of E= 0.7340 indicates that 73.40% of the maximum theoretical diversity was obtained with the sampling performed (Table 1).

3.2. Faunistic analysis of natural enemies

A total of 118 lepidopteran natural enemy individuals of three orders, five families and 12 species was captured. The number of species (seven) and of individuals (65) captured of Hymenoptera represented 55.08% of the total number of individuals, followed by Diptera and Hemiptera, with three and two species and 49 (41.53%) and four (3.39%) individuals, respectively (Table 2).

Table 2
Order: family, genus/species, number of individuals (N) and dominance (D), abundance (A), frequency (F) and constancy (C) of natural enemies of Lepidoptera defoliators captured in a Eucalyptus urophylla variety platyphylla (Myrtaceae) plantation in Salto de Pirapora, São Paulo State, Brazil from September 2016 to August 2018.

The numbers of individuals of Tachinidae (Diptera), Braconidae (Hymenoptera), Ichneumonidae (Hymenoptera), Pentatomidae and Reduviidae (Hemiptera: Heteroptera) were 49, 46, 19, three and one representing 41.53, 38.98, 16.10, 2.54 and 0.85% of the total, respectively (Table 2). The number of Ichneumonidae species was higher, followed by Braconidae with Apanteles sp., being the most numerous species collected, with 38.98% of the individuals for the natural enemy group (Table 2).

Chetogena sp. and Lespesia sp. (Tachinidae), Coccygominus sp., Glypta sp., Areoscelis sp., Enicospilus sp., Labena sp., Neotheronia sp., and (Ichneumonidae), Arocera acroleuca Perty, 1833 (Pentatomidae), Winthemya sp. (Tachinidae) and Rasahus sp. (Reduviidae) represented 22.88, 16.95, 4.24, 3.3, 3.39, 2.54, 1.69, 0.85, 2.54, 1.69 and 0.85% of the individuals of the natural enemies captured, respectively (Table 2).

Apanteles sp., Lespesia sp. and Chetogena sp. were dominant (d), abundant (a), very frequent (vf) and constant (c). The number of Apanteles sp. individuals captured (46) was higher, followed by Chetogena sp. (27) and Lespesia sp. (20) (Table 2).

The value of H’= 1.741 (P= 0.05)=> [1.572, 1.90] indicated sufficiency of the number of samples to determine the species diversity of natural enemies and the value of E= 0.7249 that 72.49% of the maximum theoretical diversity was obtained with the sampling.

4. Discussion

The low frequency of species in groups I and II and the high frequency of Amatidae, Arctiidae, Bombycidae, Crambidae and Noctuidae, abundant and with high frequency, especially Noctuidae (246 individuals), may be related to the proximity of the E. urophylla variety platyphylla plantation to cultivated areas, with annual crops where resources for insects are generally abundant. This is similar to that reported for Eucalyptus dunnii Maiden, Eucalyptus grandis W. Hill. and Eucalyptus saligna Sm. plantations with highest number of Noctuidae individuals captured with light traps near sugarcane crops, Saccharum officinarum L., wheat, Triticum aestivum L., Z. mays, G. max and common beans, Phaseolus vulgaris L. (Fabaceae) (Duarte Júnior and Schlindwein, 2005DUARTE JÚNIOR, J.A. and SCHLINDWEIN, C., 2005. Species richness, abundance and seasonality of Sphyngidae (Lepidoptera) in a fragment of Atlantic Rainforest of Pernambuco, Brazil. Revista Brasileira de Zoologia, vol. 22, no. 3, pp. 662-666.; Lafontaine and Fibiger, 2006LAFONTAINE, J.D. and FIBIGER, M., 2006. Revised higher classification of the Noctuoidea (Lepidoptera). Canadian Entomologist, vol. 138, no. 5, pp. 610-635. http://dx.doi.org/10.4039/n06-012.
http://dx.doi.org/10.4039/n06-012...
; Bernardi et al., 2011BERNARDI, O., GARCIA, M.S., ELY SILVA, E.J., ZAZYCKI, L.C.F., BERNARDI, D. and FINKENAUER, É., 2011. Survey population and fauna analysis of Lepidoptera in Eucalyptus spp. in the municipality of Pinheiro Machado, RS. Ciência Florestal, vol. 21, pp. 735-744. http://dx.doi.org/10.5902/198050984517.
http://dx.doi.org/10.5902/198050984517...
; Luz et al., 2013LUZ, R.A., FONTES, L.S., CARDOSO, S.R.S. and LIMA, É.F.B., 2013. Diversity of the Arthropod edaphic fauna in preserved and managed with pasture areas in Teresina-Piauí-Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 73, no. 3, pp. 483-489. http://dx.doi.org/10.1590/S1519-69842013000300004. PMid:24212687.
http://dx.doi.org/10.1590/S1519-69842013...
; Santos et al., 2017SANTOS, S.R., SPECHT, A., CARNEIRO, E., PAULA-MORAES, S.V. and CASAGRANDE, M.M., 2017. Interseasonal variation of Chrysodeixis includens (Walker, [1858]) (Lepidoptera: Noctuidae) populations in the Brazilian Savanna. Revista Brasileira de Entomologia, vol. 61, no. 4, pp. 294-299. http://dx.doi.org/10.1016/j.rbe.2017.06.006.
http://dx.doi.org/10.1016/j.rbe.2017.06....
). The high number of species and individuals of Noctuidae may also be related to possible resistance of E. urophylla variety platyphylla to species of other lepidopteran families as reported for Mnesampela private Guenée, 1858 (Geometridae) feeding preferably on Eucalyptus aggregata H. Deane & Maiden and Eucalyptus camphora R.T. Baker rather than on other Eucalyptus and Corymbia K.D. Hill & L.A.S. Johnson (Steinbauer and Matsuki, 2004STEINBAUER, M.J. and MATSUKI, M., 2004. Suitability of Eucalyptus and Corymbia for Mnesampela privata (Gueneé) (Lepidoptera: Geometridae) larvae. Agricultural and Forest Entomology, vol. 6, no. 4, pp. 323-332. http://dx.doi.org/10.1111/j.1461-9555.2004.00238.x.
http://dx.doi.org/10.1111/j.1461-9555.20...
; Bernardi et al., 2008BERNARDI, O., GARCIA, M.S., CUNHA, U.S., BACK, E.C.U., BERNARDI, D., RAMIRO, G.A. and FINKENAUER, E., 2008. Occurrence of Euetheola humilis (Burmeister) (Coleoptera: Scarabaeidae) in Eucalyptus saligna Smith (Myrtaceae), in Rio Grande do Sul State, Brazil. Neotropical Entomology, vol. 37, no. 1, pp. 100-103. http://dx.doi.org/10.1590/S1519-566X2008000100017. PMid:18368259.
http://dx.doi.org/10.1590/S1519-566X2008...
; Samira et al., 2020SAMIRA, K., MALIKA, D., FAIZA, M., WILLY, P., MOHAMMED, R., FLOWER, R. and RIADH, M., 2020. Diversity and abundance of Lepidoptera populations in the Theniet El Had National Park (Algeria). Zootaxa, vol. 4743, no. 1, pp. 35-46. http://dx.doi.org/10.11646/zootaxa.4743.1.3. PMid:32230350.
http://dx.doi.org/10.11646/zootaxa.4743....
) species.

The six species of group I as rare may be due to limited resources from E. urophylla variety platyphylla or competition favouring more frequent species for population increases. However, greater sampling efforts tend to increase the number of rare species collected (Bernardi et al., 2011BERNARDI, O., GARCIA, M.S., ELY SILVA, E.J., ZAZYCKI, L.C.F., BERNARDI, D. and FINKENAUER, É., 2011. Survey population and fauna analysis of Lepidoptera in Eucalyptus spp. in the municipality of Pinheiro Machado, RS. Ciência Florestal, vol. 21, pp. 735-744. http://dx.doi.org/10.5902/198050984517.
http://dx.doi.org/10.5902/198050984517...
; Ribeiro et al., 2016RIBEIRO, G.T., ZANUNCIO, J.C. and TAVARES, W., 2016. Constancy, distribution, and frequency of Lepidoptera defoliators of Eucalyptus grandis and Eucalyptus urophylla (Myrtaceae) in four Brazilian regions. Neotropical Entomology, vol. 45, no. 6, pp. 629-636. http://dx.doi.org/10.1007/s13744-016-0410-1. PMid:27255768.
http://dx.doi.org/10.1007/s13744-016-041...
).

The total of 44 lepidopteran species, with 20 dominant and 24 non-dominants, is high and may be due to abundant ones, such as those from Noctuidae (Bernardi et al., 2011BERNARDI, O., GARCIA, M.S., ELY SILVA, E.J., ZAZYCKI, L.C.F., BERNARDI, D. and FINKENAUER, É., 2011. Survey population and fauna analysis of Lepidoptera in Eucalyptus spp. in the municipality of Pinheiro Machado, RS. Ciência Florestal, vol. 21, pp. 735-744. http://dx.doi.org/10.5902/198050984517.
http://dx.doi.org/10.5902/198050984517...
; Ribeiro et al., 2016RIBEIRO, G.T., ZANUNCIO, J.C. and TAVARES, W., 2016. Constancy, distribution, and frequency of Lepidoptera defoliators of Eucalyptus grandis and Eucalyptus urophylla (Myrtaceae) in four Brazilian regions. Neotropical Entomology, vol. 45, no. 6, pp. 629-636. http://dx.doi.org/10.1007/s13744-016-0410-1. PMid:27255768.
http://dx.doi.org/10.1007/s13744-016-041...
). Some dominant insects can adapt to new environments by consuming the foliage of Eucalyptus and of alternative plants from the surrounding vegetation reducing the food available for other insect species (Bernardi et al., 2011BERNARDI, O., GARCIA, M.S., ELY SILVA, E.J., ZAZYCKI, L.C.F., BERNARDI, D. and FINKENAUER, É., 2011. Survey population and fauna analysis of Lepidoptera in Eucalyptus spp. in the municipality of Pinheiro Machado, RS. Ciência Florestal, vol. 21, pp. 735-744. http://dx.doi.org/10.5902/198050984517.
http://dx.doi.org/10.5902/198050984517...
; Dall’Oglio et al., 2016DALL’OGLIO, O.T., RIBEIRO, R.C., RAMALHO, F., FERNANDES, F.L., WILCKEN, C.F., ASSIS JÚNIOR, S.L., RUEDA, R.A., SERRÃO, J.E. and ZANUNCIO, J.C., 2016. Can the understory affect the Hymenoptera parasitoids in a Eucalyptus plantation? PLoS One, vol. 11, no. 3, pp. e0151165. http://dx.doi.org/10.1371/journal.pone.0151165. PMid:26954578.
http://dx.doi.org/10.1371/journal.pone.0...
; Ribeiro et al., 2016RIBEIRO, G.T., ZANUNCIO, J.C. and TAVARES, W., 2016. Constancy, distribution, and frequency of Lepidoptera defoliators of Eucalyptus grandis and Eucalyptus urophylla (Myrtaceae) in four Brazilian regions. Neotropical Entomology, vol. 45, no. 6, pp. 629-636. http://dx.doi.org/10.1007/s13744-016-0410-1. PMid:27255768.
http://dx.doi.org/10.1007/s13744-016-041...
). High populations of dominant insects in E. saligna and E. urophylla plantations with abundant food availability and the upgrade of new lepidopteran species to pest status indicate that competition for food resources between insects can occur in plantations with several eucalypt species (Zanuncio et al., 1998ZANUNCIO, J.C., MEZZOMO, J.A., GUEDES, R.N.C. and OLIVEIRA, A.C., 1998. Influence of strips of native vegetation on Lepidoptera associated with Eucalyptus cloeziana in Brazil. Forest Ecology and Management, vol. 108, no. 1, pp. 85-90. http://dx.doi.org/10.1016/S0378-1127(98)00215-1.
http://dx.doi.org/10.1016/S0378-1127(98)...
; Bernardi et al., 2008BERNARDI, O., GARCIA, M.S., CUNHA, U.S., BACK, E.C.U., BERNARDI, D., RAMIRO, G.A. and FINKENAUER, E., 2008. Occurrence of Euetheola humilis (Burmeister) (Coleoptera: Scarabaeidae) in Eucalyptus saligna Smith (Myrtaceae), in Rio Grande do Sul State, Brazil. Neotropical Entomology, vol. 37, no. 1, pp. 100-103. http://dx.doi.org/10.1590/S1519-566X2008000100017. PMid:18368259.
http://dx.doi.org/10.1590/S1519-566X2008...
).

The constancy index, with 27 accidental species, may be related to the large number of lepidopteran species with low abundance, 18 of them disperse and six rare, indicating environmental resistances against their population increase (Dorval et al., 1995DORVAL, A., ZANUNCIO, J.C., PEREIRA, J.M.M. and GASPERAZZO, W.L., 1995. Faunistic analysis of Eupseudosoma aberrans and Eupseudosoma involuta (Lepidoptera: Arctiidae) in Eucalyptus urophylla and Eucalyptus cloeziana, in Montes Claros, Minas Gerais. Revista Árvore, vol. 19, no. 2, pp. 228-240.; Zanuncio et al., 2006ZANUNCIO, T.V., ZANUNCIO, J.C., FREITAS, F.A., PRATISSOLI, D., SEDIYAMA, C.A.Z. and MAFFIA, V.P., 2006. Main lepidopteran pest species from an eucalyptus plantation in Minas Gerais, Brazil. Revista de Biología Tropical, vol. 54, no. 2, pp. 553-560. http://dx.doi.org/10.15517/rbt.v54i2.13922. PMid:18494322.
http://dx.doi.org/10.15517/rbt.v54i2.139...
). Furthermore, the high number of very abundant, constant and dominant species confirms their adaptation to the Eucalyptus environment (Bernardi et al., 2011BERNARDI, O., GARCIA, M.S., ELY SILVA, E.J., ZAZYCKI, L.C.F., BERNARDI, D. and FINKENAUER, É., 2011. Survey population and fauna analysis of Lepidoptera in Eucalyptus spp. in the municipality of Pinheiro Machado, RS. Ciência Florestal, vol. 21, pp. 735-744. http://dx.doi.org/10.5902/198050984517.
http://dx.doi.org/10.5902/198050984517...
; Ribeiro et al., 2016RIBEIRO, G.T., ZANUNCIO, J.C. and TAVARES, W., 2016. Constancy, distribution, and frequency of Lepidoptera defoliators of Eucalyptus grandis and Eucalyptus urophylla (Myrtaceae) in four Brazilian regions. Neotropical Entomology, vol. 45, no. 6, pp. 629-636. http://dx.doi.org/10.1007/s13744-016-0410-1. PMid:27255768.
http://dx.doi.org/10.1007/s13744-016-041...
).

The sufficiency of the evaluation period to determine the species diversity and the large number of accidental ones (27) as found for the H’ index value, indicate a balanced environment characterised by inter and intraspecific competition determining the species behaviour (Freitas et al., 2005FREITAS, F.A., ZANUNCIO, T.V., ZANUNCIO, J.C., CONCEIÇÃO, P.M., FIALHO, M.O.C.Q. and BERNARDINO, A.S., 2005. Effect of plant age, temperature and rainfall on Lepidoptera insect pests collected with light traps in a Eucalyptus grandis plantation in Brazil. Annals of Forest Science, vol. 62, no. 1, pp. 85-90. http://dx.doi.org/10.1051/forest:2004094.
http://dx.doi.org/10.1051/forest:2004094...
; Zanuncio et al., 2014bZANUNCIO, J.C., LEMES, P.G., SANTOS, G.P., WILCKEN, C.F., ZACHÉ, B., PINTO, R. and SERRÃO, J.E., 2014b. Alpha and beta diversity of Lepidoptera in Eucalyptus plantations in the Amazonian Region of Brazil. The Florida Entomologist, vol. 97, no. 1, pp. 138-145. http://dx.doi.org/10.1653/024.097.0119.
http://dx.doi.org/10.1653/024.097.0119...
). The increase in the vegetation uniformity tends to decrease H’ values, favouring population increase of reduced group of insect species. The forest cultivation near areas with native forests and green belts can reduce the number of insect pests (Zanuncio et al., 1998ZANUNCIO, J.C., MEZZOMO, J.A., GUEDES, R.N.C. and OLIVEIRA, A.C., 1998. Influence of strips of native vegetation on Lepidoptera associated with Eucalyptus cloeziana in Brazil. Forest Ecology and Management, vol. 108, no. 1, pp. 85-90. http://dx.doi.org/10.1016/S0378-1127(98)00215-1.
http://dx.doi.org/10.1016/S0378-1127(98)...
; Bernardi et al., 2011BERNARDI, O., GARCIA, M.S., ELY SILVA, E.J., ZAZYCKI, L.C.F., BERNARDI, D. and FINKENAUER, É., 2011. Survey population and fauna analysis of Lepidoptera in Eucalyptus spp. in the municipality of Pinheiro Machado, RS. Ciência Florestal, vol. 21, pp. 735-744. http://dx.doi.org/10.5902/198050984517.
http://dx.doi.org/10.5902/198050984517...
). The value of E= 0.73 reveals a heterogeneous lepidopteran community with uniform distribution of individuals between species. This is simikat to that of nymphalid butterflies from the canopy and understorey of a rainforest (DeVries and Walla, 2001DEVRIES, P.J. and WALLA, T.R., 2001. Species diversity and community structure in Neotropical fruit-feeding butterflies. Biological Journal of the Linnean Society. Linnean Society of London, vol. 74, no. 1, pp. 1-15. http://dx.doi.org/10.1111/j.1095-8312.2001.tb01372.x.
http://dx.doi.org/10.1111/j.1095-8312.20...
) and male euglossine bees from a fragmented landscape of Atlantic Forest (Tonhasca Junior et al., 2002TONHASCA JUNIOR, A., BLACKMER, J.L. and ALBUQUERQUE, G.S., 2002. Abundance and diversity of Euglossine bees in the fragmented landscape of the Brazilian Atlantic Forest. Biotropica, vol. 34, no. 3, pp. 416-422. http://dx.doi.org/10.1111/j.1744-7429.2002.tb00555.x.
http://dx.doi.org/10.1111/j.1744-7429.20...
).

The highest numbers of individuals per species, 65 and 49, of Hymenoptera and Diptera, respectively, indicates that species of these families are the most common groups of natural enemies in the E. urophylla variety platyphylla plantation with high rates of parasitism on insect preys (Dall’Oglio et al., 2003DALL’OGLIO, O.T., ZANUNCIO, J.C., DE FREITAS, F.A. and PINTO, R., 2003. Hymenopteran parasitoids collected in an Eucalyptus grandis plantation and in a native vegetation area in Ipaba, State of Minas Gerais, Brazil. Ciência Florestal, vol. 13, no. 1, pp. 123-129.; Ribeiro et al., 2016RIBEIRO, G.T., ZANUNCIO, J.C. and TAVARES, W., 2016. Constancy, distribution, and frequency of Lepidoptera defoliators of Eucalyptus grandis and Eucalyptus urophylla (Myrtaceae) in four Brazilian regions. Neotropical Entomology, vol. 45, no. 6, pp. 629-636. http://dx.doi.org/10.1007/s13744-016-0410-1. PMid:27255768.
http://dx.doi.org/10.1007/s13744-016-041...
, Favoreto et al., 2021FAVORETO, A.L., PAVANI, R.F., RIBEIRO, M.F., ZANUNCIO, A.J.V., SOARES, M.A., ZANUNCIO, J.C. and WILCKEN, C.F., 2021. Tetrastichus howardi (Hymenoptera: Eulophidae): first report of parasitism in Oxydia vesulia (Lepidoptera: Geometridae). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 81, no. 2, pp. 406-410. http://dx.doi.org/10.1590/1519-6984.228541. PMid:32428093.
http://dx.doi.org/10.1590/1519-6984.2285...
). The higher number of Braconidae, Ichneumonidae, Eulophidae, Pteromalidae, Encyrtidae and Aphelinidae species and individuals confirm the fact that species from these families are the most used in biological control programs by being numerous, besides easy rearing and effectives (Dall’Oglio et al., 2000DALL’OGLIO, O.T., ZANUNCIO, J.C., AZEVEDO, C.O. and MEDEIROS, A.G.B., 2000. Survey of the Hymenoptera parasitoids in Eucalyptus grandis and in a native vegetation area in Ipaba, State of Minas Gerais, Brazil. Anais da Sociedade Entomológica do Brasil, vol. 29, no. 3, pp. 583-588. http://dx.doi.org/10.1590/S0301-80592000000300021.
http://dx.doi.org/10.1590/S0301-80592000...
; Azevedo et al., 2002AZEVEDO, C.O., KAWADA, R., TAVARES, M.T. and PERIOTO, N.W., 2002. Survey of the hymenopterous parasitoids (Insecta, Hymenoptera) from the Parque Estadual da Fonte Grande, Vitória, ES, Brazil. Revista Brasileira de Entomologia, vol. 46, pp. 133-137. http://dx.doi.org/10.1590/S0085-56262002000200005.
http://dx.doi.org/10.1590/S0085-56262002...
; Ribeiro et al., 2016RIBEIRO, G.T., ZANUNCIO, J.C. and TAVARES, W., 2016. Constancy, distribution, and frequency of Lepidoptera defoliators of Eucalyptus grandis and Eucalyptus urophylla (Myrtaceae) in four Brazilian regions. Neotropical Entomology, vol. 45, no. 6, pp. 629-636. http://dx.doi.org/10.1007/s13744-016-0410-1. PMid:27255768.
http://dx.doi.org/10.1007/s13744-016-041...
). Ichneumonidae, with the highest number of species, is generally the most abundant hymenopteran parasitoids in natural environments or agricultural areas (Pacheco et al., 2020PACHECO, H.M., VANLAERHOVEN, S.L. and GARCÍA, M.Á.M., 2020. Functional response and switching behaviour of Campoletis sonorensis (Cameron) (Hymenoptera: Ichneumonidae) to the native host Trichoplusia ni and the non-native host Chrysodeixis chalcites mediating host range expansion. Biocontrol Science and Technology, vol. 30, no. 5, pp. 462-479. http://dx.doi.org/10.1080/09583157.2020.1734185.
http://dx.doi.org/10.1080/09583157.2020....
). Furthermore, it is the largest Hymenoptera family and present in regions with a mild and humid climate, parasitizing insects and arachnids, but with Lepidoptera as its most common host group (Tavares et al., 2013aTAVARES, W.S., HANSSON, C., MIELKE, O.H.H., SERRÃO, J.E. and ZANUNCIO, J.C., 2013a. Parasitism of Palmistichus elaeisis Delvare & LaSalle, 1993 on pupae of Methona themisto (Hübner, [1818]) reared on two hosts (Lepidoptera: Nymphalidae, Hymenoptera: Eulophidae). SHILAP Revista de Lepidopterologia, vol. 41, no. 161, pp. 43-48.; Garlet et al., 2016GARLET, J., COSTA, E.C. and BOSCARDIN, J., 2016. Survey of insect in eucalyptus spp. plantation by light trap in São Francisco de Assis, RS. Ciência Florestal, vol. 26, no. 2, pp. 365-374. http://dx.doi.org/10.5902/1980509822737.
http://dx.doi.org/10.5902/1980509822737...
).

The higher number of Apanteles sp. individuals, the only Braconidae species captured, may be due to the solitary habit of species of this family, although with some gregarious and widely used in biological control programs in tropical and subtropical agroecosystems (Othim et al., 2019OTHIM, S.T.O., RAMASAMY, S., KAHUTHIA-GATHU, R., DUBOIS, T., EKESI, S. and FIABOE, K.K.M., 2019. Effects of host age and density on the performance of Apanteles hemara (Hymenoptera: Braconidae), a larval endoparasitoid of Spoladea recurvalis (Lepidoptera: Crambidae). Journal of Economic Entomology, vol. 112, no. 5, pp. 2131-2141. http://dx.doi.org/10.1093/jee/toz165. PMid:31215620.
http://dx.doi.org/10.1093/jee/toz165...
; Awad et al., 2019AWAD, J., HODGES, A., HIGHT, S., SRIVASTAVA, M., HOWE, A. and ROHRIG, E., 2019. Laboratory rearing and sex ratio of Apanteles opuntiarum (Hymenoptera: Braconidae), a potential biocontrol agent of Cactoblastis cactorum (Lepidoptera: Pyralidae). The Florida Entomologist, vol. 102, no. 1, pp. 216-221. http://dx.doi.org/10.1653/024.102.0135.
http://dx.doi.org/10.1653/024.102.0135...
). Species of this genus parasitized defoliating caterpillars, such as Automeris sp., G. bipennaria, E. imperialis magnifica, T. arnobia and S. violascens in areas with cultivated forests and agrosilvopastoral systems (Pereira et al., 2015PEREIRA, A.G., SILVA, R.B., DIAS, M.M. and PENTEADO-DIAS, A.M., 2015. Study on the Hymenoptera parasitoid associated with Lepidoptera larvae in reforestation and agrosilvopastoral systems at Fazenda Canchim (Embrapa Pecuária Sudeste) São Carlos, SP, Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 75, no. 4, pp. 783-789. http://dx.doi.org/10.1590/1519-6984.21913. PMid:26602340.
http://dx.doi.org/10.1590/1519-6984.2191...
). In North America, Braconidae are most active foragers in places with partially open vegetation and high temperature, low relative humidity and low wind speed (Pérez-de la O et al., 2020PÉREZ-DE LA O, N.B., ESPINOSA-ZARAGOZA, S., LÓPEZ-MARTÍNEZ, V., HIGHT, S.D. and VARONE, L., 2020. Ecological niche modeling to calculate ideal sites to introduce a natural enemy: the case of Apanteles opuntiarum (Hymenoptera: Braconidae) to control Cactoblastis cactorum (Lepidoptera: Pyralidae) in North America. Insects, vol. 11, no. 7, pp. 454. http://dx.doi.org/10.3390/insects11070454. PMid:32707668.
http://dx.doi.org/10.3390/insects1107045...
).

The low frequency of Areoscelis sp., Coccygominus sp., Enicospilus sp., Glypta sp., Labena sp. and Neotheronia sp. and their lack of dominance, even though Coccygominus sp., Glypta sp. and Neotheronia sp. are natural enemies of Lepidoptera defoliators, prevented the analysis of their behavior. The lower availability of resources such as nectar, pollen and shelter in eucalypt clonal plantations reduce the survival and reproduction of these species (Dall’Oglio et al., 2000DALL’OGLIO, O.T., ZANUNCIO, J.C., AZEVEDO, C.O. and MEDEIROS, A.G.B., 2000. Survey of the Hymenoptera parasitoids in Eucalyptus grandis and in a native vegetation area in Ipaba, State of Minas Gerais, Brazil. Anais da Sociedade Entomológica do Brasil, vol. 29, no. 3, pp. 583-588. http://dx.doi.org/10.1590/S0301-80592000000300021.
http://dx.doi.org/10.1590/S0301-80592000...
, 2016DALL’OGLIO, O.T., RIBEIRO, R.C., RAMALHO, F., FERNANDES, F.L., WILCKEN, C.F., ASSIS JÚNIOR, S.L., RUEDA, R.A., SERRÃO, J.E. and ZANUNCIO, J.C., 2016. Can the understory affect the Hymenoptera parasitoids in a Eucalyptus plantation? PLoS One, vol. 11, no. 3, pp. e0151165. http://dx.doi.org/10.1371/journal.pone.0151165. PMid:26954578.
http://dx.doi.org/10.1371/journal.pone.0...
). On the other hand, the increase in the structural complexity of the vegetation favors the reproduction of hymenopteran parasitoids and the reduction of insect pest populations in forest plantations, reinforcing the importance of environmental diversity in the integrated pest management in eucalypt plantations. The number of defoliating Lepidoptera was lower in Eucalyptus cloeziana F. Muell., E. grandis and E. urophylla plantations, interspersed with strips of native vegetation, due to greater plant species diversity, favoring the reproduction of natural enemies and increasing biological control (Dall’Oglio et al., 2016DALL’OGLIO, O.T., RIBEIRO, R.C., RAMALHO, F., FERNANDES, F.L., WILCKEN, C.F., ASSIS JÚNIOR, S.L., RUEDA, R.A., SERRÃO, J.E. and ZANUNCIO, J.C., 2016. Can the understory affect the Hymenoptera parasitoids in a Eucalyptus plantation? PLoS One, vol. 11, no. 3, pp. e0151165. http://dx.doi.org/10.1371/journal.pone.0151165. PMid:26954578.
http://dx.doi.org/10.1371/journal.pone.0...
; Zanuncio et al., 1998ZANUNCIO, J.C., MEZZOMO, J.A., GUEDES, R.N.C. and OLIVEIRA, A.C., 1998. Influence of strips of native vegetation on Lepidoptera associated with Eucalyptus cloeziana in Brazil. Forest Ecology and Management, vol. 108, no. 1, pp. 85-90. http://dx.doi.org/10.1016/S0378-1127(98)00215-1.
http://dx.doi.org/10.1016/S0378-1127(98)...
, 2018ZANUNCIO, J.C., CRUZ, A.P., RAMALHO, F.S., SERRÃO, J.E., WILCKEN, C.F., SILVA, W.M., SANTOS JÚNIOR, V.C. and FERREIRA-FILHO, P.J., 2018. Environmental determinants affecting the occurrence of defoliator caterpillars on Eucalyptus (Myrtaceae) plantations in the Brazilian Amazonian Region. The Florida Entomologist, vol. 101, no. 3, pp. 480-485. http://dx.doi.org/10.1653/024.101.0306.
http://dx.doi.org/10.1653/024.101.0306...
).

The Diptera as the second largest group of natural enemies agrees with reports of species of this order with Lespesia aletiae Riley, 1879, L. archippivora Riley, 1871, Winthemia deilephilae Osten Sacken, 1887 and Archytas marmoratus Townsend, 1915 (Tachinidae) recovered from outbreaks of Spodoptera frugiperda J.E. Smith, 1797 (Lepidoptera: Noctuidae) in Z. mays crops (Maldonado et al., 2018MALDONADO, M.B.G., ZETINA, D.A.H. and CANCINO, E.R., 2018. Parasitoids (Diptera: Tachinidae) of the Fall Armyworm Spodoptera frugiperda (J. E. Smith) in Maize in Durango, Mexico. Southwestern Entomologist, vol. 43, no. 1, pp. 183-187. https://doi.org/10.3958/059.043.0110.
https://doi.org/10.3958/059.043.0110...
). Many species of this order, with approximately 150,000 described (Sanei-Dehkordi et al., 2020SANEI-DEHKORDI, A., SOLEIMANI-AHMADI, M., CHESHMPOSHAM, A. and AKBARZADEH, K., 2020. Biodiversity of medically important Calyptratae flies (Diptera: Schizophora) in hospitals in the Northern Coastline of the Persian Gulf, Iran. Journal of Medical Entomology, vol. 57, no. 3, pp. 766-771. http://dx.doi.org/10.1093/jme/tjz222. PMid:31788698.
http://dx.doi.org/10.1093/jme/tjz222...
), are important in the regulation of herbivorous insect populations (Nakamura, 2018NAKAMURA, S., 2018. Life history parameters of the microtype parasitoid fly Pales pavida (Diptera: Tachinidae), and effects of host age and number of eggs ingested by host on parasitism success. Biocontrol Science and Technology, vol. 28, no. 5, pp. 509-520. http://dx.doi.org/10.1080/09583157.2018.1450843.
http://dx.doi.org/10.1080/09583157.2018....
).

The highest numbers and the greater dominance, abundance, frequency and constancy of Chetogena sp. and Lespesia sp. with 27 and 20 individuals, respectively, are important due to the diversity and ecological importance of Tachinidae to regulate defoliating Lepidoptera communities (Stireman et al., 2006STIREMAN, J.O., O’HARA, J.E. and WOOD, D.M., 2006. Tachinidae: evolution, behavior, and ecology. Annual Review of Entomology, vol. 51, no. 1, pp. 525-555. http://dx.doi.org/10.1146/annurev.ento.51.110104.151133. PMid:16332222.
http://dx.doi.org/10.1146/annurev.ento.5...
). The genus Lespesia is one of the largest and most important of this family (Sabrosky, 1980SABROSKY, C.W., 1980. A revised key to the Nearctic species of Lespesia (Diptera, Tachinidae). Annals of the Entomological Society of America, vol. 73, no. 1, pp. 63-73. http://dx.doi.org/10.1093/aesa/73.1.63.
http://dx.doi.org/10.1093/aesa/73.1.63...
) with species and those of Chetogena frequently recovered from agricultural caterpillar pests, such as Helicoverpa armigera Hübner, 1805 (Lepidoptera: Noctuidae) on cotton, Gossypium L. sp. (Malvaceae), G. max, P. vulgaris, Z. mays, sorghum, Sorghum bicolour Moench (Poaceae) and tomato, Solanum lycopersicum L. (Solanaceae) crops (Tavares et al., 2013bTAVARES, W., LEGASPI, J.C., TAVARES, M.T., NUNEZ, E., PINTO, R. and ZANUNCIO, J.C., 2013b. Brachymeria koehleri (Hymenoptera: Chalcididae) as a hyperparasitoid of Lespesia melloi (Diptera: Tachinidae) pupae in Thagona tibialis (Lepidoptera: Lymantriidae) caterpillars in Brazil. The Florida Entomologist, vol. 96, no. 4, pp. 1635-1638. http://dx.doi.org/10.1653/024.096.0457.
http://dx.doi.org/10.1653/024.096.0457...
). The report of Lespesia sp. and Chetogena sp. on the E. urophylla variety platyphylla plantation agrees with reports on their adaptation to survive in monocultures near diversified agriculture crops (Weber et al., 2021WEBER, I.D., LOPES, W.R., PAULA, L.C.B., ALBERNAZ-GODINHO, K.C. and CZEPAK, C., 2021. Tachinids associated with lepidopteran pests in agricultural crops in south-central region of Goiás, Brazil. BioControl, vol. 34, no. 5, pp. 416-422. http://dx.doi.org/10.1007/s10526-021-10098-3.
http://dx.doi.org/10.1007/s10526-021-100...
).

The highest number of Lespesia sp. (20 individuals) than Winthemya sp. (two individuals) reinforces the importance of species of that genus as parasitoids of defoliating caterpillars of the Noctuidae, Notodontidae, Saturniidae and Sphingidae families (Gil-Santana et al., 2014GIL-SANTANA, H.R., NIHEI, S.S. and NUNEZ, E., 2014. Lespesia melloi sp. nov. (Diptera: Tachinidae) from Brazil, a parasitoid of Xanthopastis timais (Lepidoptera: Noctuidae). Journal of Insect Science, vol. 14, no. 1, pp. 121. http://dx.doi.org/10.1093/jis/14.1.121. PMid:25368065.
http://dx.doi.org/10.1093/jis/14.1.121...
) and also E. aberrans, S. violascens and T. arnobia on E. urophylla and E. grandis × E. urophylla plantations (Masson et al., 2017aMASSON, M.V., TAVARES, W., PEREIRA, D.W.V., MATOS, W.C., LOPES, F.A., FERREIRA-FILHO, P.J., WILCKEN, C.F. and ZANUNCIO, J.C., 2017a. Management of Hylesia nanus (Lepidoptera: Saturniidae) on Eucalyptus (Myrtaceae) plantations. The Florida Entomologist, vol. 100, no. 2, pp. 380-384. http://dx.doi.org/10.1653/024.100.0239.
http://dx.doi.org/10.1653/024.100.0239...
) and with potential for biological control programs (Tavares et al., 2015TAVARES, W., WILCKEN, C.F., RAMALHO, F.S., SOARES, M.A., FERNANDES, F.L., SERRÃO, J.E. and ZANUNCIO, J.C., 2015. Discovery of the first Aximopsis (Hymenoptera: Eurytomidae) parasitoid of Lepidoptera in Brazil and notes on its biology. The Florida Entomologist, vol. 94, no. 4, pp. 1077-1080. http://dx.doi.org/10.1653/024.098.0411.
http://dx.doi.org/10.1653/024.098.0411...
).

The low frequency and non-dominance of Pentatomidae and Reduviidae species may be due to the wide variety of their feeding habits on a large number of preys and supplementary feeding on plants (Ambrose, 2006AMBROSE, D.P., 2006. A checklist of Indian assassin bugs (Insecta: Hemiptera: Reduviidae) with taxonomic status, distribution and diagnostic morphological characteristics. Zoos’ Print Journal, vol. 21, no. 9, pp. 2388-2406. http://dx.doi.org/10.11609/JoTT.ZPJ.871.2388-406.
http://dx.doi.org/10.11609/JoTT.ZPJ.871....
; Weirauch, 2008WEIRAUCH, C., 2008. Cladistic analysis of Reduviidae (Heteroptera: Cimicomorpha) based on morphological characters. Systematic Entomology, vol. 33, no. 2, pp. 229-274. http://dx.doi.org/10.1111/j.1365-3113.2007.00417.x.
http://dx.doi.org/10.1111/j.1365-3113.20...
). Climatic factors, food availability and intra and interspecific competitions can also affect the activity, abundance, diversity and survival of these predators (Tavares, 2017TAVARES, W., 2017. Podisus distinctus (Heteroptera: Pentatomidae) females are lighter feeding on Tenebrio molitor (Coleoptera: Tenebrionidae) pupae subjected to ventral nerve cord transection. Entomologica Americana, vol. 123, no. 1-4, pp. 35-41. http://dx.doi.org/10.1664/1947-5144-123.1-4.35.
http://dx.doi.org/10.1664/1947-5144-123....
). The forest fragmentation reduces the diversity and numbers of natural enemies, favoring outbreaks of pests and increasing the importance of community ecology studies (Bernardi et al., 2011BERNARDI, O., GARCIA, M.S., ELY SILVA, E.J., ZAZYCKI, L.C.F., BERNARDI, D. and FINKENAUER, É., 2011. Survey population and fauna analysis of Lepidoptera in Eucalyptus spp. in the municipality of Pinheiro Machado, RS. Ciência Florestal, vol. 21, pp. 735-744. http://dx.doi.org/10.5902/198050984517.
http://dx.doi.org/10.5902/198050984517...
; Dall’Oglio et al., 2016DALL’OGLIO, O.T., RIBEIRO, R.C., RAMALHO, F., FERNANDES, F.L., WILCKEN, C.F., ASSIS JÚNIOR, S.L., RUEDA, R.A., SERRÃO, J.E. and ZANUNCIO, J.C., 2016. Can the understory affect the Hymenoptera parasitoids in a Eucalyptus plantation? PLoS One, vol. 11, no. 3, pp. e0151165. http://dx.doi.org/10.1371/journal.pone.0151165. PMid:26954578.
http://dx.doi.org/10.1371/journal.pone.0...
; Ribeiro et al., 2016RIBEIRO, G.T., ZANUNCIO, J.C. and TAVARES, W., 2016. Constancy, distribution, and frequency of Lepidoptera defoliators of Eucalyptus grandis and Eucalyptus urophylla (Myrtaceae) in four Brazilian regions. Neotropical Entomology, vol. 45, no. 6, pp. 629-636. http://dx.doi.org/10.1007/s13744-016-0410-1. PMid:27255768.
http://dx.doi.org/10.1007/s13744-016-041...
).

5. Conclusions

In summary, the results of the present study showed that ten primary pest species, i.e., A. sericea, B. varana, E. involuta, E. eucerus, Fulgurodes sp., G. unipennaria unipennaria, Melanolophia sp., O. vesulia, S. caberata caberata and S. violascens and three secondary, i.e., Automeris sp., Dirphia sp. and N. ebalea should be monitored in programs of pest management. The number of Noctuidae individuals was higher, but none of its species have been registered as pest in eucalypt plantations. The frequency and abundance of primary and secondary pest species were low without outbreaks in the period. The higher number of Braconidae and Tachinidae individuals reinforces the importance of these families in the biological control of Lepidoptera defoliators in eucalypt plantations. The low numbers of predators may be due to low efficiency of light traps to sample these natural enemies.

Acknowledgements

To the Brazilian institutions “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)”, “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)”, “Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)” and “Programa Cooperativo sobre Proteção Florestal (PROTEF)” of the “Instituto de Pesquisas e Estudos Florestais (IPEF)” for financial support.

References

  • AGATHOKLEOUS, E., FENG, Z., OKSANEN, E., SICARD, P., WANG, Q., SAITANIS, C.J., ARAMINIENE, V., BLANDE, J.D., HAYES, F., CALATAYUD, V., DOMINGOS, M., VERESOGLOU, S.D., PEÑUELAS, J., WARDLE, D.A., DE MARCO, A., LI, Z., HARMENS, H., YUAN, X., VITALE, M. and PAOLETTI, E., 2020. Ozone affects plant, insect, and soil microbial communities: a threat to terrestrial ecosystems and biodiversity. Science Advances, vol. 6, no. 33, pp. eabc1176. http://dx.doi.org/10.1126/sciadv.abc1176 PMid:32851188.
    » http://dx.doi.org/10.1126/sciadv.abc1176
  • ALVARES, C.A., STAPE, J.L., SENTELHAS, P.C. and GONÇALVES, J.L., 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift (Berlin), vol. 22, no. 6, pp. 711-728. http://dx.doi.org/10.1127/0941-2948/2013/0507
    » http://dx.doi.org/10.1127/0941-2948/2013/0507
  • AMBROSE, D.P., 2006. A checklist of Indian assassin bugs (Insecta: Hemiptera: Reduviidae) with taxonomic status, distribution and diagnostic morphological characteristics. Zoos’ Print Journal, vol. 21, no. 9, pp. 2388-2406. http://dx.doi.org/10.11609/JoTT.ZPJ.871.2388-406
    » http://dx.doi.org/10.11609/JoTT.ZPJ.871.2388-406
  • ANDRADE, D.A. and TEIXEIRA, I.R. DO V., 2017. Diversity of Lepidoptera in a forest fragment in Muzambinho, Minas Gerais. Ciência Florestal, vol. 27, no. 04, pp. 1229-1241. http://dx.doi.org/10.5902/1980509830311
    » http://dx.doi.org/10.5902/1980509830311
  • AWAD, J., HODGES, A., HIGHT, S., SRIVASTAVA, M., HOWE, A. and ROHRIG, E., 2019. Laboratory rearing and sex ratio of Apanteles opuntiarum (Hymenoptera: Braconidae), a potential biocontrol agent of Cactoblastis cactorum (Lepidoptera: Pyralidae). The Florida Entomologist, vol. 102, no. 1, pp. 216-221. http://dx.doi.org/10.1653/024.102.0135
    » http://dx.doi.org/10.1653/024.102.0135
  • AZEVEDO, C.O., KAWADA, R., TAVARES, M.T. and PERIOTO, N.W., 2002. Survey of the hymenopterous parasitoids (Insecta, Hymenoptera) from the Parque Estadual da Fonte Grande, Vitória, ES, Brazil. Revista Brasileira de Entomologia, vol. 46, pp. 133-137. http://dx.doi.org/10.1590/S0085-56262002000200005
    » http://dx.doi.org/10.1590/S0085-56262002000200005
  • BERNARDI, O., GARCIA, M.S., CUNHA, U.S., BACK, E.C.U., BERNARDI, D., RAMIRO, G.A. and FINKENAUER, E., 2008. Occurrence of Euetheola humilis (Burmeister) (Coleoptera: Scarabaeidae) in Eucalyptus saligna Smith (Myrtaceae), in Rio Grande do Sul State, Brazil. Neotropical Entomology, vol. 37, no. 1, pp. 100-103. http://dx.doi.org/10.1590/S1519-566X2008000100017 PMid:18368259.
    » http://dx.doi.org/10.1590/S1519-566X2008000100017
  • BERNARDI, O., GARCIA, M.S., ELY SILVA, E.J., ZAZYCKI, L.C.F., BERNARDI, D. and FINKENAUER, É., 2011. Survey population and fauna analysis of Lepidoptera in Eucalyptus spp. in the municipality of Pinheiro Machado, RS. Ciência Florestal, vol. 21, pp. 735-744. http://dx.doi.org/10.5902/198050984517
    » http://dx.doi.org/10.5902/198050984517
  • CARVALHO, M.W.M., HICKEL, E.R., BERTOLDI, B., KNABBEN, G.C. and NOVAES, Y.R., 2021. Design of a smart LED lamp to monitor insect populations in an integrated pest management approach. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 25, no. 4, pp. 270-276. http://dx.doi.org/10.1590/1807-1929/agriambi.v25n4p270-276
    » http://dx.doi.org/10.1590/1807-1929/agriambi.v25n4p270-276
  • DALL’OGLIO, O.T., RIBEIRO, R.C., RAMALHO, F., FERNANDES, F.L., WILCKEN, C.F., ASSIS JÚNIOR, S.L., RUEDA, R.A., SERRÃO, J.E. and ZANUNCIO, J.C., 2016. Can the understory affect the Hymenoptera parasitoids in a Eucalyptus plantation? PLoS One, vol. 11, no. 3, pp. e0151165. http://dx.doi.org/10.1371/journal.pone.0151165 PMid:26954578.
    » http://dx.doi.org/10.1371/journal.pone.0151165
  • DALL’OGLIO, O.T., ZANUNCIO, J.C., AZEVEDO, C.O. and MEDEIROS, A.G.B., 2000. Survey of the Hymenoptera parasitoids in Eucalyptus grandis and in a native vegetation area in Ipaba, State of Minas Gerais, Brazil. Anais da Sociedade Entomológica do Brasil, vol. 29, no. 3, pp. 583-588. http://dx.doi.org/10.1590/S0301-80592000000300021
    » http://dx.doi.org/10.1590/S0301-80592000000300021
  • DALL’OGLIO, O.T., ZANUNCIO, J.C., DE FREITAS, F.A. and PINTO, R., 2003. Hymenopteran parasitoids collected in an Eucalyptus grandis plantation and in a native vegetation area in Ipaba, State of Minas Gerais, Brazil. Ciência Florestal, vol. 13, no. 1, pp. 123-129.
  • DALL’OGLIO, O.T., ZANUNCIO, T.V., TAVARES, W.S., SERRÃO, J.E., WILCKEN, C.F. and ZANUNCIO, J.C., 2013. Atlantic Rainforest remnant harbors greater biotic diversity but reduced lepidopteran populations compared to a Eucalyptus plantation. The Florida Entomologist, vol. 96, no. 3, pp. 887-896. http://dx.doi.org/10.1653/024.096.0324
    » http://dx.doi.org/10.1653/024.096.0324
  • DEVRIES, P.J. and WALLA, T.R., 2001. Species diversity and community structure in Neotropical fruit-feeding butterflies. Biological Journal of the Linnean Society. Linnean Society of London, vol. 74, no. 1, pp. 1-15. http://dx.doi.org/10.1111/j.1095-8312.2001.tb01372.x
    » http://dx.doi.org/10.1111/j.1095-8312.2001.tb01372.x
  • DIAS, T.K.R., WILCKEN, C.F., SOLIMAN, E.P., BARBOSA, L.R., SERRÃO, J.E. and ZANUNCIO, J.C., 2014. Predation of Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) by Atopozelus opsimus (Hemiptera: Reduviidae) in Brazil. Invertebrate Survival Journal: ISJ, vol. 11, pp. 224-227.
  • DORVAL, A., ZANUNCIO, J.C., PEREIRA, J.M.M. and GASPERAZZO, W.L., 1995. Faunistic analysis of Eupseudosoma aberrans and Eupseudosoma involuta (Lepidoptera: Arctiidae) in Eucalyptus urophylla and Eucalyptus cloeziana, in Montes Claros, Minas Gerais. Revista Árvore, vol. 19, no. 2, pp. 228-240.
  • DUARTE JÚNIOR, J.A. and SCHLINDWEIN, C., 2005. Species richness, abundance and seasonality of Sphyngidae (Lepidoptera) in a fragment of Atlantic Rainforest of Pernambuco, Brazil. Revista Brasileira de Zoologia, vol. 22, no. 3, pp. 662-666.
  • FAVORETO, A.L., PAVANI, R.F., RIBEIRO, M.F., ZANUNCIO, A.J.V., SOARES, M.A., ZANUNCIO, J.C. and WILCKEN, C.F., 2021. Tetrastichus howardi (Hymenoptera: Eulophidae): first report of parasitism in Oxydia vesulia (Lepidoptera: Geometridae). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 81, no. 2, pp. 406-410. http://dx.doi.org/10.1590/1519-6984.228541 PMid:32428093.
    » http://dx.doi.org/10.1590/1519-6984.228541
  • FERNANDES, B.V., BARCELOS, J.A.V., ANDRADE, H.B. and ZANUNCIO, J.C., 2014. Leptocybe invasa (Hymenoptera: Eulophidae), an exotic pest of Eucalyptus, in Minas Gerais State, Brazil. The Florida Entomologist, vol. 97, no. 2, pp. 824-826. http://dx.doi.org/10.1653/024.097.0270
    » http://dx.doi.org/10.1653/024.097.0270
  • FREITAS, F.A., ZANUNCIO, T.V., ZANUNCIO, J.C., CONCEIÇÃO, P.M., FIALHO, M.O.C.Q. and BERNARDINO, A.S., 2005. Effect of plant age, temperature and rainfall on Lepidoptera insect pests collected with light traps in a Eucalyptus grandis plantation in Brazil. Annals of Forest Science, vol. 62, no. 1, pp. 85-90. http://dx.doi.org/10.1051/forest:2004094
    » http://dx.doi.org/10.1051/forest:2004094
  • GARLET, J., COSTA, E.C. and BOSCARDIN, J., 2016. Survey of insect in eucalyptus spp. plantation by light trap in São Francisco de Assis, RS. Ciência Florestal, vol. 26, no. 2, pp. 365-374. http://dx.doi.org/10.5902/1980509822737
    » http://dx.doi.org/10.5902/1980509822737
  • GIL-SANTANA, H.R., NIHEI, S.S. and NUNEZ, E., 2014. Lespesia melloi sp. nov. (Diptera: Tachinidae) from Brazil, a parasitoid of Xanthopastis timais (Lepidoptera: Noctuidae). Journal of Insect Science, vol. 14, no. 1, pp. 121. http://dx.doi.org/10.1093/jis/14.1.121 PMid:25368065.
    » http://dx.doi.org/10.1093/jis/14.1.121
  • GUEDES, R.N.C., ZANUNCIO, T.V., ZANUNCIO, J.C. and MEDEIROS, A.G.B., 2000. Species richness and fluctuation of defoliator Lepidoptera populations in Brazilian plantations of Eucalyptus grandis as affected by plant age and weather factors. Forest Ecology and Management, vol. 137, no. 1-3, pp. 179-184. http://dx.doi.org/10.1016/S0378-1127(99)00326-6
    » http://dx.doi.org/10.1016/S0378-1127(99)00326-6
  • GUTIÉRREZ, Y., FRESCH, M., OTT, D., BROCKMEYER, J. and SCHERBER, C., 2020. Diet composition and social environment determine food consumption, phenotype and fecundity in an omnivorous insect. Royal Society Open Science, vol. 7, no. 4, pp. 200100. http://dx.doi.org/10.1098/rsos.200100 PMid:32431901.
    » http://dx.doi.org/10.1098/rsos.200100
  • JACTEL, H., GOULARD, M., MENASSIEU, P. and GOUJON, G., 2002. Habitat diversity in forest plantations reduces infestations of the pine stem boner Dioryctria sylvestrella. Journal of Applied Ecology, vol. 39, no. 4, pp. 618-628. http://dx.doi.org/10.1046/j.1365-2664.2002.00742.x
    » http://dx.doi.org/10.1046/j.1365-2664.2002.00742.x
  • KEMP, J.E. and ELLIS, A.G., 2017. Significant local-scale plant-insect species richness relationship independent of abiotic effects in the temperate Cape Floristic Region biodiversity hotspot. PLoS One, vol. 12, no. 1, pp. e0168033. http://dx.doi.org/10.1371/journal.pone.0168033 PMid:28076412.
    » http://dx.doi.org/10.1371/journal.pone.0168033
  • KKADAN, S.K., SIRAIT, B.A., ASFA, R., TAVARES, W.S., TARIGAN, M., DURAN, A., WONG, C.Y. and SHARMA, M., 2020. Evaluation of a spinetoram-based insecticide against lepidopteran and thrips infesting acacia and eucalyptus in Sumatra, Indonesia. Journal of Entomology and Zoology Studies, vol. 8, no. 2, pp. 1345-1351.
  • LAFONTAINE, J.D. and FIBIGER, M., 2006. Revised higher classification of the Noctuoidea (Lepidoptera). Canadian Entomologist, vol. 138, no. 5, pp. 610-635. http://dx.doi.org/10.4039/n06-012
    » http://dx.doi.org/10.4039/n06-012
  • LUZ, R.A., FONTES, L.S., CARDOSO, S.R.S. and LIMA, É.F.B., 2013. Diversity of the Arthropod edaphic fauna in preserved and managed with pasture areas in Teresina-Piauí-Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 73, no. 3, pp. 483-489. http://dx.doi.org/10.1590/S1519-69842013000300004 PMid:24212687.
    » http://dx.doi.org/10.1590/S1519-69842013000300004
  • LYU, Y., WANG, X. and LUO, J., 2020. Geographic patterns of insect diversity across China’s nature reserves: the roles of niche conservatism and range overlapping. Ecology and Evolution, vol. 10, no. 7, pp. 3305-3317. http://dx.doi.org/10.1002/ece3.6097 PMid:32273988.
    » http://dx.doi.org/10.1002/ece3.6097
  • MAFIA, R.G., LOUREIRO, E.B., SILVA, J.B., SIMÕES, J.A.C., ZARPELON, T.G., BEZERRA JÚNIOR, N.S. and DAMACENA, M.B., 2018. A new light trap model as an alternative for controlling pests in Eucalyptus plantations. Neotropical Entomology, vol. 47, no. 2, pp. 326-328. http://dx.doi.org/10.1007/s13744-017-0541-z PMid:28721608.
    » http://dx.doi.org/10.1007/s13744-017-0541-z
  • MAGURRAN, A.E., 1988. Ecological diversity and its measurement. Princeton: Princeton University Press. http://dx.doi.org/10.1007/978-94-015-7358-0
    » http://dx.doi.org/10.1007/978-94-015-7358-0
  • MALDONADO, M.B.G., ZETINA, D.A.H. and CANCINO, E.R., 2018. Parasitoids (Diptera: Tachinidae) of the Fall Armyworm Spodoptera frugiperda (J. E. Smith) in Maize in Durango, Mexico. Southwestern Entomologist, vol. 43, no. 1, pp. 183-187. https://doi.org/10.3958/059.043.0110
    » https://doi.org/10.3958/059.043.0110
  • MARSARO JÚNIOR, A.L., NASCIMENTO, D.B., RONCHI-TELES, B. and ADAIME, R., 2012. Faunistic analysis of the species of Anastrepha Schiner (Diptera: Tephritidae) in three municipalities of the state of Roraima, Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 72, no. 4, pp. 813-819. http://dx.doi.org/10.1590/S1519-69842012000500006 PMid:23295509.
    » http://dx.doi.org/10.1590/S1519-69842012000500006
  • MASSON, M.V., TAVARES, W., LOPES, F.A., SOUZA, A.R., FERREIRA-FILHO, P.J., BARBOSA, L.R., WILCKEN, C.F. and ZANUNCIO, J.C., 2017b. Selitrichodes neseri (Hymenoptera: Eulophidae) recovered from Leptocybe invasa (Hymenoptera: Eulophidae) galls after initial release on Eucalyptus (Myrtaceae) in Brazil, and data on its biology. The Florida Entomologist, vol. 100, no. 3, pp. 589-593. http://dx.doi.org/10.1653/024.100.0316
    » http://dx.doi.org/10.1653/024.100.0316
  • MASSON, M.V., TAVARES, W., PEREIRA, D.W.V., MATOS, W.C., LOPES, F.A., FERREIRA-FILHO, P.J., WILCKEN, C.F. and ZANUNCIO, J.C., 2017a. Management of Hylesia nanus (Lepidoptera: Saturniidae) on Eucalyptus (Myrtaceae) plantations. The Florida Entomologist, vol. 100, no. 2, pp. 380-384. http://dx.doi.org/10.1653/024.100.0239
    » http://dx.doi.org/10.1653/024.100.0239
  • MELO, A., 2008. What do we win ‘confounding’ species richness and evenness in a diversity index? Biota Neotropica, vol. 8, no. 3, pp. 21-27. http://dx.doi.org/10.1590/S1676-06032008000300001
    » http://dx.doi.org/10.1590/S1676-06032008000300001
  • MUIRURI, E.W., BARANTAL, S., IASON, G.R., SALMINEN, J.-P., PEREZ-FERNANDEZ, E. and KORICHEVA, J., 2019. Forest diversity effects on insect herbivores: do leaf traits matter? The New Phytologist, vol. 221, no. 4, pp. 2250-2260. http://dx.doi.org/10.1111/nph.15558 PMid:30347456.
    » http://dx.doi.org/10.1111/nph.15558
  • NAKAMURA, S., 2018. Life history parameters of the microtype parasitoid fly Pales pavida (Diptera: Tachinidae), and effects of host age and number of eggs ingested by host on parasitism success. Biocontrol Science and Technology, vol. 28, no. 5, pp. 509-520. http://dx.doi.org/10.1080/09583157.2018.1450843
    » http://dx.doi.org/10.1080/09583157.2018.1450843
  • OTHIM, S.T.O., RAMASAMY, S., KAHUTHIA-GATHU, R., DUBOIS, T., EKESI, S. and FIABOE, K.K.M., 2019. Effects of host age and density on the performance of Apanteles hemara (Hymenoptera: Braconidae), a larval endoparasitoid of Spoladea recurvalis (Lepidoptera: Crambidae). Journal of Economic Entomology, vol. 112, no. 5, pp. 2131-2141. http://dx.doi.org/10.1093/jee/toz165 PMid:31215620.
    » http://dx.doi.org/10.1093/jee/toz165
  • PACHECO, H.M., VANLAERHOVEN, S.L. and GARCÍA, M.Á.M., 2020. Functional response and switching behaviour of Campoletis sonorensis (Cameron) (Hymenoptera: Ichneumonidae) to the native host Trichoplusia ni and the non-native host Chrysodeixis chalcites mediating host range expansion. Biocontrol Science and Technology, vol. 30, no. 5, pp. 462-479. http://dx.doi.org/10.1080/09583157.2020.1734185
    » http://dx.doi.org/10.1080/09583157.2020.1734185
  • PAIVA, I.G., AUAD, A.M., VERÍSSIMO, B.A. and SILVEIRA, L.C.P., 2020. Differences in the insect fauna associated to a monocultural pasture and a silvopasture in Southeastern Brazil. Scientific Reports, vol. 10, no. 1, pp. 12112. http://dx.doi.org/10.1038/s41598-020-68973-5 PMid:32694546.
    » http://dx.doi.org/10.1038/s41598-020-68973-5
  • PEREIRA, A.G., SILVA, R.B., DIAS, M.M. and PENTEADO-DIAS, A.M., 2015. Study on the Hymenoptera parasitoid associated with Lepidoptera larvae in reforestation and agrosilvopastoral systems at Fazenda Canchim (Embrapa Pecuária Sudeste) São Carlos, SP, Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 75, no. 4, pp. 783-789. http://dx.doi.org/10.1590/1519-6984.21913 PMid:26602340.
    » http://dx.doi.org/10.1590/1519-6984.21913
  • PEREIRA, J.M.M., ZANUNCIO, T.V., ZANUNCIO, J.C. and PALLINI, A., 2001. Lepidoptera pests collected in Eucalyptus urophylla (Myrtaceae) plantations during five years in Três Marias, State of Minas Gerais, Brazil. Revista de Biología Tropical, vol. 49, no. 3-4, pp. 1073-1082. PMid:12189789.
  • PÉREZ-DE LA O, N.B., ESPINOSA-ZARAGOZA, S., LÓPEZ-MARTÍNEZ, V., HIGHT, S.D. and VARONE, L., 2020. Ecological niche modeling to calculate ideal sites to introduce a natural enemy: the case of Apanteles opuntiarum (Hymenoptera: Braconidae) to control Cactoblastis cactorum (Lepidoptera: Pyralidae) in North America. Insects, vol. 11, no. 7, pp. 454. http://dx.doi.org/10.3390/insects11070454 PMid:32707668.
    » http://dx.doi.org/10.3390/insects11070454
  • PIELOU, C.E., 1975. Ecological diversity New York: John Wiley & Sons.
  • PRATISSOLI, D., ZANUNCIO, T.V., DE FREITAS, F.A. and ZANUNCIO, J.C., 2003. Population density of Lepidoptera in a plantation of Eucalyptus urophylla in the state of Minas Gerais, Brazil. Animal Biology (Leiden, Netherlands), vol. 53, no. 1, pp. 17-26. http://dx.doi.org/10.1163/157075603769682549
    » http://dx.doi.org/10.1163/157075603769682549
  • RAMALHO, F.S., ZANUNCIO, J.C., LOPES, E.T. and ZANUNCIO, T.V., 2000. Temporal variations of Lepidoptera collected in an Eucalyptus plantation in the State of Goiás, Brazil. Netherlands Journal of Zoology, vol. 50, no. 4, pp. 435-443. http://dx.doi.org/10.1163/156854200X00180
    » http://dx.doi.org/10.1163/156854200X00180
  • RIBEIRO, G.T., ZANUNCIO, J.C. and TAVARES, W., 2016. Constancy, distribution, and frequency of Lepidoptera defoliators of Eucalyptus grandis and Eucalyptus urophylla (Myrtaceae) in four Brazilian regions. Neotropical Entomology, vol. 45, no. 6, pp. 629-636. http://dx.doi.org/10.1007/s13744-016-0410-1 PMid:27255768.
    » http://dx.doi.org/10.1007/s13744-016-0410-1
  • SABROSKY, C.W., 1980. A revised key to the Nearctic species of Lespesia (Diptera, Tachinidae). Annals of the Entomological Society of America, vol. 73, no. 1, pp. 63-73. http://dx.doi.org/10.1093/aesa/73.1.63
    » http://dx.doi.org/10.1093/aesa/73.1.63
  • SAMIRA, K., MALIKA, D., FAIZA, M., WILLY, P., MOHAMMED, R., FLOWER, R. and RIADH, M., 2020. Diversity and abundance of Lepidoptera populations in the Theniet El Had National Park (Algeria). Zootaxa, vol. 4743, no. 1, pp. 35-46. http://dx.doi.org/10.11646/zootaxa.4743.1.3 PMid:32230350.
    » http://dx.doi.org/10.11646/zootaxa.4743.1.3
  • SANEI-DEHKORDI, A., SOLEIMANI-AHMADI, M., CHESHMPOSHAM, A. and AKBARZADEH, K., 2020. Biodiversity of medically important Calyptratae flies (Diptera: Schizophora) in hospitals in the Northern Coastline of the Persian Gulf, Iran. Journal of Medical Entomology, vol. 57, no. 3, pp. 766-771. http://dx.doi.org/10.1093/jme/tjz222 PMid:31788698.
    » http://dx.doi.org/10.1093/jme/tjz222
  • SANTOS, S.R., SPECHT, A., CARNEIRO, E., PAULA-MORAES, S.V. and CASAGRANDE, M.M., 2017. Interseasonal variation of Chrysodeixis includens (Walker, [1858]) (Lepidoptera: Noctuidae) populations in the Brazilian Savanna. Revista Brasileira de Entomologia, vol. 61, no. 4, pp. 294-299. http://dx.doi.org/10.1016/j.rbe.2017.06.006
    » http://dx.doi.org/10.1016/j.rbe.2017.06.006
  • SCHNEIDER, N.A. and AZEVEDO FILHO, W.S., 2017. Population fluctuation and faunistic analysis of sharpshooters (Hemiptera: Cicadellidae: Cicadellinae) in plum orchards in the municipality of Protásio Alves, Rio Grande do Sul State, Brazil. Journal of the Kansas Entomological Society, vol. 90, no. 4, pp. 269-282. http://dx.doi.org/10.2317/JKES150406.1
    » http://dx.doi.org/10.2317/JKES150406.1
  • SHANNON, C.E. and WEAVER, W., 1949. The mathematical theory of communication Urbana-Champaign: University of Illinois Press.
  • SHARMA, A., JHA, P. and REDDY, G.V.P., 2018. Multidimensional relationships of herbicides with insect-crop food webs. The Science of the Total Environment, vol. 643, pp. 1522-1532. http://dx.doi.org/10.1016/j.scitotenv.2018.06.312 PMid:30189568.
    » http://dx.doi.org/10.1016/j.scitotenv.2018.06.312
  • SILVA, A.M., 2008. Natural potential of erosion in the county of Sorocaba, São Paulo, Brazil. International Journal of Natural Disasters. Accidents and Civil Infrastucture, vol. 8, pp. 5-14.
  • SILVA, N.A.P., FIZZAS, M.R. and OLIVEIRA, C.M., 2011. Seasonality in insects abundance in the “Cerrado” of Goiás State, Brazil. Revista Brasileira de Entomologia, vol. 55, no. 5, pp. 79-87. http://dx.doi.org/10.1590/S0085-56262011000100013
    » http://dx.doi.org/10.1590/S0085-56262011000100013
  • SOUZA, G.K., PIKART, T.G., PIKART, F.C., SERRÃO, J.E., WILCKEN, C.F. and ZANUNCIO, J.C., 2012. First record of a native heteropteran preying on the introduced Eucalyptus pest, Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae), in Brazil. The Florida Entomologist, vol. 95, no. 2, pp. 517-520. http://dx.doi.org/10.1653/024.095.0245
    » http://dx.doi.org/10.1653/024.095.0245
  • STAPE, J.L., BINKLEY, D., RYAN, M.G., FONSECA, S., LOOS, R.A., TAKAHASHI, E.N., SILVA, C.R., SILVA, S.R., HAKAMADA, R.E., FERREIRA, J.M., LIMA, A.M.N., GAVA, J.L., LEITE, F.P., ANDRADE, H.B., ALVES, J.M., SILVA, G.G.C. and AZEVEDO, M.R., 2010. The Brazil Eucalyptus potential productivity project: influence of water, nutrients and stand uniformity on wood production. Forest Ecology and Management, vol. 259, no. 9, pp. 1684-1694. http://dx.doi.org/10.1016/j.foreco.2010.01.012
    » http://dx.doi.org/10.1016/j.foreco.2010.01.012
  • STAPE, J.L., GONÇALVES, J.L.M. and GONÇALVES, A.N., 2001. Relationships between nursery practices and field performance for Eucalyptus plantations in Brazil. New Forests, vol. 22, no. 1, pp. 19-41. http://dx.doi.org/10.1023/A:1012271616115
    » http://dx.doi.org/10.1023/A:1012271616115
  • STEINBAUER, M.J. and MATSUKI, M., 2004. Suitability of Eucalyptus and Corymbia for Mnesampela privata (Gueneé) (Lepidoptera: Geometridae) larvae. Agricultural and Forest Entomology, vol. 6, no. 4, pp. 323-332. http://dx.doi.org/10.1111/j.1461-9555.2004.00238.x
    » http://dx.doi.org/10.1111/j.1461-9555.2004.00238.x
  • STIREMAN, J.O., O’HARA, J.E. and WOOD, D.M., 2006. Tachinidae: evolution, behavior, and ecology. Annual Review of Entomology, vol. 51, no. 1, pp. 525-555. http://dx.doi.org/10.1146/annurev.ento.51.110104.151133 PMid:16332222.
    » http://dx.doi.org/10.1146/annurev.ento.51.110104.151133
  • TACHI, T., SHIMA, H. and TAVARES, W., 2020. A new species of Cossidophaga Baranov from Indonesia (Diptera: Tachinidae), a parasitoid of the carpenter moth, Polyphagozerra coffeae (Nietner) (Lepidoptera: Cossidae). Oriental Insects, vol. 54, no. 4, pp. 545-555. http://dx.doi.org/10.1080/00305316.2019.1697386
    » http://dx.doi.org/10.1080/00305316.2019.1697386
  • TAVARES, W. S., KKADAN, S.K., HENDRIK, A.M., TARIGAN, M., ASFA, R., YAKOVLEV, R.V., TACHI, T., DURAN, A., WONG, C.Y. and SHARMA, M., 2020. Notes on the biology and natural enemies of Polyphagozerra coffeae (Nietner, 1861) infesting Eucalyptus pellita F. Muell. (Myrtaceae) trees in Riau, Indonesia (Lepidoptera: Cossidae, Zeuzerinae). SHILAP Revista de Lepidopterologia, vol. 48, no. 190, pp. 333-349. http://dx.doi.org/10.57065/shilap.398
    » http://dx.doi.org/10.57065/shilap.398
  • TAVARES, W., 2017. Podisus distinctus (Heteroptera: Pentatomidae) females are lighter feeding on Tenebrio molitor (Coleoptera: Tenebrionidae) pupae subjected to ventral nerve cord transection. Entomologica Americana, vol. 123, no. 1-4, pp. 35-41. http://dx.doi.org/10.1664/1947-5144-123.1-4.35
    » http://dx.doi.org/10.1664/1947-5144-123.1-4.35
  • TAVARES, W., LEGASPI, J.C., TAVARES, M.T., NUNEZ, E., PINTO, R. and ZANUNCIO, J.C., 2013b. Brachymeria koehleri (Hymenoptera: Chalcididae) as a hyperparasitoid of Lespesia melloi (Diptera: Tachinidae) pupae in Thagona tibialis (Lepidoptera: Lymantriidae) caterpillars in Brazil. The Florida Entomologist, vol. 96, no. 4, pp. 1635-1638. http://dx.doi.org/10.1653/024.096.0457
    » http://dx.doi.org/10.1653/024.096.0457
  • TAVARES, W., WILCKEN, C.F., RAMALHO, F.S., SOARES, M.A., FERNANDES, F.L., SERRÃO, J.E. and ZANUNCIO, J.C., 2015. Discovery of the first Aximopsis (Hymenoptera: Eurytomidae) parasitoid of Lepidoptera in Brazil and notes on its biology. The Florida Entomologist, vol. 94, no. 4, pp. 1077-1080. http://dx.doi.org/10.1653/024.098.0411
    » http://dx.doi.org/10.1653/024.098.0411
  • TAVARES, W.S., HANSSON, C., MIELKE, O.H.H., SERRÃO, J.E. and ZANUNCIO, J.C., 2013a. Parasitism of Palmistichus elaeisis Delvare & LaSalle, 1993 on pupae of Methona themisto (Hübner, [1818]) reared on two hosts (Lepidoptera: Nymphalidae, Hymenoptera: Eulophidae). SHILAP Revista de Lepidopterologia, vol. 41, no. 161, pp. 43-48.
  • THOMAZINI, M. J. and THOMAZINI, A.P.B.W., 2002. Bee diversity (Hymenoptera: Apoidea) in inflorescences of Piper hispidinervum (C.DC.). Neotropical Entomology, vol. 31, no. 1, pp. 27-34. http://dx.doi.org/10.1590/S1519-566X2002000100004
    » http://dx.doi.org/10.1590/S1519-566X2002000100004
  • TONHASCA JUNIOR, A., BLACKMER, J.L. and ALBUQUERQUE, G.S., 2002. Abundance and diversity of Euglossine bees in the fragmented landscape of the Brazilian Atlantic Forest. Biotropica, vol. 34, no. 3, pp. 416-422. http://dx.doi.org/10.1111/j.1744-7429.2002.tb00555.x
    » http://dx.doi.org/10.1111/j.1744-7429.2002.tb00555.x
  • URAMOTO, K., WALDER, J.M.M. and ZUCCHI, R.A., 2005. Quantitative analysis and distribution of the population of species in the genus Anastrepha (Diptera: Tephritidae) on Luiz de Queiroz Campus, Piracicaba, SP, Brazil. Neotropical Entomology, vol. 34, no. 1, pp. 33-39. http://dx.doi.org/10.1590/S1519-566X2005000100005
    » http://dx.doi.org/10.1590/S1519-566X2005000100005
  • WEBER, I.D., LOPES, W.R., PAULA, L.C.B., ALBERNAZ-GODINHO, K.C. and CZEPAK, C., 2021. Tachinids associated with lepidopteran pests in agricultural crops in south-central region of Goiás, Brazil. BioControl, vol. 34, no. 5, pp. 416-422. http://dx.doi.org/10.1007/s10526-021-10098-3
    » http://dx.doi.org/10.1007/s10526-021-10098-3
  • WEIRAUCH, C., 2008. Cladistic analysis of Reduviidae (Heteroptera: Cimicomorpha) based on morphological characters. Systematic Entomology, vol. 33, no. 2, pp. 229-274. http://dx.doi.org/10.1111/j.1365-3113.2007.00417.x
    » http://dx.doi.org/10.1111/j.1365-3113.2007.00417.x
  • ZANUNCIO, J.C., CRUZ, A.P., RAMALHO, F.S., SERRÃO, J.E., WILCKEN, C.F., SILVA, W.M., SANTOS JÚNIOR, V.C. and FERREIRA-FILHO, P.J., 2018. Environmental determinants affecting the occurrence of defoliator caterpillars on Eucalyptus (Myrtaceae) plantations in the Brazilian Amazonian Region. The Florida Entomologist, vol. 101, no. 3, pp. 480-485. http://dx.doi.org/10.1653/024.101.0306
    » http://dx.doi.org/10.1653/024.101.0306
  • ZANUNCIO, J.C., GUEDES, R.N.C., ZANUNCIO, T.V. and FABRES, A.S., 2001. Species richness and abundance of defoliating Lepidoptera associated with Eucalyptus grandis in Brazil and their response to plant age. Austral Ecology, vol. 26, no. 6, pp. 582-589. http://dx.doi.org/10.1046/j.1442-9993.2001.01126.x
    » http://dx.doi.org/10.1046/j.1442-9993.2001.01126.x
  • ZANUNCIO, J.C., LEMES, P.G., SANTOS, G.P., SOARES, M.A., WILCKEN, C.F. and SERRÃO, J.E., 2014a. Population dynamics of Lepidoptera pests in Eucalyptus urophylla plantations in the Brazilian Amazonia. Forests, vol. 5, no. 1, pp. 72-87. http://dx.doi.org/10.3390/f5010072
    » http://dx.doi.org/10.3390/f5010072
  • ZANUNCIO, J.C., LEMES, P.G., SANTOS, G.P., WILCKEN, C.F., ZACHÉ, B., PINTO, R. and SERRÃO, J.E., 2014b. Alpha and beta diversity of Lepidoptera in Eucalyptus plantations in the Amazonian Region of Brazil. The Florida Entomologist, vol. 97, no. 1, pp. 138-145. http://dx.doi.org/10.1653/024.097.0119
    » http://dx.doi.org/10.1653/024.097.0119
  • ZANUNCIO, J.C., TAVARES, W., FERNANDES, B.V., WILCKEN, C.F. and ZANUNCIO, T.V., 2014c. Production and use of Heteroptera predators for the biological control of Eucalyptus pests in Brazil. Ekoloji, vol. 23, no. 91, pp. 98-104. http://dx.doi.org/10.5053/ekoloji.2014.9112
    » http://dx.doi.org/10.5053/ekoloji.2014.9112
  • ZANUNCIO, J.C., MEZZOMO, J.A., GUEDES, R.N.C. and OLIVEIRA, A.C., 1998. Influence of strips of native vegetation on Lepidoptera associated with Eucalyptus cloeziana in Brazil. Forest Ecology and Management, vol. 108, no. 1, pp. 85-90. http://dx.doi.org/10.1016/S0378-1127(98)00215-1
    » http://dx.doi.org/10.1016/S0378-1127(98)00215-1
  • ZANUNCIO, J.C., TORRES, J.B., SEDIYAMA, C.A.Z., PEREIRA, F.F., PASTORI, P.L., WERMELINGER, E.D. and RAMALHO, F.S., 2009. Mortality of the defoliator Euselasia eucerus (Lepidoptera: Riodinidae) by biotic factors in an Eucalyptus urophylla plantation in Minas Gerais State, Brazil. Anais da Academia Brasileira de Ciências, vol. 81, no. 1, pp. 61-66. http://dx.doi.org/10.1590/S0001-37652009000100008 PMid:19274332.
    » http://dx.doi.org/10.1590/S0001-37652009000100008
  • ZANUNCIO, T.V., ZANUNCIO, J.C., FREITAS, F.A., PRATISSOLI, D., SEDIYAMA, C.A.Z. and MAFFIA, V.P., 2006. Main lepidopteran pest species from an eucalyptus plantation in Minas Gerais, Brazil. Revista de Biología Tropical, vol. 54, no. 2, pp. 553-560. http://dx.doi.org/10.15517/rbt.v54i2.13922 PMid:18494322.
    » http://dx.doi.org/10.15517/rbt.v54i2.13922

Publication Dates

  • Publication in this collection
    17 July 2023
  • Date of issue
    2023

History

  • Received
    18 Oct 2022
  • Accepted
    17 Mar 2023
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br