Acessibilidade / Reportar erro

Diversity of nitrogen-fixing and phosphorus-solubilizing bacteria associated with the rhizosphere of Andean maize in Ecuador

Diversidade de bactérias fixadoras de nitrogênio e solubilizadoras de fósforo associadas à rizosfera do milho andino, no Equador

Abstract

A great diversity of microorganisms in the soil plays an important role in the sustainability of agricultural production systems. Among these microorganisms are bacteria that have the ability to fix atmospheric nitrogen or mineralize phosphorus, thus making it easily assimilable for plants. Maize is the main crop in the highlands of Ecuador (above 2000 meters) and it is predominantly traditional, using native seeds and very little or no agrochemicals. The National Institute of Agricultural Research (INIAP) has a collection of bacteria collected from the rhizosphere of maize in the highlands of Ecuador that has not been taxonomically identified. This research aimed to carry out a biochemical and genetic characterization to establish the identity of the collected nitrogen-fixing and phosphorus-solubilizing bacteria and to understand better the diversity of microorganisms present in the root biome of Andean maize. The hypothesis consisted of determining if there is a difference in the bacteria associated with the rhizosphere of maize in the Andean region of Ecuador compared with other regions. The bacteria underwent classical biochemical characterization based on catalase, oxidase, urease, sulfates, indole, sulfate-indole motility (SIM), and lactose, among others, and genetic identification by 16S rDNA ribosomal gene sequencing, PCR, and SANGER sequencing. A great diversity of microorganisms associated with the rhizosphere of the crop was found, including the genera Agrobacterium, Bacillus, Stenotrophomonas, Acinetobacter, Brevundimonas, Pseudomonas, and Pseudoxanthomonas. INIAP conserves these bacteria in a bank of microorganisms associated with crops of economic importance. They are useful for the development of biofertilizers that could contribute to a more sustainable agriculture in the region.

Keywords:
soil; 16S rDNA; plant growth promoting bacteria (PGPR); microbiome; maize

Resumo

Existe uma grande diversidade de microrganismos no solo que desempenham um papel importante na sustentabilidade dos sistemas de produção agrícola. Um grupo deles pertence a bactérias que fixam o nitrogênio atmosférico ou mineralizam o fósforo tornando-o assimilável pelas plantas. O milho é a principal cultura por extensão nas terras altas do Equador (altitude superior a 2.000 m acima do nível do mar) e quase todo o seu cultivo é feito de forma tradicional, com sementes nativas e com muito pouco ou nenhum uso de agroquímicos. O Instituto Nacional de Pesquisa Agropecuária (INIAP) possui uma coleção de bactérias coletadas da rizosfera do milho nas terras altas do Equador que não possuem uma identificação taxonômica conclusiva. O objetivo desta pesquisa foi realizar uma caracterização bioquímica e genética para identificar a identidade das bactérias fixadoras de nitrogênio e solubilizadoras de fósforo coletadas, a fim de conhecer e entender melhor a diversidade de microrganismos presentes no bioma raiz do milho andino. A hipótese consistia em determinar se existe diferença nas bactérias associadas à rizosfera do milho na região andina do Equador, em comparação com outras regiões. As bactérias passaram por uma caracterização bioquímica clássica baseada em catalase, oxidase, urease, sulfatos, indol, motilidade indol sulfato (SIM), lactose, entre outros, e identificação genética através do sequenciamento do gene ribossomal 16S rDNA, por PCR e sequenciamento SANGER. Uma grande diversidade de microrganismos associados à rizosfera da cultura foi encontrada, incluindo os gêneros Agrobacterium, Bacillus, Stenotrophomonas, Acinetobacter, Brevundimonas, Pseudomonas e Pseudoxanthomonas. Estas bactérias são conservadas pelo INIAP num banco de microrganismos associados a culturas de importância económica, sendo úteis para o desenvolvimento de biofertilizantes que possam contribuir para uma agricultura mais sustentável na região.

Palavras-chave:
chão; 16S rDNA; bactérias promotoras de crescimento de plantas (PGPR); microbioma; milho

1. Introduction

The rhizosphere is a complex and dynamic microbial ecosystem surrounding plant roots. It has a significant impact on plant growth and development, as well as soil health and fertility. Microorganisms are involved in the decomposition and mineralization of organic matter and are essential for long-term soil sustainability (Arruda et al., 2013ARRUDA, L., BENEDUZI, A., MARTINS, A., LISBOA, B., LOPES, C., BERTOLO, F., PASSAGLIA, L.M.P. and VARGAS, L.K., 2013. Screening of rhizobacteria isolated from maize (Zea mays L.) in Rio Grande do Sul. Applied Soil Ecology, vol. 63, pp. 12-22. http://dx.doi.org/10.1016/j.apsoil.2012.09.001.
http://dx.doi.org/10.1016/j.apsoil.2012....
; Ikeda et al., 2019IKEDA, A., SAVI, D., HUNGRIA, M., KAVA, V., GLIENKE, C. and GALLI, L., 2019. Bioprospecting of elite plant growth-promoting bacteria for the maize crop. Acta Scientiarum. Agronomy, vol. 42, pp. e44364. http://dx.doi.org/10.4025/actasciagron.v42i1.44364.
http://dx.doi.org/10.4025/actasciagron.v...
).

Bacterial diversity in the rhizosphere is of great interest due to its potential to improve agricultural production of important crops such as maize (Zea mays). Thus in Cuba (Hernandez et al., 2003HERNANDEZ, A., CABALLERO, A., PAZOS, M., RAMIREZ, R. and HEYDRICH, M., 2003. Identificación de algunos géneros microbianos asociados al cultivo del maíz (Zea mays L.) en diferentes suelos de Cuba. Revista Colombiana de Biotecnologia, vol. 5, no. 1, pp. 45-55.; Pérez et al., 2020PÉREZ, R., OUDOT, M., HERNÁNDEZ, I., NÁPOLES, M., PÉREZ, S. and CASTILLO, S., 2020. Aislamiento y caracterización de Stenotrophomonas asociada a rizosfera de maíz (Zea mays L.). Cultivos Tropicales, vol. 41, no. 2, pp. e03.), China (Gao et al., 2004GAO, Z., ZHUANG, J., CHEN, J., LIU, X. and TANG, S., 2004. Población de bacterias entófitas en raíces de maíz y su análisis dinámico. Revista China de Ecología Aplicada., vol. 15, pp. 1344-1348.; Chen et al., 2021CHEN, L., HAO, Z., LI, K., SHA, Y., WANG, E., SUI, X., MI, G., TIAN, C. and CHEN, W., 2021. Effects of growth-promoting rhizobacteria on maize growth and rhizosphere microbial community under conservation tillage in Northeast China. Microbial Biotechnology, vol. 14, no. 2, pp. 535-550. http://dx.doi.org/10.1111/1751-7915.13693. PMid:33166080.
http://dx.doi.org/10.1111/1751-7915.1369...
), Brazil (Arruda et al., 2013ARRUDA, L., BENEDUZI, A., MARTINS, A., LISBOA, B., LOPES, C., BERTOLO, F., PASSAGLIA, L.M.P. and VARGAS, L.K., 2013. Screening of rhizobacteria isolated from maize (Zea mays L.) in Rio Grande do Sul. Applied Soil Ecology, vol. 63, pp. 12-22. http://dx.doi.org/10.1016/j.apsoil.2012.09.001.
http://dx.doi.org/10.1016/j.apsoil.2012....
), Mexico (Amezquita et al., 2022AMEZQUITA, C., SANTOS, S., SANTOYO, G. and PARRA, F., 2022. Characterization of native plant growth-promoting bacteria (PGPB) and their effect on the development of maize (Zea mays L.). Revista de Ciencias Biológicas y de la Salud, vol. XXIV, no. 1, pp. 15-22.), Uruguay (Montañez et al., 2009MONTAÑEZ, A., ABREU, C., GILL, P., HARDARSON, G. and SICARDI, M., 2009. Fijación biológica de nitrógeno en maíz (Zea mays L.) por dilución de isótopos 15N e identificación de diazotrofos cultivables asociados. Biología y Fertilidad de Los Suelos, vol. 2009, pp. 253-263.; Battistoni et al., 2023BATTISTONI, F., SCAVINO, A.F., FERRANDO, L., MONTAÑEZ, A., PEZANNI, F., TAULÉ, C. and VAZ-JAURI, P., 2023. Endophytic and rhizospheric microbial communities associated with native and introduced cultivated plant species in Uruguay as sources for plant growth promotion bioinoculant development. Environmental Sustainability, vol. 6, no. 2, pp. 135-147. http://dx.doi.org/10.1007/s42398-023-00277-6.
http://dx.doi.org/10.1007/s42398-023-002...
), Argentina (Anzuay et al., 2021ANZUAY, M.S., VISO, N.P., LUDUEÑA, L.M., MORLA, F.D., ANGELINI, J.G. and TAURIAN, T., 2021. Plant beneficial rhizobacteria community structure changes through developmental stages of peanut and maize. Rhizosphere, vol. 19, pp. 100407. http://dx.doi.org/10.1016/j.rhisph.2021.100407.
http://dx.doi.org/10.1016/j.rhisph.2021....
), and Peru (León and Rojas, 2015LEÓN, L.H. and ROJAS, L., 2015. Determinación del potencial promotor del crecimiento vegetal de Azotobacter spp. aislados de la rizósfera de malezas en cultivos de maíz (Zea mays L.). Scientia Agropecuaria, vol. 6, pp. 247-257.), extensive colonization by bacteria of the genus Bacillus, Pseudomonas, Stenotrophomonas, Enterobacter, Azospirillum, Azotobacter, Xanthomonas, Serratia, Burkholderia, Klebsiella Streptomyces, Pantoea, and Brevundimonas was found. However, no studies of bacterial diversity associated with maize have been conducted in the high Andean region or in the “Sierra” where environmental conditions and crop management differ from that in the coast (at sea level).

In the highlands or “Sierra” of Ecuador maize is mainly grown by subsistence farmers using indigenous seeds and very little or no agrochemicals (Zambrano et al., 2021aZAMBRANO, J., VELÁSQUEZ, J., PEÑAHERRERA, D., SANGOQUIZA, C., CARTAGENA, Y., VILLACRÉS, E., GARCÉS, S., ORTÍZ, R., LEÓN, J., CAMPAÑA, D., LÓPEZ, V., ASAQUIBAY, C., NIETO, M., SANMARTÍN, G., PINTADO, P., YÁNEZ, C. And RACINES, M., 2021a [viewed 3 April 2023]. Guía para la producción sustentable de maíz en la Sierra ecuatoriana [online]. Available from: https://repositorio.iniap.gob.ec/handle/41000/5796
https://repositorio.iniap.gob.ec/handle/...
). This contrasts with the “Litoral” or Coastal region, where most farmers use hybrid seeds with synthetic fertilizers and greater use of pesticides. On the other hand, the high Andean ecosystems have a high soil organic carbon content due to the volcanic origin and the cold prevailing climate, as they have low mineralization rates (Rojas et al., 2018ROJAS, A.S., ANDRADE, H.J. and SEGURA, M., 2018. ¿Son los suelos de paisajes alto-andinos de Santa Isabel (Tolima, Colombia) sumideros de carbono orgánico? R. Revista Udca Actualidad & Divulgacion Cientifica, vol. 21, no. 1, pp. 51-59. http://dx.doi.org/10.31910/rudca.v21.n1.2018.662.
http://dx.doi.org/10.31910/rudca.v21.n1....
).

The altitudinal gradient and soil temperature influences the organic carbon storage capacity of high Andean soils. As the altitude increases, the soil has a greater capacity to store organic carbon (Huamán-Carrión et al., 2021HUAMÁN-CARRIÓN, M.L., ESPINOZA-MONTES, F., BARRIAL-LUJAN, A.I. and PONCE-ATENCIO, Y., 2021. Influencia de la altitud y características del suelo en la capacidad de almacenamiento de carbono orgánico de pastos naturales altoandinos. Scientia Agropecuaria, vol. 12, no. 1, pp. 83-90.). The diversity of bacteria associated with the roots of maize plants may be influenced by factors such as carbon content, climate, and management conditions of the crop.

The maize rhizosphere is not simply a passive environment but a highly dynamic ecological niche where bacteria interact with plant roots and other soil microorganisms. These interactions can influence nutrient uptake, pathogen resistance, and abiotic stress tolerance, among other aspects critical for the health and yield of maize crops (Souza et al., 2015SOUZA, R., AMBROSINI, A. and PASSAGLIA, M., 2015. Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, vol. 38, no. 4, pp. 401-419. http://dx.doi.org/10.1590/S1415-475738420150053. PMid:26537605.
http://dx.doi.org/10.1590/S1415-47573842...
). The rhizosphere harbors microorganisms of agricultural interest, many of which are commercialized worldwide as biofertilizers (Zambrano et al., 2021bZAMBRANO, J., SANGOQUIZA, C., CAMPAÑA, D. and YÁNEZ, C., 2021b. Use of biofertilizers in agricultural production. In: F. SULTAN and M. AHMAD, eds. Tecnology in Agriculture. London-United Kingdom: IntechOpen, pp. 193-210.).

The National Institute of Agricultural Research (INIAP) of Ecuador, through the Maize Program, has a set of nitrogen-fixing and phosphorus-solubilizing bacteria collected in several provinces of the highlands that still need a conclusive taxonomic identification. However, the effect of inoculation of several of these isolates in maize has been evaluated in different environments, observing a significant increase in yield compared to the control without fertilization (Sangoquiza-Caiza et al., 2022aSANGOQUIZA-CAIZA, C.A., ZAMBRANO MENDOZA, J.L., YÁNEZ GUZMÁN, C.F., NIETO BELTRÁN, M.R., ASAQUIBAY, C.R., QUIMBIAMBA PUJOTA, V.N., NARANJO QUINALUISA, E.J. and PARK, C.H., 2022a [viewed 3 April 2023]. Impacto de bacterias promotoras de crecimiento sobre el rendimiento del cultivo de maíz (Zea mays L.) en la Sierra del Ecuador. In: A. CHÁVEZ, W. GUILLÉN and F. ESCOBAL, eds. Memorias de la XXIV Reunión Latinoamericana de Maíz [online]. Quito, EC: INIAP-EESC, pp. 164-179. Available from: https://repositorio.iniap.gob.ec/handle/41000/5891
https://repositorio.iniap.gob.ec/handle/...
, bSANGOQUIZA-CAIZA, C., ZAMBRANO-MENDOZA, J., BORGUES-GARCÍA, M. and CHOI, K., 2022b. Response of flour corn (Zea mays L. var. Amylacea) to the inoculation of Azospirillum and Pseudomonas. La Granja. Revista de Ciências da Vida). These bacteria are an invaluable source for the development of biofertilizers that contribute to a sustainable agricultural system in the Andean region. Therefore, our study aimed to carry out a biochemical and molecular characterization of the collection of bacteria to know the diversity of species associated with the cultivation of Andean maize in Ecuador.

2. Materials and Methods

2.1. Collection

Samples of the rhizosphere (part of the soil near the roots of the plant) were taken from the plant at different points in the field at a depth of 15 cm using a soil auger. Maize plants were in the vegetative stage between V10 and VT (V10 = plant with 10 collar leaves, VT = male flowers or tassels are fully visible). Sampling was carried out in a zigzag pattern in farmer plots at several representative locations of maize production in the Ecuadorian highlands (Table 1 and Figure 1). The plots were chosen randomly in the provinces and locations with more production of maize. Approximately 2 kg of soil was collected per site, and the sample was homogenized by manual stirring. All sampling tools were disinfected with 70% ethanol before each sampling. Samples were placed in sterile Ziploc” bags, labeled, and stored in a cooler at 4°C for transport. The samples were taken to the Biofertilizers Laboratory of the Maize Program (PM) of the Santa Catalina Experimental Station (EESC) of INIAP to carry out the study.

Table 1
Sampling locations for the isolation of bacteria associated with the rhizosphere of the Andean maize in the highlands of Ecuador.
Figure 1
Map of the locations where sampling of bacteria associated with the rhizosphere of the Andean maize was carried out in the highlands of Ecuador.

2.2. Isolation of nitrogen-fixing bacteria (NFB)

Ten grams of homogenized rhizosphere soil was diluted in 90 mL of 0.1% peptone water. Then, 100 μl of each dilution (10-4) were seeded into tubes containing 9 mL of nitrogen-free semi-solid medium (NFB agar) and homogenized by shaking. The tubes were incubated at 30ºC for 8 days; those that changed the color of the medium (from green to blue and that presented a thick white veil between 0.5 and 1.5 mm below the surface of the medium) were selected; 100 μl of the white veil were taken and inoculated on the solid NFB agar at 30ºC for 7 days, as indicated by Espinoza (Espinoza, 2004ESPINOZA, L., 2004. Caracterización y selección de la bacteria diazotrófica Azospirillum. Quito-Ecuador: Universidad Central del Ecuador. Tesis Ingeniero Agrónomo. ).

2.3. Isolation of phosphorus solubilizing bacteria (PSB)

Twenty grams of soil was weighed and placed in 180 mL of sterile 0.85% NaCl saline solution. This dilution was shaken at 120 rpm for 15 minutes, and then serial dilutions to 10-6 were made in test tubes containing 9 mL of sterile distilled water. 100uL of the last dilution was seeded on KB and Pivoskaya (PVK) agar. The plates were incubated at 30ºC for 48 hours and the strains that showed fluorescence on KB agar and those that presented a transparent halo on PVK agar were isolated as indicated by Pincay (2014)PINCAY, A., 2014. Caracterización y evaluación de bacterias Pseudomonas sp. solubizadoras de fósfoto presentes en la rizósfera del maíz (Zea mays) de los ensayos experimentales del INIAP de las provincias de Imbabura, Bolívar, Chimborazo y Pichincha. Sangolquí-Ecuador: Escuela Politécnica del Ejercito. Tesis de ingeniería..

2.4. Phenotypic (biochemical) characterization

The strains were sown on Congo red agar and King B agar. They were incubated for 24 hours at a temperature of 30ºC. For Gram staining, each bacterial sample was placed on a slide, followed by fire fixation and staining according to the procedure described by Pincay (2014)PINCAY, A., 2014. Caracterización y evaluación de bacterias Pseudomonas sp. solubizadoras de fósfoto presentes en la rizósfera del maíz (Zea mays) de los ensayos experimentales del INIAP de las provincias de Imbabura, Bolívar, Chimborazo y Pichincha. Sangolquí-Ecuador: Escuela Politécnica del Ejercito. Tesis de ingeniería..

Nitrogen-fixing bacteria (NFB) underwent biochemical characterization based on catalase, oxidase, urease, sulfates, indole, Sulfate-Indole Motility (SIM), lactose, nitrate reduction, β-polyhydroxybutyrate staining, citrate tests, and glucose as carbon source, according to the procedures described by Gamazo et al. (2005)GAMAZO, C., LÓPEZ-GOÑI, I. and DÍAZ, R., 2005. Manual práctico de microbiología. Barcelona-España: Masson S.A.. Phosphorus solubilizing bacteria (PSB) underwent biochemical tests: oxidase, TSI (Triple Sugar Iron), citrate, gelatin hydrolysis, nitrate, urease and nitrate reduction as indicated by Jean & Faddin (Jean and Faddin, 2003JEAN, F. and FADDIN, M., 2003. Pruebas bioquímicas para la identificación de bacterias de importancia clínica. Buenos Aires: Editorial Medica Panamericana.).

2.5. Molecular characterization

The strains (monocultures) were sent to the University of Guelph (Canada) to extract genetic material and sequence of the ribosomal DNA16S gene, commonly used as a molecular marker for the identification of microbial species. The bacteria were lyophilized at -17 C and maintained in the laboratory of the PM of the EESC. Two independent samples of each isolate were sent as replicates to ensure the integrity or purity of the isolates. The samples were prepared as follows:

  1. A small aliquot of each lyophilized culture was suspended in 20 ul of molecular-grade water and pipetted into wells of a storage plate.

  2. Plates were dried prior to shipment. Drying included: speedvac centrifuge, overnight at 37C. A visible sticky film developed at the bottom of each well; a pipet tip was used to verify that no liquid was left.

  3. The plates were sealed with aluminum foil.

Primers 341F (CCTACGGGNGGCWGCAG) and 785R (GACTACHVGGGTATCTAATCC) were used to amplify the 16S rDNA ribosomal gene by PCR. The sequencing results (Sanger sequencing) of the amplified fragment were sent to the BOLD SYSTEM platform (Ratnasingham and Hebert, 2007RATNASINGHAM, S. and HEBERT, N., 2007. BOLD: the barcode of life data system (www.barcodinglife.org). Molecular Ecology Notes, vol. 7, no. 3, pp. 355-364. http://dx.doi.org/10.1111/j.1471-8286.2007.01678.x. PMid:18784790.
http://dx.doi.org/10.1111/j.1471-8286.20...
). The DNA sequences obtained were edited using the Bioedit 7.0 program, and the bacteria were identified using BLAST (NCBI, www.ncbi.nlm.nih.gov). The phylogenetic relationship between the isolates was generated with the MEGA version 7.0 software (Kumar et al., 2016KUMAR, S., STECHER, G. and TAMURA, K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, vol. 33, no. 7, pp. 1870-1874. http://dx.doi.org/10.1093/molbev/msw054. PMid:27004904.
http://dx.doi.org/10.1093/molbev/msw054...
) using the neighbor-joining method, Tamura 3-parameter model. Nitrospira marina JQ073799 was used as an external sequence (Aviles et al., 2022AVILES, C., ACOSTA, C., DE LOS SANTOS, S., SANTOYO, G. and COTA, F., 2022. Characterization of native plant growth-promoting bacteria (PGPB) and their effect on the development of maize (Zea mays L.). Biotecnia, vol. 24, no. 1, pp. 15-22. http://dx.doi.org/10.18633/biotecnia.v24i1.1353.
http://dx.doi.org/10.18633/biotecnia.v24...
).

2.6. Conservation of isolates

The bacteria are lyophilized and stored at -17 ºC in the Biofertilizers Laboratory of the PM of the EESC of INIAP. The sequences are available on the BOLDSYSTEM platform (Ratnasingham and Hebert, 2007) ofRATNASINGHAM, S. and HEBERT, N., 2007. BOLD: the barcode of life data system (www.barcodinglife.org). Molecular Ecology Notes, vol. 7, no. 3, pp. 355-364. http://dx.doi.org/10.1111/j.1471-8286.2007.01678.x. PMid:18784790.
http://dx.doi.org/10.1111/j.1471-8286.20...
the University of Guelph, Canada, in the ECORN project.

3. Results

3.1. Isolation of NFB and PSB

From the 53 rhizosphere samples, 19 NFB isolates were obtained: 2 from Bolívar province, 5 from Tungurahua, 2 from Chimborazo, 2 from Pichincha, 3 from Carchi, and 5 from Imbabura (Table 2). The isolation and purification of NFB bacteria in Congo red agar tube medium showed morphologically identical colonies of circular shape, except for C3 with an irregular shape. The elevation of the colonies varied between pulvinate, umbonate, elevated and convex, red, orange-red, fuchsia and white. In PVK medium, the growth of a wide variety of bacterial colonies was observed, but very few showed halos of phosphorus solubilization. Twelve bacteria from the maize rhizosphere that can solubilize phosphorus in vitro were isolated; 4 from the province of Imbabura, 3 from Bolivar, 2 from Pichincha and 3 from Chimborazo (Table 3). The percentage of PSB was found in a range from 2 to 16% of the colonies. These colonies grown in King B media were small, convex, with regular edges, gelatinous consistency, and diffusible fluorescent with pigments. There was no correlation between the sampling location, temperature, and altitude with the genera found (data not shown).

Table 2
Biochemical characterization of 19 isolates of nitrogen-fixing bacteria (BFN) isolated from the rhizosphere of the Andean maize.
Table 3
Biochemical characterization of 12 isolates of phosphorus solubilizing bacteria (PSB) isolated from the rhizosphere of Andean maize.

3.2. Phenotypic (biochemical) characterization

The biochemical characterization of the isolates showed great metabolic diversity. The NFB C2, C4, C5, C6, C16, C18 and C20 were identified as Gram-positive bacilli, and the rest of the strains, especially the PSB, were Gram-negative with active motility, positive reaction to catalase, oxidase tests, urea and gelatin hydrolysis (Tables 2 and 3). Similar results were obtained by Hernandez et al. (2003)HERNANDEZ, A., CABALLERO, A., PAZOS, M., RAMIREZ, R. and HEYDRICH, M., 2003. Identificación de algunos géneros microbianos asociados al cultivo del maíz (Zea mays L.) en diferentes suelos de Cuba. Revista Colombiana de Biotecnologia, vol. 5, no. 1, pp. 45-55. in different Cuban soils associated with maize cultivation in tropical and warm areas.

3.3. Molecular characterization

Sequencing determined that the isolates were pure due to the high quality of the sequence and the congruence between the two replicates. Sequences between 327 and 428 nucleotides long were obtained. The BLAST analysis showed the diversity in families and genera of the bacteria found (Table 4). Figure 2 shows in percentage the diversity of families and genera of the isolates in the maize rhizosphere, which indicates that the highest proportion corresponds to Pseudomonadaceae family with 31%, followed by the Bacillaceae with 27% and finally, 24% of Xanthomonadaceae.

Table 4
Results of local similarity analysis between sequences (BLAST) of the 16S rDNA gene of bacteria isolated from the rhizosphere of Andean maize in the highlands of Ecuador.
Figure 2
Diversity of families and genera of bacteria isolated from the rhizosphere of Andean maize in the highlands of Ecuador.

The dendrogram resulting from the phylogenetic analysis showed six main clades (I, II, III, IV, V and VI). Representatives of the genus Bacillus occupied the first of them,; the second clade presented strains of the genera Stenotropgomonas and Pseudoxanthomonas; the third corresponded to bacteria of the genus Acinetobacter; the fourth clade included bacteria of the genus Pseudomonas; the fifth clade to Agrobacterium and the sixth clade to Brevundimonas (Figure 3).

Figure 3
Phylogenetic tree inferred using the Neighbor-Joining method. The numbers in the nodes indicate bootstrap support values ​​based on an analysis of 1000 resampled data sets. Nitrospira marina (JQ073799.1) was used as external taxon sequence.

4. Discussion

Samples C2, C4, C5, C6, C16, C18, and C20 were identified as Bacillus subtilis. These bacteria are Gram-positive, rod-shaped, catalase positive, with the ability to form endospores, which allows them to resist heat, UV light, and different pH in the soil (Corrales-Ramírez et al., 2017CORRALES-RAMÍREZ, M., SC, L.C., CAYCEDO-LOZANO, L., GÓMEZ-MÉNDEZ, M.A., RAMOS-ROJAS, S.J. and RODRÍGUEZ-TORRES, J.N., 2017. Bacillus spp: una alternativa para la promoción vegetal por dos caminos enzimáticos. Nova, vol. 15, no. 27, pp. 46-65. http://dx.doi.org/10.22490/24629448.1958.
http://dx.doi.org/10.22490/24629448.1958...
; Rojas et al., 2016ROJAS, M.M., TEJERA, B., BOSH, D.M., RÍOS, Y., RODRÍGUEZ, J. and HEYDRICH, M., 2016. Potencialidades de cepas de Bacillus para la promoción del crecimiento del maíz (Zea mays L.). Canadian Journal of Agricultural Science, vol. 50, no. 3, pp. 485-496.). They are considered growth promoters (PGPR) and biological control agents (BCAs), due to the production of organic compounds, antibiotics, phosphate solubilization and biological nitrogen fixation (Meena et al., 2016MEENA, V.S., MAURYA, B.R., MEENA, S.K., MEENA, R.K., KUMAR, A., VERMA, J.P. and SINGH, N. 2016. Can bacillus species enhance nutrient availability in agricultural soils? In: M.T. Islam, M. Rahman, P. Pandey, C.K. Jha and A. Aeron, editors. Bacilli and agrobiotechnology. Cham: Springer, pp. 367-395. http://dx.doi.org/10.1007/978-3-319-44409-3_16.
http://dx.doi.org/10.1007/978-3-319-4440...
); they are very abundant in the rhizosphere (Saharan and Nehra, 2011SAHARAN, B.S. and NEHRA, V., 2011. Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res, vol. 21, no. 1, pp. 30.; Zahid et al., 2015ZAHID, M., ABBASI, M.K., HAMEED, S. and RAHIM, N., 2015. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Frontiers in Microbiology, vol. 6, pp. 207. http://dx.doi.org/10.3389/fmicb.2015.00207. PMid:25852667.
http://dx.doi.org/10.3389/fmicb.2015.002...
).

The samples aI2, aI5, aI6, aB1, aB4, aB9, and aP1 were identified as Pseudomonas sp., due to the sequences similarity with species of this genus. They are free-living saprophytes in the soil or water, capable of using a wide variety of organic compounds as a substrate to grow (Hernandez et al., 2003HERNANDEZ, A., CABALLERO, A., PAZOS, M., RAMIREZ, R. and HEYDRICH, M., 2003. Identificación de algunos géneros microbianos asociados al cultivo del maíz (Zea mays L.) en diferentes suelos de Cuba. Revista Colombiana de Biotecnologia, vol. 5, no. 1, pp. 45-55.). They are Gram-negative bacilli, and their importance lies in their ability to produce a beneficial effect on plants, either as PGPR or BCAs (Fgaier and Eberl, 2010FGAIER, H. and EBERL, H., 2010. A competition model between Pseudomonas fluorescens and pathogens via iron chelation. Journal of Theoretical Biology, vol. 263, no. 4, pp. 566-578. http://dx.doi.org/10.1016/j.jtbi.2009.12.003. PMid:20005236.
http://dx.doi.org/10.1016/j.jtbi.2009.12...
; Olanrewaju and Babalola, 2019OLANREWAJU, O.S. and BABALOLA, O., 2019. Bacterial consortium for improved maize (Zea mays L.) production. Microorganisms, vol. 7, no. 11, pp. 519. http://dx.doi.org/10.3390/microorganisms7110519. PMid:31683950.
http://dx.doi.org/10.3390/microorganisms...
) due to the synthesis of phytohormones, vitamins, siderophores, and phosphorus solubilization enzymes and antibiotics (Rosas et al., 2009ROSAS, S., AVANZINI, G., CARLIER, E., PASLUOSTA, C., PASTOR, N. and ROVERA, M., 2009. Root colonization and growth promotion of wheat and maize by Pseudomonas aurantiaca SR1. Soil Biology & Biochemistry, vol. 41, no. 9, pp. 1802-1806. http://dx.doi.org/10.1016/j.soilbio.2008.10.009.
http://dx.doi.org/10.1016/j.soilbio.2008...
).

Strains C9, C12, C14, C17 were identified as Stenotrophomonas maltophilia, and strains C3 and C19 matched Stenotrophomonas sp. S. maltophilia is a species commonly associated with plant growth promotion that also shows antagonistic activity against certain plant pathogens, such as cucumber green mottle mosaic virus (Li et al., 2016LI, H., HUANG, W., XU, L., ZHOU, X., LIU, H. and CHENG, Z., 2016. Stenotrophomonas maltophilia HW2 enhanced cucumber resistance against cucumber green mottle mosaic virus. Journal of Plant Biology, vol. 59, no. 5, pp. 488-495. http://dx.doi.org/10.1007/s12374-016-0246-6.
http://dx.doi.org/10.1007/s12374-016-024...
; Pérez et al., 2020PÉREZ, R., OUDOT, M., HERNÁNDEZ, I., NÁPOLES, M., PÉREZ, S. and CASTILLO, S., 2020. Aislamiento y caracterización de Stenotrophomonas asociada a rizosfera de maíz (Zea mays L.). Cultivos Tropicales, vol. 41, no. 2, pp. e03.).

Strains aC2 and aC4 were identified as Acinetobacter calcoaceticus; strain C7 as Acinetobacter lwoffii, strain C1 as Agrobacterium sp., strain C8 as Brevundimonas sp., strain C13 as Pseudomonas baetica, strain aC1 as Pseudomonas fluorescens, strain aI3 as Pseudomonas palleroniana, strain C15 as Pseudoxanthomonas, strain aP2 as Serratia sp., and the C11 strain as Stenotrophomonas rhizophila. These results agree with those reported by other authors in diverse maize-grown conditions, on the presence of Pseudomonas, Stenotrophomona, Serratia, and Bacillus (Pereira et al., 2011PEREIRA, P., IBÁÑEZ, F., ROSENBLUETH, M., ETCHEVERRY, M. and MARTÍINEZ, E., 2011. Analysis of the bacterial diversity associated with the roots of maize (Zea mays L.) through culture-dependent and culture-independent methods. International Scholarly Research Network, vol. 2011, pp. 10. http://dx.doi.org/10.5402/2011/938546.
http://dx.doi.org/10.5402/2011/938546...
; Zahid et al., 2015ZAHID, M., ABBASI, M.K., HAMEED, S. and RAHIM, N., 2015. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Frontiers in Microbiology, vol. 6, pp. 207. http://dx.doi.org/10.3389/fmicb.2015.00207. PMid:25852667.
http://dx.doi.org/10.3389/fmicb.2015.002...
; Gao et al., 2004GAO, Z., ZHUANG, J., CHEN, J., LIU, X. and TANG, S., 2004. Población de bacterias entófitas en raíces de maíz y su análisis dinámico. Revista China de Ecología Aplicada., vol. 15, pp. 1344-1348.; Arruda et al., 2013ARRUDA, L., BENEDUZI, A., MARTINS, A., LISBOA, B., LOPES, C., BERTOLO, F., PASSAGLIA, L.M.P. and VARGAS, L.K., 2013. Screening of rhizobacteria isolated from maize (Zea mays L.) in Rio Grande do Sul. Applied Soil Ecology, vol. 63, pp. 12-22. http://dx.doi.org/10.1016/j.apsoil.2012.09.001.
http://dx.doi.org/10.1016/j.apsoil.2012....
). Agrobacterium was another microorganism found in maize rhizosphere in France and Mexico (Montañez et al., 2009MONTAÑEZ, A., ABREU, C., GILL, P., HARDARSON, G. and SICARDI, M., 2009. Fijación biológica de nitrógeno en maíz (Zea mays L.) por dilución de isótopos 15N e identificación de diazotrofos cultivables asociados. Biología y Fertilidad de Los Suelos, vol. 2009, pp. 253-263.).

All bacterial genera identified from the highlands in this study have been reported as PGPR in other regions (Ahemad and Kibret, 2014AHEMAD, M. and KIBRET, M., 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University. Science, vol. 2014, no. 1, pp. 1-20. http://dx.doi.org/10.1016/j.jksus.2013.05.001.
http://dx.doi.org/10.1016/j.jksus.2013.0...
; Ikeda et al., 2019IKEDA, A., SAVI, D., HUNGRIA, M., KAVA, V., GLIENKE, C. and GALLI, L., 2019. Bioprospecting of elite plant growth-promoting bacteria for the maize crop. Acta Scientiarum. Agronomy, vol. 42, pp. e44364. http://dx.doi.org/10.4025/actasciagron.v42i1.44364.
http://dx.doi.org/10.4025/actasciagron.v...
, Gao et al., 2004GAO, Z., ZHUANG, J., CHEN, J., LIU, X. and TANG, S., 2004. Población de bacterias entófitas en raíces de maíz y su análisis dinámico. Revista China de Ecología Aplicada., vol. 15, pp. 1344-1348.). For instance, the inoculation of Bacillus subtilis in maize increased grain yield by 29.1%, when B. subtilis was inoculated without P2O5 doses (Pereira et al., 2020PEREIRA, N., GALINDO, F., GAZOLA, D., DUPAS, E., ROSA, L., MORTINHO, S. and FILHO, M.C.M.T., 2020. Corn yield and phosphorus use efficiency response to phosphorus rates associated with plant growth promoting bacteria. Frontiers in Environmental Science, vol. 8, pp. 2020. http://dx.doi.org/10.3389/fenvs.2020.00040.
http://dx.doi.org/10.3389/fenvs.2020.000...
). Acinetobacter calcoaceticus produces indole acetic acid (IAA), siderophores, and solubilizes phosphorus and zinc oxide (Rokhbakhsh et al., 2011ROKHBAKHSH, F., SACHDEV, D., KAZEMI, N., ENGINEER, A., PARDESI, K., ZINJARDE, S., DHAKEPHALKAR, P. and CHOPADE, B., 2011. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. Journal of Microbiology and Biotechnology, vol. 21, no. 6, pp. 556-566. http://dx.doi.org/10.4014/jmb.1012.12006. PMid:21715961.
http://dx.doi.org/10.4014/jmb.1012.12006...
). Stenotrophomonas maltophilia has nitrogenase activity (Ahemad and Kibret, 2014AHEMAD, M. and KIBRET, M., 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University. Science, vol. 2014, no. 1, pp. 1-20. http://dx.doi.org/10.1016/j.jksus.2013.05.001.
http://dx.doi.org/10.1016/j.jksus.2013.0...
). Brevundimonas and Serratia can solubilize phosphorus (Breedt et al., 2017BREEDT, G., LABUSCHAGNE, N. and COUTINHO, T., 2017. Seed treatment with selected plant growth-promoting rhizobacteria increases maize yield in the field. Annals of Applied Biology, vol. 171, no. 2, pp. 229-236. http://dx.doi.org/10.1111/aab.12366.
http://dx.doi.org/10.1111/aab.12366...
; Bhattacharyya and Jha, 2012BHATTACHARYYA, P.N. and JHA, D.K., 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology & Biotechnology, vol. 28, no. 4, pp. 1327-1350. http://dx.doi.org/10.1007/s11274-011-0979-9. PMid:22805914.
http://dx.doi.org/10.1007/s11274-011-097...
; López et al., 2015LÓPEZ, V., HERNÁNDEZ, M., FERNÁNDEZ, S., MENDOZA, A., LÓPEZ, L., CRUZ-HERNÁNDEZ, M., FERNÁNDEZ-DÁVILA, S. and MENDOZA-HERRERA, A., 2015. Bacterial diversity in roots of conventional and genetically modified hybrid maize. Piton, vol. 84, pp. 233-243.).

Since the isolation of these microorganisms, the Maize Program of the Santa Catalina Experimental Station has carried out several studies about the beneficial effect that the inoculation of these microorganisms has had, especially strains C2 and aI5 (Molina, 2006MOLINA, S., 2006. Desarrollo de un biofertilizante a partir de cepas de Azospirillum spp. para el cultivo de maíz (Zea mays L.), variedad INIAP 102 con dos fertilizaciones químicas y dos fertilizaciones orgánicas Sibambe-Chimborazo. Latacunga-Ecuador: Universidad Técnica de Cotopaxi. Tesis de ingeniería.; Sangoquiza-Caiza, 2011SANGOQUIZA-CAIZA, C.A., 2011. Selección de cepas de Azospirillum spp. como biofertilizante de Zea mays, L. bajo estrés salino. Cuba: Unidad Académica de Ciencias Agropecuarias y Recursos Naturales, Universidad De Granma. 64 p.; Genial, 2010GENIAL, C., 2010. Evaluación de biofertilizante a base de cepas de Azospirillum spp. en el cultivo de maíz (Zea mays L.) variedad INIAP 101, en el sector Ainche, provincia de Chimborazo. Guaranda-Ecuador: Universidad Estatal de Bolivar. Tesis Ingeniero Agrónomo. ; Ortíz, 2010ORTÍZ, G., 2010. Evaluación del efecto de cuatro métodos de inoculación de dos cepas deAzospirillumspp., en el cultivo de maíz (Zea mays L.), variedades Iniap 122 y 102, en las provincias de Imbabura y Pichincha. Ambato-Ecuador: Universidad Técnica de Ambato. Tesis de ingeniería.; Pallo, 2013PALLO, Y., 2013. Evaluación de soportes sólidos y líquidos, para la producción de un biofertilizante a base de Azospirillum spp. aplicable al cultivo de maíz (Zea mays, L). Ambato-Ecuador: Universidad Técnica de Ambato. Tesis de Ingeniería.; Rivadeneira, 2012RIVADENEIRA, M., 2012. Evaluación del biofertilizante a base de cepas de Azospirillum spp. en el cultivo de maiz (Zea mays L.) Iniap-111 guagal mejorado, en complemento con tres tipos de fertilización y dos métodos de inoculación, en la granja Laguacoto II,provincia Bolívar. Guaranda-Ecuador: Universidad Estatal de Bolivar. Tesis de ingeniería.; Changoluisa, 2013CHANGOLUISA, G., 2013. Respuesta del maiz (Zea mays L.) Iniap 111 al biofertilizante y fertilización nitrogenada, en la granja Laguacoto III, cantón Guaranda, provincia Bolívar. Guaranda-Ecuador: Universidad Estatal de Bolivar. Tesis de ingeniería. ; Sangoquiza-Caiza et al., 2019SANGOQUIZA-CAIZA, C.A., YANEZ GUZMÁN, C.F. and BORGES GARCÍA, M., 2019. Respuesta de la absorción de nitrógeno y fósforo de una variedad de maíz al inocular Azospirillum sp. y Pseudomonas fluorescens. ACI Avances En Ciencias e Ingenierías, vol. 11, no. 1, pp. 8-19. http://dx.doi.org/10.18272/aci.v11i1.943.
http://dx.doi.org/10.18272/aci.v11i1.943...
, 2022aSANGOQUIZA-CAIZA, C.A., ZAMBRANO MENDOZA, J.L., YÁNEZ GUZMÁN, C.F., NIETO BELTRÁN, M.R., ASAQUIBAY, C.R., QUIMBIAMBA PUJOTA, V.N., NARANJO QUINALUISA, E.J. and PARK, C.H., 2022a [viewed 3 April 2023]. Impacto de bacterias promotoras de crecimiento sobre el rendimiento del cultivo de maíz (Zea mays L.) en la Sierra del Ecuador. In: A. CHÁVEZ, W. GUILLÉN and F. ESCOBAL, eds. Memorias de la XXIV Reunión Latinoamericana de Maíz [online]. Quito, EC: INIAP-EESC, pp. 164-179. Available from: https://repositorio.iniap.gob.ec/handle/41000/5891
https://repositorio.iniap.gob.ec/handle/...
, bSANGOQUIZA-CAIZA, C., ZAMBRANO-MENDOZA, J., BORGUES-GARCÍA, M. and CHOI, K., 2022b. Response of flour corn (Zea mays L. var. Amylacea) to the inoculation of Azospirillum and Pseudomonas. La Granja. Revista de Ciências da Vida). However, the C2 strain was for many years called Azospirillum sp. based on phenotypic characteristics; but in this study, we confirmed that this bacterium corresponds to Bacillus subtilis.

This study showed that the diversity of rhizobacterial species associated with maize cultivation is similar in various regions of the planet, regardless of altitude or environmental conditions. In the future, it will be possible to deepen this analysis to determine the frequency and quantity of each microorganism with potential for being used as biofertilizers. Additionally, only those bacteria capable of growing in culture media could be identified. Other types of studies, such as quantitative and metagenomic analyses, are necessary to understand the magnitude of species diversity in the soils cultivated with maize in the Andean region.

5. Conclusions

There was an extensive diversity of cultivable nitrogen-fixing and phosphorus-solubilizing bacteria in the maize rhizosphere grown in the highlands of Ecuador. All the isolated bacteria have been reported as plant-growth promoters, either by nitrogen fixation, phosphorus solubilization, siderophore production, or growth hormones. Bacillus, Pseudomonas, and Stenotrophomonas were the most frequently found genera. The presence of Agrobacterium, Acinetobacter, Brevundimonas, Serratia, and Pseudoxanthomonas was also reported, indicating these bacteria’s importance in maize production systems in the highlands of Ecuador. These bacteria are stored in the biofertilizer laboratory of the Maize Program of the INIAP Santa Catalina Experimental Station, and the 16S rDNA gene sequences are available at BOLDSYSTEM.

Acknowledgements

The authors thank Masha Kuzmina from the Center for Biodiversity Genomics at the University of Guelph for her support during the genotyping phase and for uploading the information on the BOLDSYSTEM bioinformatics platform. In addition, we thank Andrea Carrera for their collaboration in isolating and evaluating some bacterial isolates. We thank KOPIA Ecuador Center for financing this activity, which belongs to the project “Development of technologies for the cultivation of maize with the application of bioinoculants and mulching in the highlands of Ecuador, Phase II (scaling up)”.

References

  • AHEMAD, M. and KIBRET, M., 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University. Science, vol. 2014, no. 1, pp. 1-20. http://dx.doi.org/10.1016/j.jksus.2013.05.001
    » http://dx.doi.org/10.1016/j.jksus.2013.05.001
  • AMEZQUITA, C., SANTOS, S., SANTOYO, G. and PARRA, F., 2022. Characterization of native plant growth-promoting bacteria (PGPB) and their effect on the development of maize (Zea mays L.). Revista de Ciencias Biológicas y de la Salud, vol. XXIV, no. 1, pp. 15-22.
  • ANZUAY, M.S., VISO, N.P., LUDUEÑA, L.M., MORLA, F.D., ANGELINI, J.G. and TAURIAN, T., 2021. Plant beneficial rhizobacteria community structure changes through developmental stages of peanut and maize. Rhizosphere, vol. 19, pp. 100407. http://dx.doi.org/10.1016/j.rhisph.2021.100407
    » http://dx.doi.org/10.1016/j.rhisph.2021.100407
  • ARRUDA, L., BENEDUZI, A., MARTINS, A., LISBOA, B., LOPES, C., BERTOLO, F., PASSAGLIA, L.M.P. and VARGAS, L.K., 2013. Screening of rhizobacteria isolated from maize (Zea mays L.) in Rio Grande do Sul. Applied Soil Ecology, vol. 63, pp. 12-22. http://dx.doi.org/10.1016/j.apsoil.2012.09.001
    » http://dx.doi.org/10.1016/j.apsoil.2012.09.001
  • AVILES, C., ACOSTA, C., DE LOS SANTOS, S., SANTOYO, G. and COTA, F., 2022. Characterization of native plant growth-promoting bacteria (PGPB) and their effect on the development of maize (Zea mays L.). Biotecnia, vol. 24, no. 1, pp. 15-22. http://dx.doi.org/10.18633/biotecnia.v24i1.1353
    » http://dx.doi.org/10.18633/biotecnia.v24i1.1353
  • BATTISTONI, F., SCAVINO, A.F., FERRANDO, L., MONTAÑEZ, A., PEZANNI, F., TAULÉ, C. and VAZ-JAURI, P., 2023. Endophytic and rhizospheric microbial communities associated with native and introduced cultivated plant species in Uruguay as sources for plant growth promotion bioinoculant development. Environmental Sustainability, vol. 6, no. 2, pp. 135-147. http://dx.doi.org/10.1007/s42398-023-00277-6
    » http://dx.doi.org/10.1007/s42398-023-00277-6
  • BHATTACHARYYA, P.N. and JHA, D.K., 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology & Biotechnology, vol. 28, no. 4, pp. 1327-1350. http://dx.doi.org/10.1007/s11274-011-0979-9 PMid:22805914.
    » http://dx.doi.org/10.1007/s11274-011-0979-9
  • BREEDT, G., LABUSCHAGNE, N. and COUTINHO, T., 2017. Seed treatment with selected plant growth-promoting rhizobacteria increases maize yield in the field. Annals of Applied Biology, vol. 171, no. 2, pp. 229-236. http://dx.doi.org/10.1111/aab.12366
    » http://dx.doi.org/10.1111/aab.12366
  • CHANGOLUISA, G., 2013. Respuesta del maiz (Zea mays L.) Iniap 111 al biofertilizante y fertilización nitrogenada, en la granja Laguacoto III, cantón Guaranda, provincia Bolívar Guaranda-Ecuador: Universidad Estatal de Bolivar. Tesis de ingeniería.
  • CHEN, L., HAO, Z., LI, K., SHA, Y., WANG, E., SUI, X., MI, G., TIAN, C. and CHEN, W., 2021. Effects of growth-promoting rhizobacteria on maize growth and rhizosphere microbial community under conservation tillage in Northeast China. Microbial Biotechnology, vol. 14, no. 2, pp. 535-550. http://dx.doi.org/10.1111/1751-7915.13693 PMid:33166080.
    » http://dx.doi.org/10.1111/1751-7915.13693
  • CORRALES-RAMÍREZ, M., SC, L.C., CAYCEDO-LOZANO, L., GÓMEZ-MÉNDEZ, M.A., RAMOS-ROJAS, S.J. and RODRÍGUEZ-TORRES, J.N., 2017. Bacillus spp: una alternativa para la promoción vegetal por dos caminos enzimáticos. Nova, vol. 15, no. 27, pp. 46-65. http://dx.doi.org/10.22490/24629448.1958
    » http://dx.doi.org/10.22490/24629448.1958
  • ESPINOZA, L., 2004. Caracterización y selección de la bacteria diazotrófica Azospirillum. Quito-Ecuador: Universidad Central del Ecuador. Tesis Ingeniero Agrónomo.
  • FGAIER, H. and EBERL, H., 2010. A competition model between Pseudomonas fluorescens and pathogens via iron chelation. Journal of Theoretical Biology, vol. 263, no. 4, pp. 566-578. http://dx.doi.org/10.1016/j.jtbi.2009.12.003 PMid:20005236.
    » http://dx.doi.org/10.1016/j.jtbi.2009.12.003
  • GAMAZO, C., LÓPEZ-GOÑI, I. and DÍAZ, R., 2005. Manual práctico de microbiología Barcelona-España: Masson S.A.
  • GAO, Z., ZHUANG, J., CHEN, J., LIU, X. and TANG, S., 2004. Población de bacterias entófitas en raíces de maíz y su análisis dinámico. Revista China de Ecología Aplicada., vol. 15, pp. 1344-1348.
  • GENIAL, C., 2010. Evaluación de biofertilizante a base de cepas de Azospirillum spp. en el cultivo de maíz (Zea mays L.) variedad INIAP 101, en el sector Ainche, provincia de Chimborazo. Guaranda-Ecuador: Universidad Estatal de Bolivar. Tesis Ingeniero Agrónomo.
  • HERNANDEZ, A., CABALLERO, A., PAZOS, M., RAMIREZ, R. and HEYDRICH, M., 2003. Identificación de algunos géneros microbianos asociados al cultivo del maíz (Zea mays L.) en diferentes suelos de Cuba. Revista Colombiana de Biotecnologia, vol. 5, no. 1, pp. 45-55.
  • HUAMÁN-CARRIÓN, M.L., ESPINOZA-MONTES, F., BARRIAL-LUJAN, A.I. and PONCE-ATENCIO, Y., 2021. Influencia de la altitud y características del suelo en la capacidad de almacenamiento de carbono orgánico de pastos naturales altoandinos. Scientia Agropecuaria, vol. 12, no. 1, pp. 83-90.
  • IKEDA, A., SAVI, D., HUNGRIA, M., KAVA, V., GLIENKE, C. and GALLI, L., 2019. Bioprospecting of elite plant growth-promoting bacteria for the maize crop. Acta Scientiarum. Agronomy, vol. 42, pp. e44364. http://dx.doi.org/10.4025/actasciagron.v42i1.44364
    » http://dx.doi.org/10.4025/actasciagron.v42i1.44364
  • JEAN, F. and FADDIN, M., 2003. Pruebas bioquímicas para la identificación de bacterias de importancia clínica. Buenos Aires: Editorial Medica Panamericana.
  • KUMAR, S., STECHER, G. and TAMURA, K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, vol. 33, no. 7, pp. 1870-1874. http://dx.doi.org/10.1093/molbev/msw054 PMid:27004904.
    » http://dx.doi.org/10.1093/molbev/msw054
  • LEÓN, L.H. and ROJAS, L., 2015. Determinación del potencial promotor del crecimiento vegetal de Azotobacter spp. aislados de la rizósfera de malezas en cultivos de maíz (Zea mays L.). Scientia Agropecuaria, vol. 6, pp. 247-257.
  • LI, H., HUANG, W., XU, L., ZHOU, X., LIU, H. and CHENG, Z., 2016. Stenotrophomonas maltophilia HW2 enhanced cucumber resistance against cucumber green mottle mosaic virus. Journal of Plant Biology, vol. 59, no. 5, pp. 488-495. http://dx.doi.org/10.1007/s12374-016-0246-6
    » http://dx.doi.org/10.1007/s12374-016-0246-6
  • LÓPEZ, V., HERNÁNDEZ, M., FERNÁNDEZ, S., MENDOZA, A., LÓPEZ, L., CRUZ-HERNÁNDEZ, M., FERNÁNDEZ-DÁVILA, S. and MENDOZA-HERRERA, A., 2015. Bacterial diversity in roots of conventional and genetically modified hybrid maize. Piton, vol. 84, pp. 233-243.
  • MEENA, V.S., MAURYA, B.R., MEENA, S.K., MEENA, R.K., KUMAR, A., VERMA, J.P. and SINGH, N. 2016. Can bacillus species enhance nutrient availability in agricultural soils? In: M.T. Islam, M. Rahman, P. Pandey, C.K. Jha and A. Aeron, editors. Bacilli and agrobiotechnology Cham: Springer, pp. 367-395. http://dx.doi.org/10.1007/978-3-319-44409-3_16
    » http://dx.doi.org/10.1007/978-3-319-44409-3_16
  • METEOBLUE, 2023 [viewed 19 January 2023] Weather maps - radar and live weather satellite [online]. METEOBLUE. Available from: https://www.meteoblue.com/es/tiempo/mapas/index#coords=2.99/-9.56/-79.16↦=windAnimation~rainbow~auto~10%20m%20above%20gnd~none
    » https://www.meteoblue.com/es/tiempo/mapas/index#coords=2.99/-9.56/-79.16↦=windAnimation~rainbow~auto~10%20m%20above%20gnd~none
  • MOLINA, S., 2006. Desarrollo de un biofertilizante a partir de cepas de Azospirillum spp. para el cultivo de maíz (Zea mays L.), variedad INIAP 102 con dos fertilizaciones químicas y dos fertilizaciones orgánicas Sibambe-Chimborazo Latacunga-Ecuador: Universidad Técnica de Cotopaxi. Tesis de ingeniería.
  • MONTAÑEZ, A., ABREU, C., GILL, P., HARDARSON, G. and SICARDI, M., 2009. Fijación biológica de nitrógeno en maíz (Zea mays L.) por dilución de isótopos 15N e identificación de diazotrofos cultivables asociados. Biología y Fertilidad de Los Suelos, vol. 2009, pp. 253-263.
  • OLANREWAJU, O.S. and BABALOLA, O., 2019. Bacterial consortium for improved maize (Zea mays L.) production. Microorganisms, vol. 7, no. 11, pp. 519. http://dx.doi.org/10.3390/microorganisms7110519 PMid:31683950.
    » http://dx.doi.org/10.3390/microorganisms7110519
  • ORTÍZ, G., 2010. Evaluación del efecto de cuatro métodos de inoculación de dos cepas deAzospirillumspp., en el cultivo de maíz (Zea mays L.), variedades Iniap 122 y 102, en las provincias de Imbabura y Pichincha Ambato-Ecuador: Universidad Técnica de Ambato. Tesis de ingeniería.
  • PALLO, Y., 2013. Evaluación de soportes sólidos y líquidos, para la producción de un biofertilizante a base de Azospirillum spp. aplicable al cultivo de maíz (Zea mays, L) Ambato-Ecuador: Universidad Técnica de Ambato. Tesis de Ingeniería.
  • PEREIRA, N., GALINDO, F., GAZOLA, D., DUPAS, E., ROSA, L., MORTINHO, S. and FILHO, M.C.M.T., 2020. Corn yield and phosphorus use efficiency response to phosphorus rates associated with plant growth promoting bacteria. Frontiers in Environmental Science, vol. 8, pp. 2020. http://dx.doi.org/10.3389/fenvs.2020.00040
    » http://dx.doi.org/10.3389/fenvs.2020.00040
  • PEREIRA, P., IBÁÑEZ, F., ROSENBLUETH, M., ETCHEVERRY, M. and MARTÍINEZ, E., 2011. Analysis of the bacterial diversity associated with the roots of maize (Zea mays L.) through culture-dependent and culture-independent methods. International Scholarly Research Network, vol. 2011, pp. 10. http://dx.doi.org/10.5402/2011/938546
    » http://dx.doi.org/10.5402/2011/938546
  • PÉREZ, R., OUDOT, M., HERNÁNDEZ, I., NÁPOLES, M., PÉREZ, S. and CASTILLO, S., 2020. Aislamiento y caracterización de Stenotrophomonas asociada a rizosfera de maíz (Zea mays L.). Cultivos Tropicales, vol. 41, no. 2, pp. e03.
  • PINCAY, A., 2014. Caracterización y evaluación de bacterias Pseudomonas sp. solubizadoras de fósfoto presentes en la rizósfera del maíz (Zea mays) de los ensayos experimentales del INIAP de las provincias de Imbabura, Bolívar, Chimborazo y Pichincha Sangolquí-Ecuador: Escuela Politécnica del Ejercito. Tesis de ingeniería.
  • RATNASINGHAM, S. and HEBERT, N., 2007. BOLD: the barcode of life data system (www.barcodinglife.org). Molecular Ecology Notes, vol. 7, no. 3, pp. 355-364. http://dx.doi.org/10.1111/j.1471-8286.2007.01678.x PMid:18784790.
    » http://dx.doi.org/10.1111/j.1471-8286.2007.01678.x
  • RIVADENEIRA, M., 2012. Evaluación del biofertilizante a base de cepas de Azospirillum spp. en el cultivo de maiz (Zea mays L.) Iniap-111 guagal mejorado, en complemento con tres tipos de fertilización y dos métodos de inoculación, en la granja Laguacoto II,provincia Bolívar Guaranda-Ecuador: Universidad Estatal de Bolivar. Tesis de ingeniería.
  • ROJAS, A.S., ANDRADE, H.J. and SEGURA, M., 2018. ¿Son los suelos de paisajes alto-andinos de Santa Isabel (Tolima, Colombia) sumideros de carbono orgánico? R. Revista Udca Actualidad & Divulgacion Cientifica, vol. 21, no. 1, pp. 51-59. http://dx.doi.org/10.31910/rudca.v21.n1.2018.662
    » http://dx.doi.org/10.31910/rudca.v21.n1.2018.662
  • ROJAS, M.M., TEJERA, B., BOSH, D.M., RÍOS, Y., RODRÍGUEZ, J. and HEYDRICH, M., 2016. Potencialidades de cepas de Bacillus para la promoción del crecimiento del maíz (Zea mays L.). Canadian Journal of Agricultural Science, vol. 50, no. 3, pp. 485-496.
  • ROKHBAKHSH, F., SACHDEV, D., KAZEMI, N., ENGINEER, A., PARDESI, K., ZINJARDE, S., DHAKEPHALKAR, P. and CHOPADE, B., 2011. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. Journal of Microbiology and Biotechnology, vol. 21, no. 6, pp. 556-566. http://dx.doi.org/10.4014/jmb.1012.12006 PMid:21715961.
    » http://dx.doi.org/10.4014/jmb.1012.12006
  • ROSAS, S., AVANZINI, G., CARLIER, E., PASLUOSTA, C., PASTOR, N. and ROVERA, M., 2009. Root colonization and growth promotion of wheat and maize by Pseudomonas aurantiaca SR1. Soil Biology & Biochemistry, vol. 41, no. 9, pp. 1802-1806. http://dx.doi.org/10.1016/j.soilbio.2008.10.009
    » http://dx.doi.org/10.1016/j.soilbio.2008.10.009
  • SAHARAN, B.S. and NEHRA, V., 2011. Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res, vol. 21, no. 1, pp. 30.
  • SANGOQUIZA-CAIZA, C.A., YANEZ GUZMÁN, C.F. and BORGES GARCÍA, M., 2019. Respuesta de la absorción de nitrógeno y fósforo de una variedad de maíz al inocular Azospirillum sp. y Pseudomonas fluorescens. ACI Avances En Ciencias e Ingenierías, vol. 11, no. 1, pp. 8-19. http://dx.doi.org/10.18272/aci.v11i1.943
    » http://dx.doi.org/10.18272/aci.v11i1.943
  • SANGOQUIZA-CAIZA, C.A., ZAMBRANO MENDOZA, J.L., YÁNEZ GUZMÁN, C.F., NIETO BELTRÁN, M.R., ASAQUIBAY, C.R., QUIMBIAMBA PUJOTA, V.N., NARANJO QUINALUISA, E.J. and PARK, C.H., 2022a [viewed 3 April 2023]. Impacto de bacterias promotoras de crecimiento sobre el rendimiento del cultivo de maíz (Zea mays L.) en la Sierra del Ecuador. In: A. CHÁVEZ, W. GUILLÉN and F. ESCOBAL, eds. Memorias de la XXIV Reunión Latinoamericana de Maíz [online]. Quito, EC: INIAP-EESC, pp. 164-179. Available from: https://repositorio.iniap.gob.ec/handle/41000/5891
    » https://repositorio.iniap.gob.ec/handle/41000/5891
  • SANGOQUIZA-CAIZA, C.A., 2011. Selección de cepas de Azospirillum spp. como biofertilizante de Zea mays, L. bajo estrés salino Cuba: Unidad Académica de Ciencias Agropecuarias y Recursos Naturales, Universidad De Granma. 64 p.
  • SANGOQUIZA-CAIZA, C., ZAMBRANO-MENDOZA, J., BORGUES-GARCÍA, M. and CHOI, K., 2022b. Response of flour corn (Zea mays L. var. Amylacea) to the inoculation of Azospirillum and Pseudomonas. La Granja. Revista de Ciências da Vida
  • SOUZA, R., AMBROSINI, A. and PASSAGLIA, M., 2015. Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, vol. 38, no. 4, pp. 401-419. http://dx.doi.org/10.1590/S1415-475738420150053 PMid:26537605.
    » http://dx.doi.org/10.1590/S1415-475738420150053
  • ZAHID, M., ABBASI, M.K., HAMEED, S. and RAHIM, N., 2015. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Frontiers in Microbiology, vol. 6, pp. 207. http://dx.doi.org/10.3389/fmicb.2015.00207 PMid:25852667.
    » http://dx.doi.org/10.3389/fmicb.2015.00207
  • ZAMBRANO, J., SANGOQUIZA, C., CAMPAÑA, D. and YÁNEZ, C., 2021b. Use of biofertilizers in agricultural production. In: F. SULTAN and M. AHMAD, eds. Tecnology in Agriculture London-United Kingdom: IntechOpen, pp. 193-210.
  • ZAMBRANO, J., VELÁSQUEZ, J., PEÑAHERRERA, D., SANGOQUIZA, C., CARTAGENA, Y., VILLACRÉS, E., GARCÉS, S., ORTÍZ, R., LEÓN, J., CAMPAÑA, D., LÓPEZ, V., ASAQUIBAY, C., NIETO, M., SANMARTÍN, G., PINTADO, P., YÁNEZ, C. And RACINES, M., 2021a [viewed 3 April 2023]. Guía para la producción sustentable de maíz en la Sierra ecuatoriana [online]. Available from: https://repositorio.iniap.gob.ec/handle/41000/5796
    » https://repositorio.iniap.gob.ec/handle/41000/5796

Publication Dates

  • Publication in this collection
    03 Nov 2023
  • Date of issue
    2023

History

  • Received
    03 Apr 2023
  • Accepted
    05 Sept 2023
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br