Acessibilidade / Reportar erro

Pharmacological and toxicological effects of Amaryllidaceae

Efeitos farmacológicos e toxicológicos das Amaryllidaceae

Abstract

The Amaryllidaceae family is widely distributed in the tropics, presenting biological activity attributed mostly to alkaloids, such as an important inhibitory activity of acetylcholinesterase (AChE), antifungal, antibacterial, and cytotoxic activities. The present study aims to review the spectrum of action of the main biological activities and toxicity of secondary metabolites found in Amaryllidaceae through a literature review, using Prisma and the descriptors “Pharmacological effects of Amaryllidaceae” and “Amaryllidaceae family” and “Pharmacological actions of Amaryllidaceae”, used in English and Portuguese. The literature search was done in March and May 2023. Original works published from 2012 to 2023, available in full, and presenting experimental and clinical studies were included. After the selection considering the inclusion and exclusion criteria, 60 articles fulfilled the defined criteria. From a pharmacological point of view, the highlight is due to the alkaloid galantamine, which has the potential- and is already used - for treating Alzheimer's. The toxicological aspect must be considered and evaluated carefully, as alkaloids have been associated with adverse effects such as nausea, vomiting, diarrhea, abdominal pain, and cardiovascular, neurological, and respiratory changes. Furthermore, some studies indicate that consuming these plants in significant quantities can lead to hepatic and renal toxicity. Therefore, the therapeutical use of this family's plant drugs and derivatives requires further studies to elucidate its effects and point out metabolites with therapeutic potential.

Keywords:
Amaryllidaceae; acetylcholinesterase; alkaloids; pharmacology; toxicology

Resumo

A família Amaryllidaceae é amplamente distribuída nos trópicos, apresentando atividade biológica atribuída principalmente a alcaloides, com importante atividade inibitória da acetilcolinesterase (AChE), atividade antifúngica, antibacteriana e citotóxica. O presente estudo tem como objetivo revisar o espectro de ação das principais atividades biológicas e toxicidade dos metabólitos secundários encontrados em Amaryllidaceae por meio de uma revisão de literatura, utilizando Prisma e os descritores “Efeitos farmacológicos de Amaryllidaceae” e “Família Amaryllidaceae” e “Ações farmacológicas de Amaryllidaceae “, usado em inglês e português. A busca na literatura foi realizada nos meses de março e maio de 2023. Foram incluídos estudos originais publicados no período de 2012 a 2023, disponíveis na íntegra e apresentando estudos experimentais e clínicos. Após a seleção considerando os critérios de inclusão e exclusão, 60 artigos atenderam aos critérios definidos. Do ponto de vista farmacológico, o destaque fica por conta do alcaloide galantamina, que tem potencial - e já é utilizado - para o tratamento do Alzheimer. O aspecto toxicológico deve ser considerado e avaliado com cautela, pois os alcaloides têm sido associados a efeitos adversos como náuseas, vômitos, diarreia, dor abdominal, alterações cardiovasculares, neurológicas e respiratórias. Além disso, alguns estudos indicam que consumir essas plantas em quantidades significativas pode levar a toxicidade hepática e renal. Portanto, o uso terapêutico de drogas vegetais e derivados desta família requer mais estudos para elucidar seus efeitos e apontar metabólitos com potencial terapêutico.

Palavras-chave:
Amaryllidaceae; acetilcolinesterase; alcaloides; farmacologia; toxicologia

1. Introduction

The Amaryllidaceae family, representing approximately 80 genera and 1600 species (Scobeyeva et al., 2021SCOBEYEVA, V.A., ARTYUSHIN, I.V., KRINITSINA, A.A., NIKITIN, P.A., ANTIPIN, M.I., KUPTSOV, S.V. and SPERANSKAYA, A.S., 2021. Gene loss, pseudogenization in plastomes of genus Allium (Amaryllidaceae), and putative selection for adaptation to environmental conditions. Frontiers in Genetics, vol. 12, pp. 674783. http://dx.doi.org/10.3389/fgene.2021.674783. PMid:34306019.
http://dx.doi.org/10.3389/fgene.2021.674...
), is widely distributed worldwide, mainly throughout the tropical and warm regions of the world, such as Brazil, Argentina, Mexico, Sudan, and Senegal. This family is known for its unique alkaloid constituents called Amaryllidaceae alkaloids (AA), with a wide range of biological activities, including acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition, as well as antitumor, antifungal, antibacterial, antiviral, and antimalarial properties (Havelek et al., 2017HAVELEK, R., MUTHNA, D., TOMSIK, P., KRALOVEC, K., SEIFRTOVA, M., CAHLIKOVA, L., HOSTALKOVA, A., SAFRATOVA, M., PERWEIN, M., CERMAKOVA, E. and REZACOVA, M., 2017. Anticancer potential of Amaryllidaceae alkaloids evaluated by screening with a panel of human cells, real-time cellular analysis and Ehrlich tumor-bearing mice. Chemico-Biological Interactions, vol. 275, pp. 121-132. http://dx.doi.org/10.1016/j.cbi.2017.07.018. PMid:28756149.
http://dx.doi.org/10.1016/j.cbi.2017.07....
; Tallini et al., 2021bTALLINI, L.R., GIORDANI, R.B., ANDRADE, J.P., BASTIDA, J. and ZUANAZZI, J.A.S., 2021b. Structural diversity and biological potential of alkaloids from the genus Hippeastrum, Amaryllidaceae: an update. Revista Brasileira de Farmacognosia, vol. 31, no. 5, pp. 648-657. http://dx.doi.org/10.1007/s43450-021-00211-z. PMid:34924642.
http://dx.doi.org/10.1007/s43450-021-002...
). A study by Voss and Kuriakose (2014)VOSS, C.D. and KURIAKOSE, B.B., 2014. Pharmacognostic and phytochemical evaluation of the bulbs of Hippeastrum puniceum (Lam.). International Journal of Pharmacognosy and Phytochemical Research, vol. 6, pp. 399-404. revealed that Hippeastrum puniceum (Lam.) Kuntze has been traditionally used to cure tumors, hemorrhoids, asthma, and various inflammatory disorders.

Examples of Amaryllidaceae alkaloids of scientific importance include lycorine (1), galanthamine (2), homolycorine (3), and narcyclasine (4) (Figure 1). Galanthamine is the most prominent alkaloid due to its potent acetylcholinesterase inhibition. It has been recognized and regulated in the pharmaceutical market since 2001 (Maříková et al., 2021MAŘÍKOVÁ, J., MAMUN, A.A., SHAMMARI, L.A., KORÁBEČNÝ, J., KUČERA, T., HULCOVÁ, D., KUNEŠ, J., MALANÍK, M., VAŠKOVÁ, M., KOHELOVÁ, E., NOVÁKOVÁ, L., CAHLÍKOVÁ, L. and POUR, M., 2021. Structure elucidation and cholinesterase inhibition activity of two new minor Amaryllidaceae alkaloids. Molecules, vol. 26, no. 5, pp. 1279. http://dx.doi.org/10.3390/molecules26051279. PMid:33652925.
http://dx.doi.org/10.3390/molecules26051...
), indicated for the palliative treatment of Alzheimer's disease, to manage Alzheimer ‘symptoms. Galanthamine's pharmacological action is based on the ability to potentiate cholinergic transmission through a positive allosteric modulation of presynaptic nicotinic receptors (Desgagné-Penix, 2021DESGAGNÉ-PENIX, I., 2021. Biosynthesis of alkaloids in Amaryllidaceae plants: a review. Phytochemistry Reviews, vol. 20, no. 2, pp. 409-431. http://dx.doi.org/10.1007/s11101-020-09678-5.
http://dx.doi.org/10.1007/s11101-020-096...
).

Figure 1
Examples of chemical constituents in the plant family Amaryllidaceae.

In 2021, the global Dementia Drug market was valued at over USD 13 billion and is estimated to reach USD 28 billion in 2028, with a compound annual growth rate (CAGR) of 8.32%. The role of cholinesterase inhibitors – such galanthamine – in this market, is relevant. Considering only one brand of galanthamine hydrobromide, the global market is expected to reach USD 4.8 billion in 2028, with a CAGR of 3% (2021-2028). This market's increase is partly due to the worldwide population aging. Although half of the global human population is under 30 years old, the United Nations (UN) projections showed that the number of people over 65 will rise from 10% (2023) to 16% in 2050 (Population Matters, 2023POPULATION MATTERS, 2023 [viewed 16 July 2023]. Population matters' statement in advance of world population day 2023 [online]. Available from: https://populationmatters.org/population-matters-statement-in-advance-of-world-population-day-2023/
https://populationmatters.org/population...
). Furthermore, it is estimated that, in the USA, about 6.2 million people aged 65 and above are suffering from Alzheimer's disease. The number of patients is expected to achieve 13.8 billion in 2060 (Grand View Research, 2023GRAND VIEW RESEARCH, 2023 [viewed 16 July 2023]. Alzheimer's therapeutics market: industry analysis & forecast [online]. Available from: https://www.grandviewresearch.com/industry-analysis/alzheimers-therapeutics-market
https://www.grandviewresearch.com/indust...
).

Therefore, searching for new drugs is imperative, and other Amaryllidaceae alkaloids can be a potential alternative to galanthamine. However, the screening and the large-scale production of Amaryllidaceae alkaloids pose several challenges. For example, many alkaloids in the Amaryllidaceae family exist in small amounts, and methods for isolating and purifying them are generally inefficient and environmentally unsustainable (Zaragoza-Puchol et al., 2021ZARAGOZA-PUCHOL, D., ORTIZ, J.E., ORDEN, A.A., SANCHEZ, M., PALERMO, J., TAPIA, A., BASTIDA, J. and FERESIN, G.E., 2021. Alkaloids analysis of Habranthus cardenasianus (Amaryllidaceae), anti-cholinesterase activity and biomass production by propagation strategies. Molecules, vol. 26, no. 1, pp. 192. http://dx.doi.org/10.3390/molecules26010192. PMid:33401696.
http://dx.doi.org/10.3390/molecules26010...
). Hence, it is important to highlight that Amaryllidaceae species are not abundant, and mining and agriculture activities and urban growth are reducing plant populations in this family. Thus, it is essential to develop sustainable propagation methods for the domestication of Amaryllidaceae, such as mass distribution of seeds, bulb division, and micro aggregation (Zaragoza-Puchol et al., 2021ZARAGOZA-PUCHOL, D., ORTIZ, J.E., ORDEN, A.A., SANCHEZ, M., PALERMO, J., TAPIA, A., BASTIDA, J. and FERESIN, G.E., 2021. Alkaloids analysis of Habranthus cardenasianus (Amaryllidaceae), anti-cholinesterase activity and biomass production by propagation strategies. Molecules, vol. 26, no. 1, pp. 192. http://dx.doi.org/10.3390/molecules26010192. PMid:33401696.
http://dx.doi.org/10.3390/molecules26010...
). Chemical synthesis can help alleviate the demand for limited Amaryllidaceae alkaloids. However, producing these complex molecules is often challenging and expensive, although some specialized synthetic methods have been developed that can be used to build several intermediate pathways (Jin, 2009JIN, Z., 2009. Amaryllidaceae and Sceletium alkaloids. Natural Product Reports, vol. 26, no. 3, pp. 363-381. http://dx.doi.org/10.1039/b718044f. PMid:19240946.
http://dx.doi.org/10.1039/b718044f...
; Gasca et al., 2020GASCA, C.A., MOREIRA, N.C.S., DE ALMEIDA, F.C., DUTRA GOMES, J.V., CASTILLO, W.O., FAGG, C.W., MAGALHÃES, P.O., FONSECA-BAZZO, Y.M., SAKAMOTO-HOJO, E., DE MEDEIROS, Y.K., DE SOUZA BORGES, W. and SILVEIRA, D., 2020. Acetylcholinesterase inhibitory activity, anti-inflammatory, and neuroprotective potential of Hippeastrum psittacinum (Ker Gawl.) herb (Amaryllidaceae). Food and Chemical Toxicology, vol. 145, pp. 111703. http://dx.doi.org/10.1016/j.fct.2020.111703. PMid:32858133.
http://dx.doi.org/10.1016/j.fct.2020.111...
).

Moreover, despite their interesting medicinal characteristics, Amaryllidaceae plants are known to cause poisoning, and several of them have been classified as such, drawing attention to cases of toxicity (Havelek et al., 2017HAVELEK, R., MUTHNA, D., TOMSIK, P., KRALOVEC, K., SEIFRTOVA, M., CAHLIKOVA, L., HOSTALKOVA, A., SAFRATOVA, M., PERWEIN, M., CERMAKOVA, E. and REZACOVA, M., 2017. Anticancer potential of Amaryllidaceae alkaloids evaluated by screening with a panel of human cells, real-time cellular analysis and Ehrlich tumor-bearing mice. Chemico-Biological Interactions, vol. 275, pp. 121-132. http://dx.doi.org/10.1016/j.cbi.2017.07.018. PMid:28756149.
http://dx.doi.org/10.1016/j.cbi.2017.07....
). Therefore, attention has been drawn to plants in this family used in medicine and traditional practice due to their toxic properties, putting the health of communities worldwide at risk (Nair and Van Staden, 2013NAIR, J.J. and VAN STADEN, J., 2013. Pharmacological and toxicological insights to the South African Amaryllidaceae. Food and Chemical Toxicology, vol. 62, pp. 262-275. http://dx.doi.org/10.1016/j.fct.2013.08.042. PMid:23994658.
http://dx.doi.org/10.1016/j.fct.2013.08....
). And investigations to assess its safety and studies evaluating its pharmacological and therapeutic activities are necessary.

Considering the importance of Amaryllidaceae and galanthamine, this study aimed to evaluate the Amaryllidaceae pharmacological and toxicological state-of-art.

2. Material and Methods

This study was a systematic literature review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement guidelines (Figure 2). We formulated the question focusing on the pharmacological activity of the Amaryllidaceae plants. The searched databases were PubMed, MEDLINE, Periodicos Capes via CaFe and SciELO, using keywords obtained by consulting the Health Sciences Descriptors (DeCS) according to the particularities of each database: “Pharmacological effects of Amaryllidaceae” AND “Family Amaryllidaceae” AND “Amaryllidaceae pharmacological actions” in English and Portuguese. The search was conducted between March and May 2023, according to the following criteria: original works published in 2012-2023 and available as full text; those using experimental and clinical studies as methodology were included. Reviews, studies that evaluated traditional and folk knowledge, papers published in congresses, or presentations were excluded. Moreover, the World Flora Online (WFO, 2023WORLD FLORA ONLINE – WFO, 2023 [viewed 16 July 2023]. The World Flora Online [online]. Available from: worldfloraonline.org
worldfloraonline.org...
) and Reflora (JBRJ, 2023JARDIM BOTÂNICO DO RIO DE JANEIRO – JBRJ, 2023 [viewed 16 July 2023]. Programa REFLORA [online]. Available from: reflora.jbrj.gov.br
reflora.jbrj.gov.br...
) databases were consulted to verify any changes in the botanical name of the plant species, and the accepted name was considered.

Figure 2
Summary of the method used to include studies on the pharmacology and toxicology of the Amaryllidaceae family.

3. Results and Discussion

The search strategy resulted in 361 studies published from January 2012 to May 2023, and the articles were available in the analyzed databases according to the predefined descriptors. Of these, 49 articles were found in PubMed, 15 in MEDLINE, 265 through Periódicos Capes via CaFe, and 32 in SciELO. The inclusion and exclusion criteria were applied, and duplicates were eliminated, resulting in 60 articles selected for this review (Table 1).

Table 1
Distribution of articles selected for the systematic review.

After analyzing the results, in vivo and in vitro studies were the most reported research. The prominent finding was the effect of Amaryllidaceae plants in inhibiting the enzyme acetylcholinesterase, as shown in Table 1.

3.1. Pharmacology

The cholinergic system depends on normal acetylcholine (ACh) levels, a neurotransmitter involved in learning and memory. This neurotransmitter is found in the brain and at neuromuscular junctions, and acetylcholine hydrolysis is essential for synaptic cholinergic transmissions before new electrical impulses (Sobiecki, 2002SOBIECKI, J.F., 2002. A preliminary inventory of plants used for psychoactive purposes in southern African healing traditions. Transactions of the Royal Society of South Africa, vol. 57, no. 1-2, pp. 1-24. http://dx.doi.org/10.1080/00359190209520523.
http://dx.doi.org/10.1080/00359190209520...
). This process is carried out by the enzyme AChE, which mediates synapses in the nervous system (Nair and Van Staden, 2022NAIR, J.J. and VAN STADEN, J., 2022. Pharmacological studies of Crinum, Ammocharis, Amaryllis and Cyrtanthus species of the South African Amaryllidaceae. South African Journal of Botany, vol. 147, pp. 238-244. http://dx.doi.org/10.1016/j.sajb.2021.12.021.
http://dx.doi.org/10.1016/j.sajb.2021.12...
). Inhibition of acetylcholinesterase activity is one of the most notable effects of alkaloids from a wide range of different species of Amaryllidaceae (Maroyi, 2016MAROYI, A., 2016. Ethnobotanical, phytochemical and pharmacological properties of Crinum bulbispermum (Burm f) Milne-Redh and Schweick (Amaryllidaceae). Tropical Journal of Pharmaceutical Research, vol. 15, no. 11, pp. 2497-2506. http://dx.doi.org/10.4314/tjpr.v15i11.27.
http://dx.doi.org/10.4314/tjpr.v15i11.27...
). Among AChE inhibitors, galanthamine, a natural product used to treat Alzheimer's disease, possesses selective, prolonged, and reversible action, with the ability to improve performance in memory tests (Marco and do Carmo Carreiras, 2006MARCO, L. and DO CARMO CARREIRAS, M.C., 2006. Galanthamine, a natural product for the treatment of Alzheimer’s disease. Recent Patents on CNS Drug Discovery, vol. 1, no. 1, pp. 105-111. http://dx.doi.org/10.2174/157488906775245246. PMid:18221196.
http://dx.doi.org/10.2174/15748890677524...
; Cahlíková et al., 2021CAHLÍKOVÁ, L., KAWANO, I., ŘEZÁČOVÁ, M., BLUNDEN, G., HULCOVÁ, D. and HAVELEK, R., 2021. The Amaryllidaceae alkaloids haemanthamine, haemanthidine and their semisynthetic derivatives as potential drugs. Phytochemistry Reviews, vol. 20, no. 1, pp. 303-323. http://dx.doi.org/10.1007/s11101-020-09675-8.
http://dx.doi.org/10.1007/s11101-020-096...
).

Galanthamine was the first alkaloid obtained from the bulbous plant Galanthus woronowii Losinsk., native to northeast Turkey, and has been used since 2001 for palliative therapy in mild to moderate Alzheimer's disease. This discovery encouraged searching for and isolating other active substances in different Amaryllidaceae plants. Other Amaryllidaceae alkaloids, such as lycorine and haemantidine, also act as AChE inhibitors, demonstrating their pharmacological potential (Cavallaro et al., 2014CAVALLARO, V., ALZA, N.P., MURRAY, M.G. and MURRAY, A.P., 2014. Alkaloids from Habranthus tubispathus and H. jamesonii, two amaryllidaceae with acetyl- and butyrylcholinesterase inhibition activity. Natural Product Communications, vol. 9, no. 2, pp. 159-162. http://dx.doi.org/10.1177/1934578X1400900206. PMid:24689279.
http://dx.doi.org/10.1177/1934578X140090...
). There is, therefore, a great interest in searching for sources of galanthamine (Havelek et al., 2017HAVELEK, R., MUTHNA, D., TOMSIK, P., KRALOVEC, K., SEIFRTOVA, M., CAHLIKOVA, L., HOSTALKOVA, A., SAFRATOVA, M., PERWEIN, M., CERMAKOVA, E. and REZACOVA, M., 2017. Anticancer potential of Amaryllidaceae alkaloids evaluated by screening with a panel of human cells, real-time cellular analysis and Ehrlich tumor-bearing mice. Chemico-Biological Interactions, vol. 275, pp. 121-132. http://dx.doi.org/10.1016/j.cbi.2017.07.018. PMid:28756149.
http://dx.doi.org/10.1016/j.cbi.2017.07....
; Kohelova et al., 2021).

To date, different species have been studied for their alkaloid profile using gas chromatography-mass spectrometry, and several alkaloids of different structural types have been isolated and selected for various biological activities.

The alkaloids from Amaryllidaceae are used to treat degenerative diseases and neurological disorders. In a preclinical study conducted by Cortes et al. (2015)CORTES, N., POSADA-DUQUE, R.A., ALVAREZ, R., ALZATE, F., BERKOV, S., CARDONA-GÓMEZ, G.P. and OSORIO, E., 2015. Neuroprotective activity and acetylcholinesterase inhibition of five Amaryllidaceae species: a comparative study. Life Sciences, vol. 122, pp. 42-50. http://dx.doi.org/10.1016/j.lfs.2014.12.011. PMid:25529145.
http://dx.doi.org/10.1016/j.lfs.2014.12....
, the alkaloid extract from Crinum jagus, bulbs at concentrations of 0.3 and 2.9 μg/mL, showed high neuroprotective and inhibitory activity against AChE. In this study, other species of Amaryllidaceae, such as Crinum bulbispermum, at concentrations of 0.3 μg/mL and 2.9 μg/mL, Zephyranthes carinata (2.9 μg/mL), and Hippeastrum puniceum (2.9 μg/mL), exhibited inhibitory activity against AChE, possibly associated with alkaloids of the lycorine and galanthamine types. Lycorine is also associated with improvements in peripheral nerve function and autophagy-associated proteins in diabetic mice, indicating it may be a potential alkaloid for treating diabetic peripheral neuropathy (Yuan et al., 2022YUAN, Q., ZHANG, X., WEI, W., ZHAO, J., WU, Y., ZHAO, S., ZHU, L., WANG, P. and HAO, J., 2022. Lycorine improves peripheral nerve function by promoting Schwann cell autophagy via AMPK pathway activation and MMP9 downregulation in diabetic peripheral neuropathy. Pharmacological Research, vol. 175, pp. 105985. http://dx.doi.org/10.1016/j.phrs.2021.105985. PMid:34863821.
http://dx.doi.org/10.1016/j.phrs.2021.10...
).

Montanine has been characterized as behaviorally and toxicologically active. In mice, montanine showed a LD50 of 64.7 mg/kg and 67.6 mg/kg for male and female, respectively (Koutova et al., 2020). It has been shown to reduce motor activity and induce sedative, anxiolytic, anticonvulsant, and antidepressant effects in mice at a dose of 10 μL/g of body weight (Silva et al., 2006SILVA, A.F., ANDRADE, J.P., BEVILAQUA, L.R.M., SOUZA, M.M., IZQUIERDO, I., HENRIQUES, A.T. and ZUANAZZI, J.A.S., 2006. Anxiolytic-, antidepressant- and anticonvulsant-like effects of the alkaloid montanine isolated from Hippeastrum vittatum. Pharmacology, Biochemistry, and Behavior, vol. 85, no. 1, pp. 148-154. http://dx.doi.org/10.1016/j.pbb.2006.07.027. PMid:16950504.
http://dx.doi.org/10.1016/j.pbb.2006.07....
).

Several studies have reported perspectives on using plants from this family to treat tropical diseases, such as Chagas Disease. Martinez-Peinado et al. (2022)MARTINEZ-PEINADO, N., ORTIZ, J.E., CORTES-SERRA, N., PINAZO, M.J., GASCON, J., TAPIA, A., ROITMAN, G., BASTIDA, J., FERESIN, G.E. and ALONSO-PADILLA, J., 2022. Anti-Trypanosoma cruzi activity of alkaloids isolated from Habranthus brachyandrus (Amaryllidaceae) from Argentina. Phytomedicine, vol. 101, pp. 154126. http://dx.doi.org/10.1016/j.phymed.2022.154126. PMid:35489322.
http://dx.doi.org/10.1016/j.phymed.2022....
presented an in vivo clinical study. A hexane extract from bulbs of Habranthus brachyandrus was used, at concentrations of 754 µg/mL of extract and 500 µM. The findings revealed its potential ability to eradicate the main pathogen responsible for the disease. Furthermore, the plant extract showed high specific anti-Trypanosoma cruzi activity, and the isolated alkaloid, ismine, was partially responsible for this. These results encourage the exploration of H. brachyandrus alkaloids in the search for new drugs for Chagas disease.

In Boophane disticha, for example, alkaloids such as buphanidrine, buphanamine, and distichamine-type alkaloids have an affinity for the serotonin transporter, indicating their potential in the treatment of depression and anxiety (Neergaard et al., 2009NEERGAARD, J.S., ANDERSEN, J., PEDERSEN, M.E., STAFFORD, G.I., STADEN, J.V. and JÄGER, A.K., 2009. Alkaloids from Boophone disticha with affinity to the serotonin transporter. South African Journal of Botany, vol. 75, no. 2, pp. 371-374. http://dx.doi.org/10.1016/j.sajb.2009.02.173.
http://dx.doi.org/10.1016/j.sajb.2009.02...
).

It is worth noting that the search for new drugs for neglected tropical diseases, such as Chagas disease, is of utmost importance to public health. The limited treatment options and the high prevalence of these diseases in resource-limited settings necessitate the development of affordable and accessible therapeutics. Therefore, the exploration of H. brachyandrus alkaloids as potential anti-Chagas agents represents a promising avenue for discovering new drugs that could significantly impact global health.

It is important to highlight studies that report the perspective of using plants from this family to assess their ability to combat parasitic worms (helminths) in a laboratory setting. The plant Crinum latifolium L. demonstrated anthelmintic activity at doses of 50mg/ml, where the crude extract was able to inhibit the growth and eliminate helminths. In addition to anthelmintic activity, researchers investigated the total phenolic content of the plant. Phenolic compounds are natural antioxidants found in plants that have various health benefits, including antioxidant activity. The study also explored the cytotoxic activity of Crinum latifolium L., where it was possible to verify the substance's ability to cause damage to cells, which can have implications both in scientific research and medical applications (Aziz et al., 2014AZIZ, A., SARWAR RAJU, G., DAS, A., AHMED, J. and MOGHAL, M.M., 2014. Evaluation of in vitro anthelmintic activity, total phenolic content and cytotoxic activity of Crinum latifolium L. (Family: amaryllidaceae). Advanced Pharmaceutical Bulletin, vol. 4, no. 1, pp. 15-19. http://dx.doi.org/10.5681/apb.2014.003. PMid:24409404.
http://dx.doi.org/10.5681/apb.2014.003...
).

The potential for the application of phytopharmaceuticals in topical pharmaceutical forms has also been evaluated. In a study conducted to evaluate the healing activity of an ointment containing Crinum zeylanicum bulb extract, it was possible to obtain a satisfactory result at the end of the study because it did not present acute dermal toxicity, in addition to promoting wound retraction and epithelialization in rats, allowing the healing mechanism to be faster and better (Tijani et al., 2012TIJANI, A.Y., ADEOLA, S.O., JAIYEOBA, G.L., ADAMU, M., CHRISTIANAH, I. and CHINDO, B., 2012. Wound healing activity of Crinum zeylanicum L. (Amaryllidaceae). Phytopharmacology, vol. 3, no. 2, pp. 319-325.).

The effects of cytotoxicity have been cited in several studies, mainly due to the promising potential for combating cancer cells. In the study conducted by Masi et al. (2019)MASI, M., VAN SLAMBROUCK, S., GUNAWARDANA, S., VAN RENSBURG, M.J., JAMES, P.C., MOCHEL, J.G., HELISO, P.S., ALBALAWI, A.S., CIMMINO, A., VAN OTTERLO, W.A.L., KORNIENKO, A., GREEN, I.R. and EVIDENTE, A., 2019. Alkaloids isolated from Haemanthus humilis Jacq., an indigenous South African Amaryllidaceae: anticancer activity of coccinine and montanine. South African Journal of Botany, vol. 126, pp. 277-281. http://dx.doi.org/10.1016/j.sajb.2019.01.036.
http://dx.doi.org/10.1016/j.sajb.2019.01...
, it was possible to prove that flavonoids and coumarin derivatives are capable of exerting toxic activity for cancer cells, in addition to protecting HaCat cells against oxidative stress. The tests were conducted using HeLa and A431 cancer cell lines. N-p-coumaroyltyramine was toxic to cancer cells. Furthermore, the flavonoid derivatives showed AChE inhibition activity and the coumarin derivative showed inhibition of α-amylase and β--glucosidase, tests were conducted at concentrations up to 50 μM.

As mentioned in previous works, the neuroprotective function of plants in this family has been constantly noted, it was the objective of a study that evaluated the potential for neuroprotection in vitro in addition to antioxidant activities and cytotoxicity of Crossyne flava extract and isolated alkaloids, the result obtained showed that the extract and all compounds presented neuroprotection by attenuating ATP levels in cells and inhibiting apoptosis induced by MPP+. To determine the optimal dose of C. flava and compounds that will show neuroprotection, a cell viability assay was performed in the SH-SY5Y cells treated with 2.5, 5, and 10 µg/mL of either C. flava extract or compounds. The results show that the total extract induced a dose-dependent reduction in cell viability, which was only significant at the 5 and 10 µg/mL concentrations (Omoruyi et al., 2021aOMORUYI, S.I., DELPORT, J., KANGWA, T.S., IBRAKAW, A.S., CUPIDO, C.N., EKPO, O.E. and HUSSEIN, A.A., 2021a. In vitro neuroprotective potential of Clivia miniata and Nerine humilis (Amaryllidaceae) in MPP+-induced neuronal toxicity in SH-SY5Y neuroblastoma cells. South African Journal of Botany, vol. 136, pp. 110-117. http://dx.doi.org/10.1016/j.sajb.2020.06.028.
http://dx.doi.org/10.1016/j.sajb.2020.06...
).

In the study by Tayoub et al. (2018)TAYOUB, G., AL-ODAT, M., AMER, A., ALJAPAWE, A. and EKHTIAR, A., 2018. Antiproliferative Effects of Pancratium Maritimum Extracts on Normal and Cancerous Cells. Iranian Journal of Medical Sciences, vol. 43, no. 1, pp. 52-64. PMid:29398752. it was possible to evaluate the antiproliferative effects of Pancratium maritimum extracts on MDA-MB-321 cells Pancratium maritimum L Extracts from bulbs and leaves of Pancratium maritimum, in which the ability to inhibit the proliferation of MDA-MB- cells was identified. 321, through cell arrest in the S and G2/M phases. The extracts also affected the expression of Cyclin B1, Bcl-2 and Ki67. The IC50 values were 0.039, 0.035, and 0.026 mg/ml after 48, 72, and 96 hours of treatment with 0.1 mg/ml concentration of bulb extract, respectively. Those values were 0.051 and 0.03 mg/ml after 72 and 96 hours for root extract, respectively, and 0.048 mg/ml after 96 hours for flower extract.

A study that evaluated the cytotoxicity and antioxidant activity of whole plant extracts of Pancratium triflorum demonstrated that silver nanoparticles containing acetone extract from A. sativum bulbs showed larvicidal activity against 2nd and 3rd instar larvae of Aedes aegypti. What also enhances the promising area of combating arboviruses, in this study the larvicidal activity of A. sativum extract or green AgNPs synthesized from the extract was evaluated, each diluted in five different concentrations, 50, 100, 150, 200 and 250 ppm in distilled water (Nasir et al., 2022NASIR, S., WALTERS, K.F.A., PEREIRA, R.M., WARIS, M., ALI CHATHA, A., HAYAT, M. and BATOOL, M., 2022. Larvicidal activity of acetone extract and green synthesized silver nanoparticles from Allium sativum L.(Amaryllidaceae) against the dengue vector Aedes aegypti L.(Diptera: culicidae). Journal of Asia-Pacific Entomology, vol. 25, no. 3, pp. 101937. http://dx.doi.org/10.1016/j.aspen.2022.101937.
http://dx.doi.org/10.1016/j.aspen.2022.1...
)

3.2. Toxicology

Due to the presence of isoquinoline alkaloids with toxic activity in humans, Amaryllidaceae species, such as Boophone disticha, Clivia miniata, Crinum bulbispermum, Cotyledon orbiculta var. orbiculata and Scadoxus puniceus cause symptoms such as dizziness, hypotension, convulsion, vomiting, diarrhea, salivation, nausea, respiratory arrest, visual disturbances, central nervous system (CNS) depression, gastrointestinal disturbance, restlessness, dyspnea, loss of coordination, dry mouth, blood and water accumulation in the lungs, bleeding of the intestinal mucosa, hallucinations, and coma, all of which can lead to death (Ndhlala et al., 2013NDHLALA, A.R., NCUBE, B., OKEM, A., MULAUDZI, R.B. and VAN STADEN, J., 2013. Toxicology of some important medicinal plants in southern Africa. Food and Chemical Toxicology, vol. 62, pp. 609-621. http://dx.doi.org/10.1016/j.fct.2013.09.027. PMid:24075916.
http://dx.doi.org/10.1016/j.fct.2013.09....
).

Although their toxic effects should not be neglected, many alkaloids have potential pharmacological properties for treating various diseases. Most groups of alkaloids are known to affect signal transduction in brain neurons, either by modulating neurotransmitters, hormone receptors or their reuptake in presynaptic neurons, which characterizes them as potential drugs for treating systemic diseases (Rojas-Vera et al., 2021ROJAS-VERA, J.D.C., BUITRAGO-DÍAZ, A.A., POSSAMAI, L.M., TIMMERS, L.F.S.M., TALLINI, L.R. and BASTIDA, J., 2021. Alkaloid profile and cholinesterase inhibition activity of five species of Amaryllidaceae family collected from Mérida state-Venezuela. South African Journal of Botany, vol. 136, pp. 126-136. http://dx.doi.org/10.1016/j.sajb.2020.03.001.
http://dx.doi.org/10.1016/j.sajb.2020.03...
).

Boophone disticha, an endemic plant of the savannas, is considered extremely poisonous, although it was listed among the most medicinally traded plants in the great fairs and free trade centers worldwide. In most severe cases of intoxication, this species can cause dizziness, restlessness, impaired vision, unsteady walking, visual hallucinations, coma, and even death (Adewusi et al., 2012ADEWUSI, E.A., FOUCHE, G. and STEENKAMP, V., 2012. Cytotoxicity and acetylcholinesterase inhibitory activity of an isolated crinine alkaloid from Boophane disticha (Amaryllidaceae). Journal of Ethnopharmacology, vol. 143, no. 2, pp. 572-578. http://dx.doi.org/10.1016/j.jep.2012.07.011. PMid:22835813.
http://dx.doi.org/10.1016/j.jep.2012.07....
). By investigating the cytotoxicity and acetylcholinesterase inhibitory activity of an alkaloid crinine-type isolated from Boophane disticha, the degree of toxicity of the plant and risk to health if misused and with proper characterization processes were observed (Adewusi et al., 2012ADEWUSI, E.A., FOUCHE, G. and STEENKAMP, V., 2012. Cytotoxicity and acetylcholinesterase inhibitory activity of an isolated crinine alkaloid from Boophane disticha (Amaryllidaceae). Journal of Ethnopharmacology, vol. 143, no. 2, pp. 572-578. http://dx.doi.org/10.1016/j.jep.2012.07.011. PMid:22835813.
http://dx.doi.org/10.1016/j.jep.2012.07....
). The study used a methanolic extract from bulbs, and to assess cytotoxicity, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) assay was used. This assay is commonly employed to measure cell viability and proliferation capacity. It involves the conversion of the MTT salt into insoluble formazan by active mitochondrial enzymes in metabolically active cells (Adewusi et al., 2012ADEWUSI, E.A., FOUCHE, G. and STEENKAMP, V., 2012. Cytotoxicity and acetylcholinesterase inhibitory activity of an isolated crinine alkaloid from Boophane disticha (Amaryllidaceae). Journal of Ethnopharmacology, vol. 143, no. 2, pp. 572-578. http://dx.doi.org/10.1016/j.jep.2012.07.011. PMid:22835813.
http://dx.doi.org/10.1016/j.jep.2012.07....
).

Another clear example of the risk of poisoning is that of Scadoxus puniceus, commonly used as an aphrodisiac plant. This plant is also indicated by popular knowledge in some regions of the world, mainly Africa, as an effective plant to guarantee a safe pregnancy. However, it can provoke dizziness, visual disturbances, and CNS depression. The study was conducted using ethanol extracts, with leaves and bulbs of the plants, however the dose used was not clear (Ndhlala et al., 2013NDHLALA, A.R., NCUBE, B., OKEM, A., MULAUDZI, R.B. and VAN STADEN, J., 2013. Toxicology of some important medicinal plants in southern Africa. Food and Chemical Toxicology, vol. 62, pp. 609-621. http://dx.doi.org/10.1016/j.fct.2013.09.027. PMid:24075916.
http://dx.doi.org/10.1016/j.fct.2013.09....
).

4. Conclusion

Despite the negative characteristics of the plants identified, the significance and importance of the Amaryllidaceae plant family in the discovery of phytochemical-based drugs has been demonstrated and is a highlight for pharmacologists worldwide. The commercialization of the first drug used to treat Alzheimer's disease has been highlighted, reinforcing its pharmacological potential. In addition, several other interesting biological properties, such as antimicrobial and anti-inflammatory activities, make the Amaryllidaceae family an interesting target for drug discovery. Nevertheless, surveillance is necessary to monitor the toxicological effects of bioactive compounds in this family, the alkaloids. Thus, its medicinal potential is promising for the pharmaceutical industry.

Acknowledgements

The authors are grateful to the University of Brasilia for providing the facilities for this work. We would like to thank Editage (www.editage.com) for English language editing. The authors thank the Fundação de Apoio à Pesquisa do Distrito Federal (FAP-DF, process 00193-00002304/2022-79), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES), and Universidade de Brasília (UnB) for financial support.

References

  • ADEWUSI, E.A., FOUCHE, G. and STEENKAMP, V., 2012. Cytotoxicity and acetylcholinesterase inhibitory activity of an isolated crinine alkaloid from Boophane disticha (Amaryllidaceae). Journal of Ethnopharmacology, vol. 143, no. 2, pp. 572-578. http://dx.doi.org/10.1016/j.jep.2012.07.011 PMid:22835813.
    » http://dx.doi.org/10.1016/j.jep.2012.07.011
  • AL MAMUN, A., MAŘÍKOVÁ, J., HULCOVÁ, D., JANOUŠEK, J., ŠAFRATOVÁ, M., NOVÁKOVÁ, L., KUČERA, T., HRABINOVÁ, M., KUNEŠ, J., KORÁBEČNÝ, J. and CAHLÍKOVÁ, L., 2020. Amaryllidaceae alkaloids of belladine-type from Narcissus pseudonarcissus cv. Carlton as new selective inhibitors of butyrylcholinesterase. Biomolecules, vol. 10, no. 5, pp. 800. http://dx.doi.org/10.3390/biom10050800 PMid:32455879.
    » http://dx.doi.org/10.3390/biom10050800
  • AL SHAMMARI, L., HULCOVÁ, D., MAŘÍKOVÁ, J., KUČERA, T., ŠAFRATOVÁ, M., NOVÁKOVÁ, L., SCHMIDT, M., PULKRÁBKOVÁ, L., JANOUŠEK, J., SOUKUP, O., KUNEŠ, J., OPLETAL, L. and CAHLÍKOVÁ, L., 2021. Amaryllidaceae alkaloids from Hippeastrum X Hybridum CV. Ferrari, and preparation of vittatine derivatives as potential ligands for Alzheimer’s disease. South African Journal of Botany, vol. 136, pp. 137-146. http://dx.doi.org/10.1016/j.sajb.2020.06.024
    » http://dx.doi.org/10.1016/j.sajb.2020.06.024
  • ATTIA, E.Z., KHALIFA, M.F., FAHIM, J.R. and KAMEL, M.S., 2021. Anti-diabetic potential of mucilage from Hippeastrum vittatum bulbs in streptozotocin-induced diabetic rats. South African Journal of Botany, vol. 136, pp. 100-104. http://dx.doi.org/10.1016/j.sajb.2020.06.027
    » http://dx.doi.org/10.1016/j.sajb.2020.06.027
  • AZIZ, A., SARWAR RAJU, G., DAS, A., AHMED, J. and MOGHAL, M.M., 2014. Evaluation of in vitro anthelmintic activity, total phenolic content and cytotoxic activity of Crinum latifolium L. (Family: amaryllidaceae). Advanced Pharmaceutical Bulletin, vol. 4, no. 1, pp. 15-19. http://dx.doi.org/10.5681/apb.2014.003 PMid:24409404.
    » http://dx.doi.org/10.5681/apb.2014.003
  • BENEDEC, D., ONIGA, I., HANGANU, D., GHELDIU, A.M., PUȘCAȘ, C., SILAGHI-DUMITRESCU, R., DUMA, M., TIPERCIUC, B., VÂRBAN, R. and VLASE, L., 2018. Sources for developing new medicinal products: biochemical investigations on alcoholic extracts obtained from aerial parts of some Romanian Amaryllidaceae species. BMC Complementary and Alternative Medicine, vol. 18, no. 1, pp. 226. http://dx.doi.org/10.1186/s12906-018-2292-8 PMid:30053845.
    » http://dx.doi.org/10.1186/s12906-018-2292-8
  • BERKOV, S., PECHLIVANOVA, D., DENEV, R., NIKOLOVA, M., GEORGIEVA, L., SIDJIMOVA, B., BAKALOV, D., TAFRADJIISKA, R., STOYNEV, A., MOMEKOV, G. and BASTIDA, J., 2021. GC-MS analysis of Amaryllidaceae and Sceletium-type alkaloids in bioactive fractions from Narcissus cv. Hawera. Rapid Communications in Mass Spectrometry, vol. 35, no. 14, e9116. http://dx.doi.org/10.1002/rcm.9116 PMid:33928691.
    » http://dx.doi.org/10.1002/rcm.9116
  • BUTLER, H.C. and JOHNSON, S.D., 2022. Seed dispersal by monkey spitting in Scadoxus (Amaryllidaceae): fruit selection, dispersal distances and effects on seed germination. Austral Ecology, vol. 47, no. 5, pp. 1029-1036. http://dx.doi.org/10.1111/aec.13193
    » http://dx.doi.org/10.1111/aec.13193
  • CAHLÍKOVÁ, L., KAWANO, I., ŘEZÁČOVÁ, M., BLUNDEN, G., HULCOVÁ, D. and HAVELEK, R., 2021. The Amaryllidaceae alkaloids haemanthamine, haemanthidine and their semisynthetic derivatives as potential drugs. Phytochemistry Reviews, vol. 20, no. 1, pp. 303-323. http://dx.doi.org/10.1007/s11101-020-09675-8
    » http://dx.doi.org/10.1007/s11101-020-09675-8
  • CASTILLO, W.O., ARISTIZABAL-PACHON, A.F., SAKAMOTO-HOJO, E., GASCA, C.A., CABEZAS-FAJARDO, F.A. and TAKAHASHI, C., 2018. Caliphruria subedentata (Amaryllidaceae) decreases genotoxicity and cell death induced by β-amyloid peptide in SH-SY5Y cell line. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 836, no. Pt B, pp. 54-61. http://dx.doi.org/10.1016/j.mrgentox.2018.06.010 PMid:30442346.
    » http://dx.doi.org/10.1016/j.mrgentox.2018.06.010
  • CAVALLARO, V., ALZA, N.P., MURRAY, M.G. and MURRAY, A.P., 2014. Alkaloids from Habranthus tubispathus and H. jamesonii, two amaryllidaceae with acetyl- and butyrylcholinesterase inhibition activity. Natural Product Communications, vol. 9, no. 2, pp. 159-162. http://dx.doi.org/10.1177/1934578X1400900206 PMid:24689279.
    » http://dx.doi.org/10.1177/1934578X1400900206
  • CHEN, G.-L., TIAN, Y.Q., WU, J.L., LI, N. and GUO, M.Q., 2016. Antiproliferative activities of Amaryllidaceae alkaloids from Lycoris radiata targeting DNA topoisomerase I. Scientific Reports, vol. 6, no. 1, pp. 38284. http://dx.doi.org/10.1038/srep38284 PMid:27922057.
    » http://dx.doi.org/10.1038/srep38284
  • COLE, E.R., ANDRADE, J.P., ALLOCHIO FILHO, J.F, SCHMITT, E.F.P., ALVES-ARAÚJO, A., BASTIDA, J., ENDRINGER, D.C., BORGES, W.S. and LACERDA, V., 2019. Cytotoxic and genotoxic activities of alkaloids from the bulbs of Griffinia gardneriana and Habranthus itaobinus (Amaryllidaceae). Anti-cancer Agents in Medicinal Chemistry, vol. 19, no. 5, pp. 707-717. http://dx.doi.org/10.2174/1871520619666190118122523 PMid:30657047.
    » http://dx.doi.org/10.2174/1871520619666190118122523
  • CORTES, N., POSADA-DUQUE, R.A., ALVAREZ, R., ALZATE, F., BERKOV, S., CARDONA-GÓMEZ, G.P. and OSORIO, E., 2015. Neuroprotective activity and acetylcholinesterase inhibition of five Amaryllidaceae species: a comparative study. Life Sciences, vol. 122, pp. 42-50. http://dx.doi.org/10.1016/j.lfs.2014.12.011 PMid:25529145.
    » http://dx.doi.org/10.1016/j.lfs.2014.12.011
  • DESGAGNÉ-PENIX, I., 2021. Biosynthesis of alkaloids in Amaryllidaceae plants: a review. Phytochemistry Reviews, vol. 20, no. 2, pp. 409-431. http://dx.doi.org/10.1007/s11101-020-09678-5
    » http://dx.doi.org/10.1007/s11101-020-09678-5
  • DONALD, K.K.B., ETIENNE, E., LANDRY, K., CYRIL, D. and FELIX, Y., 2018. Evaluation of the analgesic activity of the aqueous and hydroethanolic extract from Crinum scillifolium bulbs (Amaryllidaceae). International Journal of Biochemistry Research & Review, vol. 20, no. 4, pp. 1-7. http://dx.doi.org/10.9734/IJBCRR/2017/39418
    » http://dx.doi.org/10.9734/IJBCRR/2017/39418
  • DONALD, K.K.B., LANDRY, K.S., FRANCIS, Y.A., FELIX, Y.H., MARINA, N.A.D., PATRICE, M.B.A. and SIRANSY, K.G., 2017b. Evaluation of the anticonvulsant activity of the hydroethanolic extract of Crinum scillifolium bulbs (Amaryllidaceae) in experimental animals. Adv Pharmacol Pharm, vol. 5, no. 2, pp. 25-30. http://dx.doi.org/10.13189/app.2017.050202
    » http://dx.doi.org/10.13189/app.2017.050202
  • DONALD, K.K.B., MARINA, N.T.A.D., TIMOTHÉE, O.A., LANDRY, K.S. and FELIX, Y.H., 2017a. Evaluation of the anticonvulsant activity of the aqueous extract of Crinum scillifolium bulbs (Amaryllidaceae) in experimental animals. IOSR Journal of Pharmacy and Biological Sciences, vol. 12, no. 3, pp. 35-39. http://dx.doi.org/10.9790/3008-1203043539
    » http://dx.doi.org/10.9790/3008-1203043539
  • DOSKOČIL, I., HOŠŤÁLKOVÁ, A., ŠAFRATOVÁ, M., BENEŠOVÁ, N., HAVLÍK, J., HAVELEK, R., KUNEŠ, J., KRÁLOVEC, K., CHLEBEK, J. and CAHLÍKOVÁ, L., 2015. Cytotoxic activities of Amaryllidaceae alkaloids against gastrointestinal cancer cells. Phytochemistry Letters, vol. 13, pp. 394-398. http://dx.doi.org/10.1016/j.phytol.2015.08.004
    » http://dx.doi.org/10.1016/j.phytol.2015.08.004
  • EL SAMARJI, M., YOUNES, M., EL KHOURY, M., HAYKAL, T., ELIAS, N., GASILOVA, N., MENIN, L., HOURI, A., MACHAKA-HOURI, N. and RIZK, S., 2023. Effects of Sternbergia clusiana bulb ethanolic extract on Triple-Negative and Estrogen-Dependent breast cancer cells in vitro. Plants, vol. 12, no. 3, pp. 529. http://dx.doi.org/10.3390/plants12030529 PMid:36771614.
    » http://dx.doi.org/10.3390/plants12030529
  • ERIKSSON, A.H., RØNSTED, N., GÜLER, S., JÄGER, A.K., SENDRA, J.R. and BRODIN, B., 2012. In-vitro evaluation of the P-glycoprotein interactions of a series of potentially CNS-active Amaryllidaceae alkaloids. The Journal of Pharmacy and Pharmacology, vol. 64, no. 11, pp. 1667-1677. http://dx.doi.org/10.1111/j.2042-7158.2012.01536.x PMid:23058055.
    » http://dx.doi.org/10.1111/j.2042-7158.2012.01536.x
  • GASCA, C.A., MOREIRA, N.C.S., DE ALMEIDA, F.C., DUTRA GOMES, J.V., CASTILLO, W.O., FAGG, C.W., MAGALHÃES, P.O., FONSECA-BAZZO, Y.M., SAKAMOTO-HOJO, E., DE MEDEIROS, Y.K., DE SOUZA BORGES, W. and SILVEIRA, D., 2020. Acetylcholinesterase inhibitory activity, anti-inflammatory, and neuroprotective potential of Hippeastrum psittacinum (Ker Gawl.) herb (Amaryllidaceae). Food and Chemical Toxicology, vol. 145, pp. 111703. http://dx.doi.org/10.1016/j.fct.2020.111703 PMid:32858133.
    » http://dx.doi.org/10.1016/j.fct.2020.111703
  • GOMES-COPELAND, K.K.P., MEIRELES, C.G., GOMES, J.V.D., TORRES, A.G., SINOTI, S.B.P., FONSECA-BAZZO, Y.M., MAGALHÃES, P.O., FAGG, C.W., SIMEONI, L.A. and SILVEIRA, D., 2022. Hippeastrum stapfianum (Kraenzl.) R.S.Oliveira & Dutilh (Amaryllidaceae) ethanol extract activity on acetylcholinesterase and PPAR-α/γ Receptors. Plants, vol. 11, no. 22, pp. 3179. http://dx.doi.org/10.3390/plants11223179 PMid:36432907.
    » http://dx.doi.org/10.3390/plants11223179
  • GONRING-SALARINI, K.L., CONTI, R., DE ANDRADE, J.P., BORGES, B.J., AGUIAR, A.C., DE SOUZA, J., ZANINI, C., OLIVA, G., TENORIO, J.C., ELLENA, J., BASTIDA, J., GUIDO, R. and BORGES, W., 2019. In vitro antiplasmodial activities of alkaloids isolated from roots of Worsleya procera (Lem.) Traub (Amaryllidaceae). Journal of the Brazilian Chemical Society, vol. 30, pp. 1624-1633. http://dx.doi.org/10.21577/0103-5053.20190061
    » http://dx.doi.org/10.21577/0103-5053.20190061
  • GRAND VIEW RESEARCH, 2023 [viewed 16 July 2023]. Alzheimer's therapeutics market: industry analysis & forecast [online]. Available from: https://www.grandviewresearch.com/industry-analysis/alzheimers-therapeutics-market
    » https://www.grandviewresearch.com/industry-analysis/alzheimers-therapeutics-market
  • HAVELEK, R., MUTHNA, D., TOMSIK, P., KRALOVEC, K., SEIFRTOVA, M., CAHLIKOVA, L., HOSTALKOVA, A., SAFRATOVA, M., PERWEIN, M., CERMAKOVA, E. and REZACOVA, M., 2017. Anticancer potential of Amaryllidaceae alkaloids evaluated by screening with a panel of human cells, real-time cellular analysis and Ehrlich tumor-bearing mice. Chemico-Biological Interactions, vol. 275, pp. 121-132. http://dx.doi.org/10.1016/j.cbi.2017.07.018 PMid:28756149.
    » http://dx.doi.org/10.1016/j.cbi.2017.07.018
  • HE, J., QI, W.B., WANG, L., TIAN, J., JIAO, P.R., LIU, G.Q., YE, W.C. and LIAO, M., 2013. Amaryllidaceae alkaloids inhibit nuclear-to-cytoplasmic export of ribonucleoprotein (RNP) complex of highly pathogenic avian influenza virus H5N1. Influenza and Other Respiratory Viruses, vol. 7, no. 6, pp. 922-931. http://dx.doi.org/10.1111/irv.12035 PMid:23136954.
    » http://dx.doi.org/10.1111/irv.12035
  • HULCOVÁ, D., MAŘÍKOVÁ, J., KORÁBEČNÝ, J., HOŠŤÁLKOVÁ, A., JUN, D., KUNEŠ, J., CHLEBEK, J., OPLETAL, L., DE SIMONE, A., NOVÁKOVÁ, L., ANDRISANO, V., RŮŽIČKA, A. and CAHLÍKOVÁ, L., 2019. Amaryllidaceae alkaloids from Narcissus pseudonarcissus L. cv. Dutch Master as potential drugs in treatment of Alzheimer’s disease. Phytochemistry, vol. 165, pp. 112055. http://dx.doi.org/10.1016/j.phytochem.2019.112055 PMid:31261031.
    » http://dx.doi.org/10.1016/j.phytochem.2019.112055
  • ISBILEN, O., RIZANER, N. and VOLKAN, E., 2018. Anti-proliferative and cytotoxic activities of Allium autumnale PH Davis (Amaryllidaceae) on human breast cancer cell lines MCF-7 and MDA-MB-231. BMC Complementary and Alternative Medicine, vol. 18, no. 1, pp. 30. http://dx.doi.org/10.1186/s12906-018-2105-0 PMid:29370794.
    » http://dx.doi.org/10.1186/s12906-018-2105-0
  • JARDIM BOTÂNICO DO RIO DE JANEIRO – JBRJ, 2023 [viewed 16 July 2023]. Programa REFLORA [online]. Available from: reflora.jbrj.gov.br
    » reflora.jbrj.gov.br
  • JIN, Z., 2009. Amaryllidaceae and Sceletium alkaloids. Natural Product Reports, vol. 26, no. 3, pp. 363-381. http://dx.doi.org/10.1039/b718044f PMid:19240946.
    » http://dx.doi.org/10.1039/b718044f
  • JOHNSON, M., MAHARAJA, P., JANAKIRAMAN, N., ADAIKALA RAJ, G., MENEZES, I.R.A., DA COSTA, J.G.M., VERDE, L.C.L. and COUTINHO, H.D.M., 2018. Pancratium triflorum Roxb.(Amaryllidaceae) and Molineria trichocarpa (Wight) NP Balakr (Hypoxidaceae): cytotoxic and antioxidant activities. Food and Chemical Toxicology, vol. 119, pp. 290-295. http://dx.doi.org/10.1016/j.fct.2018.02.055 PMid:29596974.
    » http://dx.doi.org/10.1016/j.fct.2018.02.055
  • KA, S., MERINDOL, N., SOW, A.A., SINGH, A., LANDELOUCI, K., PLOURDE, M.B., PÉPIN, G., MASI, M., DI LECCE, R., EVIDENTE, A., SECK, M., BERTHOUX, L., CHATEL-CHAIX, L. and DESGAGNÉ-PENIX, I., 2021. Amaryllidaceae alkaloid cherylline inhibits the replication of dengue and zika viruses. Antimicrobial Agents and Chemotherapy, vol. 65, no. 9, e0039821. http://dx.doi.org/10.1128/AAC.00398-21 PMid:34152811.
    » http://dx.doi.org/10.1128/AAC.00398-21
  • KARAKAYA, S., EKSI, G., KOCA, M., DEMIRCI, B., KAYMAK, H.C., KAPLAN, M.E. and AKSAKAL, O., 2019. Chemical and morphological characterization of Allium tuncelianum (Amaryllidaceae) and its antioxidant and anticholinesterase potentials. Anales del Jardin Botanico de Madrid, vol. 76, no. 2, e085. http://dx.doi.org/10.3989/ajbm.2523
    » http://dx.doi.org/10.3989/ajbm.2523
  • KATOCH, D. and SHARMA, U., 2019. Simultaneous quantification and identification of Amaryllidaceae alkaloids in Narcissus tazetta by ultra performance liquid chromatography-diode array detector-electrospray ionisation tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, vol. 175, pp. 112750. http://dx.doi.org/10.1016/j.jpba.2019.06.047 PMid:31330284.
    » http://dx.doi.org/10.1016/j.jpba.2019.06.047
  • KAYA, G.I., UZUN, K., BOZKURT, B., ONUR, M.A., SOMER, N.U., GLATZEL, D.K. and FÜRST, R., 2017. Chemical characterization and biological activity of an endemic Amaryllidaceae species: galanthus cilicicus. South African Journal of Botany, vol. 108, pp. 256-260. http://dx.doi.org/10.1016/j.sajb.2016.11.008
    » http://dx.doi.org/10.1016/j.sajb.2016.11.008
  • KIANFÉ, B.Y., KÜHLBORN, J., TCHUENGUEM, R.T., TCHEGNITEGNI, B.T., PONOU, B.K., GROß, J., TEPONNO, R.B., DZOYEM, J.P., OPATZ, T. and TAPONDJOU, L.A., 2020. Antimicrobial secondary metabolites from the medicinal plant Crinum glaucum A. Chev. (Amaryllidaceae). South African Journal of Botany, vol. 133, pp. 161-166. http://dx.doi.org/10.1016/j.sajb.2020.07.026
    » http://dx.doi.org/10.1016/j.sajb.2020.07.026
  • KOHELOVÁ, E., MAŘÍKOVÁ, J., KORÁBEČNÝ, J., HULCOVÁ, D., KUČERA, T., JUN, D., CHLEBEK, J., JENČO, J., ŠAFRATOVÁ, M., HRABINOVÁ, M., RITOMSKÁ, A., MALANÍK, M., PEŘINOVÁ, R., BREITEROVÁ, K., KUNEŠ, J., NOVÁKOVÁ, L., OPLETAL, L. and CAHLÍKOVÁ, L., 2021. Alkaloids of Zephyranthes citrina (Amaryllidaceae) and their implication to Alzheimer’s disease: isolation, structural elucidation and biological activity. Bioorganic Chemistry, vol. 107, pp. 104567. http://dx.doi.org/10.1016/j.bioorg.2020.104567 PMid:33387730.
    » http://dx.doi.org/10.1016/j.bioorg.2020.104567
  • KOUTOVÁ, D., MAAFI, N., HAVELEK, R., OPLETAL, L., BLUNDEN, G., ŘEZÁČOVÁ, M. and CAHLÍKOVÁ, L., 2020. Chemical and biological aspects of montanine-type alkaloids isolated from plants of the Amaryllidaceae family. Molecules, vol. 25, no. 10, pp. 2337. http://dx.doi.org/10.3390/molecules25102337 PMid:32429491.
    » http://dx.doi.org/10.3390/molecules25102337
  • LE, N.T.H., DE JONGHE, S., ERVEN, K., VERMEYEN, T., BALDÉ, A.M., HERREBOUT, W.A., NEYTS, J., PANNECOUQUE, C., PIETERS, L. and TUENTER, E., 2023. Anti-SARS-CoV-2 activity and cytotoxicity of amaryllidaceae alkaloids from Hymenocallis littoralis. Molecules, vol. 28, no. 7, pp. 3222. http://dx.doi.org/10.3390/molecules28073222 PMid:37049986.
    » http://dx.doi.org/10.3390/molecules28073222
  • MARCO, L. and DO CARMO CARREIRAS, M.C., 2006. Galanthamine, a natural product for the treatment of Alzheimer’s disease. Recent Patents on CNS Drug Discovery, vol. 1, no. 1, pp. 105-111. http://dx.doi.org/10.2174/157488906775245246 PMid:18221196.
    » http://dx.doi.org/10.2174/157488906775245246
  • MAŘÍKOVÁ, J., MAMUN, A.A., SHAMMARI, L.A., KORÁBEČNÝ, J., KUČERA, T., HULCOVÁ, D., KUNEŠ, J., MALANÍK, M., VAŠKOVÁ, M., KOHELOVÁ, E., NOVÁKOVÁ, L., CAHLÍKOVÁ, L. and POUR, M., 2021. Structure elucidation and cholinesterase inhibition activity of two new minor Amaryllidaceae alkaloids. Molecules, vol. 26, no. 5, pp. 1279. http://dx.doi.org/10.3390/molecules26051279 PMid:33652925.
    » http://dx.doi.org/10.3390/molecules26051279
  • MAROYI, A., 2016. Ethnobotanical, phytochemical and pharmacological properties of Crinum bulbispermum (Burm f) Milne-Redh and Schweick (Amaryllidaceae). Tropical Journal of Pharmaceutical Research, vol. 15, no. 11, pp. 2497-2506. http://dx.doi.org/10.4314/tjpr.v15i11.27
    » http://dx.doi.org/10.4314/tjpr.v15i11.27
  • MARTINEZ-PEINADO, N., ORTIZ, J.E., CORTES-SERRA, N., PINAZO, M.J., GASCON, J., TAPIA, A., ROITMAN, G., BASTIDA, J., FERESIN, G.E. and ALONSO-PADILLA, J., 2022. Anti-Trypanosoma cruzi activity of alkaloids isolated from Habranthus brachyandrus (Amaryllidaceae) from Argentina. Phytomedicine, vol. 101, pp. 154126. http://dx.doi.org/10.1016/j.phymed.2022.154126 PMid:35489322.
    » http://dx.doi.org/10.1016/j.phymed.2022.154126
  • MASI, M., VAN SLAMBROUCK, S., GUNAWARDANA, S., VAN RENSBURG, M.J., JAMES, P.C., MOCHEL, J.G., HELISO, P.S., ALBALAWI, A.S., CIMMINO, A., VAN OTTERLO, W.A.L., KORNIENKO, A., GREEN, I.R. and EVIDENTE, A., 2019. Alkaloids isolated from Haemanthus humilis Jacq., an indigenous South African Amaryllidaceae: anticancer activity of coccinine and montanine. South African Journal of Botany, vol. 126, pp. 277-281. http://dx.doi.org/10.1016/j.sajb.2019.01.036
    » http://dx.doi.org/10.1016/j.sajb.2019.01.036
  • MINKAH, P.A.B. and DANQUAH, C.A., 2021. Anti-infective, anti-inflammatory and antipyretic activities of the bulb extracts of Crinum jagus (J. Thomps.) Dandy (Amaryllidaceae). Sci Afr., vol. 12, e00723. http://dx.doi.org/10.1016/j.sciaf.2021.e00723
    » http://dx.doi.org/10.1016/j.sciaf.2021.e00723
  • NAIR, J.J. and VAN STADEN, J., 2013. Pharmacological and toxicological insights to the South African Amaryllidaceae. Food and Chemical Toxicology, vol. 62, pp. 262-275. http://dx.doi.org/10.1016/j.fct.2013.08.042 PMid:23994658.
    » http://dx.doi.org/10.1016/j.fct.2013.08.042
  • NAIR, J.J. and VAN STADEN, J., 2022. Pharmacological studies of Crinum, Ammocharis, Amaryllis and Cyrtanthus species of the South African Amaryllidaceae. South African Journal of Botany, vol. 147, pp. 238-244. http://dx.doi.org/10.1016/j.sajb.2021.12.021
    » http://dx.doi.org/10.1016/j.sajb.2021.12.021
  • NAPO, K.V., MOKOENA, L.E., MANGOEJANE, C., MFENGWANA, H., MASHELE, S. and SEKHOACHA, M.P., 2020. In vitro antiproliferative activity of Amaryllidaceae species against the K562 human leukaemia cell line. South African Journal of Botany, vol. 135, pp. 429-436. http://dx.doi.org/10.1016/j.sajb.2020.07.012
    » http://dx.doi.org/10.1016/j.sajb.2020.07.012
  • NASIR, S., WALTERS, K.F.A., PEREIRA, R.M., WARIS, M., ALI CHATHA, A., HAYAT, M. and BATOOL, M., 2022. Larvicidal activity of acetone extract and green synthesized silver nanoparticles from Allium sativum L.(Amaryllidaceae) against the dengue vector Aedes aegypti L.(Diptera: culicidae). Journal of Asia-Pacific Entomology, vol. 25, no. 3, pp. 101937. http://dx.doi.org/10.1016/j.aspen.2022.101937
    » http://dx.doi.org/10.1016/j.aspen.2022.101937
  • NCUBE, B., NAIR, J.J., RÁROVÁ, L., STRNAD, M., FINNIE, J.F. and VAN STADEN, J., 2015. Seasonal pharmacological properties and alkaloid content in Cyrtanthus contractus NE Br. South African Journal of Botany, vol. 97, pp. 69-76. http://dx.doi.org/10.1016/j.sajb.2014.12.005
    » http://dx.doi.org/10.1016/j.sajb.2014.12.005
  • NDHLALA, A.R., NCUBE, B., OKEM, A., MULAUDZI, R.B. and VAN STADEN, J., 2013. Toxicology of some important medicinal plants in southern Africa. Food and Chemical Toxicology, vol. 62, pp. 609-621. http://dx.doi.org/10.1016/j.fct.2013.09.027 PMid:24075916.
    » http://dx.doi.org/10.1016/j.fct.2013.09.027
  • NEERGAARD, J.S., ANDERSEN, J., PEDERSEN, M.E., STAFFORD, G.I., STADEN, J.V. and JÄGER, A.K., 2009. Alkaloids from Boophone disticha with affinity to the serotonin transporter. South African Journal of Botany, vol. 75, no. 2, pp. 371-374. http://dx.doi.org/10.1016/j.sajb.2009.02.173
    » http://dx.doi.org/10.1016/j.sajb.2009.02.173
  • OMORUYI, S.I., DELPORT, J., KANGWA, T.S., IBRAKAW, A.S., CUPIDO, C.N., EKPO, O.E. and HUSSEIN, A.A., 2021a. In vitro neuroprotective potential of Clivia miniata and Nerine humilis (Amaryllidaceae) in MPP+-induced neuronal toxicity in SH-SY5Y neuroblastoma cells. South African Journal of Botany, vol. 136, pp. 110-117. http://dx.doi.org/10.1016/j.sajb.2020.06.028
    » http://dx.doi.org/10.1016/j.sajb.2020.06.028
  • OMORUYI, S.I., IBRAKAW, A.S., EKPO, O.E., BOATWRIGHT, J.S., CUPIDO, C.N. and HUSSEIN, A.A., 2021b. Neuroprotective activities of Crossyne flava bulbs and Amaryllidaceae alkaloids: implications for Parkinson’s disease. Molecules, vol. 26, no. 13, pp. 3990. http://dx.doi.org/10.3390/molecules26133990 PMid:34208814.
    » http://dx.doi.org/10.3390/molecules26133990
  • ONISHI, Y., KAWANO, Y. and YAMAZAKI, Y., 2012. Lycorine, a candidate for the control of period length in mammalian Cells. Cellular Physiology and Biochemistry, vol. 29, no. 3-4, pp. 407-416. http://dx.doi.org/10.1159/000338495 PMid:22508048.
    » http://dx.doi.org/10.1159/000338495
  • POPULATION MATTERS, 2023 [viewed 16 July 2023]. Population matters' statement in advance of world population day 2023 [online]. Available from: https://populationmatters.org/population-matters-statement-in-advance-of-world-population-day-2023/
    » https://populationmatters.org/population-matters-statement-in-advance-of-world-population-day-2023/
  • RAHMAN, M.A., HOSSAIN, S.M.A., AHMED, N.U. and ISLAM, M.S., 2013. Analgesic and anti-inflammatory effects of Crinum asiaticum leaf alcoholic extract in animal models. African Journal of Biotechnology, vol. 12, no. 2, pp. 212-218. http://dx.doi.org/10.5897/AJB12.1431
    » http://dx.doi.org/10.5897/AJB12.1431
  • ROJAS-VERA, J.D.C., BUITRAGO-DÍAZ, A.A., POSSAMAI, L.M., TIMMERS, L.F.S.M., TALLINI, L.R. and BASTIDA, J., 2021. Alkaloid profile and cholinesterase inhibition activity of five species of Amaryllidaceae family collected from Mérida state-Venezuela. South African Journal of Botany, vol. 136, pp. 126-136. http://dx.doi.org/10.1016/j.sajb.2020.03.001
    » http://dx.doi.org/10.1016/j.sajb.2020.03.001
  • SALAS OLIVET, E., SÁNCHEZ-MILÁN, D.C., CUÉLLAR CUÉLLAR, A., MANGAS MARÍN, R., ARENCIBIA, J.A. and GARCÍA-BELTRÁN, J.A., 2020 [viewed 16 July 2023]. Estudio farmacognóstico de Hymenocallis caribaea (Amaryllidaceae). Revista del Jardín Botánico Nacional [online], vol. 41, pp. 109-117. Available from: https://www.jstor.org/stable/26975233
    » https://www.jstor.org/stable/26975233
  • SCOBEYEVA, V.A., ARTYUSHIN, I.V., KRINITSINA, A.A., NIKITIN, P.A., ANTIPIN, M.I., KUPTSOV, S.V. and SPERANSKAYA, A.S., 2021. Gene loss, pseudogenization in plastomes of genus Allium (Amaryllidaceae), and putative selection for adaptation to environmental conditions. Frontiers in Genetics, vol. 12, pp. 674783. http://dx.doi.org/10.3389/fgene.2021.674783 PMid:34306019.
    » http://dx.doi.org/10.3389/fgene.2021.674783
  • SEOPOSENGWE, K., VAN TONDER, J.J. and STEENKAMP, V., 2013. In vitro neuroprotective potential of four medicinal plants against rotenone-induced toxicity in SH-SY5Y neuroblastoma cells. BMC Complementary and Alternative Medicine, vol. 13, no. 1, pp. 353. http://dx.doi.org/10.1186/1472-6882-13-353 PMid:24330357.
    » http://dx.doi.org/10.1186/1472-6882-13-353
  • SIKDER, L., ALIM, M.I., SAIEDA, B., ISLAM, M.T., MARTORELL, M., SHARIFI-RAD, J. and KHAN, S.A., 2021. Pharmacological Activities of Crinum viviparum: A Laboratory-based Study. Journal of Herbs, Spices & Medicinal Plants, vol. 27, no. 2, pp. 177-187. http://dx.doi.org/10.1080/10496475.2021.1891177
    » http://dx.doi.org/10.1080/10496475.2021.1891177
  • SILVA, A.F., ANDRADE, J.P., BEVILAQUA, L.R.M., SOUZA, M.M., IZQUIERDO, I., HENRIQUES, A.T. and ZUANAZZI, J.A.S., 2006. Anxiolytic-, antidepressant- and anticonvulsant-like effects of the alkaloid montanine isolated from Hippeastrum vittatum. Pharmacology, Biochemistry, and Behavior, vol. 85, no. 1, pp. 148-154. http://dx.doi.org/10.1016/j.pbb.2006.07.027 PMid:16950504.
    » http://dx.doi.org/10.1016/j.pbb.2006.07.027
  • SILVA, L.C., CORREIA, A.F., GOMES, J.V.D., ROMÃO, W., MOTTA, L.C., FAGG, C.W., MAGALHÃES, P.O., SILVEIRA, D. and FONSECA-BAZZO, Y.M., 2022. Lycorine Alkaloid and Crinum americanum L. (Amaryllidaceae) extracts display antifungal activity on clinically relevant Candida species. Molecules, vol. 27, no. 9, pp. 2976. http://dx.doi.org/10.3390/molecules27092976 PMid:35566325.
    » http://dx.doi.org/10.3390/molecules27092976
  • SOBIECKI, J.F., 2002. A preliminary inventory of plants used for psychoactive purposes in southern African healing traditions. Transactions of the Royal Society of South Africa, vol. 57, no. 1-2, pp. 1-24. http://dx.doi.org/10.1080/00359190209520523
    » http://dx.doi.org/10.1080/00359190209520523
  • SOTO-VÁSQUEZ, M.R., HORNA -PINEDO, M.V., TALLINI, L.R. and BASTIDA, J., 2021. Chemical composition and in vitro antiplasmodial activity of the total alkaloids of the bulbs of two Amaryllidaceae species from Northern Peru. Pharmacognosy Journal, vol. 13, no. 4, pp. 1046-1052. http://dx.doi.org/10.5530/pj.2021.13.135
    » http://dx.doi.org/10.5530/pj.2021.13.135
  • SOTO-VÁSQUEZ, M.R., RODRÍGUEZ-MUÑOZ, C.A., TALLINI, L.R. and BASTIDA, J., 2022. Alkaloid composition and biological activities of the Amaryllidaceae Species Ismene amancaes (Ker Gawl.). Plants, vol. 11, no. 15, pp. 1906. http://dx.doi.org/10.3390/plants11151906 PMid:35893610.
    » http://dx.doi.org/10.3390/plants11151906
  • TAIWE, G.S., TCHOYA, T.B., MENANGA, J.R., DABOLE, B. and DE WAARD, M., 2016. Anticonvulsant activity of an active fraction extracted from Crinum jagus L.(Amaryllidaceae), and its possible effects on fully kindled seizures, depression-like behaviour and oxidative stress in experimental rodent models. Journal of Ethnopharmacology, vol. 194, pp. 421-433. http://dx.doi.org/10.1016/j.jep.2016.10.023 PMid:27725241.
    » http://dx.doi.org/10.1016/j.jep.2016.10.023
  • TALLINI, L.R., CARRASCO, A., ACOSTA LEÓN, K., VINUEZA, D., BASTIDA, J. and OLEAS, N.H., 2021a. Alkaloid profiling and cholinesterase inhibitory potential of Crinum × amabile Donn. (Amaryllidaceae) collected in Ecuador. Plants, vol. 10, no. 12, pp. 2686. http://dx.doi.org/10.3390/plants10122686 PMid:34961157.
    » http://dx.doi.org/10.3390/plants10122686
  • TALLINI, L.R., GIORDANI, R.B., ANDRADE, J.P., BASTIDA, J. and ZUANAZZI, J.A.S., 2021b. Structural diversity and biological potential of alkaloids from the genus Hippeastrum, Amaryllidaceae: an update. Revista Brasileira de Farmacognosia, vol. 31, no. 5, pp. 648-657. http://dx.doi.org/10.1007/s43450-021-00211-z PMid:34924642.
    » http://dx.doi.org/10.1007/s43450-021-00211-z
  • TAYOUB, G., AL-ODAT, M., AMER, A., ALJAPAWE, A. and EKHTIAR, A., 2018. Antiproliferative Effects of Pancratium Maritimum Extracts on Normal and Cancerous Cells. Iranian Journal of Medical Sciences, vol. 43, no. 1, pp. 52-64. PMid:29398752.
  • TEGEGNE, B.A., MEKURIA, A.B. and BIRRU, E.M., 2022. Evaluation of anti-diabetic and anti-hyperlipidemic activities of hydro-alcoholic crude extract of the shoot tips of Crinum abyssinicum Hochst. ex A. Rich (Amaryllidaceae) in mice. Journal of Experimental Pharmacology, vol. 14, pp. 27-41. http://dx.doi.org/10.2147/JEP.S335650 PMid:35136357.
    » http://dx.doi.org/10.2147/JEP.S335650
  • TIJANI, A.Y., ADEOLA, S.O., JAIYEOBA, G.L., ADAMU, M., CHRISTIANAH, I. and CHINDO, B., 2012. Wound healing activity of Crinum zeylanicum L. (Amaryllidaceae). Phytopharmacology, vol. 3, no. 2, pp. 319-325.
  • VOSS, C.D. and KURIAKOSE, B.B., 2014. Pharmacognostic and phytochemical evaluation of the bulbs of Hippeastrum puniceum (Lam.). International Journal of Pharmacognosy and Phytochemical Research, vol. 6, pp. 399-404.
  • WORLD FLORA ONLINE – WFO, 2023 [viewed 16 July 2023]. The World Flora Online [online]. Available from: worldfloraonline.org
    » worldfloraonline.org
  • YUAN, Q., ZHANG, X., WEI, W., ZHAO, J., WU, Y., ZHAO, S., ZHU, L., WANG, P. and HAO, J., 2022. Lycorine improves peripheral nerve function by promoting Schwann cell autophagy via AMPK pathway activation and MMP9 downregulation in diabetic peripheral neuropathy. Pharmacological Research, vol. 175, pp. 105985. http://dx.doi.org/10.1016/j.phrs.2021.105985 PMid:34863821.
    » http://dx.doi.org/10.1016/j.phrs.2021.105985
  • ZARAGOZA-PUCHOL, D., ORTIZ, J.E., ORDEN, A.A., SANCHEZ, M., PALERMO, J., TAPIA, A., BASTIDA, J. and FERESIN, G.E., 2021. Alkaloids analysis of Habranthus cardenasianus (Amaryllidaceae), anti-cholinesterase activity and biomass production by propagation strategies. Molecules, vol. 26, no. 1, pp. 192. http://dx.doi.org/10.3390/molecules26010192 PMid:33401696.
    » http://dx.doi.org/10.3390/molecules26010192

Publication Dates

  • Publication in this collection
    15 Dec 2023
  • Date of issue
    2023

History

  • Received
    29 July 2023
  • Accepted
    05 Nov 2023
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br