Acessibilidade / Reportar erro

Endophytic fungi: an overview on biotechnological and agronomic potential

Fungos endofíticos: uma visão geral sobre o potencial biotecnológico e agronômico

Abstract

Endophytic fungi colonize the inter- and/or intracellular regions of healthy plant tissues and have a close symbiotic relationship with their hosts. These microorganisms produce antibiotics, enzymes, and other bioactive compounds that enable them to survive in competitive habitats with other microorganisms. In addition, secondary metabolites confer protection to their host plant against other bacterial and fungal pathogens and/or can promote plant growth. Endophytic fungi are viewed as a promising source of bioactive natural products, which can be optimized through changes in growing conditions. The exploration of novel bioactive molecules produced by these microorganisms has been attracting attention from researchers. The chemical and functional diversity of natural products from endophytic fungi exhibits a broad spectrum of applications in medicine, agriculture, industry and the environment. Fungal endophytes can also enhance the photoprotective effects and photochemical efficiency in the host plants. Modern omic approaches have facilitated research investigating symbiotic plant-endophytic fungi interactions. Therefore, research on endophytic fungi can help discovery novel biomolecules for various biotechnological applications and develop a sustainable agriculture.

Keywords:
endophytes; bioactive compounds; photoprotection; plant growth; omic tools

Resumo

Fungos endofíticos colonizam as regiões inter e/ou intracelulares de tecidos vegetais saudáveis e possuem uma relação de simbiose com seus hospedeiros. Esses microrganismos produzem antibióticos, enzimas e outros compostos bioativos que os permitem sobreviver em habitats competitivos com outros microrganismos. Além disso, os metabólitos secundários conferem proteção à planta hospedeira contra outros patógenos bacterianos e fúngicos e/ou podem promover o crescimento vegetal. Os fungos endofíticos são considerados uma fonte promissora de produtos naturais bioativos, que podem ser otimizados por meio de mudanças nas condições de cultivo. A exploração de novas moléculas bioativas produzidas por esses microrganismos tem chamado a atenção dos pesquisadores. A diversidade química e funcional dos produtos naturais de fungos endofíticos exibe um amplo espectro de aplicações na medicina, agricultura, indústria e meio ambiente. Os fungos endofíticos também podem aumentar os efeitos fotoprotetores e a eficiência fotoquímica nas plantas hospedeiras. As abordagens ômicas modernas têm facilitado as pesquisas sobre as interações simbióticas entre plantas e fungos endofíticos. Portanto, a pesquisa sobre fungos endofíticos pode ajudar na descoberta de novas biomoléculas para diversas aplicações biotecnológicas e a desenvolver uma agricultura sustentável.

Palavras-chave:
endófitos; compostos bioativos; fotoproteção; promoção de crescimento vegetal; ferramentas ômicas

1. Introduction

The term endophyte was first defined by Bary (1866)BARY, A., 1866. Morphologie und physiologie der pilze, flechten und myxomyceten. Leipzig: Wilhelm Engelmann, 316 p. as any organism that grows within plant tissues. Endophytes were defined as asymptomatic microorganisms living inside plants (Carroll, 1986CARROLL, G., 1986. The biology of endophytism in plants with particular reference to woody perennials. In: N.J. FOKKEMA and J. VAN DEN HEUVEK, eds. Microbiology of the phyllosphere. Cambridge: Cambridge University Press, pp. 205-222.) and microorganisms that inhabit internal plant tissues and organs at part of their life without causing apparent harm to the host plant (Petrini, 1991PETRINI, O., 1991. Fungal endophytes of tree leaves. In: J.H. ANDREWS and S.S. HIRANO, eds. Microbial ecology of leaves. New York: Springer, pp. 179-197. http://dx.doi.org/10.1007/978-1-4612-3168-4_9.
http://dx.doi.org/10.1007/978-1-4612-316...
). Over the decades, the concept of endophytes has been revised (Hallmann et al., 1997HALLMANN, J., QUADT-HALLMANN, A., MAHAFFEE, W.F. and KLOEPPER, J.W., 1997. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, vol. 43, no. 10, pp. 895-914. http://dx.doi.org/10.1139/m97-131.
http://dx.doi.org/10.1139/m97-131...
; Hardoim et al., 2015HARDOIM, P.R., VAN OVERBEEK, L.S., BERG, G., PIRTTILÄ, A.M., COMPANT, S., CAMPISANO, A., DÖRING, M. and SESSITSCH, A., 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, vol. 79, no. 3, pp. 293-320. http://dx.doi.org/10.1128/MMBR.00050-14. PMid:26136581.
http://dx.doi.org/10.1128/MMBR.00050-14...
).

There are numerous reports on the presence of endophytic fungi inhabiting a diverse group of plant species (Rajamanikyam et al., 2017RAJAMANIKYAM, M., VADLAPUDI, V., AMANCHY, R. and UPADHYAYULA, S.M., 2017. Endophytic fungi as novel resources of natural therapeutics. Brazilian Archives of Biology and Technology, vol. 60, no. 0, p. e17160542. http://dx.doi.org/10.1590/1678-4324-2017160542.
http://dx.doi.org/10.1590/1678-4324-2017...
; Souza and Santos, 2017SOUZA, B.S. and SANTOS, T.T., 2017. Endophytic fungi in economically important plants: ecological aspects, diversity and potential biotechnological applications. Journal of Bioenergy and Food Science, vol. 4, no. 2, pp. 113-126. http://dx.doi.org/10.18067/jbfs.v4i2.121.
http://dx.doi.org/10.18067/jbfs.v4i2.121...
; Toghueo and Boyom, 2019TOGHUEO, R.M.K. and BOYOM, F.F., 2019. Endophytic fungi from Terminalia species: a comprehensive review. Journal of Fungi, vol. 5, no. 2, p. 43. http://dx.doi.org/10.3390/jof5020043. PMid:31137730.
http://dx.doi.org/10.3390/jof5020043...
). These microorganisms can be isolated from surface-disinfected plant tissues or extracted from the inner parts of plants (Hallmann et al., 1997HALLMANN, J., QUADT-HALLMANN, A., MAHAFFEE, W.F. and KLOEPPER, J.W., 1997. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, vol. 43, no. 10, pp. 895-914. http://dx.doi.org/10.1139/m97-131.
http://dx.doi.org/10.1139/m97-131...
).

Endophytic fungi are a rich source of bioactive compounds such as antimicrobial agents, hormones (e.g., auxin, gibberellins), and hydrolytic enzymes (e.g., cellulases, proteases, chitinases) important for the survival and maintenance of endophytes in plants and for host plant health and tolerance to stressful environments (Eid et al., 2019EID, A.M., SALIM, S.S., HASSAN, S.D., ISMAIL, M.A. and FOUDA, A., 2019. Role of endophytes in plant health and abiotic stress management. In: V. KUMAR, R. PRASAD, M. KUMAR and D.K. CHOUDHARY, eds. Microbiome in plant health and disease: challenges and opportunities. Singapore: Springer, pp. 119-144. http://dx.doi.org/10.1007/978-981-13-8495-0_6.
http://dx.doi.org/10.1007/978-981-13-849...
). These metabolites have great potential for numerous biotechnological applications (Rana et al., 2019RANA, K.L., KOUR, K.L., SHEIKH, I., DHIMAN, A., YADAV, N., YADAV, A.N., RASTEGARI, A.A., SINGH, K. and SAXENA, A.K., 2019. Endophytic fungi: biodiversity, ecology significance, and potential industrial applications. In: A. YADAV, S. MISHRA, S. SINGH and A. GUPTA, eds. Recent advancement in white biotechnology through fungi. Cham: Springer, vol. 1, pp. 1-62. http://dx.doi.org/10.1007/978-3-030-10480-1_1.
http://dx.doi.org/10.1007/978-3-030-1048...
; Rustamova et al., 2020RUSTAMOVA, N., BOZOROV, K., EFFERTH, T. and YILI, A., 2020. Novel secondary metabolites from endophytic fungi: synthesis and biological properties. Phytochemistry Reviews, vol. 19, no. 2, pp. 425-448. http://dx.doi.org/10.1007/s11101-020-09672-x.
http://dx.doi.org/10.1007/s11101-020-096...
). In this review, we describe the benefits of endophytic fungi for their host plants, the potential of these microorganisms for the production of natural products with a broad spectrum of biological activities, and the importance of omic tools for better understanding symbiotic interactions to improve plant health.

2. Endophytic Fungi as a Source of Natural Bioactive Metabolites

Endophytic fungi are considered microbial biofactors for the production of new bioactive products with a high degree of biological and structural diversity (Gupta and Shukla, 2020GUPTA, M. and SHUKLA, K.K., 2020. Endophytic fungi: a treasure trove of novel bioactive compounds. In: J. SINGH, V. MESHRAM and M. GUPTA, eds. Bioactive natural products in drug discovery. Singapore: Springer, pp. 427-449.). After the discovery of paclitaxel (or Taxol), a potent anticancer drug produced by Taxomyces andreanae associated with Taxus brevifolia (Stierle et al., 1993STIERLE, A., STROBEL, G.A. and STIERLE, D., 1993. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, vol. 260, no. 5105, pp. 214-216. http://dx.doi.org/10.1126/science.8097061. PMid:8097061.
http://dx.doi.org/10.1126/science.809706...
), many researchers reported on Taxol-producing endophytic fungi from different host plants (Naik, 2019aNAIK, B.S., 2019a. Developments in taxol production through endophytic fungal biotechnology: a review. Oriental Pharmacy and Experimental Medicine, vol. 19, no. 1, pp. 1-13. http://dx.doi.org/10.1007/s13596-018-0352-8.
http://dx.doi.org/10.1007/s13596-018-035...
). Although endophytes can synthesize the same or similar plant-derived secondary metabolites, how and why these secondary metabolites occur is still not clear. Some studies suggest that molecular mechanisms could have arisen through the coevolution of endophytes with plant hosts during the establishment of symbiotic relationships (Tan and Zou, 2001TAN, R.X. and ZOU, W.X., 2001. Endophytes: a rich source of functional metabolites. Natural Product Reports, vol. 18, no. 4, pp. 448-459. http://dx.doi.org/10.1039/b100918o. PMid:11548053.
http://dx.doi.org/10.1039/b100918o...
; Naik et al., 2019NAIK, S., SHAANKER, R.U., RAVIKANTH, G. and DAYANANDAN, S., 2019. How and why do endophytes produce plant secondary metabolites? Symbiosis, vol. 78, no. 3, pp. 193-201. http://dx.doi.org/10.1007/s13199-019-00614-6.
http://dx.doi.org/10.1007/s13199-019-006...
).

The synthesis of bioactive compounds by endophytic fungi can be regulated according to environmental changes and specific needs during the developmental stages of fungal culture (Aly et al., 2010ALY, A.H., DEBBAB, A., KJER, J. and PROKSCH, P., 2010. Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Diversity, vol. 41, no. 1, pp. 1-16. http://dx.doi.org/10.1007/s13225-010-0034-4.
http://dx.doi.org/10.1007/s13225-010-003...
). Changes in culture parameters (e.g., medium composition, temperature, pH, light) can affect the metabolic profile of endophytic fungi (Morales-Sánchez et al., 2020MORALES-SÁNCHEZ, V., ANDRÉS, M.F., DÍAZ, C.E. and GONZÁLEZ-COLOMA, A., 2020. Factors affecting the metabolite productions in endophytes: biotechnological approaches for production of metabolites. Current Medicinal Chemistry, vol. 27, no. 11, pp. 1855-1873. http://dx.doi.org/10.2174/0929867326666190626154421. PMid:31241432.
http://dx.doi.org/10.2174/09298673266661...
). This strategy, called “One Strain Many Compounds” (OSMAC), has been considered efficient for the discovery of new natural substances from fungal endophytes (Supratman et al., 2021SUPRATMAN, U., SUZUKI, T., NAKAMURA, T., YOKOYAMA, Y., HARNETI, D., MAHARANI, R., SALAM, S., ABDULLAH, F.F., KOSEKI, T. and SHIONO, Y., 2021. New metabolites produced by endophyte Clonostachys rosea B5-2. Natural Product Research, vol. 35, no. 9, pp. 1525-1531. http://dx.doi.org/10.1080/14786419.2019.1656629. PMid:31450988.
http://dx.doi.org/10.1080/14786419.2019....
; Chen et al., 2020CHEN, H.-L., ZHAO, W.-T., LIU, Q.-P., CHEN, H.-Y., ZHAO, W., YANG, D.-F. and YANG, X.-L., 2020. (±)-Preisomide: a new alkaloid featuring a rare naturally occurring tetrahydro-2H-1,2-oxazin skeleton from an endophytic fungus Preussia isomera by using OSMAC strategy. Fitoterapia, vol. 141, p. 104475. http://dx.doi.org/10.1016/j.fitote.2020.104475. PMid:31927014.
http://dx.doi.org/10.1016/j.fitote.2020....
). Coculture has also been recognized as an efficient strategy to explore the chemical diversity of endophytic fungi (Ebrahim et al., 2016EBRAHIM, W., EL-NEKETI, M., LEWALD, L.-I., ORFALI, R.S., LIN, W., REHBERG, N., KALSCHEUER, R., DALETOS, G. and PROKSCH, P., 2016. Metabolites from the fungal endophyte Aspergillus austroafricanus in axenic culture and in fungal–bacterial mixed cultures. Journal of Natural Products, vol. 79, no. 4, pp. 914-922. http://dx.doi.org/10.1021/acs.jnatprod.5b00975. PMid:27070198.
http://dx.doi.org/10.1021/acs.jnatprod.5...
; Zhang et al., 2017ZHANG, L., NIAZ, S.I., KHAN, D., WANG, Z., ZHU, Y., ZHOU, H., LIN, Y., LI, J. and LIU, L., 2017. Induction of diverse bioactive secondary metabolites from the mangrove endophytic fungus Trichoderma sp. (Strain 307) by co-cultivation with Acinetobacter johnsonii (Strain B2). Marine Drugs, vol. 15, no. 2, p. 35. http://dx.doi.org/10.3390/md15020035. PMid:28208607.
http://dx.doi.org/10.3390/md15020035...
) because it can simulate a competitive natural environment (e.g., space, nutrients) of two or even more microorganisms and activate the expression of silent gene clusters under standard laboratory growth conditions (Deepika et al., 2016DEEPIKA, V.B., MURALI, T.S. and SATYAMOORTHY, K., 2016. Modulation of genetic clusters for synthesis of bioactive molecules in fungal endophytes: a review. Microbiological Research, vol. 182, pp. 125-140. http://dx.doi.org/10.1016/j.micres.2015.10.009. PMid:26686621.
http://dx.doi.org/10.1016/j.micres.2015....
).

In the face of growing microbial resistance worldwide, the discovery of novel antimicrobials is of great importance (Aslam et al., 2018ASLAM, B., WANG, W., ARSHAD, M.I., KHURSHID, M., MUZAMMIL, S., RASOOL, M.H., NISAR, M.A., ALVI, F.R., ASLAM, M.A., QAMAR, M.U., SALAMAT, M.K.F. and BALOCH, Z., 2018. Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance, vol. 11, pp. 1645-1658. http://dx.doi.org/10.2147/IDR.S173867. PMid:30349322.
http://dx.doi.org/10.2147/IDR.S173867...
). The Diaporthe genus has been described as an important source of antimicrobials. Antibacterial 3-hydroxypropionic acid (3-HPA) produced by the endophyte Diaphorte phaseolorum isolated from Brazilian mangroves showed in vitro activity against both Staphylococcus aureus and Salmonella typhi (Sebastianes et al., 2012SEBASTIANES, F.L.S., CABEDO, N., AOUAD, N., VALENTE, A.M., LACAVA, P.T., AZEVEDO, J.L., PIZZIRANI-KLEINER, A.A. and CORTES, D., 2012. 3- Hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum. Current Microbiology, vol. 65, no. 5, pp. 622-632. http://dx.doi.org/10.1007/s00284-012-0206-4. PMid:22886401.
http://dx.doi.org/10.1007/s00284-012-020...
). In another study, the crude extract obtained from Diaphorte sp. 94 (4) strain isolated from Avicennia nitida (Sebastianes et al., 2013SEBASTIANES, F.L.S., ROMÃO-DUMARESQ, A.S., LACAVA, P.T., HARAKAVA, R., AZEVEDO, J.L., MELO, I.S. and PIZZINARI-KLEINER, A.A., 2013. Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Current Genetics, vol. 59, no. 3, pp. 153-166. http://dx.doi.org/10.1007/s00294-013-0396-8. PMid:23832271.
http://dx.doi.org/10.1007/s00294-013-039...
) showed in vitro activity against the human pathogens Escherichia coli (ATCC 25922), S. enteritidis (ATCC 19196), S. aureus (ATCC 6538), and Candida albicans (ATCC 10231) (Moreira et al., 2020MOREIRA, C.C., LUNA, G.L.F., SORIANO, B., CAVICCHIOLI, R., BOGAS, A.C., SOUSA, C.P., ANIBAL, F.F. and LACAVA, P.T., 2020. Leishmanicidal, cytotoxic, antimicrobial and enzymatic activities of Diaporthe species, a mangrove-isolated endophytic fungus. African Journal of Microbiological Research, vol. 14, no. 9, pp. 516-524. http://dx.doi.org/10.5897/AJMR2020.9397.
http://dx.doi.org/10.5897/AJMR2020.9397...
).

Nonantimicrobial therapeutic agents have also been obtained from endophytic fungi. Dhankhar et al. (2013)DHANKHAR, S., DHANKHAR, S. and YADAV, J.P., 2013. Investigations towards new antidiabetic drugs from fungal endophytes associated with Salvadora oleoides Decne. Medicinal Chemistry, vol. 9, no. 4, pp. 624-632. http://dx.doi.org/10.2174/1573406411309040017. PMid:22946533.
http://dx.doi.org/10.2174/15734064113090...
evaluated the activity of extracts obtained from mycelia of fungal endophytes associated with Salvadora oleoides Decne to investigate new antidiabetic drugs. Aqueous extract from unidentified fungi, methanolic extract from Aspergillus sp. JPY2 and JPY1 and acetone extract from Phoma sp. significantly reduced blood glucose levels. Aqueous extracts showed improvement in parameters such as body weight and lipid profile of alloxan-induced diabetic rats. Lethal effects on the animal were not observed up to doses of 1000 mg/kg b.w. Caicedo et al. (2019)CAICEDO, N.H., DAVALOS, A.F., PUENTE, P.A., RODRÍGUEZ, A.Y. and CAICEDO, P.A., 2019. Antioxidant activity of exo-metabolites produced by Fusarium oxysporum: an endophytic fungus isolated from leaves of Otoba gracilipes. MicrobiologyOpen, vol. 8, no. 10, p. e903. http://dx.doi.org/10.1002/mbo3.903. PMid:31297981.
http://dx.doi.org/10.1002/mbo3.903...
used a 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) free radical scavenging assay and verified the high antioxidant activity of exopolysaccharides present in crude extracts of the endophytic fungus Fusarium oxysporum isolated from the tropical medicinal plant Otoba gracilipes.Moreira et al. (2020)MOREIRA, C.C., LUNA, G.L.F., SORIANO, B., CAVICCHIOLI, R., BOGAS, A.C., SOUSA, C.P., ANIBAL, F.F. and LACAVA, P.T., 2020. Leishmanicidal, cytotoxic, antimicrobial and enzymatic activities of Diaporthe species, a mangrove-isolated endophytic fungus. African Journal of Microbiological Research, vol. 14, no. 9, pp. 516-524. http://dx.doi.org/10.5897/AJMR2020.9397.
http://dx.doi.org/10.5897/AJMR2020.9397...
showed the antiparasitic activity of crude extracts obtained from the endophyte Diaphorte sp. 94(4) against the promastigote form of Leishmania infantum chagasi (MHOM/BR/1972/LD).

Bioactive compounds produced by endophytic fungi also have great importance in the improvement of crop productivity and quality of foods, contributing to sustainable agriculture (Lugtenberg et al., 2016LUGTENBERG, B.J.J., CARADUS, J.R. and JOHNSON, L.J., 2016. Fungal endophytes for sustainable crop production. FEMS Microbiology Ecology, vol. 92, no. 12, p. fiw194. http://dx.doi.org/10.1093/femsec/fiw194. PMid:27624083.
http://dx.doi.org/10.1093/femsec/fiw194...
). In this way, plant protection and growth can be achieved in different ways. For example, Aspergillus niger CSR3 was able to regulate endogenous rice seedlings by producing gibberellins and indoleacetic acid, promoting plant growth. The endophyte also solubilized phosphate and produced siderophores in culture, evidencing its potential as a biofertilizer and suppressor of plant diseases (Lubna et al., 2018LUBNA, ASAF, S., HAMAYUN, M., GUL, H., LEE, I.-J. and HUSSAIN, A., 2018. Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indoleacetic acid. Journal of Plant Interactions, vol. 13, no. 1, pp. 100-111. http://dx.doi.org/10.1080/17429145.2018.1436199.
http://dx.doi.org/10.1080/17429145.2018....
). Cytochalasins H and J produced by the endophytes Diaphorte miriciae UFMGCB 7719 and 6350, associated with the tropical medicinal plants Copaifera pubiflora and Melocactus ernestii, exhibited activities against Phomopsis obscurans and Phomopsis viticola. These results demonstrated the potential of Diaphorte species for controlling fungal diseases in plants (Carvalho et al., 2018CARVALHO, C.R., FERREIRA-D’SILVA, A., WEDGE, D.E., CANTRELL, C.L. and ROSA, L.H., 2018. Antifungal activities of cytochalasins produced by Diaporthe miriciae, an endophytic fungus associated with tropical medicinal plants. Canadian Journal of Microbiology, vol. 64, no. 11, pp. 835-843. http://dx.doi.org/10.1139/cjm-2018-0131. PMid:29874477.
http://dx.doi.org/10.1139/cjm-2018-0131...
). Metabolomic analysis of organic extracts obtained from the liquid culture of Talaromyces pinophilus strain F36CF revealed the presence of the bioactive metabolite siderophore ferrirubin and antibiotic 3-O-methylfunicone. The first was involved in iron transportation and antibiotic activity, and the latter displayed insecticidal activity on aphids (Vinale et al., 2017VINALE, F., NICOLETTI, R., LACATENA, F., MARRA, R., SACCO, A., LOMBARDI, N., D’ERRICO, G., DIGILIO, M.C., LORITO, M. and WOO, S.L., 2017. Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Natural Product Research, vol. 31, no. 15, pp. 1778-1785. http://dx.doi.org/10.1080/14786419.2017.1290624. PMid:28278635.
http://dx.doi.org/10.1080/14786419.2017....
).

3. Endophytic Fungi as Sources of Hydrolytic Enzymes

Endophytic fungi produce lytic enzymes such as cellulases, pectinases, amylases, phosphatases, lipases and proteases (Mishra et al., 2019MISHRA, R., KUSHVEER, J.S., REVANTHBABU, P. and SARMA, V.V., 2019. Endophytic fungi and their enzymatic potential. In: B. SINGH, ed. Advances in endopthytic fungal research: present status and future challenges. Cham: Springer, pp. 283-337. http://dx.doi.org/10.1007/978-3-030-03589-1_14.
http://dx.doi.org/10.1007/978-3-030-0358...
), which help endophytes establish symbiotic associations with host plants (Hallmann et al., 1997HALLMANN, J., QUADT-HALLMANN, A., MAHAFFEE, W.F. and KLOEPPER, J.W., 1997. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, vol. 43, no. 10, pp. 895-914. http://dx.doi.org/10.1139/m97-131.
http://dx.doi.org/10.1139/m97-131...
) and suppress plant pathogen activities (Gao et al., 2010GAO, F.-K., DAI, C.-C. and LIU, X.-Z., 2010. Mechanisms of fungal endophytes in plant protection against pathogens. African Journal of Microbiological Research, vol. 4, no. 13, pp. 1346-1351.). These associations have encouraged us to investigate and select endophytic fungi to explore their potential enzymatic activity for applications in agriculture. Recently, Rajini et al. (2020)RAJINI, S.B., NANDHINI, M., UDAYASHANKAR, A.C., NIRANJANA, S.R., LUND, O.S. and PRAKASH, H.S., 2020. Diversity, plant growth promoting traits and biocontrol potential of fungal endophytes of Sorghum bicolor. Plant Pathology, vol. 69, no. 4, pp. 642-654. http://dx.doi.org/10.1111/ppa.13151.
http://dx.doi.org/10.1111/ppa.13151...
established cellulase production as one of the traits of endophytes Trichoderma asperellum, Epicoccum nigrum and Alternaria longipes involved in Sorghum bicolor colonization and in vitro inhibition growth of Fusarium thapsinum, Epicoccum sorghinum, Alternaria alternata and Curvularia lunata by hydrolysis of the cell wall. Moreira et al. (2020)MOREIRA, C.C., LUNA, G.L.F., SORIANO, B., CAVICCHIOLI, R., BOGAS, A.C., SOUSA, C.P., ANIBAL, F.F. and LACAVA, P.T., 2020. Leishmanicidal, cytotoxic, antimicrobial and enzymatic activities of Diaporthe species, a mangrove-isolated endophytic fungus. African Journal of Microbiological Research, vol. 14, no. 9, pp. 516-524. http://dx.doi.org/10.5897/AJMR2020.9397.
http://dx.doi.org/10.5897/AJMR2020.9397...
studied the endophyte Diaphorte sp. FS-94(4) and attributed the production of celullase in this strain as one of the traits related to in vitro inhibition growth of phytopathogens Colletotrichum sp., Fusarium oxysporum, Phythophthora sojae and Rhizopus microspores.

Lytic enzymes produced by fungal endophytes are frequently more stable than enzymes produced by traditional chemical catalysts and often function under moderate pH, temperature, and pressure conditions (Tiwari, 2015TIWARI, K., 2015. The future products: endophytic fungal metabolites. Journal of Biodiversity, Bioprospection and Development, vol. 2, no. 1, p. 1000145.). These factors also make these enzymes promising for numerous industrial processes, including food processing, detergent manufacturing, paper recycling, treatment of plant fibers for textile application, and energy and biofuel production (Rana et al., 2019RANA, K.L., KOUR, K.L., SHEIKH, I., DHIMAN, A., YADAV, N., YADAV, A.N., RASTEGARI, A.A., SINGH, K. and SAXENA, A.K., 2019. Endophytic fungi: biodiversity, ecology significance, and potential industrial applications. In: A. YADAV, S. MISHRA, S. SINGH and A. GUPTA, eds. Recent advancement in white biotechnology through fungi. Cham: Springer, vol. 1, pp. 1-62. http://dx.doi.org/10.1007/978-3-030-10480-1_1.
http://dx.doi.org/10.1007/978-3-030-1048...
; Naik, 2019cNAIK, B.S., 2019c. Potential roles for endophytic fungi in biotechnological processes: a review. In: M. OZTURK and K. HAKEEM, eds. Plant human and health. Cham: Springer, vol. 2, pp. 327-344.). Sunitha et al. (2012)SUNITHA, V.H., RAMESHA, A., SAVITHA, J. and SRINIVAS, C., 2012. Amylase production by endophytic fungi Cylindrocephalum sp. isolated from medicinal plant Alpinia calcarata (Haw.) Roscoe. Brazilian Journal of Microbiology, vol. 43, no. 3, pp. 1213-1221. http://dx.doi.org/10.1590/S1517-83822012000300049. PMid:24031946.
http://dx.doi.org/10.1590/S1517-83822012...
evaluated the ability of endophytic fungi from the medicinal plant Alpinia calcarata (Haw.) Roscoe to produce amylase and standardized the maximum enzyme production conditions. The fungus Cylindrocephalum sp. (Ac-7) showed the highest amylolytic activity in growth media containing maltose at 1.5% and sodium nitrate at 0.3% as carbon and nitrogen sources, respectively, at 30°C and pH 7.0. The optimization of fungal amylase production can be useful for starch processing for the food, detergent and textile industries (Souza and Magalhães, 2010SOUZA, P.T. and MAGALHÃES, P.O., 2010. Application of microbial α-amylase in industry – a review. Brazilian Journal of Microbiology, vol. 41, no. 4, pp. 850-861. http://dx.doi.org/10.1590/S1517-83822010000400004. PMid:24031565.
http://dx.doi.org/10.1590/S1517-83822010...
). Zaferanloo et al. (2014)ZAFERANLOO, B., QUANG, T.D., DAUMOO, S., GHORBANI, M.M., MAHON, P.J. and PALOMBO, E.A., 2014. Optimization of protease production by endophytic fungus, Alternaria alternata, isolated from an Australian native plant. World Journal of Microbiology & Biotechnology, vol. 30, no. 6, pp. 1755-1762. http://dx.doi.org/10.1007/s11274-014-1598-z. PMid:24419660.
http://dx.doi.org/10.1007/s11274-014-159...
optimized protease production by the endophyte Alternaria alternata (El-17) isolated from Eremophilia longifolia. Overall, the optimum conditions for fermentation were 30°C and pH 7.0, with soybeans as the carbon source and tryptophan or yeast extract as the nitrogen source. The authors suggested the potential use of A. alternata as a source of proteases for application in the dairy industry.

No less important is the potential of enzymes secreted by fungal endophytes as an alternative in treating wastes and degrading pollutants (Mishra and Sarma, 2017MISHRA, R. and SARMA, V.V., 2017. Mycoremediation of heavy metal and hydrocarbon pollutants by endophytic fungi. In: R. PRASAD, ed. Mycoremediation and environmental sustainability. Berlin: Springer, vol. 1, pp. 133-151. http://dx.doi.org/10.1007/978-3-319-68957-9_8.
http://dx.doi.org/10.1007/978-3-319-6895...
), contributing to more eco-friendly and sustainable environments. Extracelullar ligninolytic activities in endophytic Ceratobasidum stevensii isolated from Bischofia polycarpa were demonstrated by Dai et al. (2010)DAI, C.-C., TIAN, L.-S., ZHAO, Y.-T., CHEN, Y. and XIE, H., 2010. Degradation of phenanthrene by the endophytic fungus Ceratobasidum stevensii found in Bischofia polycarpa. Biodegradation, vol. 21, no. 2, pp. 245-255. http://dx.doi.org/10.1007/s10532-009-9297-4. PMid:19882108.
http://dx.doi.org/10.1007/s10532-009-929...
. The data showed that manganese peroxidase was the predominant ligninolytic enzyme in polycyclic aromatic hydrocarbon degradation. Russell et al. (2011)RUSSELL, J.R., HUANG, J., ANAND, P., KUCERA, K., SANDOVAL, A.G., DANTZLER, K.W., HICKMAN, D., JEE, J., KIMOVEC, F.M., KOPPSTEIN, D., MARKS, D.H., MITTERMILLER, P.A., NÚÑEZ, S.J., SANTIAGO, M., TOWNES, M.A., VISHNEVETSKY, M., WILLIAMS, N.E., VARGAS, M.P.N., BOULANGER, L.-A., BASCOM-SLACK, C. and STROBEL, S.A., 2011. Biodegradation of polyester polyurethane by endophytic fungi. Applied and Environmental Microbiology, vol. 77, no. 17, pp. 6076-6084. http://dx.doi.org/10.1128/AEM.00521-11. PMid:21764951.
http://dx.doi.org/10.1128/AEM.00521-11...
demonstrated the ability of two endophytic Pestalotiopsis microrspora isolates from woody plants to produce serine hydrolases and degrade the polymer polyester polyurethane. In another study, Xie and Dai (2015)XIE, X.-G. and DAI, C.-C., 2015. Degradation of a model pollutant ferulic acid by the endophytic fungus Phomopsis liquidambari. Bioresource Technology, vol. 179, pp. 35-42. http://dx.doi.org/10.1016/j.biortech.2014.11.112. PMid:25514400.
http://dx.doi.org/10.1016/j.biortech.201...
demonstrated the potential of endophytic Phomopsis liquidambari for the degradation of methoxyphenolic and ferulic acid pollutants through the production of ferulic acid descarboxilase, laccase and protocatechuate 3,4-dioxygenase.

4. Endophytic Fungi and Weed Control

Agrochemicals are widely used to eradicate plant diseases and control specific plants or animals, which consequently promotes an improvement in crop yield, quality, and shelf life (Omomowo and Babalola, 2019OMOMOWO, O.I. and BABALOLA, O.O., 2019. Bacterial and fungal endophytes: tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms, vol. 7, no. 11, p. 481. http://dx.doi.org/10.3390/microorganisms7110481. PMid:31652843.
http://dx.doi.org/10.3390/microorganisms...
). However, such agents have drawn considerable attention concerning issues related to sustainability as well as negative repercussions on the environment and human health (Cullen et al., 2019CULLEN, M.G., THOMPSON, L.J., CAROLAN, J.C., STOUT, J.C. and STANLEY, D.A., 2019. Fungicides, herbicides and bees: a systematic review of existing research and methods. PLoS One, vol. 14, no. 12, p. e0225743. http://dx.doi.org/10.1371/journal.pone.0225743. PMid:31821341.
http://dx.doi.org/10.1371/journal.pone.0...
), and changes in environmental conditions induced by the application of these products are reported to affect the microbial community (Suryanarayanan, 2019SURYANARAYANAN, T.S., 2019. Endophytes and weed management: a commentary. Plant Physiology Reports, vol. 24, no. 4, pp. 576-579. http://dx.doi.org/10.1007/s40502-019-00488-2.
http://dx.doi.org/10.1007/s40502-019-004...
).

Competition for nutrition between the crop and weeds might cause severe losses in agricultural systems, representing an economic problem (Harding and Raizada, 2015HARDING, D.P. and RAIZADA, M.N., 2015. Controlling weeds with fungi, bacteria and viruses: a review. Frontiers in Plant Science, vol. 6, p. 659. http://dx.doi.org/10.3389/fpls.2015.00659. PMid:26379687.
http://dx.doi.org/10.3389/fpls.2015.0065...
). However, modern agriculture is entirely dependent on the widespread use of herbicides, which leads to the emergence of multiple resistance to these agents (Peterson et al., 2018PETERSON, M.A., COLLAVO, A., OVEJERO, R., SHIVRAIN, V. and WALSH, M.J., 2018. The challenge of herbicide resistance around the world: a current summary. Pest Management Science, vol. 74, no. 10, pp. 2246-2259. http://dx.doi.org/10.1002/ps.4821. PMid:29222931.
http://dx.doi.org/10.1002/ps.4821...
). However, bioherbicides are ecofriendly compounds naturally produced by living organisms or their natural metabolites that are used to control weed populations (Radhakrishnan et al., 2018RADHAKRISHNAN, R., ALQARAWI, A.A. and ABD-ALLAH, E.F., 2018. Bioherbicides: current knowledge on weed control mechanism. Ecotoxicology and Environmental Safety, vol. 158, pp. 131-138. http://dx.doi.org/10.1016/j.ecoenv.2018.04.018. PMid:29677595.
http://dx.doi.org/10.1016/j.ecoenv.2018....
). These phytotoxins are secondary metabolites that play an important role in the induction of disease symptoms in agrarian and forest plants and weeds (Cimmino et al., 2015CIMMINO, A., MASI, M., EVIDENTE, M., SUPERCHI, S. and EVIDENTE, A., 2015. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization. Natural Product Reports, vol. 32, no. 12, pp. 1629-1653. http://dx.doi.org/10.1039/C5NP00081E. PMid:26443032.
http://dx.doi.org/10.1039/C5NP00081E...
).

Cytochalasins are a large and chemically diverse group of fungus-derived natural products (polyketide synthase-nonribosomal peptide synthetases) that exhibit a broad spectrum of biological activities (Cimmino et al., 2015CIMMINO, A., MASI, M., EVIDENTE, M., SUPERCHI, S. and EVIDENTE, A., 2015. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization. Natural Product Reports, vol. 32, no. 12, pp. 1629-1653. http://dx.doi.org/10.1039/C5NP00081E. PMid:26443032.
http://dx.doi.org/10.1039/C5NP00081E...
; Han et al., 2019HAN, W.B., ZHAI, Y.J., GAO, Y., ZHOU, H.Y., XIAO, J., PESCITELLI, G. and GAO, J.M., 2019. Cytochalasins and an abietane-type diterpenoid with allelopathic activities from the endophytic fungus Xylaria species. Journal of Agricultural and Food Chemistry, vol. 67, no. 13, pp. 3643-3650. http://dx.doi.org/10.1021/acs.jafc.9b00273. PMid:30875204.
http://dx.doi.org/10.1021/acs.jafc.9b002...
). Such compounds are considered potential mycotoxins. Nevertheless, a Xylaria strain endophytically isolated from Toona sinensis is described as a producer of cytochalasin E, which demonstrated high growth inhibition on lettuce Lactuca sativa and radish Raphanus sativus seedlings (Zhang et al., 2014ZHANG, Q., XIAO, J., SUN, Q.Q., QIN, J.C., PESCITELLI, G. and GAO, J.M., 2014. Characterization of cytochalasins from the endophytic Xylaria sp. and their biological functions. Journal of Agricultural and Food Chemistry, vol. 62, no. 45, pp. 10962-10969. http://dx.doi.org/10.1021/jf503846z. PMid:25350301.
http://dx.doi.org/10.1021/jf503846z...
). Later, Han et al. (2019)HAN, W.B., ZHAI, Y.J., GAO, Y., ZHOU, H.Y., XIAO, J., PESCITELLI, G. and GAO, J.M., 2019. Cytochalasins and an abietane-type diterpenoid with allelopathic activities from the endophytic fungus Xylaria species. Journal of Agricultural and Food Chemistry, vol. 67, no. 13, pp. 3643-3650. http://dx.doi.org/10.1021/acs.jafc.9b00273. PMid:30875204.
http://dx.doi.org/10.1021/acs.jafc.9b002...
used OSMAC approach on Xylaria sp. XC-16 for the isolation of epoxyrosellichalasin, hydroxyldecandrin G, and cytochalasin K, which strongly inhibited Triticum aestivum shoot elongation, whereas cytochalasin E is a potent inhibitor of root elongation of Raphanus sativus.

Endophytic fungus Phomopsis sp. HCCB03520 (Diaporthe) is also reported as a phytotoxin producer such as cytochalasins (H, N, and epoxycytochalasin H), herbaria (I and II), and a nonenolide compound that was isolated from solid cultures, which exhibited phytotoxic effects on the germination and radicle growth of Medicago sativa L., Trifolium hybridum L., and Buchloe dactyloides (Yang et al., 2012YANG, Z., GE, M., YIN, Y., CHEN, Y., LUO, M. and CHEN, D., 2012. A novel phytotoxic nonenolide from Phomopsis sp. HCCB03520. Chemistry & Biodiversity, vol. 9, no. 2, pp. 403-408. http://dx.doi.org/10.1002/cbdv.201100080. PMid:22344916.
http://dx.doi.org/10.1002/cbdv.201100080...
).

Chloroplasts are organelles originating from endosymbiotics in plants that are responsible for the production of several metabolites and photosynthesis (Zhang et al., 2020ZHANG, Y., ZHANG, A., LI, X. and LU, C., 2020. The role of chloroplast gene expression in plant responses to environmental stress. International Journal of Molecular Sciences, vol. 21, no. 17, p. 6082. http://dx.doi.org/10.3390/ijms21176082. PMid:32846932.
http://dx.doi.org/10.3390/ijms21176082...
). The phytotoxic effect on the photosynthesis machinery of spinach chloroplasts has been observed by natural and semisynthetic compounds produced by the endophytic Xylaria feejeensis isolated from the tropical medicinal tree Sapium macrocarpum. A semisynthetic derivative of coriloxine showed a significant enhancement in the phosphorylating electron transport rates and Mg2+-ATPase activity, whereas the semisynthetic quinone inhibited the Hill reaction at electron transport on the water-splitting enzyme (Macías-Rubalcava et al., 2017MACÍAS-RUBALCAVA, M.L., GARCÍA-MÉNDEZ, M.C., KING-DÍAZ, B. and MACÍAS-RUVALCABA, N.A., 2017. Effect of phytotoxic secondary metabolites and semisynthetic compounds from endophytic fungus Xylaria feejeensis strain SM3e-1b on spinach chloroplast photosynthesis. Journal of Photochemistry and Photobiology B: Biology, vol. 166, pp. 35-43. http://dx.doi.org/10.1016/j.jphotobiol.2016.11.002. PMid:27855306.
http://dx.doi.org/10.1016/j.jphotobiol.2...
).

5. Fungal Endophytes Might Influence the Photosynthetic Apparatus

Photosynthesis is considered the basis of plant growth. Such a photochemical process is performed by a variety of organisms, ranging from plants to bacteria, which are capable of capturing and converting energy from sunlight into biochemical energy (Evans, 2013EVANS, J.R., 2013. Improving photosynthesis. Plant Physiology, vol. 162, no. 4, pp. 1780-1793. http://dx.doi.org/10.1104/pp.113.219006. PMid:23812345.
http://dx.doi.org/10.1104/pp.113.219006...
).

Green-colored plant pigment chlorophyll may be found in plants, bacteria, and algae and is a porphyrin-based molecule that plays a critical role in the photosynthetic pathway. Its molecular structure exhibits a tetrapyrrole ring that is capable of absorbing blue light and red light of solar radiation at 430 nm and 660 nm, respectively, as well as UV-B (280–320 nm), but it reflects the green and yellow spectrum (Arof and Ping, 2017AROF, A.K. and PING, T.L., 2017. Chlorophyll as photosensitizer in dye-sensitized solar cells. In: E. JACOB-LOPES, L.Q. ZEPKA and M.I. QUEIROZ, eds. Chlorophyll. London: IntechOpen, pp. 105-121. http://dx.doi.org/10.5772/67955.
http://dx.doi.org/10.5772/67955...
; Pareek et al., 2018PAREEK, S., SAGAR, N.A., SHARMA, S., KUMAR, V., AGARWAL, T., GONZÁLEZ-AGUILAR, G.A. and YAHIA, E.M., 2018. Chlorophylls: chemistry and biological functions. In: E.M. YAHIA, eds. Fruit and vegetable phytochemicals: chemistry and human health. 2nd ed. Hoboken: Wiley-Blackwell, vol. 1-2, pp. 269-284.).

Absorption of UV-B by chlorophyll, despite a minor component of sunlight, is reported to be harmful to biomolecules. Molecular oxygen atoms in the ground state (3O2) are converted into singlet oxygen (1O2), which is highly reactive and can react with various biological molecules, including lipids, proteins, and nucleic acids, causing the death of cells (Figure 1) (Quinn et al., 2014QUINN, J.C., KESSELL, A. and WESTON, L.A., 2014. Secondary plant products causing photosensitization in grazing herbivores: their structure, activity and regulation. International Journal of Molecular Sciences, vol. 15, no. 1, pp. 1441-1465. http://dx.doi.org/10.3390/ijms15011441. PMid:24451131.
http://dx.doi.org/10.3390/ijms15011441...
; Barrera et al., 2020BARRERA, A., HEREME, R., RUIZ-LARA, S., LARRONDO, L.F., GUNDEL, P.E., POLLMANN, S., MOLINA-MONTENEGRO, M.A. and RAMOS, P., 2020. Fungal endophytes enhance the photoprotective mechanisms and photochemical efficiency in the antarctic Colobanthus quitensis (Kunth) Bartl. exposed to UV-B radiation. Frontiers in Ecology and Evolution, vol. 8, p. 122. http://dx.doi.org/10.3389/fevo.2020.00122.
http://dx.doi.org/10.3389/fevo.2020.0012...
).

Figure 1
Photodynamic reaction induced by UV-B. Initially, chlorophyll absorbs a photon that excites the chlorophyll to the short-lived singlet state and may decay by nonradioactive relaxation with heat emission or fluorescence emission to the long-lived triplet state. In this triplet state, chlorophyll can interact with molecular oxygen in two ways, type 1 and type 2, leading to the formation of oxygen radicals and singlet oxygen.

Photoprotective effects promoted by fungal endophytes were reported by Barrera et al. (2020)BARRERA, A., HEREME, R., RUIZ-LARA, S., LARRONDO, L.F., GUNDEL, P.E., POLLMANN, S., MOLINA-MONTENEGRO, M.A. and RAMOS, P., 2020. Fungal endophytes enhance the photoprotective mechanisms and photochemical efficiency in the antarctic Colobanthus quitensis (Kunth) Bartl. exposed to UV-B radiation. Frontiers in Ecology and Evolution, vol. 8, p. 122. http://dx.doi.org/10.3389/fevo.2020.00122.
http://dx.doi.org/10.3389/fevo.2020.0012...
. The endophytic fungi Alternaria sp., Eupenicillium osmophilum, Penicillium brevicompactum, P. chrysogenum, and Phaeosphaeria sp. were identified as the most abundant in association with the Antarctic plant Colobanthus quitensis. In addition, the endophytically colonized plants exhibited the accumulation of key flavonoids that are known to regulate oxidative stress and photoprotective effects, as well as the expression of genes associated with UV-B photoreception, lower lipid peroxidation, and an improvement in photosynthesis efficiency in comparison with noncolonized plants.

However, members of the Epichloë genus possess numerous features beneficial to their host plants (Song et al., 2016SONG, H., NAN, Z., SONG, Q., XIA, C., LI, X., YAO, X., XU, W., KUANG, Y., TIAN, P. and ZHANG, Q., 2016. Advances in research on Epichloë endophytes in Chinese native grasses. Frontiers in Microbiology, vol. 7, p. 1399. http://dx.doi.org/10.3389/fmicb.2016.01399. PMid:27656171.
http://dx.doi.org/10.3389/fmicb.2016.013...
). As mentioned, photosynthesis plays an important role in plant growth, and under stress conditions, photosynthetic capability might suffer losses (Harman et al., 2021HARMAN, G.E., DONI, F., KHADKA, R.B. and UPHOFF, N., 2021. Endophytic strains of Trichoderma increase plants’ photosynthetic capability. Journal of Applied Microbiology, vol. 130, no. 2, pp. 529-546. http://dx.doi.org/10.1111/jam.14368. PMid:31271695.
http://dx.doi.org/10.1111/jam.14368...
). Rozpądek et al. (2015)ROZPĄDEK, P., WĘŻOWICZ, K., NOSEK, M., WAŻNY, R., TOKARZ, K., LEMBICZ, M., MISZALSKI, Z. and TURNAU, K., 2015. The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata). Planta, vol. 242, no. 4, pp. 1025-1035. http://dx.doi.org/10.1007/s00425-015-2337-x. PMid:26059605.
http://dx.doi.org/10.1007/s00425-015-233...
described the improvement of photosynthetic activity of photosystem II, carbon assimilation, and biomass increase of Dactylis glomerata promoted by the symbiotic fungus E. typhina.

Trichoderma spp. are described as endophytes but might be found in several environments. These species have been reported to have protective effects against phytopathogenic fungi (Tseng et al., 2020TSENG, Y.-H., ROUINA, H., GROTEN, K., RAJANI, P., FURCH, A.C.U., REICHELT, M., BALDWIN, I.T., NATARAJA, K.N., SHAANKER, R.U. and OELMÜLLER, R., 2020. An endophytic Trichoderma strain promotes growth of its hosts and defends against pathogen attack. Frontiers in Plant Science, vol. 11, p. 573670. http://dx.doi.org/10.3389/fpls.2020.573670. PMid:33424876.
http://dx.doi.org/10.3389/fpls.2020.5736...
). Interestingly, Trichoderma spp. is capable of enhancing photosynthesis by inducing the upregulation of genes and pigments and activating biochemical pathways that reduce the harm caused by reactive oxygen species (ROS) (Harman et al., 2021HARMAN, G.E., DONI, F., KHADKA, R.B. and UPHOFF, N., 2021. Endophytic strains of Trichoderma increase plants’ photosynthetic capability. Journal of Applied Microbiology, vol. 130, no. 2, pp. 529-546. http://dx.doi.org/10.1111/jam.14368. PMid:31271695.
http://dx.doi.org/10.1111/jam.14368...
).

6. Omics Approaches to Explore Endophytic Fungi-Plant Interactions in Agriculture

Endophytic fungi exhibit complex interactions with host plants, which involve biotic, abiotic, and genetic factors (Hardoim et al., 2015HARDOIM, P.R., VAN OVERBEEK, L.S., BERG, G., PIRTTILÄ, A.M., COMPANT, S., CAMPISANO, A., DÖRING, M. and SESSITSCH, A., 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, vol. 79, no. 3, pp. 293-320. http://dx.doi.org/10.1128/MMBR.00050-14. PMid:26136581.
http://dx.doi.org/10.1128/MMBR.00050-14...
). A better understanding of this relationship becomes of great importance to improve the ways in which these microorganisms can be applied in agriculture to increase plant growth and crop yields, control pests, suppress virulence in pathogens, and/or help plants survive in environmental stress, including extreme temperatures and pH levels, drought, heavy metal toxicity, and nutrient limitation (Naik, 2019b NAIK, B.S., 2019b. Functional roles of fungal endophytes in host fitness during stress conditions. Symbiosis, vol. 79, no. 2, pp. 99-115. http://dx.doi.org/10.1007/s13199-019-00635-1.
http://dx.doi.org/10.1007/s13199-019-006...
; Lugtenberg et al., 2016LUGTENBERG, B.J.J., CARADUS, J.R. and JOHNSON, L.J., 2016. Fungal endophytes for sustainable crop production. FEMS Microbiology Ecology, vol. 92, no. 12, p. fiw194. http://dx.doi.org/10.1093/femsec/fiw194. PMid:27624083.
http://dx.doi.org/10.1093/femsec/fiw194...
).

Keeping in mind the benefits of endophytic fungi on plant health and for sustainable and eco-friendly agricultural productivity (Kaur, 2020KAUR, T., 2020. Fungal endophyte-host plant interactions: role in sustainable agriculture. In: M. HASANUZZAMAN, M.C.M. TEIXEIRA FILHO, M. FUJITA and T.A.R. NOGUEIRA, eds. Sustainable crop production. London: IntechOpen, pp. 211-228. http://dx.doi.org/10.5772/intechopen.92367.
http://dx.doi.org/10.5772/intechopen.923...
), many studies in recent decades have focused on exploring the aspects of this symbiotic relationship.

Recent advances in technologies and bioinformatic tools to generate and process extensive omic data are revolutionizing research on endophyte-plant relationships. In this context, genomic studies based on next-generation sequencing (NGS) platforms provide valuable information about the structural and functional aspects of genes, taxonomy, and phylogeny of endophytes (Bosamia et al., 2020BOSAMIA, T.C., BARBADIKAR, K.M. and MODI, A., 2020. Genomic insights of plant endophyte interaction: prospective and impact on plant fitness. In: A. KUMAR and E.K. RADHAKRISHNAN, eds. Microbial endophytes: functional biology and applications. Duxford: Elsevier, pp. 227-249. http://dx.doi.org/10.1016/B978-0-12-819654-0.00009-0.
http://dx.doi.org/10.1016/B978-0-12-8196...
), which can integrate other data from omics approaches to unravel the effects on plant gene expression during interaction with fungal endophytes (Table 1).

Table 1
Benefits of endophytic fungi to host plants revealed by omics-based approaches.

Thus, genomics provides an overview of the full genetic complement of an organism; transcriptomics, proteomics and metabolomics determine the total set of transcribed RNAs, proteins and metabolites, respectively, in a cell, tissue or organism under a given set of conditions (Kaul et al., 2016KAUL, S., SHARMA, T. and DHAR, M.K., 2016. “Omics” tools for better understanding the plant-endophyte interactions. Frontiers in Plant Science, vol. 7, p. 955. http://dx.doi.org/10.3389/fpls.2016.00955. PMid:27446181.
http://dx.doi.org/10.3389/fpls.2016.0095...
; Bosamia et al., 2020BOSAMIA, T.C., BARBADIKAR, K.M. and MODI, A., 2020. Genomic insights of plant endophyte interaction: prospective and impact on plant fitness. In: A. KUMAR and E.K. RADHAKRISHNAN, eds. Microbial endophytes: functional biology and applications. Duxford: Elsevier, pp. 227-249. http://dx.doi.org/10.1016/B978-0-12-819654-0.00009-0.
http://dx.doi.org/10.1016/B978-0-12-8196...
)

The plant defense system comprises many factors, and endophytic fungi can have substantial influence on the plant metabolic process, inducing systemic resistance and leading to tolerance to pathogens (Gao et al., 2010GAO, F.-K., DAI, C.-C. and LIU, X.-Z., 2010. Mechanisms of fungal endophytes in plant protection against pathogens. African Journal of Microbiological Research, vol. 4, no. 13, pp. 1346-1351.). Employing quantitative transcriptomic analysis, Ambrose and Belanger (2012)AMBROSE, K.V. and BELANGER, F.C., 2012. SOLiD-SAGE of endophyte-infected red fescue reveals numerous effects on host transcriptome and an abundance of highly expressed fungal secreted proteins. PLoS One, vol. 7, no. 12, p. e53214. http://dx.doi.org/10.1371/journal.pone.0053214. PMid:23285269.
http://dx.doi.org/10.1371/journal.pone.0...
evaluated the differential expression of genes associated with Festuca rubra colonization or not with the endophyte Epichloë festucae. Data revealed that over 200 plant genes involved in various physiological processes were differentially expressed between the two samples. The transcript abundance and the nature of one secreted protein suggested that protein may be involved in disease resistance in endophyte-infected F. rubra. Correlation of transcriptomic data with genomic data was essential to understand that the uniqueness of this gene in E. festucae can confer resistance to the host.

Plant growth promotion effects by fungal endophytes are also well documented (Bilal et al., 2018BILAL, L., ASAF, S., HAMAYUN, M., GUL, H., IQBAL, A., ULLAH, I., LEE, I.-J. and HUSSAIN, A., 2018. Plant growth promoting endophytic fungi Aspergillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis, vol. 76, no. 2, pp. 117-127. http://dx.doi.org/10.1007/s13199-018-0545-4.
http://dx.doi.org/10.1007/s13199-018-054...
; Khalil et al., 2021KHALIL, A.M.A., HASSAN, S.E.-D., ALSHARIF, S.M., EID, A.M., EWAIS, E.E.-D., AZAB, E., GOBOURI, A.A., ELKELISH, A. and FOUDA, A., 2021. Isolation and characterization of fungal endophytes isolated from medicinal plant Ephedra pachyclada as plant growth-promoting. Biomolecules, vol. 11, no. 2, p. 140. http://dx.doi.org/10.3390/biom11020140. PMid:33499067.
http://dx.doi.org/10.3390/biom11020140...
). Using comparative transcriptomics and proteomics, Yuan et al. (2019)YUAN, J., ZHANG, W., SUN, K., TANG, M.-J., CHEN, P.-X., LI, X. and DAI, C.-C., 2019. Comparative transcriptomic of Atractylodes lancea in response to endophytic fungus Gilmaniella sp. AL12 reveals regulation in plant metabolism. Frontiers in Microbiology, vol. 10, p. 1208. http://dx.doi.org/10.3389/fmicb.2019.01208. PMid:31191508.
http://dx.doi.org/10.3389/fmicb.2019.012...
verified the impact of the endophyte Gilmaniella sp. AL12 in the regulation of metabolism of the medicinal herb Atractylodes lancea. This study showed that endophytes weakened the plant immune response, suggesting that this regulation may contribute to beneficial plant-endophyte interactions. In addition, the presence of Gilmaniella sp. AL12 upregulated plant genes involved in the production of proteins related to carbon fixation and carbohydrate and energy metabolism, leading to an increase in biomass and sesquiterpenoid content in the shoots of A. lancea.

Abiotic stresses can restrict plant growth and development and impact crop productivity (Kumar, 2014KUMAR, M., 2014. Crop plants and abiotic stresses. Journal of Biomolecular Research & Therapeutics, vol. 3, no. 1, pp. 1000e125. http://dx.doi.org/10.4172/2167-7956.1000e125.
http://dx.doi.org/10.4172/2167-7956.1000...
). Saline stress is considered one of the main factors that leads to morphological and physiological changes in plants (Fougère et al., 1991FOUGÈRE, F., RUDULIER, D. and STREETER, J.G., 1991. Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiology, vol. 96, no. 4, pp. 1228-1236. http://dx.doi.org/10.1104/pp.96.4.1228. PMid:16668324.
http://dx.doi.org/10.1104/pp.96.4.1228...
). Alikhani et al. (2013)ALIKHANI, M., KHATABI, B., SEPEHRI, M., NEKOUEI, M.K., MARDI, M. and SALEKDEH, G.H., 2013. A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica. Molecular BioSystems, vol. 9, no. 6, pp. 1498-1510. http://dx.doi.org/10.1039/c3mb70069k. PMid:23545942.
http://dx.doi.org/10.1039/c3mb70069k...
used a proteomic approach to evaluate the influence of the endophyte Piriformospora indica on the tolerance of Hordeum vulgare L. to salt stress. Mass spectrometric analysis led to the identification of 51 proteins related to different functions, including photosynthesis, cell antioxidant defense and energy production. These results indicated that endophytic fungi induced a systemic response to salt stress by altering the physiological and proteome responses of the plant host, opening perspectives to improve plant adaptability to environmental stresses.

In this way, omics-based technologies have been fundamental to provide clearer insights into metabolism, physiology, gene expression, and other aspects of endophytic-plant interactions (Chetia et al., 2019CHETIA, H., KABIRAJ, D., BHARALI, B., OJHA, S., BARKATAKI, M.P., SAIKIA, D., SINGH, T., MOSAHARI, P.V., SHARMA, P. and BORA, U., 2019. Exploring the benefits of endophytic fungi via Omics. In: B. SINGH, ed. Advances in endophytic fungal research: present status and future challenges. Cham: Springer, pp. 51-81. http://dx.doi.org/10.1007/978-3-030-03589-1_4.
http://dx.doi.org/10.1007/978-3-030-0358...
), contributing to a better understanding of the beneficial effects of endophytic fungi in improving plant health.

7. Conclusion

This review has indicated that endophytic fungi can produce bioactive compounds that originate from their host plants, encouraging us to investigate and select these microorganisms for biotechnological exploration. Fungal endophytes appear to have the potential to produce a range of metabolites with significant biological activity for applications in pharmaceuticals, medicine, industry, crop protection and improvement, and environmental recovery. Omic technologies have been incorporated into studies of plant-endophytic fungi interactions, providing us with directions to solve problems of plant disease and improve the productivity and quality of crops, bringing important environmental and economic implications for agriculture.

Acknowledgements

This work was supported by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP n. 2016/13423-5).

References

  • ALIKHANI, M., KHATABI, B., SEPEHRI, M., NEKOUEI, M.K., MARDI, M. and SALEKDEH, G.H., 2013. A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica. Molecular BioSystems, vol. 9, no. 6, pp. 1498-1510. http://dx.doi.org/10.1039/c3mb70069k PMid:23545942.
    » http://dx.doi.org/10.1039/c3mb70069k
  • ALY, A.H., DEBBAB, A., KJER, J. and PROKSCH, P., 2010. Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Diversity, vol. 41, no. 1, pp. 1-16. http://dx.doi.org/10.1007/s13225-010-0034-4
    » http://dx.doi.org/10.1007/s13225-010-0034-4
  • AMBROSE, K.V. and BELANGER, F.C., 2012. SOLiD-SAGE of endophyte-infected red fescue reveals numerous effects on host transcriptome and an abundance of highly expressed fungal secreted proteins. PLoS One, vol. 7, no. 12, p. e53214. http://dx.doi.org/10.1371/journal.pone.0053214 PMid:23285269.
    » http://dx.doi.org/10.1371/journal.pone.0053214
  • AROF, A.K. and PING, T.L., 2017. Chlorophyll as photosensitizer in dye-sensitized solar cells. In: E. JACOB-LOPES, L.Q. ZEPKA and M.I. QUEIROZ, eds. Chlorophyll London: IntechOpen, pp. 105-121. http://dx.doi.org/10.5772/67955
    » http://dx.doi.org/10.5772/67955
  • ASLAM, B., WANG, W., ARSHAD, M.I., KHURSHID, M., MUZAMMIL, S., RASOOL, M.H., NISAR, M.A., ALVI, F.R., ASLAM, M.A., QAMAR, M.U., SALAMAT, M.K.F. and BALOCH, Z., 2018. Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance, vol. 11, pp. 1645-1658. http://dx.doi.org/10.2147/IDR.S173867 PMid:30349322.
    » http://dx.doi.org/10.2147/IDR.S173867
  • BARRERA, A., HEREME, R., RUIZ-LARA, S., LARRONDO, L.F., GUNDEL, P.E., POLLMANN, S., MOLINA-MONTENEGRO, M.A. and RAMOS, P., 2020. Fungal endophytes enhance the photoprotective mechanisms and photochemical efficiency in the antarctic Colobanthus quitensis (Kunth) Bartl. exposed to UV-B radiation. Frontiers in Ecology and Evolution, vol. 8, p. 122. http://dx.doi.org/10.3389/fevo.2020.00122
    » http://dx.doi.org/10.3389/fevo.2020.00122
  • BARY, A., 1866. Morphologie und physiologie der pilze, flechten und myxomyceten Leipzig: Wilhelm Engelmann, 316 p.
  • BILAL, L., ASAF, S., HAMAYUN, M., GUL, H., IQBAL, A., ULLAH, I., LEE, I.-J. and HUSSAIN, A., 2018. Plant growth promoting endophytic fungi Aspergillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis, vol. 76, no. 2, pp. 117-127. http://dx.doi.org/10.1007/s13199-018-0545-4
    » http://dx.doi.org/10.1007/s13199-018-0545-4
  • BOSAMIA, T.C., BARBADIKAR, K.M. and MODI, A., 2020. Genomic insights of plant endophyte interaction: prospective and impact on plant fitness. In: A. KUMAR and E.K. RADHAKRISHNAN, eds. Microbial endophytes: functional biology and applications Duxford: Elsevier, pp. 227-249. http://dx.doi.org/10.1016/B978-0-12-819654-0.00009-0
    » http://dx.doi.org/10.1016/B978-0-12-819654-0.00009-0
  • CAICEDO, N.H., DAVALOS, A.F., PUENTE, P.A., RODRÍGUEZ, A.Y. and CAICEDO, P.A., 2019. Antioxidant activity of exo-metabolites produced by Fusarium oxysporum: an endophytic fungus isolated from leaves of Otoba gracilipes. MicrobiologyOpen, vol. 8, no. 10, p. e903. http://dx.doi.org/10.1002/mbo3.903 PMid:31297981.
    » http://dx.doi.org/10.1002/mbo3.903
  • CARROLL, G., 1986. The biology of endophytism in plants with particular reference to woody perennials. In: N.J. FOKKEMA and J. VAN DEN HEUVEK, eds. Microbiology of the phyllosphere Cambridge: Cambridge University Press, pp. 205-222.
  • CARVALHO, C.R., FERREIRA-D’SILVA, A., WEDGE, D.E., CANTRELL, C.L. and ROSA, L.H., 2018. Antifungal activities of cytochalasins produced by Diaporthe miriciae, an endophytic fungus associated with tropical medicinal plants. Canadian Journal of Microbiology, vol. 64, no. 11, pp. 835-843. http://dx.doi.org/10.1139/cjm-2018-0131 PMid:29874477.
    » http://dx.doi.org/10.1139/cjm-2018-0131
  • CHEN, H.-L., ZHAO, W.-T., LIU, Q.-P., CHEN, H.-Y., ZHAO, W., YANG, D.-F. and YANG, X.-L., 2020. (±)-Preisomide: a new alkaloid featuring a rare naturally occurring tetrahydro-2H-1,2-oxazin skeleton from an endophytic fungus Preussia isomera by using OSMAC strategy. Fitoterapia, vol. 141, p. 104475. http://dx.doi.org/10.1016/j.fitote.2020.104475 PMid:31927014.
    » http://dx.doi.org/10.1016/j.fitote.2020.104475
  • CHETIA, H., KABIRAJ, D., BHARALI, B., OJHA, S., BARKATAKI, M.P., SAIKIA, D., SINGH, T., MOSAHARI, P.V., SHARMA, P. and BORA, U., 2019. Exploring the benefits of endophytic fungi via Omics. In: B. SINGH, ed. Advances in endophytic fungal research: present status and future challenges Cham: Springer, pp. 51-81. http://dx.doi.org/10.1007/978-3-030-03589-1_4
    » http://dx.doi.org/10.1007/978-3-030-03589-1_4
  • CIMMINO, A., MASI, M., EVIDENTE, M., SUPERCHI, S. and EVIDENTE, A., 2015. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization. Natural Product Reports, vol. 32, no. 12, pp. 1629-1653. http://dx.doi.org/10.1039/C5NP00081E PMid:26443032.
    » http://dx.doi.org/10.1039/C5NP00081E
  • CULLEN, M.G., THOMPSON, L.J., CAROLAN, J.C., STOUT, J.C. and STANLEY, D.A., 2019. Fungicides, herbicides and bees: a systematic review of existing research and methods. PLoS One, vol. 14, no. 12, p. e0225743. http://dx.doi.org/10.1371/journal.pone.0225743 PMid:31821341.
    » http://dx.doi.org/10.1371/journal.pone.0225743
  • DAI, C.-C., TIAN, L.-S., ZHAO, Y.-T., CHEN, Y. and XIE, H., 2010. Degradation of phenanthrene by the endophytic fungus Ceratobasidum stevensii found in Bischofia polycarpa. Biodegradation, vol. 21, no. 2, pp. 245-255. http://dx.doi.org/10.1007/s10532-009-9297-4 PMid:19882108.
    » http://dx.doi.org/10.1007/s10532-009-9297-4
  • DEEPIKA, V.B., MURALI, T.S. and SATYAMOORTHY, K., 2016. Modulation of genetic clusters for synthesis of bioactive molecules in fungal endophytes: a review. Microbiological Research, vol. 182, pp. 125-140. http://dx.doi.org/10.1016/j.micres.2015.10.009 PMid:26686621.
    » http://dx.doi.org/10.1016/j.micres.2015.10.009
  • DHANKHAR, S., DHANKHAR, S. and YADAV, J.P., 2013. Investigations towards new antidiabetic drugs from fungal endophytes associated with Salvadora oleoides Decne. Medicinal Chemistry, vol. 9, no. 4, pp. 624-632. http://dx.doi.org/10.2174/1573406411309040017 PMid:22946533.
    » http://dx.doi.org/10.2174/1573406411309040017
  • DINKINS, R.D., NAGABHYRU, P., GRAHAM, M.A., BOYKIN, D. and SCHARDL, C.L., 2017. Transcriptome response of Lolium arundinaceum to its fungal endophyte Epichloë coenophiala. The New Phytologist, vol. 213, no. 1, pp. 324-337. http://dx.doi.org/10.1111/nph.14103 PMid:27477008.
    » http://dx.doi.org/10.1111/nph.14103
  • DUPONT, P.-Y., EATON, C.J., WARGENT, J.J., FECHTNER, S., SOLOMON, P., SCHMID, J., DAY, R.C., SCOTT, B. and COX, M.P., 2015. Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. The New Phytologist, vol. 208, no. 4, pp. 1227-1240. http://dx.doi.org/10.1111/nph.13614 PMid:26305687.
    » http://dx.doi.org/10.1111/nph.13614
  • EBRAHIM, W., EL-NEKETI, M., LEWALD, L.-I., ORFALI, R.S., LIN, W., REHBERG, N., KALSCHEUER, R., DALETOS, G. and PROKSCH, P., 2016. Metabolites from the fungal endophyte Aspergillus austroafricanus in axenic culture and in fungal–bacterial mixed cultures. Journal of Natural Products, vol. 79, no. 4, pp. 914-922. http://dx.doi.org/10.1021/acs.jnatprod.5b00975 PMid:27070198.
    » http://dx.doi.org/10.1021/acs.jnatprod.5b00975
  • EID, A.M., SALIM, S.S., HASSAN, S.D., ISMAIL, M.A. and FOUDA, A., 2019. Role of endophytes in plant health and abiotic stress management. In: V. KUMAR, R. PRASAD, M. KUMAR and D.K. CHOUDHARY, eds. Microbiome in plant health and disease: challenges and opportunities Singapore: Springer, pp. 119-144. http://dx.doi.org/10.1007/978-981-13-8495-0_6
    » http://dx.doi.org/10.1007/978-981-13-8495-0_6
  • EVANS, J.R., 2013. Improving photosynthesis. Plant Physiology, vol. 162, no. 4, pp. 1780-1793. http://dx.doi.org/10.1104/pp.113.219006 PMid:23812345.
    » http://dx.doi.org/10.1104/pp.113.219006
  • FOUGÈRE, F., RUDULIER, D. and STREETER, J.G., 1991. Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiology, vol. 96, no. 4, pp. 1228-1236. http://dx.doi.org/10.1104/pp.96.4.1228 PMid:16668324.
    » http://dx.doi.org/10.1104/pp.96.4.1228
  • GAO, F.-K., DAI, C.-C. and LIU, X.-Z., 2010. Mechanisms of fungal endophytes in plant protection against pathogens. African Journal of Microbiological Research, vol. 4, no. 13, pp. 1346-1351.
  • GHABOOLI, M., KHATABI, B., AHMADI, F.S., SEPEHRI, M., MIRZAEI, M., AMIRKHANI, A., JORRÍN-NOVO, J.V. and SALEKDEH, G.H., 2013. Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. Journal of Proteomics, vol. 94, pp. 289-301. http://dx.doi.org/10.1016/j.jprot.2013.09.017 PMid:24120527.
    » http://dx.doi.org/10.1016/j.jprot.2013.09.017
  • GHAFFARI, M.R., GHABOOLI, M., KHATABI, B., HAJIREZAEI, M.R., SCHWEIZER, P. and SALEKDEH, G.H., 2016. Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley. Plant Molecular Biology, vol. 90, no. 6, pp. 699-717. http://dx.doi.org/10.1007/s11103-016-0461-z PMid:26951140.
    » http://dx.doi.org/10.1007/s11103-016-0461-z
  • GUPTA, M. and SHUKLA, K.K., 2020. Endophytic fungi: a treasure trove of novel bioactive compounds. In: J. SINGH, V. MESHRAM and M. GUPTA, eds. Bioactive natural products in drug discovery Singapore: Springer, pp. 427-449.
  • HALLMANN, J., QUADT-HALLMANN, A., MAHAFFEE, W.F. and KLOEPPER, J.W., 1997. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, vol. 43, no. 10, pp. 895-914. http://dx.doi.org/10.1139/m97-131
    » http://dx.doi.org/10.1139/m97-131
  • HAN, W.B., ZHAI, Y.J., GAO, Y., ZHOU, H.Y., XIAO, J., PESCITELLI, G. and GAO, J.M., 2019. Cytochalasins and an abietane-type diterpenoid with allelopathic activities from the endophytic fungus Xylaria species. Journal of Agricultural and Food Chemistry, vol. 67, no. 13, pp. 3643-3650. http://dx.doi.org/10.1021/acs.jafc.9b00273 PMid:30875204.
    » http://dx.doi.org/10.1021/acs.jafc.9b00273
  • HARDING, D.P. and RAIZADA, M.N., 2015. Controlling weeds with fungi, bacteria and viruses: a review. Frontiers in Plant Science, vol. 6, p. 659. http://dx.doi.org/10.3389/fpls.2015.00659 PMid:26379687.
    » http://dx.doi.org/10.3389/fpls.2015.00659
  • HARDOIM, P.R., VAN OVERBEEK, L.S., BERG, G., PIRTTILÄ, A.M., COMPANT, S., CAMPISANO, A., DÖRING, M. and SESSITSCH, A., 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, vol. 79, no. 3, pp. 293-320. http://dx.doi.org/10.1128/MMBR.00050-14 PMid:26136581.
    » http://dx.doi.org/10.1128/MMBR.00050-14
  • HARMAN, G.E., DONI, F., KHADKA, R.B. and UPHOFF, N., 2021. Endophytic strains of Trichoderma increase plants’ photosynthetic capability. Journal of Applied Microbiology, vol. 130, no. 2, pp. 529-546. http://dx.doi.org/10.1111/jam.14368 PMid:31271695.
    » http://dx.doi.org/10.1111/jam.14368
  • JONKERS, W., ESTRADA, A.E.R., LEE, K., BREAKSPEAR, A., MAY, G. and KISTLER, C., 2012. Metabolome and transcriptome of the interaction between Ustilago maydis and Fusarium verticillioides in vitro. Applied and Environmental Microbiology, vol. 78, no. 10, pp. 3656-3667. http://dx.doi.org/10.1128/AEM.07841-11 PMid:22407693.
    » http://dx.doi.org/10.1128/AEM.07841-11
  • KAUL, S., SHARMA, T. and DHAR, M.K., 2016. “Omics” tools for better understanding the plant-endophyte interactions. Frontiers in Plant Science, vol. 7, p. 955. http://dx.doi.org/10.3389/fpls.2016.00955 PMid:27446181.
    » http://dx.doi.org/10.3389/fpls.2016.00955
  • KAUR, T., 2020. Fungal endophyte-host plant interactions: role in sustainable agriculture. In: M. HASANUZZAMAN, M.C.M. TEIXEIRA FILHO, M. FUJITA and T.A.R. NOGUEIRA, eds. Sustainable crop production London: IntechOpen, pp. 211-228. http://dx.doi.org/10.5772/intechopen.92367
    » http://dx.doi.org/10.5772/intechopen.92367
  • KHALIL, A.M.A., HASSAN, S.E.-D., ALSHARIF, S.M., EID, A.M., EWAIS, E.E.-D., AZAB, E., GOBOURI, A.A., ELKELISH, A. and FOUDA, A., 2021. Isolation and characterization of fungal endophytes isolated from medicinal plant Ephedra pachyclada as plant growth-promoting. Biomolecules, vol. 11, no. 2, p. 140. http://dx.doi.org/10.3390/biom11020140 PMid:33499067.
    » http://dx.doi.org/10.3390/biom11020140
  • KUMAR, M., 2014. Crop plants and abiotic stresses. Journal of Biomolecular Research & Therapeutics, vol. 3, no. 1, pp. 1000e125. http://dx.doi.org/10.4172/2167-7956.1000e125
    » http://dx.doi.org/10.4172/2167-7956.1000e125
  • LUBNA, ASAF, S., HAMAYUN, M., GUL, H., LEE, I.-J. and HUSSAIN, A., 2018. Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indoleacetic acid. Journal of Plant Interactions, vol. 13, no. 1, pp. 100-111. http://dx.doi.org/10.1080/17429145.2018.1436199
    » http://dx.doi.org/10.1080/17429145.2018.1436199
  • LUGTENBERG, B.J.J., CARADUS, J.R. and JOHNSON, L.J., 2016. Fungal endophytes for sustainable crop production. FEMS Microbiology Ecology, vol. 92, no. 12, p. fiw194. http://dx.doi.org/10.1093/femsec/fiw194 PMid:27624083.
    » http://dx.doi.org/10.1093/femsec/fiw194
  • MACÍAS-RUBALCAVA, M.L., GARCÍA-MÉNDEZ, M.C., KING-DÍAZ, B. and MACÍAS-RUVALCABA, N.A., 2017. Effect of phytotoxic secondary metabolites and semisynthetic compounds from endophytic fungus Xylaria feejeensis strain SM3e-1b on spinach chloroplast photosynthesis. Journal of Photochemistry and Photobiology B: Biology, vol. 166, pp. 35-43. http://dx.doi.org/10.1016/j.jphotobiol.2016.11.002 PMid:27855306.
    » http://dx.doi.org/10.1016/j.jphotobiol.2016.11.002
  • MEJÍA, L.C., HERRE, E.A., SPARKS, J.P., WINTER, K., GARCÍA, M.N., VAN BAEL, S.A., STITT, J., SHI, Z., ZHANG, Y., GUILTINAN, M.J. and MAXIMOVA, S.N., 2014. Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Frontiers in Microbiology, vol. 5, p. 479. http://dx.doi.org/10.3389/fmicb.2014.00479 PMid:25309519.
    » http://dx.doi.org/10.3389/fmicb.2014.00479
  • MISHRA, R. and SARMA, V.V., 2017. Mycoremediation of heavy metal and hydrocarbon pollutants by endophytic fungi. In: R. PRASAD, ed. Mycoremediation and environmental sustainability Berlin: Springer, vol. 1, pp. 133-151. http://dx.doi.org/10.1007/978-3-319-68957-9_8
    » http://dx.doi.org/10.1007/978-3-319-68957-9_8
  • MISHRA, R., KUSHVEER, J.S., REVANTHBABU, P. and SARMA, V.V., 2019. Endophytic fungi and their enzymatic potential. In: B. SINGH, ed. Advances in endopthytic fungal research: present status and future challenges Cham: Springer, pp. 283-337. http://dx.doi.org/10.1007/978-3-030-03589-1_14
    » http://dx.doi.org/10.1007/978-3-030-03589-1_14
  • MOLITOR, A., ZAJIC, D., VOLL, L.M., PONS-KÜHNEMANN, J., SAMANS, B., KOGEL, K.-H. and WALLER, F., 2011. Barley leaf transcriptome and metabolite analysis reveals new aspects of compatibility and Piriformospora indica mediated systemic induced resistance to powdery mildew. Molecular Plant-Microbe Interactions, vol. 24, no. 12, pp. 1427-1439. http://dx.doi.org/10.1094/MPMI-06-11-0177 PMid:21830949.
    » http://dx.doi.org/10.1094/MPMI-06-11-0177
  • MORALES-SÁNCHEZ, V., ANDRÉS, M.F., DÍAZ, C.E. and GONZÁLEZ-COLOMA, A., 2020. Factors affecting the metabolite productions in endophytes: biotechnological approaches for production of metabolites. Current Medicinal Chemistry, vol. 27, no. 11, pp. 1855-1873. http://dx.doi.org/10.2174/0929867326666190626154421 PMid:31241432.
    » http://dx.doi.org/10.2174/0929867326666190626154421
  • MOREIRA, C.C., LUNA, G.L.F., SORIANO, B., CAVICCHIOLI, R., BOGAS, A.C., SOUSA, C.P., ANIBAL, F.F. and LACAVA, P.T., 2020. Leishmanicidal, cytotoxic, antimicrobial and enzymatic activities of Diaporthe species, a mangrove-isolated endophytic fungus. African Journal of Microbiological Research, vol. 14, no. 9, pp. 516-524. http://dx.doi.org/10.5897/AJMR2020.9397
    » http://dx.doi.org/10.5897/AJMR2020.9397
  • NAIK, B.S., 2019a. Developments in taxol production through endophytic fungal biotechnology: a review. Oriental Pharmacy and Experimental Medicine, vol. 19, no. 1, pp. 1-13. http://dx.doi.org/10.1007/s13596-018-0352-8
    » http://dx.doi.org/10.1007/s13596-018-0352-8
  • NAIK, B.S., 2019b. Functional roles of fungal endophytes in host fitness during stress conditions. Symbiosis, vol. 79, no. 2, pp. 99-115. http://dx.doi.org/10.1007/s13199-019-00635-1
    » http://dx.doi.org/10.1007/s13199-019-00635-1
  • NAIK, B.S., 2019c. Potential roles for endophytic fungi in biotechnological processes: a review. In: M. OZTURK and K. HAKEEM, eds. Plant human and health Cham: Springer, vol. 2, pp. 327-344.
  • NAIK, S., SHAANKER, R.U., RAVIKANTH, G. and DAYANANDAN, S., 2019. How and why do endophytes produce plant secondary metabolites? Symbiosis, vol. 78, no. 3, pp. 193-201. http://dx.doi.org/10.1007/s13199-019-00614-6
    » http://dx.doi.org/10.1007/s13199-019-00614-6
  • OMOMOWO, O.I. and BABALOLA, O.O., 2019. Bacterial and fungal endophytes: tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms, vol. 7, no. 11, p. 481. http://dx.doi.org/10.3390/microorganisms7110481 PMid:31652843.
    » http://dx.doi.org/10.3390/microorganisms7110481
  • ORTIZ, J., SOTO, J., FUENTES, A., HERRERA, H., MENESES, C. and ARRIAGADA, C., 2019. The endophytic fungus Chaetomium cupreum regulates expression of genes involved in the tolerance to metals and plant growth promotion in Eucalyptus globulus roots. Microorganisms, vol. 7, no. 11, p. 490. http://dx.doi.org/10.3390/microorganisms7110490 PMid:31717780.
    » http://dx.doi.org/10.3390/microorganisms7110490
  • PAREEK, S., SAGAR, N.A., SHARMA, S., KUMAR, V., AGARWAL, T., GONZÁLEZ-AGUILAR, G.A. and YAHIA, E.M., 2018. Chlorophylls: chemistry and biological functions. In: E.M. YAHIA, eds. Fruit and vegetable phytochemicals: chemistry and human health 2nd ed. Hoboken: Wiley-Blackwell, vol. 1-2, pp. 269-284.
  • PETERSON, M.A., COLLAVO, A., OVEJERO, R., SHIVRAIN, V. and WALSH, M.J., 2018. The challenge of herbicide resistance around the world: a current summary. Pest Management Science, vol. 74, no. 10, pp. 2246-2259. http://dx.doi.org/10.1002/ps.4821 PMid:29222931.
    » http://dx.doi.org/10.1002/ps.4821
  • PETRINI, O., 1991. Fungal endophytes of tree leaves. In: J.H. ANDREWS and S.S. HIRANO, eds. Microbial ecology of leaves New York: Springer, pp. 179-197. http://dx.doi.org/10.1007/978-1-4612-3168-4_9
    » http://dx.doi.org/10.1007/978-1-4612-3168-4_9
  • QUINN, J.C., KESSELL, A. and WESTON, L.A., 2014. Secondary plant products causing photosensitization in grazing herbivores: their structure, activity and regulation. International Journal of Molecular Sciences, vol. 15, no. 1, pp. 1441-1465. http://dx.doi.org/10.3390/ijms15011441 PMid:24451131.
    » http://dx.doi.org/10.3390/ijms15011441
  • RADHAKRISHNAN, R., ALQARAWI, A.A. and ABD-ALLAH, E.F., 2018. Bioherbicides: current knowledge on weed control mechanism. Ecotoxicology and Environmental Safety, vol. 158, pp. 131-138. http://dx.doi.org/10.1016/j.ecoenv.2018.04.018 PMid:29677595.
    » http://dx.doi.org/10.1016/j.ecoenv.2018.04.018
  • RAJAMANIKYAM, M., VADLAPUDI, V., AMANCHY, R. and UPADHYAYULA, S.M., 2017. Endophytic fungi as novel resources of natural therapeutics. Brazilian Archives of Biology and Technology, vol. 60, no. 0, p. e17160542. http://dx.doi.org/10.1590/1678-4324-2017160542
    » http://dx.doi.org/10.1590/1678-4324-2017160542
  • RAJINI, S.B., NANDHINI, M., UDAYASHANKAR, A.C., NIRANJANA, S.R., LUND, O.S. and PRAKASH, H.S., 2020. Diversity, plant growth promoting traits and biocontrol potential of fungal endophytes of Sorghum bicolor. Plant Pathology, vol. 69, no. 4, pp. 642-654. http://dx.doi.org/10.1111/ppa.13151
    » http://dx.doi.org/10.1111/ppa.13151
  • RANA, K.L., KOUR, K.L., SHEIKH, I., DHIMAN, A., YADAV, N., YADAV, A.N., RASTEGARI, A.A., SINGH, K. and SAXENA, A.K., 2019. Endophytic fungi: biodiversity, ecology significance, and potential industrial applications. In: A. YADAV, S. MISHRA, S. SINGH and A. GUPTA, eds. Recent advancement in white biotechnology through fungi Cham: Springer, vol. 1, pp. 1-62. http://dx.doi.org/10.1007/978-3-030-10480-1_1
    » http://dx.doi.org/10.1007/978-3-030-10480-1_1
  • ROZPĄDEK, P., WĘŻOWICZ, K., NOSEK, M., WAŻNY, R., TOKARZ, K., LEMBICZ, M., MISZALSKI, Z. and TURNAU, K., 2015. The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata). Planta, vol. 242, no. 4, pp. 1025-1035. http://dx.doi.org/10.1007/s00425-015-2337-x PMid:26059605.
    » http://dx.doi.org/10.1007/s00425-015-2337-x
  • RUSSELL, J.R., HUANG, J., ANAND, P., KUCERA, K., SANDOVAL, A.G., DANTZLER, K.W., HICKMAN, D., JEE, J., KIMOVEC, F.M., KOPPSTEIN, D., MARKS, D.H., MITTERMILLER, P.A., NÚÑEZ, S.J., SANTIAGO, M., TOWNES, M.A., VISHNEVETSKY, M., WILLIAMS, N.E., VARGAS, M.P.N., BOULANGER, L.-A., BASCOM-SLACK, C. and STROBEL, S.A., 2011. Biodegradation of polyester polyurethane by endophytic fungi. Applied and Environmental Microbiology, vol. 77, no. 17, pp. 6076-6084. http://dx.doi.org/10.1128/AEM.00521-11 PMid:21764951.
    » http://dx.doi.org/10.1128/AEM.00521-11
  • RUSTAMOVA, N., BOZOROV, K., EFFERTH, T. and YILI, A., 2020. Novel secondary metabolites from endophytic fungi: synthesis and biological properties. Phytochemistry Reviews, vol. 19, no. 2, pp. 425-448. http://dx.doi.org/10.1007/s11101-020-09672-x
    » http://dx.doi.org/10.1007/s11101-020-09672-x
  • SEBASTIANES, F.L.S., CABEDO, N., AOUAD, N., VALENTE, A.M., LACAVA, P.T., AZEVEDO, J.L., PIZZIRANI-KLEINER, A.A. and CORTES, D., 2012. 3- Hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum. Current Microbiology, vol. 65, no. 5, pp. 622-632. http://dx.doi.org/10.1007/s00284-012-0206-4 PMid:22886401.
    » http://dx.doi.org/10.1007/s00284-012-0206-4
  • SEBASTIANES, F.L.S., ROMÃO-DUMARESQ, A.S., LACAVA, P.T., HARAKAVA, R., AZEVEDO, J.L., MELO, I.S. and PIZZINARI-KLEINER, A.A., 2013. Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Current Genetics, vol. 59, no. 3, pp. 153-166. http://dx.doi.org/10.1007/s00294-013-0396-8 PMid:23832271.
    » http://dx.doi.org/10.1007/s00294-013-0396-8
  • SHEN, M., SCHNEIDER, H., XU, R., CAO, G., ZHANG, H., LI, T. and ZHAO, Z., 2020. Dark septate endophyte enhances maize cadmium (Cd) tolerance by the remodeled host cell walls and the altered Cd subcellular distribution. Environmental and Experimental Botany, vol. 172, p. 104000. http://dx.doi.org/10.1016/j.envexpbot.2020.104000
    » http://dx.doi.org/10.1016/j.envexpbot.2020.104000
  • SHRIVASTAVA, N., JIANG, L., LI, P.L., SHARMA, A.K., LUO, X., WU, S., PANDEY, R., GAO, Q. and LOU, B., 2018. Proteomic approach to understand the molecular physiology of symbiotic interaction between Piriformospora indica and Brassica napus. Scientific Reports, vol. 8, no. 1, p. 5773. http://dx.doi.org/10.1038/s41598-018-23994-z PMid:29636503.
    » http://dx.doi.org/10.1038/s41598-018-23994-z
  • SONG, H., NAN, Z., SONG, Q., XIA, C., LI, X., YAO, X., XU, W., KUANG, Y., TIAN, P. and ZHANG, Q., 2016. Advances in research on Epichloë endophytes in Chinese native grasses. Frontiers in Microbiology, vol. 7, p. 1399. http://dx.doi.org/10.3389/fmicb.2016.01399 PMid:27656171.
    » http://dx.doi.org/10.3389/fmicb.2016.01399
  • SOUZA, B.S. and SANTOS, T.T., 2017. Endophytic fungi in economically important plants: ecological aspects, diversity and potential biotechnological applications. Journal of Bioenergy and Food Science, vol. 4, no. 2, pp. 113-126. http://dx.doi.org/10.18067/jbfs.v4i2.121
    » http://dx.doi.org/10.18067/jbfs.v4i2.121
  • SOUZA, P.T. and MAGALHÃES, P.O., 2010. Application of microbial α-amylase in industry – a review. Brazilian Journal of Microbiology, vol. 41, no. 4, pp. 850-861. http://dx.doi.org/10.1590/S1517-83822010000400004 PMid:24031565.
    » http://dx.doi.org/10.1590/S1517-83822010000400004
  • STIERLE, A., STROBEL, G.A. and STIERLE, D., 1993. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, vol. 260, no. 5105, pp. 214-216. http://dx.doi.org/10.1126/science.8097061 PMid:8097061.
    » http://dx.doi.org/10.1126/science.8097061
  • SUNITHA, V.H., RAMESHA, A., SAVITHA, J. and SRINIVAS, C., 2012. Amylase production by endophytic fungi Cylindrocephalum sp. isolated from medicinal plant Alpinia calcarata (Haw.) Roscoe. Brazilian Journal of Microbiology, vol. 43, no. 3, pp. 1213-1221. http://dx.doi.org/10.1590/S1517-83822012000300049 PMid:24031946.
    » http://dx.doi.org/10.1590/S1517-83822012000300049
  • SUPRATMAN, U., SUZUKI, T., NAKAMURA, T., YOKOYAMA, Y., HARNETI, D., MAHARANI, R., SALAM, S., ABDULLAH, F.F., KOSEKI, T. and SHIONO, Y., 2021. New metabolites produced by endophyte Clonostachys rosea B5-2. Natural Product Research, vol. 35, no. 9, pp. 1525-1531. http://dx.doi.org/10.1080/14786419.2019.1656629 PMid:31450988.
    » http://dx.doi.org/10.1080/14786419.2019.1656629
  • SURYANARAYANAN, T.S., 2019. Endophytes and weed management: a commentary. Plant Physiology Reports, vol. 24, no. 4, pp. 576-579. http://dx.doi.org/10.1007/s40502-019-00488-2
    » http://dx.doi.org/10.1007/s40502-019-00488-2
  • TAN, R.X. and ZOU, W.X., 2001. Endophytes: a rich source of functional metabolites. Natural Product Reports, vol. 18, no. 4, pp. 448-459. http://dx.doi.org/10.1039/b100918o PMid:11548053.
    » http://dx.doi.org/10.1039/b100918o
  • TIWARI, K., 2015. The future products: endophytic fungal metabolites. Journal of Biodiversity, Bioprospection and Development, vol. 2, no. 1, p. 1000145.
  • TOGHUEO, R.M.K. and BOYOM, F.F., 2019. Endophytic fungi from Terminalia species: a comprehensive review. Journal of Fungi, vol. 5, no. 2, p. 43. http://dx.doi.org/10.3390/jof5020043 PMid:31137730.
    » http://dx.doi.org/10.3390/jof5020043
  • TSENG, Y.-H., ROUINA, H., GROTEN, K., RAJANI, P., FURCH, A.C.U., REICHELT, M., BALDWIN, I.T., NATARAJA, K.N., SHAANKER, R.U. and OELMÜLLER, R., 2020. An endophytic Trichoderma strain promotes growth of its hosts and defends against pathogen attack. Frontiers in Plant Science, vol. 11, p. 573670. http://dx.doi.org/10.3389/fpls.2020.573670 PMid:33424876.
    » http://dx.doi.org/10.3389/fpls.2020.573670
  • VINALE, F., NICOLETTI, R., LACATENA, F., MARRA, R., SACCO, A., LOMBARDI, N., D’ERRICO, G., DIGILIO, M.C., LORITO, M. and WOO, S.L., 2017. Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Natural Product Research, vol. 31, no. 15, pp. 1778-1785. http://dx.doi.org/10.1080/14786419.2017.1290624 PMid:28278635.
    » http://dx.doi.org/10.1080/14786419.2017.1290624
  • XIE, X.-G. and DAI, C.-C., 2015. Degradation of a model pollutant ferulic acid by the endophytic fungus Phomopsis liquidambari. Bioresource Technology, vol. 179, pp. 35-42. http://dx.doi.org/10.1016/j.biortech.2014.11.112 PMid:25514400.
    » http://dx.doi.org/10.1016/j.biortech.2014.11.112
  • YANG, Z., GE, M., YIN, Y., CHEN, Y., LUO, M. and CHEN, D., 2012. A novel phytotoxic nonenolide from Phomopsis sp. HCCB03520. Chemistry & Biodiversity, vol. 9, no. 2, pp. 403-408. http://dx.doi.org/10.1002/cbdv.201100080 PMid:22344916.
    » http://dx.doi.org/10.1002/cbdv.201100080
  • YUAN, J., ZHANG, W., SUN, K., TANG, M.-J., CHEN, P.-X., LI, X. and DAI, C.-C., 2019. Comparative transcriptomic of Atractylodes lancea in response to endophytic fungus Gilmaniella sp. AL12 reveals regulation in plant metabolism. Frontiers in Microbiology, vol. 10, p. 1208. http://dx.doi.org/10.3389/fmicb.2019.01208 PMid:31191508.
    » http://dx.doi.org/10.3389/fmicb.2019.01208
  • ZAFERANLOO, B., QUANG, T.D., DAUMOO, S., GHORBANI, M.M., MAHON, P.J. and PALOMBO, E.A., 2014. Optimization of protease production by endophytic fungus, Alternaria alternata, isolated from an Australian native plant. World Journal of Microbiology & Biotechnology, vol. 30, no. 6, pp. 1755-1762. http://dx.doi.org/10.1007/s11274-014-1598-z PMid:24419660.
    » http://dx.doi.org/10.1007/s11274-014-1598-z
  • ZHANG, L., NIAZ, S.I., KHAN, D., WANG, Z., ZHU, Y., ZHOU, H., LIN, Y., LI, J. and LIU, L., 2017. Induction of diverse bioactive secondary metabolites from the mangrove endophytic fungus Trichoderma sp. (Strain 307) by co-cultivation with Acinetobacter johnsonii (Strain B2). Marine Drugs, vol. 15, no. 2, p. 35. http://dx.doi.org/10.3390/md15020035 PMid:28208607.
    » http://dx.doi.org/10.3390/md15020035
  • ZHANG, Q., XIAO, J., SUN, Q.Q., QIN, J.C., PESCITELLI, G. and GAO, J.M., 2014. Characterization of cytochalasins from the endophytic Xylaria sp. and their biological functions. Journal of Agricultural and Food Chemistry, vol. 62, no. 45, pp. 10962-10969. http://dx.doi.org/10.1021/jf503846z PMid:25350301.
    » http://dx.doi.org/10.1021/jf503846z
  • ZHANG, Y., ZHANG, A., LI, X. and LU, C., 2020. The role of chloroplast gene expression in plant responses to environmental stress. International Journal of Molecular Sciences, vol. 21, no. 17, p. 6082. http://dx.doi.org/10.3390/ijms21176082 PMid:32846932.
    » http://dx.doi.org/10.3390/ijms21176082

Publication Dates

  • Publication in this collection
    08 June 2022
  • Date of issue
    2024

History

  • Received
    24 Nov 2021
  • Accepted
    08 Apr 2022
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br