SciELO - Scientific Electronic Library Online

vol.3 issue2Alometria de plântulas e jovens de espécies arbóreas: copa x alturaNymphs of Thraulodes Ulmer, 1920 (Insecta: Ephemeroptera: Leptophlebiidae) from Rio de Janeiro State, Brazil author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Biota Neotropica

Print version ISSN 1806-129XOn-line version ISSN 1676-0611

Biota Neotrop. vol.3 no.2 Campinas  2003 

Consequences of global climate change for geographic distributions of cerrado tree species



Marinez Ferreira de SiqueiraI; Andrew Townsend PetersonII

ICentro de Referência em Informação Ambiental – CRIA. Av. Romeu Tórtima 388. Barão Geraldo. CEP: 13083-885. Campinas, SP, Brasil. (autor para correspondência da revista)
IIAndrew Townsend Peterson. Natural History Museum and Biodiversity Research Center. University of Kansas. Lawrence, Kansas 66045 USA.




The present study applies a series of new techniques to understand the conservation of Cerrado tree species in the face of climate change. We applied techniques from the emerging field of ecological niche modeling to develop a first-pass assessment of likely effects of climate change on tree species’ distributions in the Cerrado biome by relating known occurrence points to electronic maps summarizing ecological dimensions. Distributional data represent 15,657 records for 162 tree species occurring in Cerrado. By focusing on the trees of one important and highly endemic biome, rather than the biota of a political unit, we were able to focus on developing biome-wide projections. An important limitation of this study is that only those species with more than 30 unique occurrence records were used-hence, the study is limited to those species of relatively broad geographic distribution, and does not take into account those species with narrower geographic distributions. Global climate change scenarios considered were drawn from the general circulation models of HadCM2; we assessed both a conservative and a less conservative scenario of how climates could change over the next 50 year using the (Hadley HHGSDX50 and HHGGAX50 scenarios, respectively): HHGSDX50 assumes 0.5%/yr CO2 increase, whereas HHGGAX50 assumes a 1%/yr CO2 increase. Results of predictions of present and future distributions varied widely among species. Present distributional models predicted areas of 655,211-2,287,482 out of the 2,496,230 km2 core area of Cerrado in Brazil. All models used to represent species’ present geographic ranges were highly statistically significant based on independent test data sets of point localities. Most species were projected to decline seriously in potential distributional area, with both scenarios anticipating losses of >50% of potential distributional area for essentially all species. Indeed, out of 162 species examined, between the two climate change scenarios, 18 (HHGSDX50 scenario) - 56 (HHGGAX50 scenario) were predicted to end up without habitable areas in the Cerrado region, and 91 (HHGSDX50 scenario) - 123 (HHGGAX50 scenario) species were predicted to decline by more than 90% in potential distributional area in the Cerrado region. Bearing in mind the limitations of the method, and considering its explicit assumptions, these results nevertheless should be cause for ample concern regarding Cerrado biodiversity. Since only 2.25% of the Cerrado biome is presently protected, this future scenario presents a pessimistic forecast, which would likely include widespread species loss from the biome, as well as dramatic shifts to the south and east, further complicating conservation planning efforts.

Key words: ecological niche modeling; Cerrado tree species; climate change;



Texto completo disponível apenas em PDF.

Full text available only in PDF format.



Literature Cited

1.ANDERSON, R. P., LAVERDE, M. & PETERSON, A.T. 2002. Geographical distributions of spiny pocket mice in South America: Insights from predictive models. Global Ecology and Biogeography 11:131-141.         [ Links ]

2.ANDERSON, R. P., LEW, D. & PETERSON, A.T. 2003. Using intermodel variation in error components to select best subsets of ecological niche models. Ecological Modelling 162:211-232.         [ Links ]

3.AUSTIN, M. P., NICHOLLS, A. O. & C. R. MARGULES. 1990. Measurement of the realized qualitative niche: Environmental niches of five Eucalyptus species. Ecological Monographs 60:161-177.         [ Links ]

4.BAKKENES, M., ALKEMADE, J. R. M., IHLE, F., LEEMANSAND, R. & LATOUR, J. B. 2002. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biology 8:390-407.         [ Links ]

5.BENNING, T. L., LAPOINTE, D., ATKINSON, C. T. & VITOUSEK, P. M. 2002. Interations of climate change with biological invasions and land use in the Hawaiian Islands: Modeling the fate of endemic birds using a geographic information system. Proceedings of the National Academy of Sciences USA 99:14246-14249.         [ Links ]

6.BETHKE, R. W., & NUDDS, T. D. 1995. Effects of climate change and land use on duck abundance in Canadian prairie-parklands. Ecological Applications 5:588-600.         [ Links ]

7.BRASIL. 1999. Ações Prioritárias para Conservação da Biodiversidade do Cerrado e Pantanal. Brasília: Ministério do Meio Ambiente, FUNATURA, Conservation International, Fundação Biodiversitas, Universidade de Brasília.         [ Links ]

8.CARSON, D. J. 1999. Climate modelling: Achievements and prospects. Quarterly Journal of the Royal Meteorological Society 125:1-27.         [ Links ]

9.CAVALCANTI, r. b. & Joly, C.A. 2002. Biodiversity and Conservation Priorities in the Cerrado Region. In: The Cerrados of Brazil. Ecology and Natural History of a Neotropical Savana. (Oliveira, P. E. & R. J. Marquis, R. J. eds). Columbia Univesity Press, New York, NY. p.351-367.         [ Links ]

10.CHAPIN, F. S. I., ZAVALETA, E. S., EVINER, V. T., NAYLOR, R. L., VITOUSEK, P. M., REYNOLDS, H. L., HOOPER, D. U., LAVOREL, S., SALA, O. E., HOBBIE, S. E., MACK M. C. & DIAZ. S. 2000. Consequences of changing biodiversity. Nature 405:234-242.         [ Links ]

11.CHEN, G. & PETERSON, A.T. 2002. Prioritization of areas in China for biodiversity conservation based on the distribution of endangered bird species. Bird Conservation International 12:197-209.         [ Links ]

12.CSUTI, B., POLASKY, S., WILLIAMS, P. H., PRESSEY, R. L., CAMM, J. D., KERSHAW, M., KIESTER, A. R., DOWNS, B., HAMILTON, R., HUSO M. & SAHR, K. 1997. A comparison of reserve selection algorithms using data on terrestrial vertebrates in Oregon. Biological Conservation 80:83-97.         [ Links ]

13.DAVIS, A. J., JENKINSON, L. S., LAWTON, J. H., SHORROCKS, B. & S. WOOD. 1998. Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783-786.

14.DINERSTEIN, E. & WIKRAMANAYAKE, E. D. 1993. Beyond “hotspots”: How to prioritize investments to conserve biodiversity in the Indo-Pacific region. Conservation Biology 7:53-65.         [ Links ]

15.EGBERT, S. L., PETERSON, A. T., SANCHEZ-CORDERO, V. & PRICE, K. P. 1998. Modeling conservation priorities in Veracruz, Mexico. Pages 141-150 In (S. Morain, ed.). GIS in natural resource management: Balancing the technical-political equation. High Mountain Press, Santa Fe, New Mexico.         [ Links ]

16.EITEN, G. 1992. Natural Brazilian vegetation types and their causes. Anais da Academia Brasileira de Ciências 64:35-65.         [ Links ]

17.ERASMUS, B. F. N., VAN JAARSVELD, A. S., CHOWN, S. L., KSHATRIYA, M. & WESSELS, K. J. 2002. Vulnerability of South African animal taxa to climate change. Global Change Biology 8:679-693.         [ Links ]

18.FERIA, T. P. & PETERSON, A.T. 2002. Using point occurrence data and inferential algorithms to predict local communities of birds. Diversity and Distributions 8:49-56.         [ Links ]

19.GODOWN, M. E. & PETERSON, A.T. 2000. Preliminary distributional analysis of U.S. endangered bird species. Biodiversity and Conservation 9:1313-1322.         [ Links ]

20.GRINNELL, J. 1917. Field tests of theories concerning distributional control. American Naturalist 51:115-128.         [ Links ]

21.HOLT, R. D. & GAINES, M. S. 1992. Analysis of adaptation in heterogeneous landscapes: Implications for the evolution of fundamental niches. Evolutionary Ecology 6:433-447.         [ Links ]

22.KLINK, C. A., MOREIRA, A. G. & SOLBRIG, O. T. 1993. Ecological impacts of agricultural development in the Brazilian Cerrados. In The World’s Savannas: Economic Driving Forces, Ecological Constraints and Policy Options for Sustainable Land Use. (M. D. Young,. & O. T. Solbrig, eds.). Parthenon Publishing, Carnforth, U.K.         [ Links ]

23.KOCH, I., SIQUEIRA, M. F. & PETERSON, A.T. Submitted. Characterizing geographic distributions of tropical woody plant species via ecological niche modeling. Global Ecology and Biogeography.         [ Links ]

24.KRONKA, F.J.N., NALON, M.A., MATSUKUMA, C.K., PAVÃO, M., GUILLAUMON, J.R., CAVALLI, A.C., GIANNOTTI, E., IWANE, M.S.S., LIMA, L.M.P.R., MONTES, J., DEL CALI, I.H. & HAACK, P.G. 1998. Áreas de domínio de Cerrado no Estado de São Paulo. São Paulo. Secretaria de Estado do Meio Ambiente, Instituto Florestal. 84p.         [ Links ]

25.LOMOLINO, M. V. 1994. An evaluation of alternative strategies for building networks of nature reserves. Biological Conservation 69:243-249.         [ Links ]

26.MACARTHUR, R. 1972. Geographical Ecology. Princeton University Press, Princeton, N.J.         [ Links ]

27.MARTÍNEZ-MEYER, E. 2002. Evolutionary Trends in Ecological Niches of Species. Ph.D. dissertation. University of Kansas, Lawrence, Kansas.         [ Links ]

28.MINISTÉRIO DO MEIO AMBIENTE. 1998. Primeiro Relatório Nacional para a Convenção sobre Diversidade Biológica. Ministério do Meio Ambiente, dos Recursos Hidricos e da Amazônia Legal, Brasilia, Brazil.         [ Links ]

29.MITTERMEYER, R. A., MYERS, N. and MITTERMEYER, C. G. 1999. Hotspots Earth’s biologically richest and most endangered terrestrial ecoregions. New York: CEMEX, Conservation International. 430p.         [ Links ]

30.MYERS, N. 1988. Threatened biotas: “Hot spots” in tropical forests. Environmentalist 8:187-208.         [ Links ]

31.MYERS, N., MITTERMEIER, R.A., MITTERMEIER, C.G., FONSECA, G.A.B. & KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853-858.         [ Links ]

32.NEPSTAD, D. C., KLINK, C. A., UHL, C., VIEIRA, I., LEFEBVRE, P., PEDLOWSKI, M., MATRICARDI, E., NEGREIROS, G., BROWN, I., AMARAL, E., HOMMA, A. & WALKER, R. 1997. Land-use in Amazonia and the Cerrado of Brazil. Ciencia e Cultura 49:73-86.         [ Links ]

33.OLIVEIRA, P. E. & GIBBS, P. E. 2002. Pollination and Reproductive Biology. In Cerrado Plant Communities. In: The Cerrados of Brazil. Ecology and Natural History of a Neotropical Savana. (Oliveira, P. E. & R. J. Marquis, R. J. eds). Columbia Univesity Press, New York, NY. p.329-347.         [ Links ]

34.OLIVEIRA, P. E. & MARQUIS, R. J. (eds) 2002. The Cerrados of Brazil. Ecology and Natural History of a Neotropical Savana. Columbia University Press, New York, NY. 424p.         [ Links ]

35.PETERSON, A. T. 2001. Predicting species’ geographic distributions based on ecological niche modeling. Condor 103:599-605.         [ Links ]

36.PETERSON, A. T., BALL, L. G. & COHOON, K. C. 2002a. Predicting distributions of tropical birds. Ibis 144:e27-e32.         [ Links ]

37.PETERSON, A. T. & COHOON, K. C. 1999. Sensitivity of distributional prediction algorithms to geographic data completeness. Ecological Modelling 117:159-164.         [ Links ]

38.PETERSON, A. T., EGBERT, S. L., SANCHEZ-CORDERO, V. & PRICE, K. P. 2000. Geographic analysis of conservation priorities using distributional modelling and complementarity: Endemic birds and mammals in Veracruz, Mexico. Biological Conservation 93:85-94.         [ Links ]

39.PETERSON, A. T., ORTEGA-HUERTA, M. A., BARTLEY, J., SANCHEZ-CORDERO, V., SOBERON, J., BUDDEMEIER, R. H. & STOCKWELL, D. R. B. 2002b. Future projections for Mexican faunas under global climate change scenarios. Nature 416:626-629.         [ Links ]

40.PETERSON, A. T., PAPES, M. & KLUZA, D. A. In pressa. Predicting the potential invasive distributions of four alien plant species in North America. Weed Science.         [ Links ]

41.PETERSON, A. T., SANCHEZ-CORDERO, V., BEARD, C. B. & RAMSEY, J. M. 2002c. Ecologic niche modeling and potential reservoirs for Chagas disease, Mexico. Emerging Infectious Diseases 8:662-667.         [ Links ]

42.PETERSON, A. T., SÁNCHEZ-CORDERO, V., SOBERÓN, J., BARTLEY, J., BUDDEMEIER, R. H. & NAVARROSIGÜENZA, A. G. 2001. Effects of global climate change on geographic distributions of Mexican Cracidae. Ecological Modelling 144:21-30.         [ Links ]

43.PETERSON, A. T., SCACHETTI-PEREIRA, R. & KLUZA, D. A. In press-b. Assessment of invasive potential of the glassy-winged sharpshooter Homalodisca coagulata in California and South America. Biota Neotropica. 3(1):         [ Links ]

44.PETERSON, A. T., SOBERON, J. & SANCHEZCORDERO, V. 1999. Conservatism of ecological niches in evolutionary time. Science 285:1265-1267.         [ Links ]

45.PETERSON, A. T., STOCKWELL, D. R. B. & KLUZA, D. A. 2002d. Distributional prediction based on ecological niche modeling of primary occurrence data. Pages 617-623 in J. M. Scott, editor. Predicting species occurrences: Issues of scale and accuracy. Island Press, Washington, D.C.         [ Links ]

46.PETERSON, A. T. 2003. Projected climate change effects on Rocky Mountain and Great Plains birds: Generalities of biodiversity consequences. Global Change Biology (in press).         [ Links ]

47.RATTER, J. A., BRIDGEWATER, S., ATKINSON, R. & RIBEIRO, J.F. 1996. Analysis of the floristic composition of the Brazilian cerrado vegetation: II. Comparison of the woody vegetation of 98 areas. Edinburgh Journal of Botany 53:153-180.         [ Links ]

48.RATTER, J. A., RIBEIRO, J. F & BRIDGEWATER, S. 1997. The Brazilian Cerrado Vegetation and Threats to its Biodiversity. Annals of Botany 80: 223-230.         [ Links ]

49.RATTER, J. A., BRIDGEWATER, S., & RIBEIRO, J. F., DIAS, T. A. B. & SILVA, M. R. 2000. Estudo da distribuição das espécies lenhosas da fitofisionomia Cerrado sentido restrito nos estados compreendidos pelo bioma Cerrado. Boletim do Herbário Ezechias Paulo Heringer, Brasilia 5:5-43.         [ Links ]

50.RATTER, J.A., BRIDGEWATER, S., RIBEIRO, J. F. 2002. Biodiversity Patterns of Woody Cerrado Vegetation: An Overall View. In Biodiversidade, Conservação e Uso Sustentável da Flora do Brasil. Sociedade Botânica do Brasil. (E. L. Araújo, E. V. S. B. Sampaio, L. M. S. Gestinari,. & J. M. T. Carneiro. eds.) Universidade Federal Rural de Pernambuco. Recife, PE. Pages 55-57.         [ Links ]

51.SALA, O. E., CHAPIN III, F. S., ARMESTO, J. J., BERLOW, R., BLOOMFIELD, J., DIRZO, R., HUBER-SANWALD, E., HUENNEKE, L. F., JACKSON, R. B., KINZIG, A., LEEMANS, R., LODGE, D., MOONEY, H. A., OESTERHELD, M., POFF, N. L., SYKES, M. T., WALKER, B. H., WALKER, M. & WALL, D.H. 2000. Global biodiversity scenarios for the year 2100. Science 287:1770-1774        [ Links ]

52.STOCKWELL, D. R. B. 1999. Genetic algorithms II. Pages 123-144 in A. H. Fielding, editor. Machine learning methods for ecological applications. Kluwer Academic Publishers, Boston.         [ Links ]

53.STOCKWELL, D. R. B. & NOBLE, I. R. 1992. Induction of sets of rules from animal distribution data: A robust and informative method of analysis. Mathematics and Computers in Simulation 33:385-390.         [ Links ]

54.STOCKWELL, D. R. B. & PETERS, D. P. 1999. The GARP modelling system: Problems and solutions to automated spatial prediction. International Journal of Geographic Information Systems 13:143-158.         [ Links ]

55.STOCKWELL, D. R. B. & PETERSON, A.T. 2002a. Controlling bias in biodiversity data. Pages 537-546 in J. M. SCOTT, editor. Predicting species occurrences: Issues of scale and accuracy. Island Press, Washington, D.C.         [ Links ]

56.STOCKWELL, D. R. B. & PETERSON, A.T. 2002b. Effects of sample size on accuracy of species distribution models. Ecological Modelling 148:1-13.         [ Links ]



Date Received 01/27/2003
Revised 04/15/2003
Accepted 07/21/2003
ISSN 1676-0611

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License