Acessibilidade / Reportar erro

Effect of high temperature on germination of four legumes from a forest-grassland mosaic in Southern Brazil

Influência de temperaturas elevadas na germinação de quatro leguminosas de um mosaico de floresta-campo no Sul do Brasil

Abstracts

Passage of a fire can break dormancy of the seeds of many plant species in fire-prone ecosystems. This response to fire is especially well known for the Fabaceae family, but has been poorly studied in Southern Brazil. We collected seeds of four Fabaceae species present in grasslands-forest mosaics of Southern Brazil: Mimosa bimucronata, Desmodium barbatum, Sesbania virgata and Collaea stenophylla. Seeds were exposed to different heat treatments (exposure to 60° and 80 °C for 5 minutes, to 100 °C for 2 minutes, control without heat treatment); not all species were tested in all treatments. After the treatment, the seeds were kept in a germination chamber with a light period of 12/12 hours and temperature of 25 °C. Germinated seeds were counted every 2 days. The results were analyzed by randomization testing. Germination of D. barbatum and S. virgata was increased after exposure to high temperatures (80° and 60 °C, respectively), while M. bimucronata showed reduced germination after temperatures of 80 °C and C. stenophylla no response. This study is the first for Southern Brazil to show a positive response of germination for grassland species exposed to high temperatures, simulating fire effects. As the study presented distinct responses of species to the heat treatment, it seems important to conduct more works with other species from the family, in order to be able to detect more general patterns.

Campos Sulinos; ecophysiology; Fabaceae; fire; grassland; heat shock


A passagem do fogo pode quebrar a dormência de sementes de muitas espécies em ecossistemas suscetíveis ao fogo. Essa resposta ao fogo é especialmente bem conhecida para espécies da família Fabaceae, mas tem sido pouco estudado no Sul do Brasil. Coletamos sementes de quatro espécies de Fabaceae presentes em mosaicos de campo-florestas do Sul do Brasil: Mimosa bimucronata, Desmodium barbatum, Sesbania virgata e Collaea stenophylla. As sementes foram expostas a diferentes tratamentos de calor (60 °C e 80 °C, ambos por 5 minutos, e 100° C por 2 minutos, mais controle sem tratamento de calor). Nem todas as espécies foram submetidas a todos os tratamentos. Após o tratamento, as sementes foram mantidas em câmara de germinação com fotoperíodo 12/12 horas e temperatura de 25 °C. A porcentagem de sementes germinadas foi contada a cada 2 dias. Os resultados foram analisados por teste de aleatorização. A taxa de germinação de D. barbatum e S. virgata aumentou quando expostas a altas temperaturas (80 °C e 60 °C, respectivamente), enquanto M. bimucronata mostrou redução e C. stenophylla nenhuma resposta aos tratamentos. Esse estudo foi o primeiro para o Sul do Brasil a mostrar uma resposta positiva na germinação de espécies campestres expostas a altas temperaturas, simulando os efeitos do fogo. Como o estudo apresentou respostas distintas, é importante conduzir trabalhos com outras espécies da família a fim de detectar padrões gerais.

Campos Sulinos; ecofisiologia; Fabaceae; fogo; vegetação campestre; choque térmico


Introduction

Fire is a major determinant of the global distribution of vegetation types (Keeley et al. 2008KEELEY, J.E., BRENNAN, T. & PFAFF, A.H. 2008. Fire severity and ecosystem responses following crown fires in California shrublands. Ecol. Appl. 18:1530-1546. http://dx.doi.org/10.1890/07-0836.1
http://dx.doi.org/10.1890/07-0836.1...
), as well as an important selective force in plant communities around the world (Van Staden et al. 2000VAN STADEN, J., BROWN, A. C. N., JÄGER, A. K. & JOHNSON, T.A., 2000. Smoke as a germination cue. Plant. Spec. Biol. 15:167-178. http://dx.doi.org/10.1046/j.1442-1984.2000.00037.x
http://dx.doi.org/10.1046/j.1442-1984.20...
) – in the words of Bond & Keeley (2005)BOND, W.J. & KEELEY, J.E. 2005. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20:387-394. http://dx.doi.org/10.1016/j.tree.2005.04.025
http://dx.doi.org/10.1016/j.tree.2005.04...
, a “global herbivore”. The importance of fire in the history of grasslands in Southern Brazil has been highlighted by Behling et al. (2009)BEHLING, H., JESKE-PIERUSCHA, V. SCHÜLER, L. & PILLAR, V.D. 2009. Dinâmica dos campos no sul do Brasil durante o Quaternário tardio. In Campos Sulinos: Conservação e Uso Sustentável da Biodiversidade (V.D. Pillar, S.C. Müller, Z.M.S. Castilhos & A.V.A. Jacques, eds). Ministério do Meio Ambiente, Brasília, p.13-25.. Grasslands in this region had dominated the landscape under cooler and drier glacial and warmer and drier postglacial climates, and have been subject to forest expansion only since about 4000 years BP, when climate became moister and cooler (Behling et al. 2004BEHLING, H., PILLAR, V.D., ORLÓCI, L. & BAUERMANN, S.G. 2004. Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203:277-297. http://dx.doi.org/10.1016/S0031-0182(03)00687-4
http://dx.doi.org/10.1016/S0031-0182(03)...
). In Southern Brazil, like in many other open vegetation types of the world (Bond 2005BOND, W.J. 2005. Large parts of the world are brown or black: A different view on the ‘Green World’ hypothesis. J. Veg. Sci. 16:261-266.), fire is considered to be a decisive factor for persistence of grasslands, preventing encroachment of woody species under climatic and edaphic conditions favorable for forest development (Overbeck et al. 2007OVERBECK, G.E. , MÜLLER, S.C., FIDELIS, A.T., PFADENHAUER, J.; PILLAR, V.P.; BLANCO, C.C. BOLDRINI, I.I. , BOTH, R. & FORNECK, E.D. 2007. Brazil's neglected biome: the South Brazilian Campos. Perspec. Plant Ecol. 9:101-116.).

A key and pervading concept accepted by most environmental managers is that combustible ecosystems have traditionally been burned because plants are adapted to fire (Bradshaw et al. 2011BRADSHAW, S.D., DIXON, K.W., HOPPER, S.D., LAMBERS, H. & TURNER, S.R. 2011. Little evidence for fire-adapted plant traits in Mediterranean climate regions. Trends Plant Sci. 16(2):69-76. http://dx.doi.org/10.1016/j.tplants.2010.10.007
http://dx.doi.org/10.1016/j.tplants.2010...
). Seeds from plants of fire-prone ecosystems can exhibit a high tolerance to fire (Keeley 1994KEELEY, J.E. 1994. Seed germination patterns in fire-prone Mediterranean climate regions. In Ecology and biogeography of mediterranean ecosystems in Chile, California and Australia (M.T.K. Arroyo, P.H. Zedler & M.D. Fox, eds.). Ecological Studies, Springer-Verlag, Berlin, p.239-273., Williams et al. 2005WILLIAMS, P.R., CONGDON, R.A., GRICE, A.C. & CLARKE, P.J. 2005. Germinable soil seed banks in a tropical savanna: seasonal dynamics and effects of fire. Austral. Ecol. 30:79-90. http://dx.doi.org/10.1111/j.1442-9993.2004.01426.x
http://dx.doi.org/10.1111/j.1442-9993.20...
, Scott et al. 2010SCOTT, K.A., SETTERFIELD, S., DOUGLAS, M. & ANDERSEN, A. 2010. Soil seed banks confer resilience to savanna grass-layer plants during seasonal disturbance. Acta Oecol. 36:202-210. http://dx.doi.org/10.1016/j.actao.2009.12.007
http://dx.doi.org/10.1016/j.actao.2009.1...
) when compared to forest species (Ribeiro et al. 2013RIBEIRO, L.C., PEDROSA, M. & BORGHETTI, F. 2013. Heat shock effects on seed germination of five Brazilian savanna species. Plant Biol. 15:152-157. http://dx.doi.org/10.1111/j.1438-8677.2012.00604.x
http://dx.doi.org/10.1111/j.1438-8677.20...
) and can benefit from it (Whelan et al. 2002WHELAN, R.J., ROGERS, R.W., DICKMAN, C.R. & SUTHERLAND, E.F. 2002. Critical life cycles of plants and animals: developing a process-based understanding of population changes in fire-prone landscapes. In Flammable Australia: the fire regimes and biodiversity of a continent (R.A. Bradstock, J. Williams & A.M. Gill, eds.). Cambridge University Press, Cambridge, p.94-124., Newton et al. 2006NEWTON, R.J., BOND W.J. & FARRANT, J.M. 2006. Effects of seed storage and fire on germination in the nut fruited Restionaceae species, Cannomois virgata. S. Afr. J. Bot. 72:177-180. http://dx.doi.org/10.1016/j.sajb.2005.05.005
http://dx.doi.org/10.1016/j.sajb.2005.05...
) or even require fire as a cue to the onset of germination (González-Rabanal & Casal 1995GONZÁLEZ-RABANAL, F. & CASAL, M. 1995. Effect of high temperatures and ash on germination of ten species from gorse shrubland. Vegetatio 116:123-131. http://dx.doi.org/10.1007/BF00045303
http://dx.doi.org/10.1007/BF00045303...
, Pugnaire & Lozano 1997PUGNAIRE, F.I. & LOZANO, J. 1997. Effects of soil disturbance, fire and litter accumulation on the establishment of Cistus clusii seedlings. Plant Ecol. 131:207-213. http://dx.doi.org/10.1023/A:1009779820845
http://dx.doi.org/10.1023/A:100977982084...
). Breaking of seed dormancy is one important plant strategy in relation to fire (Bond & Van Wilgen 1996BOND, W.J. & VAN WILGEN, B.W. 1996. Fire and plants. London, Springer. http://dx.doi.org/10.1007/978-94-009-1499-5
http://dx.doi.org/10.1007/978-94-009-149...
). Seed dormancy is a key factor in the dynamics of many natural populations and ensures that seedling emergence occurs at the most advantageous time and place (Baskin & Baskin 1985BASKIN, J.M. & BASKIN, C.C. 1985. The annual dormancy cycle in buried weed seeds: a continuum. BioScience 35:492-498. http://dx.doi.org/10.2307/1309817
http://dx.doi.org/10.2307/1309817...
). Several direct and indirect means to break dormancy due to effects of fire exist, such as high temperatures (González-Rabanal & Casal 1995GONZÁLEZ-RABANAL, F. & CASAL, M. 1995. Effect of high temperatures and ash on germination of ten species from gorse shrubland. Vegetatio 116:123-131. http://dx.doi.org/10.1007/BF00045303
http://dx.doi.org/10.1007/BF00045303...
), presence of smoke (Keeley & Fotheringham 1997KEELEY, J.E. & FOTHERINGHAM, C.J. 1997. Trace gas emissions and smoke-induced seed germination. Science 276:1248-1250. http://dx.doi.org/10.1126/science.276.5316.1248
http://dx.doi.org/10.1126/science.276.53...
), presence of ashes and releases of nitrogenous compounds due to combustion of plant matter (González-Rabanal & Casal 1995GONZÁLEZ-RABANAL, F. & CASAL, M. 1995. Effect of high temperatures and ash on germination of ten species from gorse shrubland. Vegetatio 116:123-131. http://dx.doi.org/10.1007/BF00045303
http://dx.doi.org/10.1007/BF00045303...
). Dry heat is effective in breaking dormancy in seeds of a number of species (Baskin & Baskin 1998BASKIN, C.C. & BASKIN, J.M. 1998. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, Academic Press.) through its physical effect on seed coat structure (Bell et al. 1993BELL, D.T., PLUMMER, J.A. & TAYLOR, S.K. 1993. Seed germination ecology in southwestern Western Australia. Bot. Rev. 76:24-73. http://dx.doi.org/10.1007/BF02856612
http://dx.doi.org/10.1007/BF02856612...
) and/or physiological effect on the seed embryo (Bell & Williams 1998BELL, D.T. & WILLIAMS, D.S.1998. Tolerance of thermal shock in seeds. Aust. J. Bot. 46:221-33. http://dx.doi.org/10.1071/BT97010
http://dx.doi.org/10.1071/BT97010...
). This response to fire is especially well known for the Fabaceae family, as seeds from many species of this family exhibit physical dormancy (Baskin et al. 2000BASKIN, J.M., BASKIN, C.C. & LI, X. 2000. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Spec. Biol. 15(2):139-152. http://dx.doi.org/10.1046/j.1442-1984.2000.00034.x
http://dx.doi.org/10.1046/j.1442-1984.20...
).

Exposure to temperatures between 80° and 100 °C is sufficient to break the seed dormancy of several legumes of eucalypt savannas in north-eastern Australia, but temperatures greater than 100-120 °C have been shown to be lethal for seeds of these species (Williams et al. 2003WILLIAMS, P.R., CONGDON, R.A., GRICE, A.C. & CLARKE, P. 2003. Fire-related cues break seed dormancy of six legumes of tropical eucalypt savannas in north-eastern Australia. Austral. Ecol. 28:507-514. http://dx.doi.org/10.1046/j.1442-9993.2003.01307.x
http://dx.doi.org/10.1046/j.1442-9993.20...
). Williams et al. (2004)WILLIAMS, P.R., CONGDON, R., GRICE, A.C. & CLARKE, P.J. 2004. Soil temperature and depth of legume germination during early and late dry season fires in a tropical eucalypt savanna of north-eastern Australia. Austral. Ecol. 29:258-263. http://dx.doi.org/10.1111/j.1442-9993.2004.01343.x
http://dx.doi.org/10.1111/j.1442-9993.20...
demonstrated that breaking seed dormancy is possible with temperatures below 80 °C and 100 °C for Indigofera hirsuta and Galactia tenuiflora, respectively. Suñé & Franke (2006)SUÑÉ, A.D. & FRANKE, L.B. 2006. Superação de dormência e metodologias para testes de germinação em sementes de Trifolium riograndense Burkart e Desmanthus depressus Humb. Rev. Bras. Sement. 28:29-36. have tested different treatments to break dormancy of native plants of Rio Grande do Sul (Brazil) with potential for agricultural use and have found that thermic scarification with immersion in water a 60 °C for 5 minutes was one of the best to surpass or overcome dormancy of Desmanthus depressus and Trifolium riograndense. Franke & Baseggio (1998)FRANKE, L.B. & BASEGGIO, J. 1998. Superação da dormência de sementes de Desmodium incanum DC. e Lathyrus nervosus Lam. Rev. Bras. Sement. 20:182-186. have suggested water immersion at temperatures as high as 70 °C to efficiently break dormancy of Lathyrus nervosus e Desmodium incanum.

Regarding grasslands and forest-grassland mosaics in Rio Grande do Sul, the only legume species for which possible germination responses after increased temperatures, simulating passage of a fire (i.e., without water immersion), have been analyzed up to date were Collaea stenophylla e Desmanthus tatuhyensis. For those two species, neither a temperature of 60 °C nor of 120 °C for a period of 1 minute influenced germination (Fidelis et al. 2007FIDELIS, A., MÜLLER, S.C., PILLAR, V.P & PFADENHAUER, J. 2007. Efeito de Altas Temperaturas na Germinação de Espécies dos Campos Sulinos. Rev. Bras. Biol. 5:354-356.). The aim of this work is to assess the impact of high temperatures stimuli on germination of four legumes species of grassland-forest mosaics in Southern Brazil.

Material and Methods

Seeds of four legume species (Tab. 1) were collected in grassland formations and at forest-grassland edges on and around Santana Hill in Porto Alegre city (30° 03′ S and 51° 07′ W, max. altitude 311m, subtropical humid climate), Southern Brazil, between May and June 2011. The species rich grasslands on Morro Santana are dominated by C4 tussock grasses and are under a regime of frequent burns (average fire return intervals: ca. 3 years, in some parts more often; Overbeck et al. 2005OVERBECK, G.E., MÜLLER, S.C., PILLAR, V.P. & PFADENHAUER, J. 2005. Fine-scale post-fire dynamics in southern Brazilian subtropical grasslands. J. Veg. Sc. 16:655-664. http://dx.doi.org/10.1111/j.1654-1103.2005.tb02408.x
http://dx.doi.org/10.1111/j.1654-1103.20...
, 2006aOVERBECK, G.E., MÜLLER, S.C., PILLAR, V.P. & PFADENHAUER, J. 2006a. Floristic composition, environmental variation and species distribution patterns in burned grassland in southern Brazil. Braz. J. Bio. 66:1073-1090. http://dx.doi.org/10.1590/S1519-69842006000600015
http://dx.doi.org/10.1590/S1519-69842006...
), which prevents expansion of forest over grassland (e.g. Müller et al. 2012MÜLLER, S.C., OVERBECK, G.E., PILLAR, V.D. & PFADENHAUER, J. 2012. Woody species patterns at forest grassland boundaries in southern Brazil. Flora 207:586-59. http://dx.doi.org/10.1016/j.flora.2012.06.012
http://dx.doi.org/10.1016/j.flora.2012.0...
). According to Silveira & Miotto (2013)SILVEIRA, F.S. & MIOTTO, S.T.S. 2013. A família Fabaceae no Morro Santana, Porto Alegre, Rio Grande do Sul, Brasil: aspectos taxonômicos e ecológicos. Rev. Bras. Biol. 11: 93-114., 62 species of Fabaceae occur on this granitic hill.

Table 1.
Fabaceae species used in this study and their respective subfamily, habit, principal habitat and 1000 seed weight (extrapolated from mean value of the batches of 20/25 seeds used in experiment, see methods).

Seeds were stored at dry conditions and ambient temperature until the start of the experiments in October 2011. Each treatment consisted of five replicate batches with 25 seeds each for Mimosa bimucronata (DC.) Kuntze, Desmodium barbatum (L.) Benth. and Sesbania virgata (Cav.) Pers., while for Collaea stenophylla (Hook. et Arn.) Benth. only 20 seeds were used, due to lower availability of seeds. All are rather frequent species on the hill (Silveira & Miotto 2013SILVEIRA, F.S. & MIOTTO, S.T.S. 2013. A família Fabaceae no Morro Santana, Porto Alegre, Rio Grande do Sul, Brasil: aspectos taxonômicos e ecológicos. Rev. Bras. Biol. 11: 93-114.).

Temperature treatments were 60°, 80° and 100° C, plus control treatment without exposition to elevated temperature. Due to differences in availability of seeds, the experiment could be concluded with all treatments only for M. bimucronata, while for the other species, only one or two treatments could be conducted (Table 1). All treatments consisted of exposure to dry heat in an oven. Duration of treatments was 5 minutes for exposure to 60 °C and 80 °C and 2 minutes for exposure to 100 °C, thus simulating exposure to different temperatures and time spans. It can be expected that faster exposure to high temperatures is enough to break dormancy, but continued exposure to high temperatures could kill the seeds. Longer exposure periods at lower temperatures reflect the slow decrease in temperature in the uppermost soil layer (Bradstock & Auld 1995BRADSTOCK, R.A. & AULD, T.D. 1995. Soil temperature during experimental bushfire in relation to fire intensity: consequences for legume germination and fire management in south-eastern Australia. J. App. Ecol. 32:76-84. http://dx.doi.org/10.2307/2404417
http://dx.doi.org/10.2307/2404417...
, Overbeck et al. 2006bOVERBECK, G.E., MÜLLER, S.C., PILLAR, V.P. & PFADENHAUER, J. 2006b. No heat-stimulated germination found in herbaceous species from burned subtropical grassland. Plant. Ecol. 184:237-274. http://dx.doi.org/10.1007/s11258-005-9068-1
http://dx.doi.org/10.1007/s11258-005-906...
).

After exposure to heat, seeds were placed into a germination chamber, using Petri dishes with a double layer of filter paper, and kept moist. We followed a light/darkness regime of 12/12 hours. Temperature was kept constant at 25 °C. The Petri dishes were checked for germination every two days, for a period of two months. The experiment was ended when no germination had occurred anymore for a period of two weeks, considering each species separately. Expansion of the radicle was considered as germination and germinated plants were removed from Petri dishes. The percentage of seeds germinated was analyzed by randomization testing (based on Euclidean distance, using 1000 interactions). We used the software MULTIV (Pillar 1997PILLAR, V.P. 1997. Multivariate exploratory analysis and randomization testing with MULTIV. Coenos. 12:145-148.; program and manual available at http://ecoqua.ecologia.ufrgs.br/ecoqua/MULTIV.html).

Results and Discussion

D. barbatum showed higher germination rates after exposure to temperatures of 80 °C, and S. virgata after 60 °C, but not after 80 °C. Germination of M. bimucronata after exposure to temperatures higher than 60 °C was strongly reduced and C. stenophylla apparently was not influenced by the treatment. Our results thus indicate, for the first time, a positive impact of heat on germination of legume species from South Brazilian forest-grasslands mosaics (Figure 1). Previous studies by Overbeck et al. (2006b)OVERBECK, G.E., MÜLLER, S.C., PILLAR, V.P. & PFADENHAUER, J. 2006b. No heat-stimulated germination found in herbaceous species from burned subtropical grassland. Plant. Ecol. 184:237-274. http://dx.doi.org/10.1007/s11258-005-9068-1
http://dx.doi.org/10.1007/s11258-005-906...
and Fidelis et al. (2007)FIDELIS, A., MÜLLER, S.C., PILLAR, V.P & PFADENHAUER, J. 2007. Efeito de Altas Temperaturas na Germinação de Espécies dos Campos Sulinos. Rev. Bras. Biol. 5:354-356. had shown that seeds of some species remain their viability and germination capacity after heat shock, but no stimulation of germination had been detected.

Figure 1.
Total percentage of seeds germinated by treatment. Figures indicate median, 1st and 3rd quartile, minimum/maximum values and outliers. Different superscript letters indicate significant differences (randomization testing, 1000 interactions).

Ribeiro et al. (2013)RIBEIRO, L.C., PEDROSA, M. & BORGHETTI, F. 2013. Heat shock effects on seed germination of five Brazilian savanna species. Plant Biol. 15:152-157. http://dx.doi.org/10.1111/j.1438-8677.2012.00604.x
http://dx.doi.org/10.1111/j.1438-8677.20...
, working with five Brazilian savanna species, had observed distinct responses of seeds to heat shock: species from savanna, i.e. a fire-prone vegetation type, were more tolerant to heat than forest species. In our study, different responses of species also may be linked to different environments where species can be found. M. bimucronata seems to be intolerant of heat shocks at higher temperature, while one typical grassland species and one forest edge species were stimulated and the other grassland species not affected in germination. This difference between species groups could be explained by evolutionary history in different types of habitats in the grassland-forest mosaic, which likely differ in fire history.

It has been shown before that Desmodium species have different levels of dormancy (Dias Filho & Serrão 1984DIAS-FILHO, M.B. & SERRÃO, E.A.S. 1984. Avaliação da adaptação de leguminosas forrageiras tropicais na Amazônia Oriental brasileira. In: Simpósio de Trópico Úmido. Belém. Documentos, Embrapa-CPATU, n.31.) which could be broken with temperature treatments up to a maximum at 40 °C (Veasey & Martins 1991VEASEY, E.A. & MARTINS, P.S. 1991. Variability in seed dormancy and germination potential in Desmodium Desv. (Leguminosae). Rev. Brasil. Genet. 14:527-545.). However, our study shows that higher temperatures can even increase germination rates of D. barbatum. D. barbatum as well C. stenophylla are typical species of dry and rocky grasslands (Setubal 2010SETUBAL, R.B. 2010. Vegetação campestre subtropical de um morro granítico no sul do Brasil, Morro São Pedro, Porto Alegre, RS. Dissertação Mestrado, Universidade Federal do Rio Grande do Sul, Porto Alegre.), where fires are frequent (Overbeck et al. 2005OVERBECK, G.E., MÜLLER, S.C., PILLAR, V.P. & PFADENHAUER, J. 2005. Fine-scale post-fire dynamics in southern Brazilian subtropical grasslands. J. Veg. Sc. 16:655-664. http://dx.doi.org/10.1111/j.1654-1103.2005.tb02408.x
http://dx.doi.org/10.1111/j.1654-1103.20...
). Temperatures as those used in our experience can be reached in the upper soil layers during a grassland burn (Bradstock & Auld 1995BRADSTOCK, R.A. & AULD, T.D. 1995. Soil temperature during experimental bushfire in relation to fire intensity: consequences for legume germination and fire management in south-eastern Australia. J. App. Ecol. 32:76-84. http://dx.doi.org/10.2307/2404417
http://dx.doi.org/10.2307/2404417...
), breaking dormancy and allowing for seedling recruitment. Moreno & Oechel (1991MORENO J.M. & OECHEL, W.C. 1991. Fire intensity effects on germination of shrubs and herbs in southern California chaparral. Ecology 72:193-2004. http://dx.doi.org/10.2307/1941554
http://dx.doi.org/10.2307/1941554...
) have suggested that resistance to high temperatures should be an important property primarily in obligate seeders, rather than in resprouters that do not generally rely on regeneration from seeds (Herranz et al. 1998HERRANZ, J.M., FERRANDIS, P. & MARTINEZ-SANCHEZ, J.J. 1998. Influence of heat on seed germination of seven Mediterranean Leguminosae species. Plant Ecol. 136:95-103. http://dx.doi.org/10.1023/A:1009702318641
http://dx.doi.org/10.1023/A:100970231864...
). This make sense especially for D. barbatum, a species that invests a lot in production of seeds and does not have special belowground organs that would allow for resprouting after fire (field observations).

The reduced germination rates after exposure to temperatures between 80° and 100 °C in Mimosa bimucronata probably are a consequence of the ecological history of this species, which is more common on wet sites and along water courses (Carvalho 1994CARVALHO, P.E.R. 1994. Espécies florestais brasileiras: recomendações silviculturais, potencialidades e uso da madeira. Embrapa-CNPF, Colombo.), i.e. sites usually without direct influence of fire – in contrast to the other species. The germination rate after exposure to 60 °C was the same as in control treatment. Because of this we suppose that this species is tolerant to mild high temperature. However, Ribas et al. (1996) working with different methods to break dormancy of this species, found that immersion in water heated up to 80 °C was an efficient treatment. Thus, relations between life history, evolutionary history and germination cues thus need to be investigated in more detail for this species. For the other tree species studied, S. virgata, the heat treatment at 60 °C allowed a higher germination rate, but 80 °C did not show an effect in comparison to control. This response may be explained by its insertion into a grassland environment controlled by fire dynamics, in contrast to M. bimucronata. As shown by Fidelis et al. (2007)FIDELIS, A., MÜLLER, S.C., PILLAR, V.P & PFADENHAUER, J. 2007. Efeito de Altas Temperaturas na Germinação de Espécies dos Campos Sulinos. Rev. Bras. Biol. 5:354-356., C. stenophylla was not stimulated in germination by a temperature of 60 °C, even though germination rates in our study were higher, indicating that seeds of the species are tolerant at least to mild heat.

In summary, the studied Fabaceae species differed in relation to germination rates after heat treatment. Distinct effects of heat between species – from heat-induced germination to no or negative effects – suggest that the ecological history of different species plays a decisive role, which seems an interesting starting point for future studies. As already suggested by Overbeck et al. (2006b)OVERBECK, G.E., MÜLLER, S.C., PILLAR, V.P. & PFADENHAUER, J. 2006b. No heat-stimulated germination found in herbaceous species from burned subtropical grassland. Plant. Ecol. 184:237-274. http://dx.doi.org/10.1007/s11258-005-9068-1
http://dx.doi.org/10.1007/s11258-005-906...
, more studies on families with hard-seeded species seem important in order to better understand the role of fire in evolution and dynamics in South Brazilian grasslands. In this, it would be interesting to include studies on life history and recruitment success in the field.

References

  • BASKIN, C.C. & BASKIN, J.M. 1998. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, Academic Press.
  • BASKIN, J.M., BASKIN, C.C. & LI, X. 2000. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Spec. Biol. 15(2):139-152. http://dx.doi.org/10.1046/j.1442-1984.2000.00034.x
    » http://dx.doi.org/10.1046/j.1442-1984.2000.00034.x
  • BASKIN, J.M. & BASKIN, C.C. 1985. The annual dormancy cycle in buried weed seeds: a continuum. BioScience 35:492-498. http://dx.doi.org/10.2307/1309817
    » http://dx.doi.org/10.2307/1309817
  • BEHLING, H., PILLAR, V.D., ORLÓCI, L. & BAUERMANN, S.G. 2004. Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203:277-297. http://dx.doi.org/10.1016/S0031-0182(03)00687-4
    » http://dx.doi.org/10.1016/S0031-0182(03)00687-4
  • BEHLING, H., JESKE-PIERUSCHA, V. SCHÜLER, L. & PILLAR, V.D. 2009. Dinâmica dos campos no sul do Brasil durante o Quaternário tardio. In Campos Sulinos: Conservação e Uso Sustentável da Biodiversidade (V.D. Pillar, S.C. Müller, Z.M.S. Castilhos & A.V.A. Jacques, eds). Ministério do Meio Ambiente, Brasília, p.13-25.
  • BELL, D.T., PLUMMER, J.A. & TAYLOR, S.K. 1993. Seed germination ecology in southwestern Western Australia. Bot. Rev. 76:24-73. http://dx.doi.org/10.1007/BF02856612
    » http://dx.doi.org/10.1007/BF02856612
  • BELL, D.T. & WILLIAMS, D.S.1998. Tolerance of thermal shock in seeds. Aust. J. Bot. 46:221-33. http://dx.doi.org/10.1071/BT97010
    » http://dx.doi.org/10.1071/BT97010
  • BOND, W.J. & VAN WILGEN, B.W. 1996. Fire and plants. London, Springer. http://dx.doi.org/10.1007/978-94-009-1499-5
    » http://dx.doi.org/10.1007/978-94-009-1499-5
  • BOND, W.J. 2005. Large parts of the world are brown or black: A different view on the ‘Green World’ hypothesis. J. Veg. Sci. 16:261-266.
  • BOND, W.J. & KEELEY, J.E. 2005. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20:387-394. http://dx.doi.org/10.1016/j.tree.2005.04.025
    » http://dx.doi.org/10.1016/j.tree.2005.04.025
  • BRADSHAW, S.D., DIXON, K.W., HOPPER, S.D., LAMBERS, H. & TURNER, S.R. 2011. Little evidence for fire-adapted plant traits in Mediterranean climate regions. Trends Plant Sci. 16(2):69-76. http://dx.doi.org/10.1016/j.tplants.2010.10.007
    » http://dx.doi.org/10.1016/j.tplants.2010.10.007
  • BRADSTOCK, R.A. & AULD, T.D. 1995. Soil temperature during experimental bushfire in relation to fire intensity: consequences for legume germination and fire management in south-eastern Australia. J. App. Ecol. 32:76-84. http://dx.doi.org/10.2307/2404417
    » http://dx.doi.org/10.2307/2404417
  • CARVALHO, P.E.R. 1994. Espécies florestais brasileiras: recomendações silviculturais, potencialidades e uso da madeira. Embrapa-CNPF, Colombo.
  • DIAS-FILHO, M.B. & SERRÃO, E.A.S. 1984. Avaliação da adaptação de leguminosas forrageiras tropicais na Amazônia Oriental brasileira. In: Simpósio de Trópico Úmido. Belém. Documentos, Embrapa-CPATU, n.31.
  • FIDELIS, A., MÜLLER, S.C., PILLAR, V.P & PFADENHAUER, J. 2007. Efeito de Altas Temperaturas na Germinação de Espécies dos Campos Sulinos. Rev. Bras. Biol. 5:354-356.
  • FRANKE, L.B. & BASEGGIO, J. 1998. Superação da dormência de sementes de Desmodium incanum DC. e Lathyrus nervosus Lam. Rev. Bras. Sement. 20:182-186.
  • GONZÁLEZ-RABANAL, F. & CASAL, M. 1995. Effect of high temperatures and ash on germination of ten species from gorse shrubland. Vegetatio 116:123-131. http://dx.doi.org/10.1007/BF00045303
    » http://dx.doi.org/10.1007/BF00045303
  • HERRANZ, J.M., FERRANDIS, P. & MARTINEZ-SANCHEZ, J.J. 1998. Influence of heat on seed germination of seven Mediterranean Leguminosae species. Plant Ecol. 136:95-103. http://dx.doi.org/10.1023/A:1009702318641
    » http://dx.doi.org/10.1023/A:1009702318641
  • KEELEY, J.E. 1994. Seed germination patterns in fire-prone Mediterranean climate regions. In Ecology and biogeography of mediterranean ecosystems in Chile, California and Australia (M.T.K. Arroyo, P.H. Zedler & M.D. Fox, eds.). Ecological Studies, Springer-Verlag, Berlin, p.239-273.
  • KEELEY, J.E. & FOTHERINGHAM, C.J. 1997. Trace gas emissions and smoke-induced seed germination. Science 276:1248-1250. http://dx.doi.org/10.1126/science.276.5316.1248
    » http://dx.doi.org/10.1126/science.276.5316.1248
  • KEELEY, J.E., BRENNAN, T. & PFAFF, A.H. 2008. Fire severity and ecosystem responses following crown fires in California shrublands. Ecol. Appl. 18:1530-1546. http://dx.doi.org/10.1890/07-0836.1
    » http://dx.doi.org/10.1890/07-0836.1
  • MORENO J.M. & OECHEL, W.C. 1991. Fire intensity effects on germination of shrubs and herbs in southern California chaparral. Ecology 72:193-2004. http://dx.doi.org/10.2307/1941554
    » http://dx.doi.org/10.2307/1941554
  • MÜLLER, S.C., OVERBECK, G.E., PILLAR, V.D. & PFADENHAUER, J. 2012. Woody species patterns at forest grassland boundaries in southern Brazil. Flora 207:586-59. http://dx.doi.org/10.1016/j.flora.2012.06.012
    » http://dx.doi.org/10.1016/j.flora.2012.06.012
  • NEWTON, R.J., BOND W.J. & FARRANT, J.M. 2006. Effects of seed storage and fire on germination in the nut fruited Restionaceae species, Cannomois virgata. S. Afr. J. Bot. 72:177-180. http://dx.doi.org/10.1016/j.sajb.2005.05.005
    » http://dx.doi.org/10.1016/j.sajb.2005.05.005
  • OVERBECK, G.E. , MÜLLER, S.C., FIDELIS, A.T., PFADENHAUER, J.; PILLAR, V.P.; BLANCO, C.C. BOLDRINI, I.I. , BOTH, R. & FORNECK, E.D. 2007. Brazil's neglected biome: the South Brazilian Campos. Perspec. Plant Ecol. 9:101-116.
  • OVERBECK, G.E., MÜLLER, S.C., PILLAR, V.P. & PFADENHAUER, J. 2005. Fine-scale post-fire dynamics in southern Brazilian subtropical grasslands. J. Veg. Sc. 16:655-664. http://dx.doi.org/10.1111/j.1654-1103.2005.tb02408.x
    » http://dx.doi.org/10.1111/j.1654-1103.2005.tb02408.x
  • OVERBECK, G.E., MÜLLER, S.C., PILLAR, V.P. & PFADENHAUER, J. 2006a. Floristic composition, environmental variation and species distribution patterns in burned grassland in southern Brazil. Braz. J. Bio. 66:1073-1090. http://dx.doi.org/10.1590/S1519-69842006000600015
    » http://dx.doi.org/10.1590/S1519-69842006000600015
  • OVERBECK, G.E., MÜLLER, S.C., PILLAR, V.P. & PFADENHAUER, J. 2006b. No heat-stimulated germination found in herbaceous species from burned subtropical grassland. Plant. Ecol. 184:237-274. http://dx.doi.org/10.1007/s11258-005-9068-1
    » http://dx.doi.org/10.1007/s11258-005-9068-1
  • PILLAR, V.P. 1997. Multivariate exploratory analysis and randomization testing with MULTIV. Coenos. 12:145-148.
  • PUGNAIRE, F.I. & LOZANO, J. 1997. Effects of soil disturbance, fire and litter accumulation on the establishment of Cistus clusii seedlings. Plant Ecol. 131:207-213. http://dx.doi.org/10.1023/A:1009779820845
    » http://dx.doi.org/10.1023/A:1009779820845
  • RIBAS, L.L.F., FOSSATI, L.C. & NOGUEIRA, A.C. 1999. Superação da dormência de sementes de Mimosa bimucronata (DC.) O. Kuntze (MARICÁ). Rev. Bras. Sement. 18:98-101.
  • RIBEIRO, L.C., PEDROSA, M. & BORGHETTI, F. 2013. Heat shock effects on seed germination of five Brazilian savanna species. Plant Biol. 15:152-157. http://dx.doi.org/10.1111/j.1438-8677.2012.00604.x
    » http://dx.doi.org/10.1111/j.1438-8677.2012.00604.x
  • SILVEIRA, F.S. & MIOTTO, S.T.S. 2013. A família Fabaceae no Morro Santana, Porto Alegre, Rio Grande do Sul, Brasil: aspectos taxonômicos e ecológicos. Rev. Bras. Biol. 11: 93-114.
  • SCOTT, K.A., SETTERFIELD, S., DOUGLAS, M. & ANDERSEN, A. 2010. Soil seed banks confer resilience to savanna grass-layer plants during seasonal disturbance. Acta Oecol. 36:202-210. http://dx.doi.org/10.1016/j.actao.2009.12.007
    » http://dx.doi.org/10.1016/j.actao.2009.12.007
  • SETUBAL, R.B. 2010. Vegetação campestre subtropical de um morro granítico no sul do Brasil, Morro São Pedro, Porto Alegre, RS. Dissertação Mestrado, Universidade Federal do Rio Grande do Sul, Porto Alegre.
  • SUÑÉ, A.D. & FRANKE, L.B. 2006. Superação de dormência e metodologias para testes de germinação em sementes de Trifolium riograndense Burkart e Desmanthus depressus Humb. Rev. Bras. Sement. 28:29-36.
  • VAN STADEN, J., BROWN, A. C. N., JÄGER, A. K. & JOHNSON, T.A., 2000. Smoke as a germination cue. Plant. Spec. Biol. 15:167-178. http://dx.doi.org/10.1046/j.1442-1984.2000.00037.x
    » http://dx.doi.org/10.1046/j.1442-1984.2000.00037.x
  • VEASEY, E.A. & MARTINS, P.S. 1991. Variability in seed dormancy and germination potential in Desmodium Desv. (Leguminosae). Rev. Brasil. Genet. 14:527-545.
  • WHELAN, R.J., ROGERS, R.W., DICKMAN, C.R. & SUTHERLAND, E.F. 2002. Critical life cycles of plants and animals: developing a process-based understanding of population changes in fire-prone landscapes. In Flammable Australia: the fire regimes and biodiversity of a continent (R.A. Bradstock, J. Williams & A.M. Gill, eds.). Cambridge University Press, Cambridge, p.94-124.
  • WILLIAMS, P.R., CONGDON, R.A., GRICE, A.C. & CLARKE, P. 2003. Fire-related cues break seed dormancy of six legumes of tropical eucalypt savannas in north-eastern Australia. Austral. Ecol. 28:507-514. http://dx.doi.org/10.1046/j.1442-9993.2003.01307.x
    » http://dx.doi.org/10.1046/j.1442-9993.2003.01307.x
  • WILLIAMS, P.R., CONGDON, R.A., GRICE, A.C. & CLARKE, P.J. 2005. Germinable soil seed banks in a tropical savanna: seasonal dynamics and effects of fire. Austral. Ecol. 30:79-90. http://dx.doi.org/10.1111/j.1442-9993.2004.01426.x
    » http://dx.doi.org/10.1111/j.1442-9993.2004.01426.x
  • WILLIAMS, P.R., CONGDON, R., GRICE, A.C. & CLARKE, P.J. 2004. Soil temperature and depth of legume germination during early and late dry season fires in a tropical eucalypt savanna of north-eastern Australia. Austral. Ecol. 29:258-263. http://dx.doi.org/10.1111/j.1442-9993.2004.01343.x
    » http://dx.doi.org/10.1111/j.1442-9993.2004.01343.x

Publication Dates

  • Publication in this collection
    Apr-Jun 2013

History

  • Received
    08 Nov 2012
  • Reviewed
    4 Apr 2013
  • Accepted
    10 May 2013
Instituto Virtual da Biodiversidade | BIOTA - FAPESP Departamento de Biologia Vegetal - Instituto de Biologia, UNICAMP CP 6109, 13083-970 - Campinas/SP, Tel.: (+55 19) 3521-6166, Fax: (+55 19) 3521-6168 - Campinas - SP - Brazil
E-mail: contato@biotaneotropica.org.br