Acessibilidade / Reportar erro

Ichthyofauna from tributaries of Urubu and Amazonas rivers, Amazonas State, Brazil

Ictiofauna de afluentes dos rios Urubu e Amazonas, Estado do Amazonas, Brasil

Abstract:

The Amazonas River basin comprises the world’s highest fish species diversity. Anthropogenic interferences in aquatic environments represent a pressure over the maintenance of ecological stability and biodiversity. We inventoried the ichthyofauna of 13 disturbed/modified tributaries of Urubu and Amazonas rivers in the region of the middle Amazon River, between June 2018 and March 2019. A total of 164 species were captured, represented by 11 orders, 37 families and 96 genera. Characiformes was the richest order, followed by Cichliformes and Siluriformes. The most representative families in number of species were Cichlidae, Serrasalmidae, and Characidae. Hemigrammus levis was the most abundant species, and Acarichthys heckelii the most common, registered in all sampled sites. In the present study, species with economic interest were collected, as well as many species recently described and one still waiting for formal description, identified provisionally as Moenkhausia aff. colletii. Therefore, the high fish diversity registered, even in disturbed environments in Middle Amazonas River, denotes the makeable ecological importance of this region for fishes resources and supports the necessity of evaluation of other aquatic environments in the region, as well as the potential impacts on composition, maintenance, and survival of ichthyofauna in environments directly affected by human activities.

Keywords:
Amazon fish; Environmental impacts; Ichthyofauna diversity; Inventory

Resumo:

A bacia do rio Amazonas compreende a maior diversidade de espécies de peixes do mundo. Interferências antropogênicas em ambientes aquáticos representam uma pressão sobre a manutenção da estabilidade ecológica e da biodiversidade. Inventariamos a ictiofauna de 13 afluentes perturbados/modificados dos rios Urubu e Amazonas na região do médio do rio Amazonas, entre junho de 2018 e março de 2019. Foram capturadas 164 espécies no total, representadas por 11 ordens, 37 famílias e 96 gêneros. Characiformes foi a ordem mais rica, seguida por Cichliformes e Siluriformes. As famílias mais representativas em número de espécies foram Cichlidae, Serrasalmidae e Characidae. Hemigrammus levis foi a espécie mais abundante e Acarichthys heckelii a mais comum, registrada em todos os locais amostrados. No presente estudo foram coletadas espécies de interesse econômico, bem como muitas espécies recentemente descritas e uma ainda aguardando descrição formal, identificada provisoriamente como Moenkhausia aff. colletii. Portanto, a alta diversidade de peixes registrada, mesmo em ambientes perturbados no médio rio Amazonas, denota a importância ecológica marcante dessa região para os recursos pesqueiros e suporta a necessidade de avaliação de outros ambientes aquáticos da região, bem como os possíveis impactos na composição, manutenção e sobrevivência da ictiofauna em ambientes diretamente afetados pelas atividades humanas.

Palavras-chave:
Diversidade da ictiofauna; Impactos ambientais; Inventário; Peixes amazônicos

Introduction

The Amazonas River basin is the world’s largest watershed (Goulding et al. 2003GOULDING, M., BARTHEM, R. & FERREIRA, E. 2003. The Smithsonian atlas of the Amazon. Washington: Smithsonian Institution Press.), and has an area over 8.000.000 km2 (Sioli 1984SIOLI, H. 1984. The Amazon and its main affluents: hydrography, morphology of the river courses, and river types. In The Amazon: limnology and landscape ecology (H. Sioli ed.). Dr. W. Junk Publishers, Boston. p. 127-165.). The associated channels and wetlands support high values of primary and secondary productivity (Junk 2013JUNK, W.J., PIEDADE, M.T.F., LOURIVAL, R, WITTMANN, F., KANDUS, P. LACERDA, L.D., BOZELLI, R.L., ESTEVES, F.A., NUNES DA CUNHA, C. & MALTCHIK, L. 2013. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat. Conserv.: Mar. Freshwat. Ecosyst. 24:5-22.). This complex landscape harbors the highest diversity of freshwater fishes in the world, with more than 2,700 species currently considered valid (Dagosta & Pinna 2019DAGOSTA, F.CP. & PINNA, M. 2019. The fishes of the amazon: distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Mus. Nat. Hist. 431:1-163.). During the rain forest annual flooded pulse, the combination of flat terrain and variable rivers and streams discharge allows the presence of large areas of wetlands and floodplain forest (Junk 1970JUNK, W.J. 1970. Investigations on the Ecology and Production-Biology of the "Floating Meadows" (Paspalo-Echinochloetum) on the MiddleAmazon. Part I: The floating vegetation and its ecology. Amazoniana. 2(4):449-495. ), resulting in a dynamic complex of seasonally flooded areas with marked ecological importance (Junk et al. 2011JUNK, W.J., PIEDADE, M.T.F., SCHÖNGART, J., COHN-HAFT, M., ADENEY, J.M. & WITTMANN, F. 2011. A Classification of Major Naturally-Occurring Amazonian Lowland Wetlands. Wetlands. 31(4):623-640.).

Unfortunately, the structure and function of Amazon freshwater ecosystems are being increasingly impacted by crescent human activities and territorial modifications (Castello et al. 2013CASTELLO, L, MCGRATH, D.G., HESS, L.L., COE, M.T., LEFEBVRE, P.A., PETRY, P., MACEDO, M.N., RENÓ, V.F. & ARANTES, C.C. 2013. The Vulnerability of Amazon Freshwater Ecosystems. Conservation Letters. 6(4):217-229.). The main impacts evidenced are roads construction and expansion (Jones et al. 2000JONES, J.A, SWANSON, F.J., WEMPLE, B.C. & SNYDER, K.U. 2000. Effects of Roads on Hydrology Geomorphology, and Disturbance Patches in Stream Networks. Conserv. Biol. 14(1):76-85., Barber et al. 2014BARBER, C.P., COCHRANE, M.A., SOUZA JR., C.M. & LAURENCE, W.F. 2014. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 177:203-209., Smith et al. 2018SMITH, W.S., LIMA, R.C.R., SILVA, L.C.M., CORRÊA, C.S., TEODORO, C.C., SOINSKI, T. A., COSTA, M.S. & STEFANI, M.S. 2018. A duplicação de rodovias no Brasil sob o olhar da Ictiofauna. Bol. Soc. Bras. Ictio. (125):16-23.), deforestation (Renó et al. 2011RENÓ, V.F., NOVO, E.M.L.M., SUEMITSU, C., RENNÓ, C.D. & SILVA, T.S.F. 2011. Assessment of deforestation in the Lower Amazon floodplain using historical Landsat MSS/TM imagery. Remote Sens. Environ. 115(12):3446-3456., Barber et al. 2014BARBER, C.P., COCHRANE, M.A., SOUZA JR., C.M. & LAURENCE, W.F. 2014. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 177:203-209., Inomata et al. 2018INOMATA, S.O., GONZALEZ, A.M.G.O., ROMÁN, R.M.S., SOUZA, L.A. & FREITAS, C.E.C. 2018. Sustainability of small-scale fisheries in the middle Negro River (Amazonas - Brazil): A model with operational and biological variables. Ecological Modelling. 368:312-320.), construction and installation of hydroelectric dams (Junk et al. 2007JUNK, W.J., SOARES, M.G.M. & BAYLEY, P.B. 2007. Freshwater fishes of the Amazonas River basin: their biodiversity, fisheries, and habitats. Aqua. Ecosyst. Health Manag. 10(2):153-173. , Alho 2015ALHO, C.J.R., REIS, R.E. & AQUINO, P.P.U. 2015. Amazonian freshwater habitats experiencing environmental and socioeconomic threats affecting subsistence fisheries. Ambio: A Journal of the Human Environment. 44(5):412-425., Hurd et al. 2016HURD, L.E., SOUSA, R.G.C., SIQUEIRA-SOUZA, F.K., COOPER, G.J. KAHN, J.R. & FREITAS, C.E.C. 2016. Amazon floodplain fish communities: Habitat connectivity and conservation in a rapidly deteriorating environment. Biol. Conserv. 195:118-127., Reis et al. 2016REIS, R.E., ALBERT J.S., DI DARIO F., MINCARONE M.M., PETRY, P. & ROCHA, L.A. 2016. Fish biodiversity and conservation in South America. J Fish Biol. 89(1):12-47., Inomata et al. 2018INOMATA, S.O., GONZALEZ, A.M.G.O., ROMÁN, R.M.S., SOUZA, L.A. & FREITAS, C.E.C. 2018. Sustainability of small-scale fisheries in the middle Negro River (Amazonas - Brazil): A model with operational and biological variables. Ecological Modelling. 368:312-320.), pollution (Castello et al. 2013CASTELLO, L, MCGRATH, D.G., HESS, L.L., COE, M.T., LEFEBVRE, P.A., PETRY, P., MACEDO, M.N., RENÓ, V.F. & ARANTES, C.C. 2013. The Vulnerability of Amazon Freshwater Ecosystems. Conservation Letters. 6(4):217-229.), and overfishing (Alho 2015ALHO, C.J.R., REIS, R.E. & AQUINO, P.P.U. 2015. Amazonian freshwater habitats experiencing environmental and socioeconomic threats affecting subsistence fisheries. Ambio: A Journal of the Human Environment. 44(5):412-425., Inomata et al. 2018INOMATA, S.O., GONZALEZ, A.M.G.O., ROMÁN, R.M.S., SOUZA, L.A. & FREITAS, C.E.C. 2018. Sustainability of small-scale fisheries in the middle Negro River (Amazonas - Brazil): A model with operational and biological variables. Ecological Modelling. 368:312-320.).

Itacoatiara is a municipality of Amazonas State, Brazil, situated on left bank of Amazon River, located downstream the confluences of Madeira and Urubu rivers, and upstream the confluence of Uatumã River. This region is drained by a complex fluvial system, composed of streams, channels, and lakes that integrate black and clearwater environments like igapós and campinaranas, as well as a vast area of floodplain enriched by alluvial deposits of rivers of white waters such as the Amazonas and Madeira (Cavallini 2014CAVALLINI, M.S. 2014. As gravuras rupestres da bacia do rio Urubu: levantamento e análise gráfica do sítio de Caretas, Itacoatiara - Estado do Amazonas: Uma proposta de contextualização. Dissertação de Mestrado em Arqueologia da Universidade de São Paulo, São Paulo.). The municipality is connected to Manaus by the road AM-010, which caused many impacts and even interrupted the course of some drainages of the region.

Despite the great diversity and the increase of anthropogenic pressures, studies on fish fauna of the region are usually concentrated on species with commercial interest. Smaller species, despite their high contribution of biomass and richness are subsampled, resulting in lack of knowledge to be filled with future studies (Barletta et al. 2010BARLETTA, M., JAUREGUIZAR, A.J., BAIGUN, C., FONTOURA, N.F., AGOSTINHO, A.A., ALMEIDA-VAL, V.M.F., VAL, A.L., TORRES, R.A., JIMENES SEGURA, L.F., GIARRIZZO, T., FEBRÉ, N.N, BATISTA, V.S., LASSO, C., TAPHORN, D.C., COSTA, M.F., CHAVES, P.T., VIEIRA, J.P. & CORREA, M.F.M. 2010. Fish and aquatic habitat conservation in South America: a continental overview with emphasis on neotropical systems. J. Fish Biol. 76(9):2118-2176.). Still, some rivers, like Urubu, remains poorly understood in terms of ichthyofauna composition, with few reports of species occurrence in the basin, rare cases of endemism and little information about species distribution (Dagosta & Pinna 2019DAGOSTA, F.CP. & PINNA, M. 2019. The fishes of the amazon: distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Mus. Nat. Hist. 431:1-163.). Thus, the aim of this investigation is to present an inventory of the ichthyofauna from watercourses from Urubu and Amazonas drainages near Itacoatiara.

Material and Methods

1. Study area

The city of Itacoatiara is drained by a complex fluvial system directly affected by the flood pulse (Figure 1). It is located in the left margin of Amazon River, upstream of the main connection between the Amazonas River and Canaçari Lake, and just downstream of the Amazonas-Madeira rivers confluence (Abril et al. 2014ABRIL, G. MARTINEZ, J.M., ARTIGAS, L.F., MOREIRA-TURCQ, P., BENEDETTI, M.F., VIDAL, L., MEZIANE, T., KIM, J.H., BERNARDES, M.C., SAVOYE, N., DEBORDE, J., SOUZA, E.L., ALBÉRIC, P., SOUZA, M.F.L. & ROLAND, F. 2014. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature. 505:395-398.). The Canaçari Lake possesses clearwater and connects the Amazonas and Urubu rivers. It is disconnected from flooded forest most of the year, but during high water levels of Amazonas and Madeira rivers it is reconnected to these rivers (Polsenare et al. 2013). Approximately 12 km from its confluence with the Amazonas River, the Urubu River suffers a 90º inflection and its main course becomes parallel to the Amazonas River. On left margin it receives two tributaries, Caru and Anebá rivers, that drain into the Canaçari Lake. This lake is, in turn, connected to Uatumã River (Cavallini, 2014CAVALLINI, M.S. 2014. As gravuras rupestres da bacia do rio Urubu: levantamento e análise gráfica do sítio de Caretas, Itacoatiara - Estado do Amazonas: Uma proposta de contextualização. Dissertação de Mestrado em Arqueologia da Universidade de São Paulo, São Paulo.) (Figure 1). Both the Urubu and Uatumã rivers are clearwater basins that originate from the old plateaus of Guyana Shield and carry a lighter sediment load, are more acid and less productive than whitewater rivers (Hurd et al. 2016HURD, L.E., SOUSA, R.G.C., SIQUEIRA-SOUZA, F.K., COOPER, G.J. KAHN, J.R. & FREITAS, C.E.C. 2016. Amazon floodplain fish communities: Habitat connectivity and conservation in a rapidly deteriorating environment. Biol. Conserv. 195:118-127.).

Figure 1
Map showing the complex fluvial system of Middle Amazonas River basin, Itacoatiara, Amazon State, Brazil.

The west border of urban area of Itacoatiara is also influenced upstream by Serpa Lake, which is a tributary of Amazonas River. However, most of the connections between Serpa Lake and Amazonas River were barred due to roads construction (AM-010 and local roads), and the main connection with Amazonas River was barred and limited to a small artificial channel (close to site 4, Figure 2). In the flooded season the water flows from Amazonas River to Serpa Lake through this channel, and in the dry season the water flow suffers an inversion. During flood season connections between Serpa and Canaçari lakes can also appear. Most of the lakeshore has steep edges and is occupied by rural population.

Figure 2
Map of the study area showing the sampled sites (black dots) on tributaries of Amazonas and Urubu rivers, in Middle Amazonas river basin, in Itacoatiara, Amazon State, Brazil.

The sampling occurred in 13 sites in the rural area of Itacoatiara (Figures 2 and 3, and Table 1). Sites 1 to 4 are located in Serpa Lake. Site 1 is the farthest from Amazon River and the nearest from Urubu River. This site is isolated from other parts of the lake during dry season, by coverage of aquatic plants (Montrichardia arborescens Schott). Sites 2 and 3 represent intermediate portions of the lake, and site 4 is closer to the lake connection with Amazonas River and farthest from Urubu River.

Figure 3
Collecting sites (a) Serpa lake 1 (Site 1), (b) Serpa lake 2 (Site 2), (c) Serpa lake 3 (Site 3), (d) Serpa lake 4 (Site 4), (e) Km 24 stream (Site 5), (f) Km 24 stream (Site 6), (g) Km 8 lake (Site 7), (h) Km 8 stream (Site 8), (i) Km 13 lake (Site 9), (j) Km 13 lake (Site 10), (k) Km 13 lake (Site 11), (l) Almeida lake (Site 12) and (m) Km 6 lake (Site 13).
Table 1
Description of sampling sites on tributaries of Amazonas and Urubu rivers, in middle Amazonas river basin, Brazil.

The remaining seven sampled sites (5, 7, 9, 10, 11, 12, and 13) are watercourses dammed by AM0-010 road, since its construction in the late 1960s. Trees stumps and wood debris are found in the bottom of these sites, the margins are flat and are subject to different impacts, such as deforestation, pasture, overfishing and recreational use. All these sites are tributaries of Urubu River (5, 6, 9, 10, and 11) or Canaçari Lake (7, 8, 12, and 13). Sites 6 and 8 are stream stretches downstream the barrier from sites 5 and 7, respectively.

2. Data collection and analysis

The samples were taken in June, September and November 2018, and March 2019. In sites 5, 7, 9, 10, 11, and 12 the fishes were collected using gill nets with different mesh sizes (20, 30, 40, 60, 80, 100, and 120 mm), and also a seine net (1,3 high and 10-meter-long, mesh size 5 mm) was used in the shallow littoral habitats of these sites. In sampling sites in Serpa lake (sites 1, 2, 3, and 4) only the gill nets were used, and in sample sites 6 and 8 (streams stretch) seine net and/or sieves with mesh size of 2 mm were used. All the specimens collected were anesthetized in benzocaine hydrochloride, fixed with formalin 10% solution and preserved in 70% ethanol for taxonomic identification. Voucher specimens were deposited in fish collection of Instituto Nacional de Pesquisas da Amazônia (INPA).

Nomenclatural arrangement and classification of family and higher levels followed Betancur-R. et al. (2017)BETANCUR-R, R., WILEY, E.O., ARRATIA, G., ACERO, A., BAILLY, N., MIYA, M., LECOINTRE, G. & ORTÍ, G. 2017. Phylogenetic classification of bony fishes. BMC Evol. Biol. 17:162.. Sub-families of Acestrorhynchidae, Characidae, Auchenipteridae, and Loricariidae followed Oliveira et al. (2011)OLIVEIRA, C., AVELINO, G.S., ABE, K.T., MARIGUELA, T.C., BENINE, R.C., ORTI, G., VARI, R.P. & CORRÊA e CASTRO R.M. 2011. Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evol. Biol. 11(275):1-25., Mirande (2018)MIRANDE, J.M. 2018. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. (2018):1-19., Birindelli (2014)BIRINDELLI, J.L.O. 2014. Phylogenetic relationships of the South American Doradoidea (Ostariophysi: Siluriformes). Neotrop Ichthyol. 12(3):451-564., and Armbruster (2004)ARMBRUSTER, J.W. 2004. Phylogenetic relationships of the suckermouth armoured catfishes (Loricariidae) with emphasis on the Hypostominae and the Ancistrinae. Zool. J. Linnean Soc. 141:1-80., respectively. The classification of families and subfamilies were presented in alphabetical order as consequence of incongruence between molecular and morphological phylogenetic proposes, or lack of resolution of relationships between them. Identification follows Géry (1960)GÉRY, J. 1960. Contributions to the study of the characoid fishes, No. 9. Some South-American characoid fishes in the Senckenberg Museum, with the description of a new Leporinus. Senckenb. Biol. 41(5/6):273-288., Weitzman & Cobb (1975)WEITZMAN, S.H. & COBB, J.S. 1975 A revision of the South American fishes of the genus Nannostomus Günther (family Lebiasinidae). Smithson Contrib Zool. 186:1-36. , Kullander (1986)KULLANDER, S.O. 1986. Cichlid fishes of the Amazon River drainage of Peru. Swedish Museum of Natural History, Stockholm: Marstatryck AB., Ploeg (1991)PLOEG, A. 1991. Revision of the South American cichlid genus Crenicichla Heckel, 1840, with description of fifteen new species and consideration on species groups, phylogeny and biogeography (Pisces, Perciformes, Cichlidae). Unpublished PhD Dissertation, Universiteit van Amsterdam., Vari (1992)VARI, R.P. 1992. Systematics of the neotropical Characiform genus Cyphocharax Fowler (Pisces, Ostariophysi). Smithson Contrib Zool. 529:1-137., Langeani (1996)LANGEANI, F. 1996. Estudo Filogenético e revisão taxonômica da família Hemiodontidae Boulenger, 1904 (sensu Roberts, 1974) (Ostariophysi, Characiformes). Tese de doutorado, Universidade de São Paulo, São Paulo. , Weitzman & Palmer (1997)WEITZMAN, S.H. & PALMER L. 1997 The rosy tetra, Hyphessobrycon rosaceus, its identification and brief history as an aquarium fish. Tropical Fish Hobbyist. 45(11):158-166., Zarske & Géry (1999)ZARSKE, A. & GÉRY, J. 1999. Revision der neotropischen Gattung Metynnis Cope, 1878. Evaluation der Typusexemplare der nominellen Arten (Teleostei: Characiformes: Serrasalmidae). Zool. Abh. Mus. Tierkd. Dresden Bd. 50(13):169-216., Lasso & Machado-Allison (2000)LASSO, C.A. & MACHADO-ALLISON, A. 2000. Sinopsis de las especies de peces de la familia Cichlidae presentes en la cuenca del Rio Orinoco. Claves, diagnosis, aspectos bio-ecologicos e ilustraciones. Serie Peces de Venezuela. Universidad Central de Venezuela, Caracas: Consejo Nacionl de Investigaciones Científicas y Tencológicas (CONICIT). , Merckx et al. (2000)MERCKX, A., JÉGU, M. & dos SANTOS, G.M. 2000. Une nouvelle espèce de Serrasalmus (Teleostei: Characidae: Serrasalminae), S. altispinis n. sp., décrite du Rio Uatumã (Amazonas, Brésil) avec une description complémentaire de S. rhombeus (Linnaeus, 1766) du plateau guyanais. Cybium. 24(2):181-201., Toledo-Piza (2000)TOLEDO-PIZA, M. 2000. Two new Heterocharax species (Teleostei: Ostariophysi: Characidae), with a redescription of H. macrolepis. Ichthyol. Explor. Freshw. 11(4):289-304. , Machado-Allison (2002)MACHADO-ALLISON, A. 2002. Los peces caribes de Venezuela: una aproximación a su estudio taxonómico. Bol. Acad. C. Fís., Mat. y Nat. 62(1):35-88. , Staeck (2003)STAECK, W. 2003. Cichliden-Lexikon, Teil 3: Südamerikanische Zwergbuntbarsche. Dähne Verlag, Klassifizierung: Artenübersicht., López-Fernández & Taphorn (2004)LÓPEZ-FERNÁNDEZ, H. & TAPHORN, D.C. 2004. Geophagus abalios, G. dicrozoster and G. winemilleri (Perciformes: Cichlidae), three new species from Venezuela. Zootaxa. (439):1-27. , Malabarba (2004)MALABARBA, M.C.S.L. 2004. Revision of the neotropical genus Triportheus Cope, 1872 (Characiformes: Characidae). Neotrop Ichthyol. 2(4):167-204. , Chernoff & Machado-Allison (2005)CHERNOFF, B. & MACHADO-ALLISON, A. 2005. Bryconops magoi and Bryconops collettei (Characiformes: Characidae), two new freshwater fish species from Venezuela, with comments on B. caudomaculatus (Günther). Zootaxa. (1094):1-23., Santos et al. (2006)SANTOS, G.M., FERREIRA, E.J.G. & ZUANON, J.A.S. 2006. Peixes comerciais de Manaus. Manaus: Ibama/AM, ProVárzea., Bleher et al. (2007)BLEHER, H., STÖLTING, K.N., SALZBURGER, W. & MEYER, A. 2007. Revision of the genus Symphysodon Heckel, 1840 (Teleostei: Perciformes: Cichlidae) based on molecular and morphological characters. Aqua. 12(4):133-174., Sarmento-Soares & Martins-Pinheiro (2008)SARMENTO-SOARES, L.M. & MARTINS-PINHEIRO, R.F. 2008. A systematic review of Tatia (Siluriformes: Auchenipteridae: Centromochlinae). Neotrop Ichthyol. 6(3):495-542. , Sousa (2010)SOUSA, L.M. 2010. Revisão taxonômica e filogenia de Astrodoradinae (Siluriformes, Doradidae). Tese de doutorado, Instituto de Biociências, Universidade de São Paulo, São Paulo., Costa (2011)COSTA, W.J.E.M. 2011. Phylogenetic position and taxonomic status of Anablepsoides, Atlantirivulus, Cynodonichthys, Laimosemion and Melanorivulus (Cyprinodontiformes: Rivulidae). Ichthyol. Explor. Freshw. 22(3):233-249., Mendonça & Wosiacki (2011)MENDONÇA, M.B. & WOSIACKI, W.B. 2011. A new species of Hemigrammus from the Lower Amazon floodplain (Characiformes: Characidae). Copeia. 2011(2):211-215. , Queiroz et al. (2013)QUEIROZ, L.J., TORRENTE-VILARA, G., OHARA, W.M., ZUANON, J., PIRES, T. & DÓRIA, C.R.C. 2013. Peixes do Rio Madeira. São Paulo: Dialeto Latin American Documentary., Menezes & Lucena (2014)MENEZES, N.A. & de LUCENA, C.A.S. 2014. A taxonomic review of the species of Charax Scopoli, 1777 (Teleostei: Characidae: Characinae) with description of a new species from the rio Negro bearing superficial neuromasts on body scales, Amazon basin, Brazil. Neotrop Ichthyol. 12(2):193-228., Peixoto et al. (2015)PEIXOTO, L.A.W., DUTRA, G.M. & WOSIACKI, W. B. 2015. The electric glass knifefishes of the Eigenmannia trilineata species-group (Gymnotiformes: Sternopygidae): monophyly and description of seven new species. Zool. J. Linn. Soc. 175:384-414., Walsh et al. (2015)WALSH, S.J., RIBEIRO, F.R.V. & RAPP PY-DANIEL, L.H. 2015. Revision of Tympanopleura Eigenmann (Siluriformes: Auchenipteridae) with description of two new species. Neotrop Ichthyol. 13(1):1-46., Marinho & Langeani (2016)MARINHO, M.M.F. & LANGEANI, F. 2016. Reconciling more than 150 years of taxonomic confusion: the true identity of Moenkhausia lepidura, with a key to the species of the M. lepidura group (Characiformes: Characidae). Zootaxa. 4107(3):338-352. , Ota et al. (2016)OTA, R.P., RAPP PY-DANIEL, L.H. & JÉGU, M. 2016. A new Silver Dollar species of Metynnis Cope, 1878 (Characiformes: Serrasalmidae) from Northwestern Brazil and Southern Venezuela. Neotrop Ichthyol. 14(4):e160023., Marinho & Menezes (2017)MARINHO, M.M.F. & MENEZES, N.A. 2017. Taxonomic review of Copella (Characiformes: Lebiasinidae) with an identification key for the species. PLoS ONE. 12(8):1-53. , Melo & Oliveira (2017)MELO, B.F. & OLIVEIRA, C. 2017. Three new species of Curimatopsis (Characiformes: Curimatidae) from the Amazon basin. J. Fish Biol. 91(2):528-544., Ribeiro et al. (2017)RIBEIRO, F.R.V., RAPP PY-DANIEL, L.H. & WALSH, S.J. 2017. Taxonomic revision of the South American catfish genus Ageneiosus (Siluriformes: Auchenipteridae) with the description of four new species. J. Fish Biol. 90(4):1388-1478., Mateussi et al. (2018)MATEUSSI, N.T.B., OLIVEIRA, C. & PAVANELLI, C.S. 2018 Taxonomic revision of the Cis-Andean species of Mylossoma Eigenmann & Kennedy, 1903 (Teleostei: Characiformes: Serrasalmidae). Zootaxa. 4387(2):275-309., and de Souza et al. (2019)de SOUZA, L.S., TAPHORN, D.C. & ARMBRUSTER, J.W. 2019. Review of Ancistrus (Siluriformes: Loricariidae) from the northwestern Guiana Shield, Orinoco Andes, and adjacent basins with description of six new species. Zootaxa. 4552:1-67. .

All collect individuals and species were listed and quantified for each sampling site. The relative abundance in percentage was estimated for each site through the percentage of fish collected in each site in relation of the total collected. Richness for each sampling site was defined by the total number of species registered in each site.

Results

A total of 164 species were captured (Table 2), distributed in 11 orders, 37 families and 96 genera. The orders with the highest number of species were Characiformes (56.7%, 93 species) followed by Cichliformes (17.1%, 28 species) and Siluriformes (16.4%, 27 species). The most representative families were Cichlidae (28 species), Serrasalmidae (19 species), and Characidae (16 species). In terms of genera, the families that were most representative were Cichlidae (17 genera), Serrasalmidae and Auchenipteridae (both with eight genera).

Table 2
Taxonomic classification of fishes collected in tributaries of Amazonas and Urubu rivers, in middle Amazonas river basin, Brazil. Localities: 1 - Serpa lake, 2 - Serpa lake, 3 - Serpa lake, 4 - Serpa lake, 5 - Km 24 stream, 6 - Km 24 stream, 7 - Km 8 lake, 8 - Km 8 stream, 9 - Km 13 lake, 10 - Km 13 lake, 11 - Km 13 lake, 12 - Almeida lake and 13 - Km 6 lake.

The most common species were Acarichthys heckelii, Geophagus altifrons, Mesonauta festivus, Satanoperca lilith, and Pygopristis denticulata (Figure 3). Important species for commercial aquarium trade like Monocirrhus polyacanthus (site 8), Symphysodon discus (site 1), Pterophyllum scalare (sites 4 and 8) (Figure 4) and species of genera Apistogramma (sites 7, 8, 10, 11, and 13), and Nannostomus (sites 5, 6, 8, 9, 10, 12 and 13) were registered. Additionally, important species for fisheries were captured, like Brycon amazonicus, Cichla monoculus, C. temensis, Colossoma macropomum, Osteoglossum bicirrhosum, Semaprochilodus insignis, and S. taeniurus. One species that remains unknown for science, but is in process of formal description, identified as Moenkhausia aff. colletii was registered in site 12 (Figure 4).

Figure 4
Representative individuals of nine species collected: (a) Acarichthys heckelii, 75 mm SL; (b) Geophagus altifrons, 197 mm SL; (c) Mesonauta festivus, 55 mm SL; (d) Satanoperca lilith, 185 mm SL; (e) Pygopristis denticulata, 165 mm SL; (f) Monocirrhus polyacantus, 15 mm SL; (g) Symphysodon discus, 161 mm SL; (h) Pterophyllum scalare, 85 mm SL and (i) Moenkhausia aff. colletii, 65 mm SL.

The most abundant species in this study were Hemigrammus levis (62.1%), Hemigrammus stictus (8.7%), and Acarichthys heckelii (3.3%), the last one was very abundant in the barred watercourses (sites 5, 7, 9, 11, 12, and 13). The sites with the lowest relative abundance were located in Serpa Lake. The site 12 presented the highest relative abundance (Figure 5). In number of species, the sites with the highest and lowest number were site 4 and 1, respectively (Figure 6).

Figure 5
Relative abundance of fishes in sampling sites on tributaries of Amazonas and Urubu rivers, in middle Amazonas river basin, Brazil.
Figure 6
Total number of species in each sampling site on tributaries of Amazonas and Urubu rivers, in middle Amazonas river basin, Brazil.

Discussion

The predominance of Characiformes, Siluriformes and Cichliformes corroborates the pattern observed for freshwater environments in South America (Lowe-Mcconnell 1999LOWE-MCCONNELL, R.H. 1999. Estudos ecológicos de comunidades de peixes tropicais. São Paulo: EDUSP., Siqueira-Souza & Freitas 2004SIQUEIRA-SOUZA, F.K. & FREITAS, C.E.C. 2004. Fish diversity of floodplain lakes on the lower stretch of the Solimões River. Braz. J. Biol. 64(3A):501-510., Fernandes et al. 2012FERNANDES, R., LOURENÇO, L.S, OTA, R.P., MOREIRA, M.M.M. & ZAWADZKI, C.H. 2012. Effects of local and regional factorson the fish assemblege structure in Meridional Amazonian streams. Environ. Biol. Fishes. 96(7):837-848., Freitas et al. 2013FREITAS, C.E.C., SIQUEIRA-SOUZA, F.K., FLORENTINO, A.C. & HURD, L.E. 2013. The importance of spatial scales to analysis of fish diversity in Amazonian floodplain lakes and implications for conservation. Ecol Freshw Fish. 23(3):470-477., Queiroz et al. 2013QUEIROZ, L.J., TORRENTE-VILARA, G., OHARA, W.M., ZUANON, J., PIRES, T. & DÓRIA, C.R.C. 2013. Peixes do Rio Madeira. São Paulo: Dialeto Latin American Documentary., Leite et al. 2015LEITE, G.F.M., SILVA, F.T.C., GONÇALVES, J.F.J. & SALLES, P. 2015. Effects of conservation status of the riparian vegetation on fish assemblage structure in neotropical headwater streams. Hydrobiologia. 762(1):223-238., Reis et al. 2016REIS, R.E., ALBERT J.S., DI DARIO F., MINCARONE M.M., PETRY, P. & ROCHA, L.A. 2016. Fish biodiversity and conservation in South America. J Fish Biol. 89(1):12-47.); although Cichliformes, represented exclusively by one family (Cichlidae), presents the same number of species as Siluriformes, with six families. Cichlidae was the most diverse family in number of species, comprising 17.1% of all richness registered. This family is known to represent one of the largest groups of freshwater teleost fishes (Kullander 2003KULLANDER, S.O. 2003. Familv Cichlidae. In: Check list of the freshwater of South and Central America (Reis, R.R.; Kullander, S.O.; Ferraris, C.J. eds). Edipucrs, Porto Alegre, Brasil. p. 605-654., Nelson 2016NELSON, J.S., GRANDE, T.C., & WILSON, M.V. 2016. Fishes of the World. John Wiley & Sons, p. 342-344.), presenting large reproductive success in anthropic environments (Baumgartner et al. 2012BAUMGARTNER, G., PAVANELLI, C.S., BAUMGARTNER, D., BIFI, A.G., DEBONA, T. & FRANA, V.A. 2012. Peixes do Baixo rio Iguaçu. 1 ed. EDUEM, Maringá.), with many species having opportunistic diet resistant to environmental disturbances standing out over other species sensitive to disorders (Santos & Ferreira 1999SANTOS, G.M & FERREIRA, E.J.G. 1999. Peixes da Bacia Amazônica. In:. Estudo ecológico de comunidades de peixes tropicais (R. H. Lowe-McConnel ed.). São Paulo: Editora da Universidade de São Paulo, p. 345-373., Oliveira & Bennemann 2005OLIVEIRA, D.C. & BENNEMANN, S.T. 2005. Ictiofauna, Recursos Alimentares e Relações com as Interferências Antrópicas em um Riacho Urbano no Sul do Brasil. Biota Neotrop. 5(1):95-107. http://dx.doi.org/10.1590/S1676-06032005000100011 (último acesso 20/05/2019)
http://dx.doi.org/10.1590/S1676-06032005...
). A representative species of this pattern is Acarichthys heckelii that was registered in all sampling sites, with makeable abundance in the barred watercourses (sites 4, 5, 7, 9, 11, 12, and 13). Thus, the habitat changing due to damming and flow modification in sites along AM-010 and the connection between Serpa Lake and Amazonas River may provide favorable conditions to ciclids survival. Nevertheless, sampling using seine nets in the shallow littoral habitats in these sites should increased the number of ciclids, due to its feeding habitats that includes aquatic invertebrates, detrital macrophytes, filamentous algae and terrestrial invertebrates (Bayley 1988BAYLEY, P.B. 1988. Factors affecting growth rates of young tropical floodplain fishes: seasonality and density-dependence. Environ. Biol. Fish. 21(2):127-142. ).

Among the ciclids collected, some species are important in aquarium market like Symphysodon discus, Pterophyllum scalare, Mesonauta festivus, and Apistogramma spp. Species of this family are exported from the middle Solimões (Reserva Mamirauá and Anamã), Madeira and Uatumã rivers (Anjos et al. 2009ANJOS, H.D.B., AMORIM, R.M.S., SIQUEIRA, J.A. & ANJOS, C.R. 2009. Exportação de Peixes Ornamentais do Estado do Amazonas, Bacia Amazônica, Brasil. B. Inst. Pesca. 35(2):259-274.). Besides the ciclids, many species of Characidae, popularly known as tetras or piabas, were captured in the present study, as Hemigrammus ocellifer, Hemigrammus stictus, Hyphessobrycon bentosi, Hyphessobrycon eques, and Hyphessobrycon rosaceus, which possess beautiful color patterns, small size and are commonly found in aquariums. Approximately 100 million ornamental fish were exported from the Amazonas State between 2002 and 2005 (Anjos et al. 2009ANJOS, H.D.B., AMORIM, R.M.S., SIQUEIRA, J.A. & ANJOS, C.R. 2009. Exportação de Peixes Ornamentais do Estado do Amazonas, Bacia Amazônica, Brasil. B. Inst. Pesca. 35(2):259-274.).

Despite the high number of fish species in the Amazon region, the fisheries are concentrated in few species, in which about 80% is composed of only 6 to 12 species, such as Brycon, Hypophthalmus, Pellona, Pimelodus, Pseudoplatystoma, Semaprochilodus, and Triportheus (Barthem & Fabré 2004BARTHEM, R.B. & FABRÉ, N.N. 2004. Biologia e diversidade dos recursos pesqueiros da Amazônia. In: A pesca e os recursos pesqueiros na Amazônia Brasileira (M. L. Ruffino. Ed.). ProVárzea, Manaus - AM, p.11-55.). Representatives of all these genera were registered by us in this study, some of them very common in Itacoatiara fish markets, as the popularly known as jaraquis (Semaprochilodus insignis and S. taeniurus), matrinxã (Brycon amazonicus and B. melanopterus), sorubim (Pseudoplatystoma tigrinum), and sardinhas (Triportheus albus, T. auritus, and T. rotundatus), with the addition of aruanã (Osteoglossum bicirrhosum), pacu (Mylossoma albiscopum), and tucunarés (Cichla monoculus and C. temensis), also appreciated by local population. This indicates that besides environmental disturbances caused mainly by human activities in this region, the sampling areas are important resources of commercial fish species, and more attention to conservation and management efforts should be addressed to this region.

The lowest values of relative abundance were registered in the four Serpa lake sampling sites, possibly due to the use of a unique sampling method (gill net). Moreover, in Serpa lake were registered the highest richness (almost 70 species in site 4 - nearest to Amazonas river) and lowest richness (a little more than 10 species in site 1- nearest to Urubu river). However, Symphysodon discus, popularly known as disco, was exclusivelly caught in the site with the lowest abundance and lowest richness (site 1). Disco is an endemic cichlid from the Amazon basin, and is one of the most popular ornamental fish species, extensively used in aquarium (Ferraz 1999FERRAZ, E. 1999. Management and diseases of the ornamental fish exported from the rio Negro basin. In: Biology of Tropical Fish (Eds. A.L. VAL & V.M.F. ALMEIDA-VAL). Manaus: INPA. 99-111.). Sequencially, the second (approximately 70 species in site 8) and the third (approximately 70 species in site 6) sites with the highest richness comprise small streams, located downstream the barrier from sites 5 and 7, respectively, suggesting less habitat changing and flow modification downstream the damming. Moreover, all barred water coursers presented no more than 40 species. Changes in connectivity (Hurd et al. 2016HURD, L.E., SOUSA, R.G.C., SIQUEIRA-SOUZA, F.K., COOPER, G.J. KAHN, J.R. & FREITAS, C.E.C. 2016. Amazon floodplain fish communities: Habitat connectivity and conservation in a rapidly deteriorating environment. Biol. Conserv. 195:118-127., Benoni et al. 2018) and damming (Anderson et al. 2018ANDERSON, E.P., JENKINS, C.N., HEILPERN, S., MALDONADO-OCAMPO, J.A., CARVAJAL-VALLEJOS, F.M., ENCALADA, A.C., & RIVADENEIRA, J.F. 2018. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 4:1-8.) are well-reported causes of modification in structure and composition of fish fauna.

About 28% of South America's known fauna has been described in the last 11 years, due to the unique environmental aspects of the Amazon basin, which contribute to new species discoveries (Reis et al. 2016REIS, R.E., ALBERT J.S., DI DARIO F., MINCARONE M.M., PETRY, P. & ROCHA, L.A. 2016. Fish biodiversity and conservation in South America. J Fish Biol. 89(1):12-47.). We recorded six species described for the Amazonas river basin in the last decade, Moenkhausia mikia, Hemigrammus diagnonicus, Eigenmannia muirapinima, Metynnis melanogrammus, Curimatopsis pallida, and Ageneiosus lineatus (Marinho & Langeani, 2016MARINHO, M.M.F. & LANGEANI, F. 2016. Reconciling more than 150 years of taxonomic confusion: the true identity of Moenkhausia lepidura, with a key to the species of the M. lepidura group (Characiformes: Characidae). Zootaxa. 4107(3):338-352. , Mendonça & Wosiacki 2011MENDONÇA, M.B. & WOSIACKI, W.B. 2011. A new species of Hemigrammus from the Lower Amazon floodplain (Characiformes: Characidae). Copeia. 2011(2):211-215. , Peixoto et al. 2015PEIXOTO, L.A.W., DUTRA, G.M. & WOSIACKI, W. B. 2015. The electric glass knifefishes of the Eigenmannia trilineata species-group (Gymnotiformes: Sternopygidae): monophyly and description of seven new species. Zool. J. Linn. Soc. 175:384-414., Ota et al. 2016OTA, R.P., RAPP PY-DANIEL, L.H. & JÉGU, M. 2016. A new Silver Dollar species of Metynnis Cope, 1878 (Characiformes: Serrasalmidae) from Northwestern Brazil and Southern Venezuela. Neotrop Ichthyol. 14(4):e160023., Melo & Oliveira 2017MELO, B.F. & OLIVEIRA, C. 2017. Three new species of Curimatopsis (Characiformes: Curimatidae) from the Amazon basin. J. Fish Biol. 91(2):528-544., Ribeiro et al. 2017RIBEIRO, F.R.V., RAPP PY-DANIEL, L.H. & WALSH, S.J. 2017. Taxonomic revision of the South American catfish genus Ageneiosus (Siluriformes: Auchenipteridae) with the description of four new species. J. Fish Biol. 90(4):1388-1478.), along with a common species that was recently redescribed as Mylossoma albiscopum (Mateussi et al. 2017MATEUSSI, N.T.B., OLIVEIRA, C. & PAVANELLI, C.S. 2018 Taxonomic revision of the Cis-Andean species of Mylossoma Eigenmann & Kennedy, 1903 (Teleostei: Characiformes: Serrasalmidae). Zootaxa. 4387(2):275-309.). Still, a new species for science, identified here as Moenkhausia aff. colletii is being formally described by one of the authors of this investigation (RPO) and I. M. Soares.

The sampled region is composed by a complex fluvial system river system with channels, holes, paranas and lakes that integrate both black and clearwater environments such as igapós and campinaranas, as well as a vast floodplain area enriched by alluvial deposits of whitewater rivers such as the Amazonas and Madeira rivers (Cavallini, 2014CAVALLINI, M.S. 2014. As gravuras rupestres da bacia do rio Urubu: levantamento e análise gráfica do sítio de Caretas, Itacoatiara - Estado do Amazonas: Uma proposta de contextualização. Dissertação de Mestrado em Arqueologia da Universidade de São Paulo, São Paulo.). The Madeira river drains one-third of the Amazonian lowlands and is the richest tributary of Amazonas river (Dagosta & Pinna 2019DAGOSTA, F.CP. & PINNA, M. 2019. The fishes of the amazon: distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Mus. Nat. Hist. 431:1-163.). Therefore, the confluence of Madeira and Amazonas rivers just upstream the studied area and the proximity to Urubu and Uatumã rivers may explain the high number of fish species recorded in this study, due the hydrological connectivity and biological exchanges among these lowland aquatic environments, mainly in high waters. Additionally, attention to the different anthropogenic impacts that occur in the sampling sites, evolving human occupancy, emission of effluents without sanitary treatment, barrage for construction of artificial beaches for recreational use, and disruption of water body flow for AM-010 road construction should be reinforced. In this way, cataloging fish fauna in modified environments in order to access the fish diversity is a fundamental step to support investigation on the potential impacts of fish fauna composition, maintenance, and survival in these environments directly affected by human activities.

Acknowledgments

We are grateful to UFAM and ICMBio for field support. Thank to Lúcia H. Rapp Py-Daniel and Renildo R. de Oliveira (INPA) for curatorial assistance and identification of Loricariidae species. We are in debt to Marcelo Sales Rocha (UEA) for identification of Heptapteridae and Pimelodidae, and Leandro Sousa (UFOPA) for identification of Doradidade, Alessandro Gasparetto Biff (INPA) for identification of Centromochlinae, Bárbara Calegari (PUC-RS) for identification in some species of Auchenipteridae, Renata Rúbia Ota and Gabriel Deprá (NUP), Priscila Madoka Ito (UFRGS) and Douglas Aviz Bastos (INPA) for identification of Cichlidae. This results were part of the subject of Rayane da Silva Pereira and Rayanna Graziella Amaral da Silva master dissertation. RSP and RGAS was supported by a M.Sc. scholarship from Capes (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). RPO is funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (grant #12002011001-P7).

References

  • ABRIL, G. MARTINEZ, J.M., ARTIGAS, L.F., MOREIRA-TURCQ, P., BENEDETTI, M.F., VIDAL, L., MEZIANE, T., KIM, J.H., BERNARDES, M.C., SAVOYE, N., DEBORDE, J., SOUZA, E.L., ALBÉRIC, P., SOUZA, M.F.L. & ROLAND, F. 2014. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature. 505:395-398.
  • ALHO, C.J.R., REIS, R.E. & AQUINO, P.P.U. 2015. Amazonian freshwater habitats experiencing environmental and socioeconomic threats affecting subsistence fisheries. Ambio: A Journal of the Human Environment. 44(5):412-425.
  • ANDERSON, E.P., JENKINS, C.N., HEILPERN, S., MALDONADO-OCAMPO, J.A., CARVAJAL-VALLEJOS, F.M., ENCALADA, A.C., & RIVADENEIRA, J.F. 2018. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 4:1-8.
  • ANJOS, H.D.B., AMORIM, R.M.S., SIQUEIRA, J.A. & ANJOS, C.R. 2009. Exportação de Peixes Ornamentais do Estado do Amazonas, Bacia Amazônica, Brasil. B. Inst. Pesca. 35(2):259-274.
  • ARMBRUSTER, J.W. 2004. Phylogenetic relationships of the suckermouth armoured catfishes (Loricariidae) with emphasis on the Hypostominae and the Ancistrinae. Zool. J. Linnean Soc. 141:1-80.
  • BARBER, C.P., COCHRANE, M.A., SOUZA JR., C.M. & LAURENCE, W.F. 2014. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 177:203-209.
  • BARTHEM, R.B. & FABRÉ, N.N. 2004. Biologia e diversidade dos recursos pesqueiros da Amazônia. In: A pesca e os recursos pesqueiros na Amazônia Brasileira (M. L. Ruffino. Ed.). ProVárzea, Manaus - AM, p.11-55.
  • BARLETTA, M., JAUREGUIZAR, A.J., BAIGUN, C., FONTOURA, N.F., AGOSTINHO, A.A., ALMEIDA-VAL, V.M.F., VAL, A.L., TORRES, R.A., JIMENES SEGURA, L.F., GIARRIZZO, T., FEBRÉ, N.N, BATISTA, V.S., LASSO, C., TAPHORN, D.C., COSTA, M.F., CHAVES, P.T., VIEIRA, J.P. & CORREA, M.F.M. 2010. Fish and aquatic habitat conservation in South America: a continental overview with emphasis on neotropical systems. J. Fish Biol. 76(9):2118-2176.
  • BAUMGARTNER, G., PAVANELLI, C.S., BAUMGARTNER, D., BIFI, A.G., DEBONA, T. & FRANA, V.A. 2012. Peixes do Baixo rio Iguaçu. 1 ed. EDUEM, Maringá.
  • BAYLEY, P.B. 1988. Factors affecting growth rates of young tropical floodplain fishes: seasonality and density-dependence. Environ. Biol. Fish. 21(2):127-142.
  • BENONE, N.L., LIGEIRO, R., JUEN, L. & MONTAG, L.F.A. 2018. Role of environmental and spatial processes structuring fish assemblages in streams of the eastern Amazon. Marine and Fresh Res. 69(2):243-252.
  • BETANCUR-R, R., WILEY, E.O., ARRATIA, G., ACERO, A., BAILLY, N., MIYA, M., LECOINTRE, G. & ORTÍ, G. 2017. Phylogenetic classification of bony fishes. BMC Evol. Biol. 17:162.
  • BLEHER, H., STÖLTING, K.N., SALZBURGER, W. & MEYER, A. 2007. Revision of the genus Symphysodon Heckel, 1840 (Teleostei: Perciformes: Cichlidae) based on molecular and morphological characters. Aqua. 12(4):133-174.
  • BIRINDELLI, J.L.O. 2014. Phylogenetic relationships of the South American Doradoidea (Ostariophysi: Siluriformes). Neotrop Ichthyol. 12(3):451-564.
  • CHERNOFF, B. & MACHADO-ALLISON, A. 2005. Bryconops magoi and Bryconops collettei (Characiformes: Characidae), two new freshwater fish species from Venezuela, with comments on B. caudomaculatus (Günther). Zootaxa. (1094):1-23.
  • CASTELLO, L, MCGRATH, D.G., HESS, L.L., COE, M.T., LEFEBVRE, P.A., PETRY, P., MACEDO, M.N., RENÓ, V.F. & ARANTES, C.C. 2013. The Vulnerability of Amazon Freshwater Ecosystems. Conservation Letters. 6(4):217-229.
  • CAVALLINI, M.S. 2014. As gravuras rupestres da bacia do rio Urubu: levantamento e análise gráfica do sítio de Caretas, Itacoatiara - Estado do Amazonas: Uma proposta de contextualização. Dissertação de Mestrado em Arqueologia da Universidade de São Paulo, São Paulo.
  • COSTA, W.J.E.M. 2011. Phylogenetic position and taxonomic status of Anablepsoides, Atlantirivulus, Cynodonichthys, Laimosemion and Melanorivulus (Cyprinodontiformes: Rivulidae). Ichthyol. Explor. Freshw. 22(3):233-249.
  • DAGOSTA, F.CP. & PINNA, M. 2019. The fishes of the amazon: distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Mus. Nat. Hist. 431:1-163.
  • FERNANDES, R., LOURENÇO, L.S, OTA, R.P., MOREIRA, M.M.M. & ZAWADZKI, C.H. 2012. Effects of local and regional factorson the fish assemblege structure in Meridional Amazonian streams. Environ. Biol. Fishes. 96(7):837-848.
  • FERRAZ, E. 1999. Management and diseases of the ornamental fish exported from the rio Negro basin. In: Biology of Tropical Fish (Eds. A.L. VAL & V.M.F. ALMEIDA-VAL). Manaus: INPA. 99-111.
  • FREITAS, C.E.C., SIQUEIRA-SOUZA, F.K., FLORENTINO, A.C. & HURD, L.E. 2013. The importance of spatial scales to analysis of fish diversity in Amazonian floodplain lakes and implications for conservation. Ecol Freshw Fish. 23(3):470-477.
  • GÉRY, J. 1960. Contributions to the study of the characoid fishes, No. 9. Some South-American characoid fishes in the Senckenberg Museum, with the description of a new Leporinus Senckenb. Biol. 41(5/6):273-288.
  • GOULDING, M., BARTHEM, R. & FERREIRA, E. 2003. The Smithsonian atlas of the Amazon. Washington: Smithsonian Institution Press.
  • HURD, L.E., SOUSA, R.G.C., SIQUEIRA-SOUZA, F.K., COOPER, G.J. KAHN, J.R. & FREITAS, C.E.C. 2016. Amazon floodplain fish communities: Habitat connectivity and conservation in a rapidly deteriorating environment. Biol. Conserv. 195:118-127.
  • INOMATA, S.O., GONZALEZ, A.M.G.O., ROMÁN, R.M.S., SOUZA, L.A. & FREITAS, C.E.C. 2018. Sustainability of small-scale fisheries in the middle Negro River (Amazonas - Brazil): A model with operational and biological variables. Ecological Modelling. 368:312-320.
  • JONES, J.A, SWANSON, F.J., WEMPLE, B.C. & SNYDER, K.U. 2000. Effects of Roads on Hydrology Geomorphology, and Disturbance Patches in Stream Networks. Conserv. Biol. 14(1):76-85.
  • JUNK, W.J. 1970. Investigations on the Ecology and Production-Biology of the "Floating Meadows" (Paspalo-Echinochloetum) on the MiddleAmazon. Part I: The floating vegetation and its ecology. Amazoniana. 2(4):449-495.
  • JUNK, W.J., SOARES, M.G.M. & BAYLEY, P.B. 2007. Freshwater fishes of the Amazonas River basin: their biodiversity, fisheries, and habitats. Aqua. Ecosyst. Health Manag. 10(2):153-173.
  • JUNK, W.J., PIEDADE, M.T.F., SCHÖNGART, J., COHN-HAFT, M., ADENEY, J.M. & WITTMANN, F. 2011. A Classification of Major Naturally-Occurring Amazonian Lowland Wetlands. Wetlands. 31(4):623-640.
  • JUNK, W.J., PIEDADE, M.T.F., LOURIVAL, R, WITTMANN, F., KANDUS, P. LACERDA, L.D., BOZELLI, R.L., ESTEVES, F.A., NUNES DA CUNHA, C. & MALTCHIK, L. 2013. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat. Conserv.: Mar. Freshwat. Ecosyst. 24:5-22.
  • KULLANDER, S.O. 1986. Cichlid fishes of the Amazon River drainage of Peru. Swedish Museum of Natural History, Stockholm: Marstatryck AB.
  • KULLANDER, S.O. 2003. Familv Cichlidae. In: Check list of the freshwater of South and Central America (Reis, R.R.; Kullander, S.O.; Ferraris, C.J. eds). Edipucrs, Porto Alegre, Brasil. p. 605-654.
  • LANGEANI, F. 1996. Estudo Filogenético e revisão taxonômica da família Hemiodontidae Boulenger, 1904 (sensu Roberts, 1974) (Ostariophysi, Characiformes). Tese de doutorado, Universidade de São Paulo, São Paulo.
  • LASSO, C.A. & MACHADO-ALLISON, A. 2000. Sinopsis de las especies de peces de la familia Cichlidae presentes en la cuenca del Rio Orinoco. Claves, diagnosis, aspectos bio-ecologicos e ilustraciones. Serie Peces de Venezuela. Universidad Central de Venezuela, Caracas: Consejo Nacionl de Investigaciones Científicas y Tencológicas (CONICIT).
  • LEITE, G.F.M., SILVA, F.T.C., GONÇALVES, J.F.J. & SALLES, P. 2015. Effects of conservation status of the riparian vegetation on fish assemblage structure in neotropical headwater streams. Hydrobiologia. 762(1):223-238.
  • LÓPEZ-FERNÁNDEZ, H. & TAPHORN, D.C. 2004. Geophagus abalios, G. dicrozoster and G. winemilleri (Perciformes: Cichlidae), three new species from Venezuela. Zootaxa. (439):1-27.
  • LOWE-MCCONNELL, R.H. 1999. Estudos ecológicos de comunidades de peixes tropicais. São Paulo: EDUSP.
  • MACHADO-ALLISON, A. 2002. Los peces caribes de Venezuela: una aproximación a su estudio taxonómico. Bol. Acad. C. Fís., Mat. y Nat. 62(1):35-88.
  • MALABARBA, M.C.S.L. 2004. Revision of the neotropical genus Triportheus Cope, 1872 (Characiformes: Characidae). Neotrop Ichthyol. 2(4):167-204.
  • MARINHO, M.M.F. & LANGEANI, F. 2016. Reconciling more than 150 years of taxonomic confusion: the true identity of Moenkhausia lepidura, with a key to the species of the M. lepidura group (Characiformes: Characidae). Zootaxa. 4107(3):338-352.
  • MARINHO, M.M.F. & MENEZES, N.A. 2017. Taxonomic review of Copella (Characiformes: Lebiasinidae) with an identification key for the species. PLoS ONE. 12(8):1-53.
  • MATEUSSI, N.T.B., OLIVEIRA, C. & PAVANELLI, C.S. 2018 Taxonomic revision of the Cis-Andean species of Mylossoma Eigenmann & Kennedy, 1903 (Teleostei: Characiformes: Serrasalmidae). Zootaxa. 4387(2):275-309.
  • MELO, B.F. & OLIVEIRA, C. 2017. Three new species of Curimatopsis (Characiformes: Curimatidae) from the Amazon basin. J. Fish Biol. 91(2):528-544.
  • MENDONÇA, M.B. & WOSIACKI, W.B. 2011. A new species of Hemigrammus from the Lower Amazon floodplain (Characiformes: Characidae). Copeia. 2011(2):211-215.
  • MENEZES, N.A. & de LUCENA, C.A.S. 2014. A taxonomic review of the species of Charax Scopoli, 1777 (Teleostei: Characidae: Characinae) with description of a new species from the rio Negro bearing superficial neuromasts on body scales, Amazon basin, Brazil. Neotrop Ichthyol. 12(2):193-228.
  • MERCKX, A., JÉGU, M. & dos SANTOS, G.M. 2000. Une nouvelle espèce de Serrasalmus (Teleostei: Characidae: Serrasalminae), S. altispinis n. sp., décrite du Rio Uatumã (Amazonas, Brésil) avec une description complémentaire de S. rhombeus (Linnaeus, 1766) du plateau guyanais. Cybium. 24(2):181-201.
  • MIRANDE, J.M. 2018. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. (2018):1-19.
  • NELSON, J.S., GRANDE, T.C., & WILSON, M.V. 2016. Fishes of the World. John Wiley & Sons, p. 342-344.
  • OLIVEIRA, C., AVELINO, G.S., ABE, K.T., MARIGUELA, T.C., BENINE, R.C., ORTI, G., VARI, R.P. & CORRÊA e CASTRO R.M. 2011. Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evol. Biol. 11(275):1-25.
  • OLIVEIRA, D.C. & BENNEMANN, S.T. 2005. Ictiofauna, Recursos Alimentares e Relações com as Interferências Antrópicas em um Riacho Urbano no Sul do Brasil. Biota Neotrop. 5(1):95-107. http://dx.doi.org/10.1590/S1676-06032005000100011 (último acesso 20/05/2019)
    » http://dx.doi.org/10.1590/S1676-06032005000100011
  • OTA, R.P., RAPP PY-DANIEL, L.H. & JÉGU, M. 2016. A new Silver Dollar species of Metynnis Cope, 1878 (Characiformes: Serrasalmidae) from Northwestern Brazil and Southern Venezuela. Neotrop Ichthyol. 14(4):e160023.
  • PEIXOTO, L.A.W., DUTRA, G.M. & WOSIACKI, W. B. 2015. The electric glass knifefishes of the Eigenmannia trilineata species-group (Gymnotiformes: Sternopygidae): monophyly and description of seven new species. Zool. J. Linn. Soc. 175:384-414.
  • PLOEG, A. 1991. Revision of the South American cichlid genus Crenicichla Heckel, 1840, with description of fifteen new species and consideration on species groups, phylogeny and biogeography (Pisces, Perciformes, Cichlidae). Unpublished PhD Dissertation, Universiteit van Amsterdam.
  • QUEIROZ, L.J., TORRENTE-VILARA, G., OHARA, W.M., ZUANON, J., PIRES, T. & DÓRIA, C.R.C. 2013. Peixes do Rio Madeira. São Paulo: Dialeto Latin American Documentary.
  • REIS, R.E., ALBERT J.S., DI DARIO F., MINCARONE M.M., PETRY, P. & ROCHA, L.A. 2016. Fish biodiversity and conservation in South America. J Fish Biol. 89(1):12-47.
  • RENÓ, V.F., NOVO, E.M.L.M., SUEMITSU, C., RENNÓ, C.D. & SILVA, T.S.F. 2011. Assessment of deforestation in the Lower Amazon floodplain using historical Landsat MSS/TM imagery. Remote Sens. Environ. 115(12):3446-3456.
  • RIBEIRO, F.R.V., RAPP PY-DANIEL, L.H. & WALSH, S.J. 2017. Taxonomic revision of the South American catfish genus Ageneiosus (Siluriformes: Auchenipteridae) with the description of four new species. J. Fish Biol. 90(4):1388-1478.
  • SANTOS, G.M & FERREIRA, E.J.G. 1999. Peixes da Bacia Amazônica. In:. Estudo ecológico de comunidades de peixes tropicais (R. H. Lowe-McConnel ed.). São Paulo: Editora da Universidade de São Paulo, p. 345-373.
  • SANTOS, G.M., FERREIRA, E.J.G. & ZUANON, J.A.S. 2006. Peixes comerciais de Manaus. Manaus: Ibama/AM, ProVárzea.
  • SARMENTO-SOARES, L.M. & MARTINS-PINHEIRO, R.F. 2008. A systematic review of Tatia (Siluriformes: Auchenipteridae: Centromochlinae). Neotrop Ichthyol. 6(3):495-542.
  • SILVA, F.G. 1997. Itacoatiara: Roteiro de uma cidade. Manaus: Imprensa Oficial de Estado Amazonas.
  • SIOLI, H. 1984. The Amazon and its main affluents: hydrography, morphology of the river courses, and river types. In The Amazon: limnology and landscape ecology (H. Sioli ed.). Dr. W. Junk Publishers, Boston. p. 127-165.
  • SIQUEIRA-SOUZA, F.K. & FREITAS, C.E.C. 2004. Fish diversity of floodplain lakes on the lower stretch of the Solimões River. Braz. J. Biol. 64(3A):501-510.
  • SMITH, W.S., LIMA, R.C.R., SILVA, L.C.M., CORRÊA, C.S., TEODORO, C.C., SOINSKI, T. A., COSTA, M.S. & STEFANI, M.S. 2018. A duplicação de rodovias no Brasil sob o olhar da Ictiofauna. Bol. Soc. Bras. Ictio. (125):16-23.
  • SOUSA, L.M. 2010. Revisão taxonômica e filogenia de Astrodoradinae (Siluriformes, Doradidae). Tese de doutorado, Instituto de Biociências, Universidade de São Paulo, São Paulo.
  • de SOUZA, L.S., TAPHORN, D.C. & ARMBRUSTER, J.W. 2019. Review of Ancistrus (Siluriformes: Loricariidae) from the northwestern Guiana Shield, Orinoco Andes, and adjacent basins with description of six new species. Zootaxa. 4552:1-67.
  • STAECK, W. 2003. Cichliden-Lexikon, Teil 3: Südamerikanische Zwergbuntbarsche. Dähne Verlag, Klassifizierung: Artenübersicht.
  • TOLEDO-PIZA, M. 2000. Two new Heterocharax species (Teleostei: Ostariophysi: Characidae), with a redescription of H. macrolepis Ichthyol. Explor. Freshw. 11(4):289-304.
  • VARI, R.P. 1992. Systematics of the neotropical Characiform genus Cyphocharax Fowler (Pisces, Ostariophysi). Smithson Contrib Zool. 529:1-137.
  • WALSH, S.J., RIBEIRO, F.R.V. & RAPP PY-DANIEL, L.H. 2015. Revision of Tympanopleura Eigenmann (Siluriformes: Auchenipteridae) with description of two new species. Neotrop Ichthyol. 13(1):1-46.
  • WEITZMAN, S.H. & COBB, J.S. 1975 A revision of the South American fishes of the genus Nannostomus Günther (family Lebiasinidae). Smithson Contrib Zool. 186:1-36.
  • WEITZMAN, S.H. & PALMER L. 1997 The rosy tetra, Hyphessobrycon rosaceus, its identification and brief history as an aquarium fish. Tropical Fish Hobbyist. 45(11):158-166.
  • ZARSKE, A. & GÉRY, J. 1999. Revision der neotropischen Gattung Metynnis Cope, 1878. Evaluation der Typusexemplare der nominellen Arten (Teleostei: Characiformes: Serrasalmidae). Zool. Abh. Mus. Tierkd. Dresden Bd. 50(13):169-216.

Publication Dates

  • Publication in this collection
    17 Feb 2020
  • Date of issue
    2020

History

  • Received
    12 July 2019
  • Reviewed
    20 Dec 2019
  • Accepted
    23 Dec 2019
Instituto Virtual da Biodiversidade | BIOTA - FAPESP Departamento de Biologia Vegetal - Instituto de Biologia, UNICAMP CP 6109, 13083-970 - Campinas/SP, Tel.: (+55 19) 3521-6166, Fax: (+55 19) 3521-6168 - Campinas - SP - Brazil
E-mail: contato@biotaneotropica.org.br