Acessibilidade / Reportar erro

Changes in sperm motility of amazonian fish Tambaqui Colossoma macropomum (Cuvier 1816) (Characiformes: Serrasalmidae) exposed to two pesticides

Alterações na motilidade espermática do peixe amazônico Tambaqui Colossoma macropomum (Cuvier 1816) (Characiformes: Serrasalmidae) exposto a dois pesticidas

Abstract

The great biodiversity of neotropical fish species that have external fertilization as a reproductive strategy, like the tambaqui, requires more careful analyzes in toxicological tests of the various pesticides implemented in Brazilian agriculture over the last few years. In this context, the objective of the present work was to evaluate possible sperm alterations in tambaqui (Colossoma macropomum) semen exposed to two different pesticide residues. Seminal samples of sexually mature tambaqui males from a local fish farm were used. Semen was collected eight hours after hormone induction into graduated glass tubes. After initial assessment of the lack of prior activation, the experiment was carried out in a factorial scheme, testing two pesticides widely used in agricultural systems (glyphosate and fenitrothion). For each pesticide, five concentrations were tested (6, 12, 24, 120 and 240 mg/L), with motility analysis at times 0, 30 and 60 seconds after activation. As a control, activation with 0.9% NaCl solution and motility analysis at the same times described for pesticides were used. Results indicate that in natura samples exhibited initial motility of 89.2 ± 4.9% and mean duration of 100 seconds (up to 10% sperm motility). The reduction in sperm motility occurred significantly (p < 0.05) after 30 seconds in all concentrations tested, except for the concentration of 240 mg/L because no activation was observed. The tests described here demonstrate that tambaqui semen was sensitive to the process of exposure to pesticide residues, and can be used in biomonitoring analyzes of the aforementioned agricultural pesticides.

Keywords
Agriculture; biomonitoring; ecotoxicology; amazonian fish; aquatic pollution; seminal quality

Resumo

A grande biodiversidade das espécies de peixes neotropicais que possuem a fertilização externa como estratégia reprodutiva, a exemplo do tambaqui, exige análises mais criteriosas em testes toxicológicos dos diversos defensivos agrícolas implementados na agricultura brasileira ao longo dos últimos anos. Nesse contexto, o objetivo do presente trabalho foi avaliar possíveis alterações espermáticas no sêmen de tambaqui (Colossoma macropomum) exposto a resíduos de dois diferentes pesticidas. Foram utilizadas amostras seminais de machos de tambaqui sexualmente maduros provenientes de uma piscicultura local. O sêmen foi coletado oito horas pós indução hormonal em tubos de vidro graduados. Após avaliação inicial de inexistência de ativação prévia, foi realizado o experimento em esquema fatorial, sendo testados dois pesticidas muito utilizados em sistemas agrícolas (glifosato e fenitrotiona). Para cada pesticida foram testadas cinco concentrações (6, 12, 24, 120 e 240 mg/L), com análise da motilidade nos tempos 0, 30 e 60 segundos pós ativação. Como controle, foi utilizada a ativação com solução de NaCl a 0,9% e análise da motilidade nos mesmos tempos descritos para os pesticidas. Resultados indicam que as amostras in natura exibiram motilidade inicial de 89,2 ± 4,9% e tempo de duração médio de 100 segundos (até 10% de motilidade espermática). A redução da motilidade espermática ocorreu de forma significativa (p < 0,05) após 30 segundos em todas as concentrações testadas, exceto na concentração de 240 mg/L por não ter sido observada ativação. Os testes aqui descritos demonstram que o sêmen de tambaqui se mostrou sensível ao processo de exposição aos resíduos de pesticidas, podendo ser utilizado em análises de biomonitoramento dos referidos defensivos agrícolas.

Palavras-chave
Agricultura; biomonitoramento; ecotoxicologia; peixe amazônico; poluição aquática; qualidade seminal

Introduction

In recent decades, the world has been facing a serious problem: the “Biodiversity Crisis”. As the human population grows exponentially, increasing demand for natural resources, species are becoming extinct both locally and globally, especially in tropical zones of the world, at rates much higher than natural extinction rates. This is caused directly due to human actions, such as pollution, destruction of natural habitats, modification of natural habitats, deforestation, agricultural expansion, overfishing and overhunting, introduction of exotic species, fragmentation of habitats, among others (Wilson 1985WILSON, E.O. 1985. The biological diversity crisis: a challenge to science. Issues Sci. Technol. 2:20–29., Savage 1995SAVAGE, J.M. 1995. Systematics and the Biodiversity Crisis. BioScience 45(10):673–679., PrimackPRIMACK, R.B., RODRIGUES, E. 2001. Biologia da conservação. Editora Rodrigues, Londrina. & Rodrigues 2001PRIMACK, R.B., RODRIGUES, E. 2001. Biologia da conservação. Editora Rodrigues, Londrina., Brooks et al. 2022BROOKS, T.M., MITTERMEIER, R.A., MITTERMEIER, C.G., FONSECA, G.A.B., RYLANDS, A.B., KONSTANT, W.R., FLICK, P., PILGRIM, J., OLDFIELD, S., MAGIN, G. & HILTON-TAYLOR, C. 2002. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16:909–923., Singh 2002SINGH, J.S. 2022. The biodiversity crisis: a multifaceted review. Curr. Sci. 82(6):638–647., Brook et al. 2006BROOK, B.W., BRADSHAW, C.J.A., KOH, L.P. & SODHI, N.S. 2006. Momentum drives the crash: mass extinction in the tropics. Biotropica 38:302–305., Pimm et al. 2006PIMM, S., RAVEN, P., PETERSON, A., ŞEKERCIOĞLU, Ç.H. & EHRLICH, P.R. 2006. Human impacts on the rates of recent, present, and future bird extinctions. PNAS 103(29):10941–10946., Laurance 2006LAURANCE, W.F. 2006. Have we overstated the tropical biodiversity crisis? Trends Ecol. Evol. 22(2):65–70., Wheeler 2008WHEELER, D.Q. 2008. The New Taxonomy. The Systematics Association, Special Volume Series 76, CRC Press, New York., Costa et al. 2012COSTA, W.J.E.M., AMORIM, P.F. & MATTOS, J.L.O. 2012. Species delimitation in annual killifishes from the Brazilian Caatinga, the Hypsolebias flavicaudatus complex (Cyprinodontiformes: Rivulidae): implications for taxonomy and conservation. Syst. Biodivers. 10(1):71–91., Pimm et al. 2014PIMM, S.L., JENKINS, C.N., ABELL, R., BROOKS, T.M., GITTLEMAN, J.L., JOPPA, L.N., RAVEN, P.H., ROBERTS, C.M. & SEXTON, J.L. 2014. The Biodiversity of species and theirs rates of extinctions, distributions and protection. Science 344(6187):1246752., Ceballos et al. 2015CEBALLOS, G., EHRLICH, P.R., BARNOSKY, A.D., GARCÍA, A., PRINGLE, R.M. & PALMER, T.M. 2015. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1(5):e1400253.). When we compare biodiversity and health of freshwater environments with terrestrial or marine, the scenario is even worse: the so-called “Freshwater Biodiversity Crisis”. Although the threats are the same as those already mentioned, the proportional area of freshwater environments is much smaller when compared to terrestrial or marine environments, representing less than 1% of the planet’s surface, but comprising a very rich biodiversity. In addition, several human activities are dependent on freshwater, and humanity directly depends on this resource as well (Dudgeon et al. 2006DUDGEON, D., ARTHINGTON, A.H., GESSNER, M.O., KAWABATA, Z., KNOWLER, D.J., LÉVÊQUE, C., NAIMAN, R.J., PRIEUR-RICHARD, A., SOTO, D., STIASSNY, M.L.J. & SULLIVAN, C.A. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81:163–182., Darwall et al. 2018DARWALL, W., BREMERICH, V. & DE WEVER, A. 2018. The Alliance for Freshwater Life: A global call to unite efforts for freshwater biodiversity science and conservation. Aquatic. Conserv.: Mar. Freshw. Ecosyst. 28:1015–1022., Harrison et al. 2018HARRISON, I., ABELL, R., DARWALL, W., THIEME, M.L., TICKNER, D. & TIMBOE, I. 2018. The freshwater biodiversity crisis. Science 362(6421):1369., Latrubesse et al. 2019LATRUBESSE, E.M., ARIMA, E., FERREIRA, M.E., NOGUEIRA, S.H., WITTMANN, F., DIAS, M.S., DAGOSTA, F.C.P. & BAYER, M. 2019. Fostering water resource governance and conservation in the Brazilian Cerrado biome. Conserv. Sci. Pract. 1(e77):1–8., Reid et al. 2019REID, A.J., CARLSON, A.K., CREED, I.F., ELIASON, E.J., GELL, P.A., JOHNSON, P.T.J., KIDD, K.A., MACCORMACK, T.J., OLDEN, J.D., ORMEROD, S.J., SMOLL, J.P., TAYLOR, W.W., TOCKNER, K., VERMAIRE, J.C., DUDGEON, D. & COOKE, S.J. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94:849–873.).

Even though the “Biodiversity Crisis” has become an increasingly serious problem, especially the “Freshwater Biodiversity Crisis”, due to agricultural expansion, Brazil has arisen as one of the countries that most employ pesticides in the past decades, more expressively from 2002 onwards, showing that we are failing to face and deal appropriately with the “Biodiversity Crisis”. This fact raises concerns about the increased use of these substances, mainly due to the possibility of contaminating man and animals (RembischevskREMBISCHEVSK, P. & CALDAS, E.D. 2018. Agroquímicos para controle de pragas no Brasil: análise crítica do uso do termo agrotóxico como ferramenta de comunicação de risco. Vigil. Sanit. Debate 6(4):2–12. & Caldas 2018REMBISCHEVSK, P. & CALDAS, E.D. 2018. Agroquímicos para controle de pragas no Brasil: análise crítica do uso do termo agrotóxico como ferramenta de comunicação de risco. Vigil. Sanit. Debate 6(4):2–12.). A fact that hinders the conservation of Brazilian fauna. In this context, the determination of lethal and sublethal doses of pesticides in living organisms should be analyzed in toxicity tests (Ragassi et al. 2017RAGASSI, B., AMÉRICO-PINHEIRO, J.H.P. & SILVA-JUNIOR, O.P. 2017. Ecotoxicidade de agrotóxicos para algas de água doce. Ver. Cient. ANAP Brasil 10(19).).

In an attempt to monitor the environmental changes caused by the indiscriminate discharge of toxic substances with xenobiotic potential, researchers report the need for ecotoxicological studies as a way to assess the possible aggressions of these substances that are released into the natural environment, such as agricultural pesticides, and their interaction with ecosystems and their biodiversity (MontanhaMONTANHA, F.P., PIMPÃO, C.T. & TITULAR-PUCPR, M.V. 2012. Efeitos toxicológicos de piretróides (cipermetrina e deltametrina) em peixes-Revisão. Rev. Cient. Eletrônica Med. Vet. 18:1–58. & Pimpão 2012MONTANHA, F.P., PIMPÃO, C.T. & TITULAR-PUCPR, M.V. 2012. Efeitos toxicológicos de piretróides (cipermetrina e deltametrina) em peixes-Revisão. Rev. Cient. Eletrônica Med. Vet. 18:1–58.). According to Torres et al. (2017)TORRES, I.A., SILVA, T.M.F., RODRIGUES, L.S., SILVA, I.J., COSTA, T.A., SOTO-BLANCO, B., MELO, M.M. 2017. Physicochemical analysis of water, sediment and riparian vegetation of a fish farming located in an agroindustrial area at the border of Ribeirão da Mata (Minas Gerais, Brazil). Eng. Sanit. Ambient. 22(4):773–780., such indiscriminate release of polluting agents in aquatic environments has become a limiting factor for the continued supply of fish consumer markets, whether from fishing or even aquaculture. In addition to the direct risks to human health, it is possible that fish are being contaminated by toxic products that reach aquatic environments, which may represent an additional risk for their consumers (Waichman 2008WAICHMAN, A.V. 2008. Uma proposta de avaliação integrada de risco do uso de agrotóxicos no estado do Amazonas, Brasil. Acta Amazon. 38(1):45–50.).

The tambaqui Colossoma macropomum (Cuvier 1816) is the most farmed native fish species in the country (PEIXEBR 2022PEIXEBR. Associação Brasileira da Piscicultura. Anuário PeixeBR da Piscicultura 2021. 2022. Edição Texto Comunicação Corporativa. São Paulo, São Paulo.), as it presents a good adaptation to climate conditions, which are considered ideal for round fish species. It is important to emphasize that the cultivation of native species to supply the market is important to reduce the negative pressures that fishing can exert on the populations of these species, and to prevent the local extinction of species as well. Colossoma macropomum presents external fecundation and fertilization, as well as annual reproduction and total spawn, with the river flooding period being the main spawning season for this fish (Vieira et al. 1999VIEIRA, E.F., ISAAC, V.J. & FABRÉ, N.N. 1999. Biologia reprodutiva do tambaqui, Colossoma macropomum CUVIER, 1818, (Teleostei, Serrasalmidae), no baixo Amazonas, Brasil. Acta Amazon. 29(4):625–638.). In teleosts with external fertilization such as round fish, when spawning occurs, the gametes are released into the environment for fertilization to occur (Witeck et al. 2011WITECK, L., BOMBARDELLI, R.A., SANCHES, E.A., OLIVEIRA, J.D.S., BAGGIO, D.M. & SOUZA, B.E. 2011. Motilidade espermática, fertilização dos ovócitos e eclosão dos ovos de jundiá em água contaminada por cádmio. Rev. Bras. Zootecn. 40(3):477–481.). At that moment, gametes are exposed to various contaminants present in the water, including heavy metals mercury, zinc, lead, copper, and cadmium (KimeKIME, D.E. & NASH, J.P. 1999. Gamete viability as an indicator of reproductive endocrine disruption in fish. Sci. Total Environ. 233:123–129. & Nash 1999KIME, D.E. & NASH, J.P. 1999. Gamete viability as an indicator of reproductive endocrine disruption in fish. Sci. Total Environ. 233:123–129.), as well as pesticides leached from the soil by the rain or even by the inadequate disposal of containers and waste (Ferreira 2016FERREIRA, L.S.V. 2016. Efeitos histopatológicos dos agrotóxicos deltametrina, imidacloprido, glifosato e diuron nas brânquias de quatro espécies de peixes amazônicos. Dissertação de mestrado, Instituto Nacional de Pesquisa da Amazônia, INPA, Manaus.), which end up acting as endocrine disruptors in fish (Uren-Webster et al. 2014UREN-WEBSTER, T.M., LAING, L.V., FLORANCE, H. & SANTOS, E.M. 2014. Effects of Glyphosate and its Formulation, Roundup, on Reproduction in Zebrafish (Danio rerio). Environ. Sci. Technol. 48(2):1271–1279.). Furthermore, these trace elements, at certain levels, can impair sperm motility and oocyte fertilization (Kime 1995KIME, D.E. 1995. The effects of pollution on reproduction in fish. Rev. Fish. Biol. Fisher. 5:52–96.), thus causing often irreversible damage to the maintenance of natural stocks renewal and reproductive cycles, and, consequently, to the maintenance of the variability and diversity of fish.

In the past few years, several studies involving the characterization of sperm and embryos from a number of native fish species have generated successful sperm analysis protocols in conjunction with the cryopreservation technique, conservation of cells at low temperatures. This allows the availability throughout the year of biological samples for many species of environmental interest (Viveiros et al. 2009VIVEIROS, A.T.M., ORFÃO, L.H., MARIA, A.N. & ALLAMAN, I.B. 2009. A simple, inexpensive and successful freezing method for curimba Prochilodus lineatus (Characiformes) semen. Anim. Reprod. Sci. 112:293–300., Carneiro et al. 2012CARNEIRO, P.C., AZEVEDO, H.C., SANTOS, J.P. & MARIA, A.N. 2012. Cryopreservation of tambaqui (Colossoma macropomum) semen: extenders, cryoprotectants, dilution ratios and freezing methods. CryoLetters 33(5):385–393., Salmito-Vanderley et al. 2016SALMITO-VANDERLEY, C.S.B., ALMEIDA-MONTEIRO, P.S. & NASCIMENTO, R.V. 2016. Tecnologia de conservação de sêmen de peixes: resfriamento, congelação e uso de antioxidantes. Rev. Bras. Reprod. Anim. 40(4):194–199.), whose usefulness in ecotoxicological tests can now be analyzed. In this context, the objective of the present work was to evaluate possible sperm alterations in the semen of tambaqui C. macropomum exposed to two different pesticides, to assess whether these pesticides cause any negative effects that interfere with the reproduction of the species, and, consequently, affecting the maintenance of natural stocks renewal.

Material and Methods

Our study was conducted during the period between January and May of 2021, in the facilities of a fish farm located in the municipality of Santa Inês, State of Maranhão, northeastern Brazil (latitude 03°40'00" south and longitude 45°22'48" west), at approximately 250 km from the capital city of São Luís. Experiments were conducted with the approval of the Ethics Committee for the Use of Animals at the Universidade Estadual do Maranhão (CEUA/UEMA) under license 01200.002200/2015-06(449).

Seminal samples were collected from six males of the tambaqui species C. macropomum, selected from the breeding stock of the fish farm and which presented semen release when submitted to gentle pressure in the abdominal region. Then, the fish were placed in masonry tanks, with constant water circulation for subsequent hormonal induction, using 2.0 mg of raw carp pituitary extract – CPE per kg of live fish (Pinheiro et al. 2016PINHEIRO, J.P.S., LEITE-CASTRO, L.V., OLIVEIRA, F.C.E., LINHARES, F.R.A., LOPES, J.T. & SALMITO-VANDERLEY, C.S.B. 2016. Qualidade do sêmen de tambaqui (Colossoma macropomum) criopreservado em diferentes concentrações de gema de ovo. Ciênc. Anim. Bras. 17(2):267–273.).

After 8 hours of hormonal induction, the fish were restrained and their urogenital region was cleaned and dried with a paper towel to avoid contamination (by water, mucus, or urine). Then, semen collection was performed in graduated glass test tubes. Samples were kept in an isothermal box at a temperature ranging from 4 to 6 °C.

Samples were identified and analyzed individually at the fish farm breeding laboratory for absence of sperm motility by observation under an light microscope at 400× magnification. After confirmation that sperm were immobile, 2 µL aliquots of semen from each sample were activated with 100 µL of 0.9% NaCl saline solution for initial characterization, observing the staining, viscosity, initial subjective sperm motility rate and motility duration time, also under an optical microscope with 400× magnification. Samples with subjective motility above 80% were included in the experiment (Santos 2013SANTOS, J.P. 2013. Cinética espermática e fertilização de ovócitos de Tambaqui Colossoma macropomum com sêmen in natura e criopreservado. Dissertação de Mestrado, Universidade Federal de Sergipe, São Cristóvão.).

Milt samples of each male were exposed to two pesticides (glyphosate 480 g/L – ISORGAN; and fenitrothion, SUMITHION 500 g/L) at five concentrations (6, 12, 24, 120 e 240 mg/L), with dilution in 0.9% NaCl saline solution. Exposition began with the direct activation of 2 µL aliquots of semen with 100 µL of each of the pesticide dilutions. There was an immediate subjective analysis of sperm motility at times 0 (after homogenization), 30 and 60 seconds after activation/exposure, with the aid of a light microscope with a magnification of 400×, by the same evaluator. As a control treatment, we conducted the analysis of sperm motility after activation with a 0.9% NaCl solution (Santos 2013SANTOS, J.P. 2013. Cinética espermática e fertilização de ovócitos de Tambaqui Colossoma macropomum com sêmen in natura e criopreservado. Dissertação de Mestrado, Universidade Federal de Sergipe, São Cristóvão.) with the same analysis times described for pesticide residues.

The chosen experimental design was a factorial test. A statistical analysis was performed through the assessment of means and standard deviations, from which the analysis of variance test (ANOVA) was obtained. When there was observable difference between treatments, the Skot-knott test was applied, at a significance level of 5% in the statistical program SISVAR 5.7.

Results

During the initial observation period, semen samples from all individuals presented white color and high viscosity. In natura samples exhibited an initial motility of 89.2 ± 4.9% and a mean duration of 100 seconds (up to 10% of sperm motility). The activations were carried out at environmental temperature (27–29 °C) and the solutions containing pesticide residues showed a ph ranging from 5.2 to 5.5 for Glyphosate, and from 5 to 5.7 for fenitrothion, based on the value of 5.9 for NaCl.

From the tested treatments with direct exposure of semen to pesticide residues, it was possible to observe the effect of exposing tambaqui semen to residues of glyphosate (Figure 1) and fenitrothion (Figure 2) soon after exposure. All treatments showed a significant reduction (p < 0.05) when compared to sperm activated only with 0.9% NaCl, with more deleterious effects at concentrations above 24 mg/L glyphosate, and sperm agglutination at a concentration of 240 mg/L, it is not possible to attribute sperm motility rate subjectively.

Figure 1.
Percent sperm motility (mean ± standard error) of Tambaqui semen exposed to different concentrations of glyphosate.
Figure 2.
Percent sperm motility (mean ± standard error) of Tambaqui semen exposed to different concentrations of fenitrothion.

Discussion

Glyphosate is an herbicide belonging to the organochlorine group and is classified as an extremely toxic product (Class I) (ANVISA 2021ANVISA. Regularização de produtos – agrotóxicos: monografias autorizadas. Agência Nacional de Vigilância Sanitária, 2021. https://www.gov.br/anvisa/pt-br/setorregulado/regularizacao/agrotoxicos/monografias/monografias-autorizadas-por-letra
https://www.gov.br/anvisa/pt-br/setorreg...
), widely used mainly in plant cultures, such as rice, potatoes, bananas, onions, corn, pastures, soybeans, ornamental shrubs, and flowers, at different stages of development. Changes in body structure, early hatching of eggs, embryo mortality and larval depigmentation are indicative of the toxic effects of these substances (Sanchez 2015SANCHEZ, J.A.A. 2015. Efeitos comparativos de herbicidas à base de glifosato sobre parâmetros oxidativos e qualidade espermática no peixe estuarino Jenynsia multidentata. Dissertação de Mestrado. Universidade Federal do Rio Grande, Rio Grande.).

Lopes et al. (2014)LOPES, F.M., JUNIOR, A.S.V., CORCINI, C.D., DA SILVA, A.C., GUAZZELLI, V.G., TAVARES, G. & ROSA, C.E. 2014. Effect of glyphosate on the sperm quality of zebrafish Danio rerio. Aquat. Toxicol. 155:322–326., in an experiment conducted with fish Danio rerio (Hamilton 1822), observed that sperm exposed for 24 and 96 hours to 5 and 10 mg/L of glyphosate exhibited a decrease in motility and in its duration. Moreover, according to these authors, individuals that were subjected to higher concentrations for a prolonged period showed functional and membrane changes in sperm mitochondria, as well as a reduction in DNA integrity, indicating that glyphosate is a highly dangerous agent for the reproduction of this species, and even harming others.

The tambaqui species is considered a biological model due to its resilience to environmental changes (ValVAL, A.L. & OLIVEIRA, A.M. 2021. Colossoma macropomum - A tropical fish model for biology and aquaculture. J. Exp. Zool. A. Ecol. Genet. Physiol. 335(9-10):761–770. & Oliveira 2021VAL, A.L. & OLIVEIRA, A.M. 2021. Colossoma macropomum - A tropical fish model for biology and aquaculture. J. Exp. Zool. A. Ecol. Genet. Physiol. 335(9-10):761–770.). It has been pointed out as a bioindicator of environmental pollution and used in several toxicological studies, such as the assessment of genotoxic and hematological parameters (Carvalho-Neta et al. 2015CARVALHO-NETA, R.N.F., PINHEIRO SOUSA, D.B., MACÊDO-SOBRINHO, I.C., HORTON, E.Y., ALMEIDA, Z.S., TCHAICKA, L. & SOUSA, A.L. 2015. Genotoxic and hematological parameters in Colossoma macropomum (Pisces, Serrasalmidae) as biomarkers for environmental impact assessment in a protected area in northeastern Brazil. Environ. Sci. Pollut. R. 22(20):15994–16003.), and branchial lesions and erythrocytic abnormalities (Castro et al. 2019CASTRO, J.S., SODRÉ, C.F.L., SOUZA, C.B., PINHEIRO-SOUSA, D.B. & CARVALHO-NETA, R.N.F. 2019. Histopathological and hematological biomarkers in tambaqui Colossoma macropomum (Cuvier, 1816) from an environmental protection area of Maranhão, Brazil. Rev. Ambient. e Água 14(1).), both using individuals from an environmental protection area from the Upaon-Açu island, State of Maranhão, northeastern Brazil. Regarding agricultural defensives specifically, studies carried out with tambaqui by Cunha et al. (2018)CUNHA, F.S., SOUSA, N.C., SANTOS, R.F.B., MENESES, J.O., COUTO, M.V.S., ALMEIDA, F.T.C., SENA-FILHO, J.G., CARNEIRO, P.C.F., MARIA, A.N. & FUJIMOTO, R.Y. 2018. Deltamethrin-induced nuclear erythrocyte alteration and damage to the gills and liver of Colossoma macropomum. Environ. Sci. Pollut. R. 1–10. indicated alteration and damage of nuclear erythrocytes in the gills and liver of tambaqui exposed to pesticides such as Deltamethrin.

As observed for glyphosate, sperm motility rates were significantly reduced (p < 0.05) after direct activation in all tested concentrations of fenitrothion (Figure 2), with no sperm motility being verified at a concentration of 240 mg/L right after direct activation (time 0). Fenitrothion, also belonging to the group of organophosphates, is a class II insecticide (moderate toxicity) widely used in pest control (Milanez et al. 2007MILANEZ, T.V., NAKANO, V.E., KUSSUMI, T.A., ROCHA, S.B. & TOLEDO, H.H.B. 2007. Determinação de fenitrotiona em farinha de trigo. Rev. Inst. Adolfo Lutz 66(2):108–112.). In Brazil, it has been used in agriculture since 1959, authorized in cotton, onion, chrysanthemum, apple, and soy crops, to control ants (ANVISA 2021ANVISA. Regularização de produtos – agrotóxicos: monografias autorizadas. Agência Nacional de Vigilância Sanitária, 2021. https://www.gov.br/anvisa/pt-br/setorregulado/regularizacao/agrotoxicos/monografias/monografias-autorizadas-por-letra
https://www.gov.br/anvisa/pt-br/setorreg...
). In aquaculture, it is used to control insect larvae, just as already reported in Bangladesh, India, to combat the tiger beetle (Rahma et al. 2020RAHMAN, M.S., SUMON, K.A., UDDIN, M.J. & SHAHJAHAN, M. 2020. Toxic effects of fenitrothion on freshwater microcosms in Bangladesh. Toxicol. Rep. 7:1622–1628.). Even considering their history of use in Brazilian agriculture and livestock, there are few organophosphates and pesticides in general that are authorized by the national legislation for fish farming (Tavechio et al. 2009TAVECHIO, W.L.G., GUIDELLI, G. & PORTZ, L. 2009. Alternativas para a prevenção e o controle de patógenos em Piscicultura. Bol. Inst. Pesca 35(2):335–341.), with no formal authorization or indication of the use of fenitrothion in aquaculture being recorded.

Agricultural pesticides, mainly pyrethroids and organophosphates, have been largely used in Brazil since the 1990s, with the main objective of providing increases in agricultural production by combating pests that, if not controlled, can exterminate the entire crop in a short period of time (Moraes 2019MORAES, R.F. 2019. Agrotóxicos no brasil: padrões de uso, política da regulação e prevenção da captura regulatória. Instituto de Pesquisa Econômica Aplicada – Brasília, Rio de Janeiro, Ipea.). However, while these substances bring benefits to agriculture, the number of studies that prove the ecotoxicological effects of pesticides on human and animal health, especially those living in aquatic environments, is undeniable (MontanhaMONTANHA, F.P., PIMPÃO, C.T. & TITULAR-PUCPR, M.V. 2012. Efeitos toxicológicos de piretróides (cipermetrina e deltametrina) em peixes-Revisão. Rev. Cient. Eletrônica Med. Vet. 18:1–58. & Pimpão 2012MONTANHA, F.P., PIMPÃO, C.T. & TITULAR-PUCPR, M.V. 2012. Efeitos toxicológicos de piretróides (cipermetrina e deltametrina) em peixes-Revisão. Rev. Cient. Eletrônica Med. Vet. 18:1–58., SantanaSANTANA, M.B.M. & CAVALCANTE, R.N. 2016. Transformações Metabólicas de Agrotóxicos em Peixes: Uma Revisão. Orbital: Electron. J. Chem. 8(4):257–268. & Cavalcante 2016SANTANA, M.B.M. & CAVALCANTE, R.N. 2016. Transformações Metabólicas de Agrotóxicos em Peixes: Uma Revisão. Orbital: Electron. J. Chem. 8(4):257–268., RibeiroRIBEIRO, N.U.F. & AMÉRICO-PINHEIRO, J.H.P. 2018. Peixes como bioindicadores de agrotóxicos em ambientes aquáticos. Fórum Ambient. 14:846–856. & Américo-Pinheiro 2018RIBEIRO, N.U.F. & AMÉRICO-PINHEIRO, J.H.P. 2018. Peixes como bioindicadores de agrotóxicos em ambientes aquáticos. Fórum Ambient. 14:846–856.).

Several species of Neotropical fish employ external fecundation and fertilization as a reproductive strategy, with total discharge of male and female gametes in the water (Witeck et al. 2011WITECK, L., BOMBARDELLI, R.A., SANCHES, E.A., OLIVEIRA, J.D.S., BAGGIO, D.M. & SOUZA, B.E. 2011. Motilidade espermática, fertilização dos ovócitos e eclosão dos ovos de jundiá em água contaminada por cádmio. Rev. Bras. Zootecn. 40(3):477–481.), a fact that provides a large exposure of gametes to the contaminated environment (Rodrigues et al. 2019RODRIGUES, G.Z.P., MACHADO, A.B. & GEHLEN, G. 2019. Influência de metais no comportamento reprodutivo de peixes, revisão bibliográfica. Rev. Geama 5(1):4–13.). As a result, the entire fertilization process, from sperm motility to embryonic development, can be directly affected by excess contaminants, such as pesticide residues leached from the soil by rain, or even by inadequate disposal of containers and residues (KimeKIME, D.E. & NASH, J.P. 1999. Gamete viability as an indicator of reproductive endocrine disruption in fish. Sci. Total Environ. 233:123–129. & Nash 1999KIME, D.E. & NASH, J.P. 1999. Gamete viability as an indicator of reproductive endocrine disruption in fish. Sci. Total Environ. 233:123–129., Ferreira 2016FERREIRA, L.S.V. 2016. Efeitos histopatológicos dos agrotóxicos deltametrina, imidacloprido, glifosato e diuron nas brânquias de quatro espécies de peixes amazônicos. Dissertação de mestrado, Instituto Nacional de Pesquisa da Amazônia, INPA, Manaus.). These contaminants greatly influence the reproduction and renewal of fish species stocks, which can lead to an environmental imbalance and a reduction in species diversity (Mondal et al. 2015MONDAL, K., KARMAKAR, B. & HAQUE, S. 2015. A review on effects of pyrethroids pesticides on fresh water fish behaviour and fish reproduction. Glob. J. Bio-Sci. Biotechnol. 4(6):2594–2598.).

Amazonian fish known as round fish, such as the tambaqui Colossoma macropomum, and the pirapitinga Piaractus brachypomus (Cuvier 1818), as well as their hybrids, have become the most important native species of Brazilian fish farming, especially in the North and Northeast regions of the country (Muniz et al. 2008MUNIZ, J.A.S.M., CATANHO, M.T.J.A. & SANTOS, A.J.G. 2008. Influência do fotoperíodo natural na reprodução induzida do tambaqui, Colossoma macropomum (CUVIER, 1818). Bol. Inst. Pesca 34(2):205–211., PEIXEBR 2021PEIXEBR. Associação Brasileira da Piscicultura. Anuário PeixeBR da Piscicultura 2021. 2022. Edição Texto Comunicação Corporativa. São Paulo, São Paulo.), due to their good adaptation to the climatic conditions found in those regions, which are considered ideal for these species. They are species that have external fecundation and fertilization, with annual and total reproduction, with the river flooding period being the main spawning season for this group of fish (Vieira et al. 1999VIEIRA, E.F., ISAAC, V.J. & FABRÉ, N.N. 1999. Biologia reprodutiva do tambaqui, Colossoma macropomum CUVIER, 1818, (Teleostei, Serrasalmidae), no baixo Amazonas, Brasil. Acta Amazon. 29(4):625–638.). In captivity, they are reproduced through the hormonal induction technique, using raw Carp Pituitary Extract – CPE (Maria et al. 2011MARIA, A.N., AZEVEDO, H.C., SANTOS, J.P. & CARNEIRO, P.C.F. 2011. Hormonal induction and semen characteristics of tambaqui Colossoma macropomum. Zygote 20(1):39–43.), in addition to synthetic hormones.

Normally, the action of organophosphates occurs through the irreversible inhibition of enzyme acetylcholinesterase (AChE), responsible for the degradation of acetylcholine, the main neurotransmitter in the central nervous system of insects (Barboza et al. 2018BARBOZA, H.T.G., NASCIMENTO, X.P.R., FREITAS-SILVA, O., SOARES, A.G. & DA-COSTA, J.B.N. 2018. Compostos Organofosforados e seu Papel na Agricultura. RVq 10(1):172–193.). In this sense, organophosphates are widely used in fish farms to control fish parasites, as well as to combat insect larvae of order Odonata, which have the habit of preying on fish larvae and causing financial damage to producers (Fortunato et al. 2020FORTUNATO, M.H.T., MELO, C.L. & MENDES, H.F. 2020. Piscicultura brasileira e a influência da ordem Odonata: uma revisão. Arq. Ciênc. Vet. Zool. UNIPAR 23(1):1–7.). Despite being efficient in combating and chemically controlling dragonfly nymphs and other insects, organophosphates have been proven to be considerably toxic (Queiroz 2017QUEIROZ, J.C. 2017. Controle químico de ninfas de libélula (Insecta, Odonata) durante a larvicultura do Jundiá (Rhamdia quelen). Dissertação de mestrado (Zootecnia - Setor de Ciências Agrárias), Universidade Estadual do Oeste do Paraná, Paraná.).

Organophosphates combined with pyrethroids are already used both in agriculture and in livestock, as the mixture of both promotes synergism in their actions (Trevis et al. 2010TREVIS, D., HABR, S.F., VAROLI, F.M. & BERNARDI, M.M. 2010. Toxicidade aguda do praguicida organofosforado diclorvos e da mistura com o piretróide deltametrina em Danio rerio e Hyphessobrycon bifasciatus. Bol. Inst. Pesca 36(1):53–59.). In a study to assess the toxic effect of the mixture between organophosphates and pyrethroids in Pimephales promelas larvae, it was observed that the combination resulted in high toxicity (Wheelock et al. 2005WHEELOCK, C.E., SHAN, G. & OTTEA, J. 2005. Overview of carboxylesterases and their role in the metabolism of insecticides. J. Pestic. Sci. 30:75–83.), demonstrating the importance of conducting studies aimed at evaluating the application of the mixture of these two pesticides in aquatic environments.

In a recent study published by Santos et al. (2021)SANTOS, J.P., ALMEIDA, S.J.M., COSTA, C.C., GUIMARÃES, E.C., TEIXEIRA, E.G. & CARVALHO-NETA, R.N.F. 2021. Reproductive aspects of freshwater fishes exposed to pesticide-contamined environments: A systematic review. Revista GeAS, 8(19):1155–1168., when evaluating the toxic effects of pesticides on the reproductive processes of freshwater fish based on articles published from 2000 to 2019, they observed that insecticides were present in 78% of the studies, mainly Endosulfan (35%) and Cypermethrin (13%), which are classified respectively as organochlorine and pyrethroid. The authors also highlighted that the most reported routes of action in the studies (57.5%) were reproductive endocrine disorders, with changes ranging such as decreased fertility due to histological damage to testicles and ovaries; impairment of the vitellogenesis process and interruption in the steroidogenesis process; delay in gonad maturation evidenced by alterations in the Gonadosomatic Index; alteration in reproductive and parental behavior; compromised olfactory response and consequent disorder in reproductive migrations; as well as disturbances in the coordination of courtship behavior of male and female fish and spawning time (Jaensson et al. 2007JAENSSON, A., SCOTT, A.P., MOORE, A., KYLIN, H. & OLSÉN, K.H. 2007. Effects of a pyrethroid pesticide on endocrine responses to female odours and reproductive behaviour in male parr of brown trout (Salmo trutta L.). Aquat. Toxicol. 81(1):1–9., SinghSINGH, P.B. & SINGH, V. 2008. Pesticide bioaccumulation and plasma sex steroids in fishes during breeding phase from north India. Environ. Toxicol. Phar. 25(3):342–350. & Singh 2008SINGH, P.B. & SINGH, V. 2008. Pesticide bioaccumulation and plasma sex steroids in fishes during breeding phase from north India. Environ. Toxicol. Phar. 25(3):342–350., Marcon et al 2015MARCON, L., MOUNTEER, A.H., BAZZOLI, N. & BENJAMIN, L. DOS A. 2015. Effects of insecticide Thiodan® on the morphology and quantification of ovarian follicles in lambaris Astyanax bimaculatus (Linnaeus, 1758) in different treatments. Aquac. Res. 47(8):2407–2418., Sumon et al. 2019SUMON, K.A., YESMIN, M.F., VAN DEN BRINK, P.J., BOSMA, R.H., PEETERS, E.T.H.M. & RASHID, H. 2019. Effects of long-term chlorpyrifos exposure on mortality and reproductive tissues of Banded Gourami (Trichogaster fasciata). J. Environ. Health, Part B 54 (7):549–559.).

Our study is the first one reporting the use of sperm cells from native Neotropical fish (tambaqui) directly exposed to pesticides in ecotoxicological tests. Tests demonstrated that these organisms are highly susceptible to changes that can be caused by contact with pesticide residues, such as glyphosate and fenitrothion. Therefore, the presence of pesticides in freshwater environments can interfere in the reproduction of tambaqui fishes, and consequently, in the renewal of this fish species stocks. However, the determination of a protocol for analysis must be conducted, as to standardize the techniques and to express a result that can be taken into consideration by competent government bodies that mediate requests for the authorization of use of new chemical substances as agricultural pesticides in Brazil. In addition, we believe that the results here obtained would be extrapolated to other native species that have a similar reproductive cycle or biology, helping us to understand how contaminants generated by agricultural production can affect the reproduction of these species, and how can we adopt conservation actions to prevent this.

Acknowledgment

We thank the Institutional Program of Scientific Scholarships at UEMA, the AQUAPESC fish farm, and FAPEMA for financing our project.

Data Availability

The data used in our analysis is available at Biota Neotropica Dataverse https://doi.org/10.48331/scielodata.PIL6JB

References

  • ANVISA. Regularização de produtos – agrotóxicos: monografias autorizadas. Agência Nacional de Vigilância Sanitária, 2021. https://www.gov.br/anvisa/pt-br/setorregulado/regularizacao/agrotoxicos/monografias/monografias-autorizadas-por-letra
    » https://www.gov.br/anvisa/pt-br/setorregulado/regularizacao/agrotoxicos/monografias/monografias-autorizadas-por-letra
  • BARBOZA, H.T.G., NASCIMENTO, X.P.R., FREITAS-SILVA, O., SOARES, A.G. & DA-COSTA, J.B.N. 2018. Compostos Organofosforados e seu Papel na Agricultura. RVq 10(1):172–193.
  • BROOKS, T.M., MITTERMEIER, R.A., MITTERMEIER, C.G., FONSECA, G.A.B., RYLANDS, A.B., KONSTANT, W.R., FLICK, P., PILGRIM, J., OLDFIELD, S., MAGIN, G. & HILTON-TAYLOR, C. 2002. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16:909–923.
  • BROOK, B.W., BRADSHAW, C.J.A., KOH, L.P. & SODHI, N.S. 2006. Momentum drives the crash: mass extinction in the tropics. Biotropica 38:302–305.
  • CARNEIRO, P.C., AZEVEDO, H.C., SANTOS, J.P. & MARIA, A.N. 2012. Cryopreservation of tambaqui (Colossoma macropomum) semen: extenders, cryoprotectants, dilution ratios and freezing methods. CryoLetters 33(5):385–393.
  • CARVALHO-NETA, R.N.F., PINHEIRO SOUSA, D.B., MACÊDO-SOBRINHO, I.C., HORTON, E.Y., ALMEIDA, Z.S., TCHAICKA, L. & SOUSA, A.L. 2015. Genotoxic and hematological parameters in Colossoma macropomum (Pisces, Serrasalmidae) as biomarkers for environmental impact assessment in a protected area in northeastern Brazil. Environ. Sci. Pollut. R. 22(20):15994–16003.
  • CASTRO, J.S., SODRÉ, C.F.L., SOUZA, C.B., PINHEIRO-SOUSA, D.B. & CARVALHO-NETA, R.N.F. 2019. Histopathological and hematological biomarkers in tambaqui Colossoma macropomum (Cuvier, 1816) from an environmental protection area of Maranhão, Brazil. Rev. Ambient. e Água 14(1).
  • CBRA. 1998. Manual para exame andrológico e avaliação de sêmen animal. 2.ed. Belo Horizonte, CBRA.
  • CEBALLOS, G., EHRLICH, P.R., BARNOSKY, A.D., GARCÍA, A., PRINGLE, R.M. & PALMER, T.M. 2015. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1(5):e1400253.
  • CUNHA, F.S., SOUSA, N.C., SANTOS, R.F.B., MENESES, J.O., COUTO, M.V.S., ALMEIDA, F.T.C., SENA-FILHO, J.G., CARNEIRO, P.C.F., MARIA, A.N. & FUJIMOTO, R.Y. 2018. Deltamethrin-induced nuclear erythrocyte alteration and damage to the gills and liver of Colossoma macropomum. Environ. Sci. Pollut. R. 1–10.
  • DARWALL, W., BREMERICH, V. & DE WEVER, A. 2018. The Alliance for Freshwater Life: A global call to unite efforts for freshwater biodiversity science and conservation. Aquatic. Conserv.: Mar. Freshw. Ecosyst. 28:1015–1022.
  • DUDGEON, D., ARTHINGTON, A.H., GESSNER, M.O., KAWABATA, Z., KNOWLER, D.J., LÉVÊQUE, C., NAIMAN, R.J., PRIEUR-RICHARD, A., SOTO, D., STIASSNY, M.L.J. & SULLIVAN, C.A. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81:163–182.
  • EL-SAYED, Y.S. & SAAD, T.T. 2007. Subacute intoxication of a deltamethrin-based preparation (butox ® 5% EC) in monosex Nile Tilapia, Oreochromis niloticus L. Basic Clin. Pharmacol. Toxicol. 102:293–299.
  • FERREIRA, L.S.V. 2016. Efeitos histopatológicos dos agrotóxicos deltametrina, imidacloprido, glifosato e diuron nas brânquias de quatro espécies de peixes amazônicos. Dissertação de mestrado, Instituto Nacional de Pesquisa da Amazônia, INPA, Manaus.
  • FORTUNATO, M.H.T., MELO, C.L. & MENDES, H.F. 2020. Piscicultura brasileira e a influência da ordem Odonata: uma revisão. Arq. Ciênc. Vet. Zool. UNIPAR 23(1):1–7.
  • HARRISON, I., ABELL, R., DARWALL, W., THIEME, M.L., TICKNER, D. & TIMBOE, I. 2018. The freshwater biodiversity crisis. Science 362(6421):1369.
  • JAENSSON, A., SCOTT, A.P., MOORE, A., KYLIN, H. & OLSÉN, K.H. 2007. Effects of a pyrethroid pesticide on endocrine responses to female odours and reproductive behaviour in male parr of brown trout (Salmo trutta L.). Aquat. Toxicol. 81(1):1–9.
  • KIME, D.E. 1995. The effects of pollution on reproduction in fish. Rev. Fish. Biol. Fisher. 5:52–96.
  • KIME, D.E. & NASH, J.P. 1999. Gamete viability as an indicator of reproductive endocrine disruption in fish. Sci. Total Environ. 233:123–129.
  • LATRUBESSE, E.M., ARIMA, E., FERREIRA, M.E., NOGUEIRA, S.H., WITTMANN, F., DIAS, M.S., DAGOSTA, F.C.P. & BAYER, M. 2019. Fostering water resource governance and conservation in the Brazilian Cerrado biome. Conserv. Sci. Pract. 1(e77):1–8.
  • LAURANCE, W.F. 2006. Have we overstated the tropical biodiversity crisis? Trends Ecol. Evol. 22(2):65–70.
  • LOPES, F.M., JUNIOR, A.S.V., CORCINI, C.D., DA SILVA, A.C., GUAZZELLI, V.G., TAVARES, G. & ROSA, C.E. 2014. Effect of glyphosate on the sperm quality of zebrafish Danio rerio. Aquat. Toxicol. 155:322–326.
  • MARCON, L., MOUNTEER, A.H., BAZZOLI, N. & BENJAMIN, L. DOS A. 2015. Effects of insecticide Thiodan® on the morphology and quantification of ovarian follicles in lambaris Astyanax bimaculatus (Linnaeus, 1758) in different treatments. Aquac. Res. 47(8):2407–2418.
  • MARIA, A.N., AZEVEDO, H.C., SANTOS, J.P. & CARNEIRO, P.C.F. 2011. Hormonal induction and semen characteristics of tambaqui Colossoma macropomum. Zygote 20(1):39–43.
  • MILANEZ, T.V., NAKANO, V.E., KUSSUMI, T.A., ROCHA, S.B. & TOLEDO, H.H.B. 2007. Determinação de fenitrotiona em farinha de trigo. Rev. Inst. Adolfo Lutz 66(2):108–112.
  • MONDAL, K., KARMAKAR, B. & HAQUE, S. 2015. A review on effects of pyrethroids pesticides on fresh water fish behaviour and fish reproduction. Glob. J. Bio-Sci. Biotechnol. 4(6):2594–2598.
  • MONTANHA, F.P., PIMPÃO, C.T. & TITULAR-PUCPR, M.V. 2012. Efeitos toxicológicos de piretróides (cipermetrina e deltametrina) em peixes-Revisão. Rev. Cient. Eletrônica Med. Vet. 18:1–58.
  • MOORE, A. & WARING, C.P. 2001. The effects of a synthetic pyrethroid pesticide on some aspects of reproduction in Atlantic salmon (Salmo salar L.). Aquat. Toxicol. 52(1):1–12.
  • MORAES, R.F. 2019. Agrotóxicos no brasil: padrões de uso, política da regulação e prevenção da captura regulatória. Instituto de Pesquisa Econômica Aplicada – Brasília, Rio de Janeiro, Ipea.
  • MUNIZ, J.A.S.M., CATANHO, M.T.J.A. & SANTOS, A.J.G. 2008. Influência do fotoperíodo natural na reprodução induzida do tambaqui, Colossoma macropomum (CUVIER, 1818). Bol. Inst. Pesca 34(2):205–211.
  • PEIXEBR. Associação Brasileira da Piscicultura. Anuário PeixeBR da Piscicultura 2021. 2022. Edição Texto Comunicação Corporativa. São Paulo, São Paulo.
  • PIMM, S., RAVEN, P., PETERSON, A., ŞEKERCIOĞLU, Ç.H. & EHRLICH, P.R. 2006. Human impacts on the rates of recent, present, and future bird extinctions. PNAS 103(29):10941–10946.
  • PIMM, S.L., JENKINS, C.N., ABELL, R., BROOKS, T.M., GITTLEMAN, J.L., JOPPA, L.N., RAVEN, P.H., ROBERTS, C.M. & SEXTON, J.L. 2014. The Biodiversity of species and theirs rates of extinctions, distributions and protection. Science 344(6187):1246752.
  • PINHEIRO, J.P.S., LEITE-CASTRO, L.V., OLIVEIRA, F.C.E., LINHARES, F.R.A., LOPES, J.T. & SALMITO-VANDERLEY, C.S.B. 2016. Qualidade do sêmen de tambaqui (Colossoma macropomum) criopreservado em diferentes concentrações de gema de ovo. Ciênc. Anim. Bras. 17(2):267–273.
  • PRIMACK, R.B., RODRIGUES, E. 2001. Biologia da conservação. Editora Rodrigues, Londrina.
  • QUEIROZ, J.C. 2017. Controle químico de ninfas de libélula (Insecta, Odonata) durante a larvicultura do Jundiá (Rhamdia quelen). Dissertação de mestrado (Zootecnia - Setor de Ciências Agrárias), Universidade Estadual do Oeste do Paraná, Paraná.
  • RAHMAN, M.S., SUMON, K.A., UDDIN, M.J. & SHAHJAHAN, M. 2020. Toxic effects of fenitrothion on freshwater microcosms in Bangladesh. Toxicol. Rep. 7:1622–1628.
  • RAGASSI, B., AMÉRICO-PINHEIRO, J.H.P. & SILVA-JUNIOR, O.P. 2017. Ecotoxicidade de agrotóxicos para algas de água doce. Ver. Cient. ANAP Brasil 10(19).
  • REID, A.J., CARLSON, A.K., CREED, I.F., ELIASON, E.J., GELL, P.A., JOHNSON, P.T.J., KIDD, K.A., MACCORMACK, T.J., OLDEN, J.D., ORMEROD, S.J., SMOLL, J.P., TAYLOR, W.W., TOCKNER, K., VERMAIRE, J.C., DUDGEON, D. & COOKE, S.J. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94:849–873.
  • REMBISCHEVSK, P. & CALDAS, E.D. 2018. Agroquímicos para controle de pragas no Brasil: análise crítica do uso do termo agrotóxico como ferramenta de comunicação de risco. Vigil. Sanit. Debate 6(4):2–12.
  • RIBEIRO, N.U.F. & AMÉRICO-PINHEIRO, J.H.P. 2018. Peixes como bioindicadores de agrotóxicos em ambientes aquáticos. Fórum Ambient. 14:846–856.
  • RODRIGUES, G.Z.P., MACHADO, A.B. & GEHLEN, G. 2019. Influência de metais no comportamento reprodutivo de peixes, revisão bibliográfica. Rev. Geama 5(1):4–13.
  • SALMITO-VANDERLEY, C.S.B., ALMEIDA-MONTEIRO, P.S. & NASCIMENTO, R.V. 2016. Tecnologia de conservação de sêmen de peixes: resfriamento, congelação e uso de antioxidantes. Rev. Bras. Reprod. Anim. 40(4):194–199.
  • SANCHEZ, J.A.A. 2015. Efeitos comparativos de herbicidas à base de glifosato sobre parâmetros oxidativos e qualidade espermática no peixe estuarino Jenynsia multidentata. Dissertação de Mestrado. Universidade Federal do Rio Grande, Rio Grande.
  • SANTANA, M.B.M. & CAVALCANTE, R.N. 2016. Transformações Metabólicas de Agrotóxicos em Peixes: Uma Revisão. Orbital: Electron. J. Chem. 8(4):257–268.
  • SANTOS, J.P. 2013. Cinética espermática e fertilização de ovócitos de Tambaqui Colossoma macropomum com sêmen in natura e criopreservado. Dissertação de Mestrado, Universidade Federal de Sergipe, São Cristóvão.
  • SANTOS, J.P., ALMEIDA, S.J.M., COSTA, C.C., GUIMARÃES, E.C., TEIXEIRA, E.G. & CARVALHO-NETA, R.N.F. 2021. Reproductive aspects of freshwater fishes exposed to pesticide-contamined environments: A systematic review. Revista GeAS, 8(19):1155–1168.
  • SAVAGE, J.M. 1995. Systematics and the Biodiversity Crisis. BioScience 45(10):673–679.
  • SINGH, P.B. & SINGH, V. 2008. Pesticide bioaccumulation and plasma sex steroids in fishes during breeding phase from north India. Environ. Toxicol. Phar. 25(3):342–350.
  • SINGH, J.S. 2022. The biodiversity crisis: a multifaceted review. Curr. Sci. 82(6):638–647.
  • SUMON, K.A., YESMIN, M.F., VAN DEN BRINK, P.J., BOSMA, R.H., PEETERS, E.T.H.M. & RASHID, H. 2019. Effects of long-term chlorpyrifos exposure on mortality and reproductive tissues of Banded Gourami (Trichogaster fasciata). J. Environ. Health, Part B 54 (7):549–559.
  • TAVECHIO, W.L.G., GUIDELLI, G. & PORTZ, L. 2009. Alternativas para a prevenção e o controle de patógenos em Piscicultura. Bol. Inst. Pesca 35(2):335–341.
  • TORRES, I.A., SILVA, T.M.F., RODRIGUES, L.S., SILVA, I.J., COSTA, T.A., SOTO-BLANCO, B., MELO, M.M. 2017. Physicochemical analysis of water, sediment and riparian vegetation of a fish farming located in an agroindustrial area at the border of Ribeirão da Mata (Minas Gerais, Brazil). Eng. Sanit. Ambient. 22(4):773–780.
  • TREVIS, D., HABR, S.F., VAROLI, F.M. & BERNARDI, M.M. 2010. Toxicidade aguda do praguicida organofosforado diclorvos e da mistura com o piretróide deltametrina em Danio rerio e Hyphessobrycon bifasciatus. Bol. Inst. Pesca 36(1):53–59.
  • VAL, A.L. & OLIVEIRA, A.M. 2021. Colossoma macropomum - A tropical fish model for biology and aquaculture. J. Exp. Zool. A. Ecol. Genet. Physiol. 335(9-10):761–770.
  • VENTURIERI, R. & BERNARDINO, G. 1999. Hormônios na reprodução artificial de peixes. Ver. Pan. Aqüi. 9(55):39–48.
  • VIEIRA, E.F., ISAAC, V.J. & FABRÉ, N.N. 1999. Biologia reprodutiva do tambaqui, Colossoma macropomum CUVIER, 1818, (Teleostei, Serrasalmidae), no baixo Amazonas, Brasil. Acta Amazon. 29(4):625–638.
  • VIVEIROS, A.T.M., ORFÃO, L.H., MARIA, A.N. & ALLAMAN, I.B. 2009. A simple, inexpensive and successful freezing method for curimba Prochilodus lineatus (Characiformes) semen. Anim. Reprod. Sci. 112:293–300.
  • WAICHMAN, A.V. 2008. Uma proposta de avaliação integrada de risco do uso de agrotóxicos no estado do Amazonas, Brasil. Acta Amazon. 38(1):45–50.
  • UREN-WEBSTER, T.M., LAING, L.V., FLORANCE, H. & SANTOS, E.M. 2014. Effects of Glyphosate and its Formulation, Roundup, on Reproduction in Zebrafish (Danio rerio). Environ. Sci. Technol. 48(2):1271–1279.
  • WHEELER, D.Q. 2008. The New Taxonomy. The Systematics Association, Special Volume Series 76, CRC Press, New York.
  • WHEELOCK, C.E., SHAN, G. & OTTEA, J. 2005. Overview of carboxylesterases and their role in the metabolism of insecticides. J. Pestic. Sci. 30:75–83.
  • WILSON, E.O. 1985. The biological diversity crisis: a challenge to science. Issues Sci. Technol. 2:20–29.
  • COSTA, W.J.E.M., AMORIM, P.F. & MATTOS, J.L.O. 2012. Species delimitation in annual killifishes from the Brazilian Caatinga, the Hypsolebias flavicaudatus complex (Cyprinodontiformes: Rivulidae): implications for taxonomy and conservation. Syst. Biodivers. 10(1):71–91.
  • WITECK, L., BOMBARDELLI, R.A., SANCHES, E.A., OLIVEIRA, J.D.S., BAGGIO, D.M. & SOUZA, B.E. 2011. Motilidade espermática, fertilização dos ovócitos e eclosão dos ovos de jundiá em água contaminada por cádmio. Rev. Bras. Zootecn. 40(3):477–481.

Edited by

Associate Editor
Carlos Joly

Publication Dates

  • Publication in this collection
    16 June 2023
  • Date of issue
    2023

History

  • Received
    19 Jan 2023
  • Accepted
    06 Apr 2023
Instituto Virtual da Biodiversidade | BIOTA - FAPESP Departamento de Biologia Vegetal - Instituto de Biologia, UNICAMP CP 6109, 13083-970 - Campinas/SP, Tel.: (+55 19) 3521-6166, Fax: (+55 19) 3521-6168 - Campinas - SP - Brazil
E-mail: contato@biotaneotropica.org.br