SciELO - Scientific Electronic Library Online

vol.14 número3Validação no Brasil de Questionário de Qualidade de Vida na Doença Venosa Crônica (Questionário Aberdeen para Veias Varicosas no Brasil/AVVQ-Brasil)Síndrome de Lemierre: relato de caso índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




Links relacionados


Jornal Vascular Brasileiro

versão impressa ISSN 1677-5449versão On-line ISSN 1677-7301

J. vasc. bras. vol.14 no.3 Porto Alegre jul./set. 2015 

Review Article

Anatomy of spinal blood supply

Alexandre Campos Moraes Amato 1   2   *  

Noedir Antônio Groppo Stolf 2  

1Universidade de Santo Amaro – Unisa, São Paulo, SP, Brazil

2Universidade de São Paulo – USP, São Paulo, SP, Brazil


The intricate three-dimensional vascular anatomy of the spinal cord is still not completely understood, and its terminology varies between studies. In view of its importance in spinal ischemia, an analysis is needed of the anatomic vocabulary used to describe the spinal cord blood supply to improve understanding of the subject. The main supply is the Adamkiewicz artery, also known as great anterior radicular artery. The literature was reviewed to equate the different nomenclatures employed and an accurate description of current knowledge on spinal cord vascularization was prepared.

Keywords:  spinal cord; anatomy; spine; aorta


A intrincada anatomia tridimensional da irrigação medular é frequentemente explanada na literatura com diferentes nomenclaturas e devido a sua alta relevância no estudo da isquemia medular, o estudo da terminologia se faz necessário para melhor compreensão do tema. A artéria de Adamkiewicz, também chamada de artéria radicular magna, é a via principal. Foi realizada a revisão da literatura com equiparação das nomenclaturas utilizadas e elaboração de descrição acurada e sumarizada do conhecimento atual sobre a vascularização medular.

Palavras-chave:  medula espinhal; anatomia; coluna vertebral; aorta


Spinal blood supply was first studied by Albert Wojciech Adamkiewicz [AFI: ʔadamkiɛviʧ],1,2 a Polish pathologist, in 1881.3-6 The great radicular artery is also known eponymously as the Adamkiewicz artery (AKA).4

Knowledge of the blood supply to the spinal cord is important when planning treatment of diseases of the aorta. However, the vasculature involved is complex and difficult to study because of the small caliber of arteries, which make up an intricate three-dimensional network with a large degree of anatomic variation.7The lack of a gold standard imaging exam also makes it difficult to compare existing imaging methods.8

This study is intended to clarify the anatomic presentation of the spinal vasculature and propose a standardization of the terms for use in Portuguese.


The intricate three-dimensional anatomy of the spinal blood supply is often explained in the literature using different terminology9 and merits review in order to clarify the standard that should be used (Table 1).

Table 1 Terms found in the literature and Portuguese terms proposed. 

Most frequent Synonyms Portuguese term adopted
Aorta Aorta Aorta
Segmental Arteries Segmental a.,10 segmental posterior intercostal a.,9,11radicular a.12
aa. intercostales, intercostal a.13
aa. lumbales
Artérias segmentares
AA. intercostais posteriores (TA)
Vertebral branch vertebral branch,9 ventral branch,11dural a.,12 anterior branch,13,14 anterior ramus, muscular branch15 Ramo vertebral
Dorsal branch dorsal branch,11 muscular branch,14,16branches to erector spinae and intercostal muscle,17 dorsal somatic branch15 Ramo dorsal (TA)
Radiculomedullary artery Dorsal ramus intercostal a.,12 nervomedullary a.,7,9,11spinal branch,11 radicular a.,12 radicular medullary dural a.,18 radiculomedullary a.,13,14,16ramo espinhal,19 posterior ramus Ramo espinhal (TA)
anterior radicular artery anterior radicular a.,9,10,20medullary a.,12 anterior medullary a.,18 anterior radiculomedullary aa.,16,17 a. radicular anterior,19 anterior spinal canal a., segmental a.21 Ramo radicular anterior (TA)
Posterior branch of the radicular artery posterior radicular a.,9,10,20medullary a.,12 posterior medullary a.,18 posterior radiculomedullary aa.,16 a. radicular posterior,19 posterior segmental medullary a.22 Ramo radicular posterior (TA)
Posterolateral spinal artery posterolateral spinal aa.,9,18posterior spinal aa.,12,16 posterior pial arterilar plexus,10 aa. espinhais posteriores19 Artéria espinhal posterolateral
Anterior spinal artery a. spinalis anterior;5,6anterior spinal a.,12-14,18 anterior median spinal a.,10 anterior long spinal a. Artéria espinhal anterior (TA)
Artery of Adamkiewicz a. radicularis magna, great(er) radicular a., anterior great(er) radicular a., lumbar enlargement a., anterior radiculomedullary a., major radicular a., dominant radiculomedullary a., e outros.9,11,23 Artéria de Adamkiewicz*
Lumbar arteries aa. lumbales Artérias lombares (TA)
Intercostal arteries aa. intercostales, intercostal a.13 Artérias intercostais posteriores (TA)
Sulcal arteries a. sulci,5,6sulcal a.,10,11 aa. sulcais,19 medial medullary branch,22 sulco-commissural a.21 Artérias sulcais
Pial plexus pial plexus18 Plexo pial**

TA: Term adapted from the Brazilian Anatomic Society's reference work Anatomic Terminology.24

*Eponym adopted in view of frequent use in the literature.23

**Term not included in Anatomic Terminology.

The intercostal and lumbar arteries that supply the spinal marrow originate in the aorta, as do the subclavian and hypogastric branches. The intercostal and lumbar arteries divide three times before reaching the spinal cord. The first branch is the spinal branch, which divides into the anterior and posterior radicular arteries and, farther on, bifurcates into the dorsal and vertebral branches. The last bifurcation of the spinal branch is constant for anterior and posterior supply of the vertebral canal, of the nerve roots and of the dura mater, at some levels only, and the anterior and posterior radicular arteries pass through the dura mater and reach the marrow. Only some (2-14, a mean of 6) of these segmental branches remain into adulthood. The anterior spinal artery (ASA) is crucial to vascularization of the marrow and anterior and lateral funiculi and is basically an anastomotic channel between the ascending and descending branches of the adjacent anterior radicular arteries (Figure 1).

Figure 1 Schematic drawing of the blood supply of the spinal marrow. 

Generally, one of the anterior radicular arteries is dominant in terms of caliber and is known as the great anterior radicular artery or Adamkiewicz artery (Figure 2). The posterior radicular artery follows a similar pattern, but gives rise to two longitudinal anastomotic channels: the posterolateral spinal arteries. Arteries that supply the spine are divided between a central system, fed by the sulcal arteries, and a peripheral system, the pial plexus, which gives origin to perforant branches (Figure 2).7,25-27

Figure 2 Anatomy of the spinal arterial supply, showing the Adamkiewicz artery. 

Spinal drainage is no less controversial, and its principal characteristics are the posterior great radicular vein, in the shape of a “coat-hook”, the posterior spinal vein and the anterior spinal vein.15 The anatomic importance of venous drainage with relation to this article, dedicated to the spinal arteries, lies in anatomic differentiation of the arterial system (Figure 3) and the subject will not be dealt with in depth. Posteriorly, there is just one posterior spinal vein, rather than two smaller posterolateral veins, and this is frequently of smaller caliber than the anterior median vein.28

Figure 3 Spinal venous drainage. 

Although there is a single identifiable artery supplying the spine at the thoracic height, this is not the only source of medullary blood supply. Griepp et al. recently refined the conceptualization of the collateral circulation network for spinal blood supply,29 providing details of its vascular redundancy, but the importance of the AKA has not yet been sufficiently elucidated. There is an axial network of small arteries in the spinal canal, in paravertebral tissues and in paraspinal muscles that anastomose with each other and with the arteries supplying the spinal marrow; the entry to this network includes segmental vessels (intercostal and lumbar arteries), subclavian arteries, hypogastric arteries and their branches (Figure 4).30,31 In addition to these multiple entry routes, there is also an extensive network of epidural arterial and small vessels that supply the paraspinal musculature. All of these vessels are interconnected and anastomose with the subclavian arteries cranially and the hypogastric arteries caudally.31

Figure 4 Collateral network: subclavian, hypogastric, intercostal and lumbar arteries. 

This collateral network can provide compensatory flow to the spinal cord in the event of occlusion of the larger caliber routes,31and the flow from one source can increase when another is reduced; or vice versa: flow can reduce if a low resistance alternative route is opened, i.e. in cases of arterial steal.29 According to Adamkiewicz's theory of partial flow, the flow in the anterior spinal artery originates from the radicular arteries, arriving at the spinal cord in two currents, a cranial and a caudal, and so pressure changes, or occlusion of a route in the collateral network, can invert the flow in the anterior spinal artery.11


A recent retrospective study using a risk model to analyze a database of results from 19 European centers with 2,235 patients registered found that 38 (1.7%) patients exhibited symptomatic spinal ischemia, providing evidence that endovascular exclusion of the intercostal arteries combined with interruption of another collateral route of spinal blood supply is a risk factor for this event. The mathematical algorithm employed identified intraoperative hypotension and simultaneous exclusion of at least two spinal supply territories as relevant to the genesis of ischemia, and it was concluded that extensive exclusion of the intercostal arteries alone was not associated with symptomatic spinal ischemia.30 Notwithstanding, retrospective assessment of 457 patients and their intrahospital complications demonstrated that paraplegia and paraparesis had a significant relationship with endovascular exclusion of more than 20 cm of the aorta,32 which corroborates the importance of the segmental arteries to spinal blood supply. Yingbin et al.33 demonstrated the importance of identifying the AKA to selection of long endoprostheses for aortic dissection.

An article on interruption of the AKA during spondylectomy34 suggests that the AKA is not the only important route of spinal blood supply.

The mechanism of spinal ischemia after endovascular repair of thoracic aorta aneurysms has not been entirely elucidated and is apparently related to an intricate mechanism of several different factors, and not exclusively to permanent interruption of supply via the segmental artery.9,35 The collateral network concept described by Griepp et al. proposes the existence of extensive redundant spinal blood supply. However, in acute situations, such as surgical procedures, spinal perfusion is dependent on the gradient of arterial blood pressure and of cerebrospinal fluid.35 Spinal cord ischemia is therefore correlated with perioperative episodes of hypotension and exclusion of the hypogastric artery as part of the collateral network.28


Despite the great variation in terminology found in the literature, studies are in agreement with relation to the anatomy of the spinal circulation and the existence of a large network of collateral circulation. Standardization of the terminology is necessary and the suggestions for use in Portuguese made in this study are based on current anatomic terminology.

The clinical importance of anatomic knowledge of this region lies in planning for endovascular surgery procedures on the aorta, in order to minimize the risk of ischemia, avoiding unnecessary occlusion of the spinal blood supply.

Financial support: None.

The study was carried out at the School of Medicine of Universidade de São Paulo, USP, São Paulo, SP, Brazil.


Forvo. Palavra: adamkiewicz. Pronúncia em polonês. [citado 2012 set 30]. [ Links ]

Zeldes A. Automatic phonetic transcription and syllable analysis. [citado 2012 out 10]. [ Links ]

Milen MT, Bloom DA, Culligan J, Murasko K. Albert Adamkiewicz (1850-1921)--his artery and its significance for the retroperitoneal surgeon. World J Urol. 1999;17(3):168-70. PMid:10418091. [ Links ]

Skalski JH, Zembala M. Albert Wojciech Adamkiewicz: the discoverer of the variable vascularity of the spinal cord. Ann Thorac Surg. 2005;80(5):1971-5. PMid:16242505. [ Links ]

Adamkiewicz A. Die blutgefäße des menschlichen rückenmarkes. I theil. Sitzungsber. Kaiserl. Akad. Wiss., Wien, Math.-Naturwiss. Cl. 1881;84(3):469-502. [ Links ]

Adamkiewicz A. Die blutgefässe des menschlichen rückenmarkes. II theil. Sitzungsber. Kaiserl. Akad. Wiss., Wien, Math.-Naturwiss. Cl. 1882;85(2):101-35. [ Links ]

Melissano G, Civilini E, Bertoglio L, Calliari F, Campos Moraes Amato A, Chiesa R. Angio-CT imaging of the spinal cord vascularisation: a pictorial essay. Eur J Vasc Endovasc Surg. 2010;39(4):436-40. PMid:20034815. [ Links ]

Valenstein PN. Evaluating diagnostic tests with imperfect standards. Am J Clin Pathol. 1990;93(2):252-8. PMid:2405632. [ Links ]

Chiesa R, Melissano G, Bertoglio L, et al. The risk of spinal cord ischemia during thoracic aorta endografting. Acta Chir Belg. 2008;108(5):492-502. PMid:19051455. [ Links ]

Toole JF, Patel AN. Cerebrovascular disorders. United States of America: McGraw-Hill; 1967. [ Links ]

Thron AK, Rossberg C. Vascular anatomy of the spinal cord: neuroradiological investigations and clinical syndromes. Springer; 1988. [ Links ]

Dickman C, Fehlings M, Gokaslan Z. Spinal cord and spinal column tumors: principles and practice. New York: Thieme; 2006. [ Links ]

Boll DT, Bulow H, Blackham KA, Aschoff AJ, Schmitz BL. MDCT angiography of the spinal vasculature and the artery of Adamkiewicz. AJR Am J Roentgenol. 2006;187(4):1054-60. PMid:16985157. [ Links ]

Yoshioka K, Niinuma H, Ehara S, Nakajima T, Nakamura M, Kawazoe K. MR angiography and CT angiography of the artery of Adamkiewicz: state of the art. Radiographics. 2006;26(Supl 1):S63-73. PMid:17050520. [ Links ]

Takase K, Akasaka J, Sawamura Y, et al. Preoperative MDCT evaluation of the artery of Adamkiewicz and its origin. J Comput Assist Tomogr. 2006;30(5):716-22. PMid:16954917. [ Links ]

Yoshioka K, Niinuma H, Ohira A, et al. MR angiography and CT angiography of the artery of Adamkiewicz: noninvasive preoperative assessment of thoracoabdominal aortic aneurysm. Radiographics. 2003;23(5):1215-25. PMid:12975511. [ Links ]

Etz CD, Kari FA, Mueller CS, et al. The collateral network concept: a reassessment of the anatomy of spinal cord perfusion. J Thorac Cardiovasc Surg. 2011;141(4):1020-8. PMid:21419903. [ Links ]

Bowen BC, DePrima S, Pattany PM, Marcillo A, Madsen P, Quencer RM. MR angiography of normal intradural vessels of the thoracolumbar spine. AJNR Am J Neuroradiol. 1996;17(3):483-94. PMid:8881243. [ Links ]

Machado ABM. Neuroanatomia funcional. 2. ed. São Paulo: Atheneu; 2002. [ Links ]

Mauney MC, Blackbourne LH, Langenburg SE. Prevention of spinal cord injury after repair of the thoracic or thoracoabdominal aorta. Ann Thorac Surg. 1995;59:245-52. [ Links ]

Charles YP, Barbe B, Beaujeux R, Boujan F, Steib JP. Relevance of the anatomical location of the Adamkiewicz artery in spine surgery. Surg Radiol Anat. 2011;33(1):3-9. PMid:20589376. [ Links ]

Manjila S, Haroon N, Parker B, Xavier AR, Guthikonda M, Rengachary SS. Albert Wojciech Adamkiewicz (1850-1921): unsung hero behind the eponymic artery. Neurosurg Focus. 2009;26(1):E2. PMid:19119888. [ Links ]

Cech P, Kachlik D, Liskovec T, Musil V. Frekvence eponym s příjmením adamkiewicz a neeponymních alternativ pro pojmenování hlavní tepny hřbetní míchy v článcích vedených v databázi medline na počátku 21. Století. Plzen Lek Sb. 2009; (S82):149-55. [ Links ]

Sociedade Brasileira de Anatomia. Terminologia anatômica internacional. São Paulo: Manole; 2001. [ Links ]

Thron AK. Vascular anatomy of the spine. Oxford: Oxford University Press; 2002. [ Links ]

Thron AK, Rossberg C. Vascular anatomy of the spinal cord: neuroradiological investigations and clinical syndromes. New York: Springer; 1988. [ Links ]

Thron AK. Vascular anatomy of the spinal cord: neuroradiological investigations and clinical syndromes. New York: Springer-Verlag; 1989. [ Links ]

Melissano G, Chiesa R. Advances in imaging of the spinal cord vascular supply and its relationship with paraplegia after aortic interventions. A review. Eur J Vasc Endovasc Surg. 2009;38(5):567-77. PMid:19713133. [ Links ]

Griepp RB, Griepp EB. Spinal cord perfusion and protection during descending thoracic and thoracoabdominal aortic surgery: the collateral network concept. Ann Thorac Surg. 2007, Feb;83(2):S865-9. [ Links ]

Czerny M, Eggebrecht H, Sodeck G, et al. Mechanisms of symptomatic spinal cord ischemia after TEVAR: insights from the European Registry of Endovascular Aortic Repair Complications (EuREC). J Endovasc Ther. 2012;19(1):37-43. PMid:22313200. [ Links ]

Griepp EB, Di Luozzo G, Schray D, Stefanovic A, Geisbüsch S, Griepp RB. The anatomy of the spinal cord collateral circulation. Ann Cardiothorac Surg. 2012;1(3):350-7. PMid:23977520. [ Links ]

Fattori R, Nienaber CA, Rousseau H, et al. Results of endovascular repair of the thoracic aorta with the talent thoracic stent graft: The talent thoracic retrospective registry. J Thorac Cardiovasc Surg. 2006;132(2):332-9. [ Links ]

Yingbin J, Jiefei M, Jian L, et al. Evaluation of the thoracic aortic dissection treated by endografts covering a longer distance of aorta according to the location of the Adamkiewicz artery. Thorac Cardiovasc Surg. 2013;61(7):569-74. PMid:22956338. [ Links ]

34.  Murakami H, Kawahara N, Tomita K, Demura S, Kato S, Yoshioka K. Does interruption of the artery of Adamkiewicz during total en bloc spondylectomy affect neurologic function? Spine. 2010;35(22):E1187-92. [ Links ]

Chiesa R, Melissano G, Marrocco-Trischitta MM, Civilini E, Setacci F. Spinal cord ischemia after elective stent-graft repair of the thoracic aorta. J Vasc Surg. 2005;42(1):11-7. PMid:16012446. [ Links ]

Received: February 05, 2015; Accepted: June 30, 2015

Conflicts of interest: No conflicts of interest declared concerning the publication of this article.

*Correspondence Alexandre Campos Moraes Amato Av. Brasil, 2283 - Jardim América CEP 01431-001 - São Paulo (SP), Brazil E-mail:

Author information ACMA - Professor of Vascular Surgery, Universidade de Santo Amaro (Unisa); School of Medicine, Universidade de São Paulo (USP). NAGS - Emeritus Professor of Cardiovascular Surgery, School of Medicine, Universidade de São Paulo (USP).

Author contributions Conception and design: ACMA, NAGS Analysis and interpretation: ACMA, NAGS Data collection: ACMA, NAGS Writing the article: ACMA, NAGS Critical revision of the article: ACMA, NAGS Final approval of the article*: ACMA, NAGS Statistical analysis: N/A. Overall responsibility: ACMA, NAGS *All authors have read and approved of the final version of the article submitted to J Vasc Bras.

Creative Commons License Este é um artigo publicado em acesso aberto (Open Access) sob a licença Creative Commons Attribution, que permite uso, distribuição e reprodução em qualquer meio, sem restrições desde que o trabalho original seja corretamente citado.