Acessibilidade / Reportar erro

Visão sistêmica sobre publicações relacionadas aos modelos de previsão do ataque por sulfatos em matrizes cimentícias

Systemic view of publications related to prediction models of sulfate attack in cementitious matrices

Resumo

Este trabalho apresenta um levantamento dos modelos de previsão do ataque por sulfatos disponíveis na literatura, com um mapeamento temporal e espacial dessas publicações e análise das principais características de cada modelo. Identificou-se que as pesquisas nesse tema se encontram em crescimento, com maior foco em modelagens numéricas de ataque externo por sulfatos aplicadas ao concreto. Um menor número de trabalhos analisa outras matrizes cimentícias, ataque interno ou modelagens empíricas. Verificou-se que ainda é necessário analisar a aplicação dos modelos disponíveis e desenvolver novos modelos considerando diferentes tipos de sulfato e agregados contaminados, além da presença de adições minerais na matriz cimentícia. Como a maior parte das pesquisas trata de modelos numéricos de ataque externo, uma discussão sobre os principais pontos abordados nesses modelos é apresentada, e uma sugestão para os trabalhos de modelagem futuros é feita, com base em parâmetros que são ou que ainda não são consenso na literatura.

Palavras-chave:
Ataque por sulfatos; Modelagem; Durabilidade; Revisão bibliográfica sistemática

Abstract

This paper presents a survey of the sulfate attack prediction models available in the literature, with a temporal and spatial mapping of these publications and an analysis of the main characteristics of each model. It was found that research on this subject is growing, with a greater focus on numerical modeling of external sulfate attack applied to the concrete. A smaller number of studies analyze other types of cementitious matrices, internal attack, or empirical modeling. It was found that it is still necessary to analyze the application of the available models and the development of new models, which should consider different types of sulfates, contaminated aggregates, and mineral additions in the cementitious matrix. As most of the researches deal with numerical models of external attack, a discussion is presented on the main points addressed in these models. Furthermore, a suggestion for future modeling work is made based on the parameters that are already or not a consensus in the literature.

Keywords:
Sulfate attack; Modeling; Durability; Systematic literature review

Introdução

O ataque por sulfatos é um complexo mecanismo que pode levar à degradação de matrizes cimentícias, como concretos e argamassas. Nesse tipo de ataque, íons sulfatos (SO4 2-) permeiam a matriz e reagem com os componentes formados durante a hidratação do cimento Portland. Essas reações são de caráter expansivo, dando origem a tensões internas na matriz (SKALNY; MARCHAND; ODLER, 2002SKALNY, J.; MARCHAND, J.; ODLER, I. Sulfate attack on concrete. New York: Spon Spress, 2002. ; MONTEIRO; KURTIS, 2003MONTEIRO, P. J. M.; KURTIS, K. E. Time to failure for concrete exposed to severe sulfate attack. Cement and Concrete Research , v. 33, n. 7, p. 987-993, 2003. ; MEHTA; MONTEIRO, 2014MEHTA, P. K.; MONTEIRO, P. J. M. Concreto: microestrutura, propriedades e materiais. 4. ed. São Paulo: Ibraco, 2014. ). Como resposta, o concreto apresenta fissuração, podendo ter redução na resistência mecânica. Em casos mais agressivos, ocorre também a descalcificação do C-S-H, que resulta na perda de coesão da matriz, chegando até o colapso completo da estrutura (RAGOUG et al., 2019RAGOUG, R. et al. Durability of cement pastes exposed to external sulfate attack and leaching: Physical and chemical aspects. Cement and Concrete Research , v. 116, n. May 2018, p. 134-145, 2019. ; MARTINS et al., 2021MARTINS, M. C. et al.External ammonium sulfate attack in concrete: analysis of the current methodology. Construction and Building Materials, v. 277, p. 122252, 2021. ).

Os principais produtos consumidos durante as reações são o hidróxido de cálcio - Ca(OH)2 (portlandita) - e os aluminatos hidratados, além de C3A remanescente do cimento. Como principais compostos formados, tem-se a gipsita e a etringita secundária, esta a principal responsável pela expansão (SANTHANAM; COHEN; OLEK, 2003SANTHANAM, M.; COHEN, M. D.; OLEK, J. Effects of gypsum formation on the performance of cement mortars during external sulfate attack. Cement and Concrete Research , v. 33, n. 3, p. 325-332, 2003. ; NEVILLE, 2004NEVILLE, A. The confused world of sulfate attack on concrete. Cement and Concrete Research , v. 34, n. 8, p. 1275-1296, 2004. ; IKUMI; SEGURA; CAVALARO, 2017IKUMI, T.; SEGURA, I.; CAVALARO, S. H.P. Inlfuence of early sulfate exposure on the pore network development of mortars. Construction and Building Materials, v. 143, p. 33-47, 2017. ). O mecanismo que causa esse processo expansivo ainda é discutido na literatura. A teoria da expansão pelo aumento do volume de sólidos assume que as expansões observadas se devem ao fato de os compostos originados nas reações serem maiores que os que lhe dão origem. O aumento de volume pelos compostos formados é de cerca de 1,2 vez para a gipsita e de 2,5 vezes para a etringita secundária (IRASSAR; DI MAIO; BATIC, 1996IRASSAR, E. F.; DI MAIO, A.; BATIC, O. R. Sulfate attack on concrete with mineral admixtures. Cement and Concrete Research , v. 26, n. 4, p. 551-556, 1996. ; SKALNY; MARCHAND; ODLER, 2002SKALNY, J.; MARCHAND, J.; ODLER, I. Sulfate attack on concrete. New York: Spon Spress, 2002. ). Esse aumento de volume gera expansões e consequentes tensões de tração no interior na matriz cimentícia. A outra teoria se baseia na pressão de cristalização, quando compostos formados por soluções supersaturadas em ambientes confinados, como os poros de matrizes cimentícias, são capazes de gerar grandes pressões (SKALNY; MARCHAND; ODLER, 2002SKALNY, J.; MARCHAND, J.; ODLER, I. Sulfate attack on concrete. New York: Spon Spress, 2002. ; BARY et al., 2014BARY, B. et al. Coupled chemo-transport-mechanical modelling and numerical simulation of external sulfate attack in mortar. Cement and Concrete Composites, v. 49, p. 70-83, 2014. ).

Esse tipo de degradação pode apresentar diferentes formas, dependendo da origem dos íons. O ataque pode ser ocasionado por sulfatos de origem externa à matriz (external sulfate attack), quando os íons têm origem no ambiente onde a estrutura está inserida. Pode ainda ter origem interna (internal sulfate attack), quando da presença de contaminantes nos materiais que compõem a matriz cimentícia (BROWN, 2002BROWN, P.W. Thaumasite formation and other forms of sulfate attack. Cement and Concrete Composites , v. 89, n. 1, p. 1-7, 2002. ; BLANCO et al., 2019BLANCO, A. et al. Lessons learned about the diagnosis of pathologies in concrete dams: 30 years of research and practice. Construction and Building Materials, v. 197, p. 356-368, 2019. ; CAPRARO; MACIOSKI; DE MEDEIROS, 2021CAPRARO, A. P. B.; MACIOSKI, G.; MEDEIROS, M. H. F. de. Effect of aggregate contamination with pyrite on reinforcement corrosion in concrete. Engineering Failure Analysis, v. 120, p. 105116, 2021. ).

O ataque por sulfatos é de difícil identificação nos estágios iniciais, e praticamente não existem formas de reabilitação. Assim, destaca-se a importância de estudos que buscam entender e elaborar modelos de previsão que expressem quantitativamente esse fenômeno (YU; ZHANG, 2018YU, Y.; ZHANG, Y. X. Numerical modelling of mechanical deterioration of cement mortar under external sulfate attack. Construction and Building Materials, v. 158, p. 490-502, 2018. ; YI; CHEN; BINDIGANAVILE, 2019YI, C.; CHEN, Z.; BINDIGANAVILE, V. A non-homogeneous model to predict the service life of concrete subjected to external sulphate attack. Construction and Building Materials, v. 212, p. 254-265, 2019. ). Dessa forma, é possível otimizar a avaliação do ataque obtendo dados confiáveis.

Nesse sentido, podem-se encontrar dois tipos de modelagens: os modelos empíricos e os modelos numéricos. Os empíricos se baseiam em observações, medições e dados experimentais, e podem ser relacionados a modelos mecanicistas, baseados em abordagens muito simplificadas dos mecanismos de ataque associados às relações empíricas. Já os modelos numéricos são baseados em cálculos iterativos avançados, com uso de algoritmos complexos. Os primeiros têm como crítica a aplicabilidade, pois muitas vezes são válidos apenas para compósitos nas mesmas condições de ensaio (IKUMI; SEGURA, 2019IKUMI, T.; SEGURA, I. Numerical assessment of external sulfate attack in concrete structures: a review. Cement and Concrete Research , v. 121, p. 91-105, may 2019. ). Os segundos, muitas vezes, apresentam simplificação em alguma das etapas do ataque: no transporte iônico, nas reações químicas, nas forças expansivas e/ou nos danos gerados pelo processo (SAMSON; MARCHAND, 2007SAMSON, E.; MARCHAND, J. Modeling the transport of ions in unsaturated cement-based materials. Computers and Structures, v. 85, n. 23-24, p. 1740-1756, 2007. ; LOTHENBACH et al., 2010LOTHENBACH, B. et al. Sulfate ingress in Portland cement. Cement and Concrete Research , v. 40, n. 8, p. 1211-1225, 2010. ). Alguns podem ainda se basear em apenas uma dessas fases, como modelos de transporte puro ou de reações químicas.

Modelos baseados em relações empíricas começaram a ser desenvolvidos para o ataque por sulfatos nas décadas de 1980 e 1990. A partir dos anos 2000, observa-se também aumento no foco em modelagens numéricas (IKUMI; SEGURA, 2019IKUMI, T.; SEGURA, I. Numerical assessment of external sulfate attack in concrete structures: a review. Cement and Concrete Research , v. 121, p. 91-105, may 2019. ). Apesar dos grandes avanços, os dados encontrados na literatura ainda divergem, o que está relacionado à complexidade do fenômeno, considerado complexo justamente por envolver o transporte de íons sulfatos pela matriz cimentícia, sua reação com as fases do cimento hidratado e as tensões de tração originadas pelos produtos formados (FERRARIS; STUTZMAN; SNYDER, 2006FERRARIS, C. F.; STUTZMAN, P. E.; SNYDER, K. A. Sulfate resistance of concrete: a new approach, Portland Cement Association, 2006. PCA R&D Serial No. 2486.). Assim, os modelos diferem, muitas vezes, nas simplificações realizadas e/ou nas hipóteses adotadas.

Ikumi e Segura (2019)IKUMI, T.; SEGURA, I. Numerical assessment of external sulfate attack in concrete structures: a review. Cement and Concrete Research , v. 121, p. 91-105, may 2019. apresentaram uma revisão das modelagens numéricas para ataque por sulfato, considerando os modelos numéricos disponíveis para concreto e o ataque com fonte externa de íons. O presente artigo tem como objetivo também fazer um levantamento da literatura sobre modelos de previsão do ataque por sulfatos, porém não restritos apenas a modelagens numéricas, ataque externo e concreto. Dessa forma, foram analisados modelos numéricos e empíricos, para ataque interno e externo, em diferentes matrizes cimentícias (concretos, argamassas e pasta de cimento).

Foram analisadas as características de cada modelo, de forma a identificar e discutir o que há de comum entre os diferentes modelos e o que ainda não é consenso na literatura, identificando quais os pontos das modelagens que ainda devem ser estudados e desenvolvidos. Além disso, analisou-se o mapeamento temporal e espacial das publicações dessa área de pesquisa. Dessa forma, foi possível identificar se o tema se encontra em ascensão na literatura e onde as pesquisas foram realizadas, bem como o impacto de cada trabalho com base em indicadores bibliométricos.

Metodologia

A revisão dos modelos disponíveis na literatura foi realizada em duas bases de dados: ScienceDirect e Scopus. A pesquisa foi limitada a artigos de periódicos que contenham no título os termos “Model”, “Modelling” ou “Modeling” e “Sulfate attack”, sem restrição da data de publicação. Artigos de revisão da literatura não foram incluídos.

Com base nas publicações disponíveis, foram realizadas três análises: a primeira quanto à quantidade de publicações ao longo dos anos e os países onde foram realizadas as pesquisas, de forma a obter um mapeamento temporal e espacial das publicações; a segunda quanto às características analisadas em cada modelo: tipo de ataque de sulfatos, tipo de material cimentício e tipo de modelagem; e a terceira quanto ao impacto da publicação. Para isso, tomaram-se como indicadores bibliométricos o fator de impacto do periódico onde a pesquisa foi publicada, fornecido no Journal Citation Reportspara o ano de 2020, e o número de citações do artigo, fornecido pelo Plum X Metrics. Identificadas as temáticas e quais as publicações de maior impacto, discutiram-se os pontos abordados nas principais modelagens.

Resultados e discussões

Mapeamento das pesquisas

Com base nos critérios estabelecidos para a pesquisa, foram encontradas 31 publicações na base de dados da ScienceDirect e 58 na base da Scopus, resultando num total de 89 trabalhos. Desses 89 trabalhos, 29 eram comuns em ambas as bases de dados. Ainda, 6 dos artigos foram removidos dos dados apresentados neste trabalho, pois tratavam de modelagem de ataques combinados de sulfatos e cloretos (WANG et al., 2021aWANG, P. et al. A chemo-damage-transport model for chloride ions diffusion n cement-based materials: combined effects of sulfate attack and temperature. Construction and Building Materials, v. 288, p. 123121, 2021a. , 2021bWANG, P. et al. A chemo-thermo-damage-transport model for concrete subjected to combined chloride-sulfate attack considering the effect of calcium leaching. Construction and Building Materials, v. 306, p. 124918, 2021b. , 2022WANG, P. et al. Chemo-Damage-Transport Model of Combined Chloride-sulfate Attack in Concrete. Kuei Suan Jen Hsueh Pao, v. 50, n. 2, p. 512-521, 2022. ), ataque ácido (FATIMA; MUNTEAN, 2014FATIMA, T.; MUNTEAN, A. Sulfate attack in sewer pipes: derivation of a concrete corrosion model via two-scale convergence. Nonlinear Analysis: Real World Applications, v. 15, n, 1, p. 326-344, 2014. ; ZHANG et al., 2022ZHANG, Z.et al. Capillary rise height of sulfate in Portland-limestone cement concrete under physical attack: Experimental and modelling investigation. Cement and Concrete Composites , v. 125, p. 104299, 2022. ) ou ataque físico, que fogem do escopo desta pesquisa. Os trabalhos de Kurtis, Monteiro e Madanat (2000)KURTIS, K. E.; MONTEIRO, P. J. M.; MADANAT, S. M. Empirical models to predict concrete expansion caused by sulfate attack. ACI Structural Journal, v. 97, n. 2, p. 156-161, 2000. , Gao et al. (2006)GAO, P. et al. Mechanism and model of sulfate attack on RCC with expansive agent. Shuili Fadian Xuebao/Journal of Hydroelectric Engineering, v. 25, n. 1, 2006., Pan, Si e Zhao (2018)PAN, H.; SI, X.; ZHAO, Q. Damage evolution model of early disturbed concrete under sulfate attack and its experimental verification. Dyna, v. 93, n. 1, p. 52-59, 2018. , Pan, Wang e Zhao (2018)PAN, H.; WANG, S.; ZHAO, Q. Loading damage model of early disturbed concrete under sulfate attack. Zhongguo Tiedao Kexue/China Railway Science, v. 39, n. 1, p. 23-30, 2018. , Li et al. (2019)LI, Y. et al.A stratified-theoretical calculation model of concrete under external sulfate attack. Romanian Journal of Materials , v. 49, n. 1, p. 73-79, 2019. e Xie et al. (2019)XIE, C. et al. Prediction model of flexural strength of cement mortar under sulfate attack at low temperature. Fuhe Cailiao Xuebao, v. 36, n. 6, p. 1520-1527, 2019. , apesar de aparecerem como resposta na pesquisa dentro da Scopus, não estão disponíveis para leitura e, assim, não puderam ser avaliados.

A Figura 1 apresenta a distribuição das publicações sobre o tema ao longo dos anos. O primeiro artigo encontrado com os filtros realizados data de 1989. É possível notar um gap - período sem publicações - entre os anos de 1989 e 1997 (o maior gap, de 8 anos), entre 1997 e 2002, entre 2003 e 2009, entre 2009 e 2011 e entre 2011 e 2013. A partir de 2013, nota-se o aumento no número de artigos nessa temática, que passam a ter pesquisas publicadas todos os anos até 2022. Há uma publicação de 2013 e chegam-se a seis publicações em 2021, o que evidencia um crescimento nas pesquisas na área. Em 2022, ainda se encontram apenas duas publicações, porém se destaca que o levantamento de dados do presente artigo foi realizado em março desse ano. Assim, o número de trabalhos publicados em 2022 tende a ser maior.

A quantidade total de publicações por ano indicadas na Figura 1 elimina os artigos em duplicata. Da mesma forma, para as análises realizadas a seguir, eliminaram-se os artigos comuns entre ambas as plataformas, sendo analisados uma única vez, tendo-se então 49 artigos remanescentes. Elaborou-se, assim, a distribuição das publicações nos países onde as pesquisas foram realizadas. A distribuição espacial está apresentada na Figura 2. O total de publicações neste caso é maior que 49, porque algumas pesquisas e publicações foram realizadas por meio de parcerias entre pesquisadores de diferentes países.

É possível verificar que a maior parte das pesquisas foi realizada na China, com 25 publicações, seguida dos Estados Unidos, com 7 publicações, e da França, com 6 publicações. Na Arábia Saudita, Argélia, Canadá, Polônia e Reino Unido consta apenas 1 publicação cada. Considerando a distribuição por continente, têm-se 29 publicações na Ásia, 14 na Europa, 10 na América, 3 na Oceania e 1 na África, com clara evidência de que os Continentes Asiático e Europeu têm maior quantidade de publicações nessa temática.

Figura 1
Número de publicações sobre modelos de ataque por sulfatos nas bases de dados da ScienceDirect e Scopus

Figura 2
Número de publicações sobre modelos de ataque por sulfatos por país

Características dos modelos

Além do mapeamento temporal e espacial, realizou-se análise de quais eram as informações adotadas para os modelos encontrados na literatura: se se trata de ataque externo por sulfatos (ESA) ou ataque interno por sulfatos (ISA), se são aplicados para argamassa, pasta ou concreto, e se se trata de modelagens numéricas ou empíricas. Os dados obtidos constam nos Quadros 1 e 2, com as referências.

Analisou-se então cada uma das informações separadamente, primeiro no que diz respeito ao tipo de ataque por sulfatos. A Figura 3 apresenta o número de modelos disponíveis para cada tipo, onde 91,8% tratam de ESA e 8,2% de ISA, evidenciando que há mais informações disponíveis na literatura quando as fontes de íons sulfatos são externas.

A Figura 4 apresenta o número de publicações de acordo com o tipo de matriz cimentícia. Os dados indicam que em 59,2% dos artigos são dirigidos para concreto, em 26,5% para argamassa, em 12,3% para pasta e 2,0% (1 artigo) para pavimento estabilizado com cimento Portland. Desse modo, fica evidente que a maior quantidade das pesquisas sobre modelagem do ataque por sulfato tem o foco em concreto.

Entre esses trabalhos, na pesquisa de Zhou et al. (2015a)ZHOU, Y. et al. Bond behavior of FRP-to-concrete interface under sulfate attack: an experimental study and modeling of bond degradation. Construction and Building Materials, v. 85, p. 9-21, 2015a. , o modelo é desenvolvido para análise da interface de ligação entre concreto e reforço realizado com polímero com fibras. Zheng, Bai e Li (2020)ZHENG, Y.; BAI, T.; LI, X. Bending mechanical model of longitudinal joint in metro shield tunnel after sulfate attack. Tongji Daxue Xuebao, v. 48, n. 6, p. 821-830, 2020. estudam o modelo para avaliar a degradação por sulfatos em juntas longitudinais de concreto em túnel de metro, e o trabalho de Song et al. (2021)SONG, H. et al. A chemical-mechanics model for the mechanics deterioration of pervious concrete subjected to sulfate attack. Construction and Building Materials, v. 312, p. 125383, 2021. avalia a aplicação de um modelo químico-mecânico para dados de concreto permeável. Destacam-se as pesquisas de Lee et al. (2015)LEE, K.-M. et al. Mass change prediction model of concrete subjected to sulfate attack. Mathematical Problems in Engineering , v. 2015, p.1-10, 2015. , Sahoo e Mahapatra (2018)SAHOO, S.; MAHAPATRA, T. R. ANN Modeling to study strength loss of fly ash concrete against long term sulphate attack. Materials Today:Proceedings, v. 5, p. 24595-24604, 2018. e Wang et al. (2020) WANG, Z. et al. Monitoring and modeling the damage evolution in engineered cementitious composites subjected to sulfate attack through continuous ultrasonic measurements. Construction and Building Materials, v. 262, p. 120799, 2020. , que adotaram adições como sílica ativa, cinza volante e escória de alto forno na composição das matrizes cimentícias. O desenvolvimento de modelos para ataque externo por sulfatos que considerem a presença de adições, especialmente as reativas, é fundamental, já que são uma das principais formas de mitigar esse tipo ataque.

Quadro 1
Dados analisados nas publicações sobre modelos de ataque por sulfatos - 1989 a 2017

Quadro 2
Dados analisados nas publicações sobre modelos de ataque por sulfatos - 2018 a 2022

Figura 3
Número de publicações sobre o desenvolvimento de modelos de previsão de comportamento para cada tipo de ataque por sulfatos

Figura 4
Número de publicações sobre o desenvolvimento de modelos de previsão de comportamento do ataque por sulfato para cada tipo de matriz cimentícia

Na Figura 5 consta o número de publicações para cada tipo de modelo, onde 82,9% estão relacionados à modelagem numérica e 17,1% à modelagem empírica. A maior quantidade de modelos numéricos pode estar associada à crítica feita aos modelos empíricos, relacionada à necessidade de manter as mesmas condições de ensaio para poderem ser aplicados (IKUMI; SEGURA, 2019IKUMI, T.; SEGURA, I. Numerical assessment of external sulfate attack in concrete structures: a review. Cement and Concrete Research , v. 121, p. 91-105, may 2019. ).

Melara et al. (2022)MELARA, E. K et al. Contribution to the service-life modeling of concrete exposed to sulfate attack by the inclusion of electrical resistivity data. Construction and Building Materials, v. 322, p. 126490, jan. 2022. afirmam que os modelos numéricos baseados puramente em fatores relacionados ao ataque de sulfato e equações diferenciais complexas, chamados neste caso de modelos integrados, são os mais completos atualmente. Porém, a complexidade pelos procedimentos iterativos computacionais dificulta seu uso, o que reforça a necessidade de metodologias simplificadas. Os modelos puramente empíricos ou empírico-mecanicistas têm críticas em relação a sua aplicabilidade (IKUMI; SEGURA, 2019IKUMI, T.; SEGURA, I. Numerical assessment of external sulfate attack in concrete structures: a review. Cement and Concrete Research , v. 121, p. 91-105, may 2019. ). Nesse sentido, destaca-se que alguns modelos numéricos disponíveis na literatura são associados a ajustes experimentais, como pode ser visto em Chen, Qian e Song (2016)SONG, H.; CHEN, J.; JIANG, J. An internal expansive stress model of concrete under sulfate attack. Acta Mechanica Solida Sinica, v. 29, n. 6, p. 610-619, 2016. , Yin et al. (2017)YIN, G.et al. Modeling of time-varying stress in concrete under axial loading and sulfate attack. Computers and Concrete, v. 19, n. 2, p. 143-152, 2017. , Min et al. (2019)MIN, H. et al. An effective transport model of sulfate attack in concrete. Construction and Building Materials, v. 216, p. 365-378, 2019. , Yao, Yang e Chen (2020)YAO, J.; YANG, Y.; CHEN, J. A novel chemo-mechanical model for fracture toughness of mortar under sulfate attack. Theoretical and Applied Fracture Mechanics, v. 109, p. 102762, 2020. e Melara et al.(2022)MELARA, E. K et al. Contribution to the service-life modeling of concrete exposed to sulfate attack by the inclusion of electrical resistivity data. Construction and Building Materials, v. 322, p. 126490, jan. 2022. . Yu e Zhang (2018)ZHANG, H.; SHE, W. A modulus variation model of concrete under external sulfate attack: new perspective from statistical evolution of microcracks. Journal Wuhan University of Technology, Materials Science Edition, v. 33, n. 6, p. 1465-1471, 2018. , por exemplo, analisaram quais são os fatores determinantes da resistência à flexão no ESA com base nos resultados obtidos na aplicação de seu modelo numérico. Com base nesses fatores, os autores desenvolveram um modelo empírico de estimativa para avaliar a deterioração mecânica de argamassas nesse tipo de ataque. Destaca-se assim a possibilidade de associar os dois tipos de modelagens, a fim de explorar os benefícios de cada uma.

Os modelos numéricos elaborados nas pesquisas muitas vezes realizam a aplicação do modelo proposto a dados experimentais para verificar sua aplicabilidade e avaliar o erro obtido nas estimativas. Os modelos numéricos de ISA que verificaram sua aplicação a dados experimentais o fazem com base na pirrotita, agregado de sulfeto de ferro que libera íons ferro e sulfato na matriz cimentícia (OLIVEIRA; CAVALARO; AGUADO, 2013OLIVEIRA, I.; CAVALARO, S. H. P.; AGUADO, A. New kinetic model to quantify the internal sulfate attack in concrete. Cement and Concrete Research , v. 43, n. 1, p. 95-104, 2013. ; CAMPOS; LÓPEZ; AGUADO, 2016CAMPOS, A.; LÓPEZ, C. M.; AGUADO, A. Diffusion-reaction model for the internal sulfate attack in concrete. Construction and Building Materials , v. 102, p. 531-540, 2016. ). A menor quantidade de modelos disponíveis para esse ataque (visto na Figura 2) pode justamente estar relacionada à dificuldade de mensurar a quantidade de sulfetos ou sulfato disponível no agregado reativo para alimentar o modelo, diferentemente do ataque externo, em que é possível adotar uma concentração conhecida de sulfatos na solução.

Por outro lado, em todos casos do levantamento bibliográfico, nos modelos numéricos de ESA a validação é feita com dados de ataque por sulfato de sódio (TIXIER; MOBASHER, 2003bTIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack - II: comparison with experiments. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003b. ; CHEN et al., 2013aCHEN, D. et al. An elastoplastic damage constitutive model for cementitious materials under wet-dry cyclic sulfate attack. Mathematical Problems in Engineering, v. 2013, p. 1-7, 2013a. , 2013bCHEN, D. et al. Mechanical property and constitutive model of cementitious materials subjected to sulfate attack. Jianzhu Cailiao Xuebao/Journal of Building Materials, v. 16, n. 6, p. 936-941, 2013b. ; BARY et al., 2014BARY, B. et al. Coupled chemo-transport-mechanical modelling and numerical simulation of external sulfate attack in mortar. Cement and Concrete Composites, v. 49, p. 70-83, 2014. ; IKUMI et al., 2014IKUMI, T. et al. Alternative methodology to consider damage and expansions in external sulfate attack modeling. Cement and Concrete Research , v. 63, p. 105-116, 2014. ; YU; ZHANG; KHENNANE, 2015YU, Y.; ZHANG, Y. X.; KHENNANE, A. Numerical modelling of degradation of cement-based materials under leaching and external sulfate attack. Computers and Structures , v. 158, p. 1-14, 2015. ; CHEN; QIAN; SONG, 2016SONG, H.; CHEN, J.; JIANG, J. An internal expansive stress model of concrete under sulfate attack. Acta Mechanica Solida Sinica, v. 29, n. 6, p. 610-619, 2016. ; FENG et al., 2017FENG, P. et al. A multiscale microstructure model of cement paste sulfate attack by crystallization pressure. Modelling and simulation in materials science and engineering, v. 25, n. 6, 2017.; SOIVE; TRAN, 2017SOIVE, A.; TRAN, V. Q. External sulfate attack of cementitious materials: new insights gained through numerical modeling including dissolution/precipitation kinetics and surface complexation. Cement and Concrete Composites , v. 83, p. 263-272, 2017. ; FENG et al., 2018FENG, P. et al. A model investigation of the mechanisms of external sulfate attack on portland cement binders. Construction and Building Materials, v. 175, p. 629-642, 2018. ; YU; ZHANG, 2018ZHANG, H.; SHE, W. A modulus variation model of concrete under external sulfate attack: new perspective from statistical evolution of microcracks. Journal Wuhan University of Technology, Materials Science Edition, v. 33, n. 6, p. 1465-1471, 2018. ; ZHANG; SHE, 2018ZHANG, H.; SHE, W. A modulus variation model of concrete under external sulfate attack: new perspective from statistical evolution of microcracks. Journal Wuhan University of Technology, Materials Science Edition, v. 33, n. 6, p. 1465-1471, 2018. ; CHEN et al., 2021CHEN, X. et al.A chemical-transport-mechanics numerical model for concrete under sulfate attack. Materials, v. 14, n. 24, 2021.; FU et al., 2021FU, Q. et al. Resistance to sulfate attack and chemo-damage-transport model of sulfate ions for tunnel lining concrete under the action of loading and flowing groundwater. ACS Sustainable Chemistry and Engineering, v. 9, n. 42, p. 14307-14326, 2021. ; HAN; LI; CHEN, 2021HAN, T.; LI, Z.; CHEN, Y. Sulfate attack induced dry-wet failure modes and a constitutive model for mortar specimens with a single intermittent fracture. International Journal of Geomechanics, v. 21, n. 2, 2021.; HOU et al., 2021HOU, H. et al.A chemo-mechanical coupling model for concrete lining subjected to external sulfate attack. European Journal of Environmental and Civil Engineering, v. 25, n. 14, p. 2674-2691, 2021. ; SONG et al., 2021SONG, H. et al. A chemical-mechanics model for the mechanics deterioration of pervious concrete subjected to sulfate attack. Construction and Building Materials, v. 312, p. 125383, 2021. ; ZHOU; JU, 2021ZHOU, S.; JU, J. W. A chemo-micromechanical damage model of concrete under sulfate attack. International Journal of Damage Mechanics , v. 30, n. 8, p. 1213-1237, 2021. ; GU et al., 2022GU, Y.et al. Modeling the sulfate attack induced expansion of cementitious materials based on interface-controlled crystal growth mechanisms. Cement and Concrete Research , v. 152, p. 106676, 2022. ; MELARA et al., 2022MELARA, E. K et al. Contribution to the service-life modeling of concrete exposed to sulfate attack by the inclusion of electrical resistivity data. Construction and Building Materials, v. 322, p. 126490, jan. 2022. ). As modelagens empíricas de ESA também foram obtidas com dados baseados em ataque por sulfato de sódio (ZHOU et al., 2015aZHOU, Y. et al. Bond behavior of FRP-to-concrete interface under sulfate attack: an experimental study and modeling of bond degradation. Construction and Building Materials, v. 85, p. 9-21, 2015a. ; SAHOO; MAHAPATRA, 2018SAHOO, S.; MAHAPATRA, T. R. ANN Modeling to study strength loss of fly ash concrete against long term sulphate attack. Materials Today:Proceedings, v. 5, p. 24595-24604, 2018. ; MIN et al., 2019MIN, H. et al. An effective transport model of sulfate attack in concrete. Construction and Building Materials, v. 216, p. 365-378, 2019. ; LIAO et al., 2020LIAO, Kai Xing et al.Modeling constitutive relationship of sulfate-attacked concrete. Construction and Building Materials, v. 260, p. 119902, 2020. ; YAO; YANG; CHEN, 2020YAO, J.; YANG, Y.; CHEN, J. A novel chemo-mechanical model for fracture toughness of mortar under sulfate attack. Theoretical and Applied Fracture Mechanics, v. 109, p. 102762, 2020. ), e em alguns trabalhos o modelo é desenvolvido com base em dados tanto de sulfato de sódio como de magnésio, como é o caso de Ouyang (1989)OUYANG, C. Damage model for sulfate attack of cement mortars. Cement, Concrete and Aggregates, v. 11, n. 2, p. 92-99, 1989. , Santhanam, Cohen e Olek (2002)SANTHANAM, M.; COHEN, M. D.; OLEK, J. Modeling the effects of solution temperature and concentration during sulfate attack on cement mortars. Cement and Concrete Research , v. 32, n. 4, p. 585-592, 2002. e Lee et al. (2015)LEE, K.-M. et al. Mass change prediction model of concrete subjected to sulfate attack. Mathematical Problems in Engineering , v. 2015, p.1-10, 2015. .

Destaca-se a importância em analisar a aplicação dos modelos numéricos disponíveis e em desenvolver modelos empíricos para ataques por outros tipos de sulfato, como o de magnésio e de amônio, que são ainda mais agressivos que o sulfato de sódio (SOUZA; MEDEIROS; HOPPE FILHO, 2018SOUZA, D. J. de; MEDEIROS, M. H. F.; HOPPE FILHO, J. Evaluation of the SR Portland cement against sodium and magnesium sulfate attack: a physical and comparative analysis of mortars. Revista IBRACON de Estruturas e Materiais , v. 11, n. 5, p. 1053-1075, 2018., 2020SOUZA, D. J. de; MEDEIROS, M. H. F.; HOPPE FILHO, J. Evaluation of external sulfate attack (Na2SO4 and MgSO4): Portland cement mortars containing siliceous supplementary cementitious materials. Revista IBRACON de Estruturas e Materiais, v. 13, n. 4, p. 1-16, 2020. ; BREKAILO, 2020BREKAILO, F. Aplicação dos ensaios de migração e de difusão natural para cálculo do coeficiente de difusão de íons sulfatos no estado estacionário e não estacionário no concreto. 149 f. 2020. Dissertação (Mestrado em Engenharia e Ciência dos Materiais) - Universidade Estadual de Ponta Grossa, 2020. ; MARTINS et al., 2021MARTINS, M. C. et al.External ammonium sulfate attack in concrete: analysis of the current methodology. Construction and Building Materials, v. 277, p. 122252, 2021. ). Nesses casos, a cinética da difusão e das reações é alterada, o que pode impactar na aplicabilidade dos modelos.

Figura 5
Número de publicações sobre o desenvolvimento de modelos de previsão de comportamento, divisão por tipo de modelo

Para os modelos de Tixier e Mobasher (2003b)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack - II: comparison with experiments. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003b. , Oliveira, Cavalaro e Aguado (2013)OLIVEIRA, I.; CAVALARO, S. H. P.; AGUADO, A. New kinetic model to quantify the internal sulfate attack in concrete. Cement and Concrete Research , v. 43, n. 1, p. 95-104, 2013. , Ikumi et al. (2014)IKUMI, T. et al. Alternative methodology to consider damage and expansions in external sulfate attack modeling. Cement and Concrete Research , v. 63, p. 105-116, 2014. e Wang et al. (2020)WANG, Z. et al. Monitoring and modeling the damage evolution in engineered cementitious composites subjected to sulfate attack through continuous ultrasonic measurements. Construction and Building Materials, v. 262, p. 120799, 2020. é possível estimar a expansão resultante da matriz com boa relação aos dados experimentais. Em trabalhos mais recentes (YU; ZHANG; KHENNANE, 2015YU, Y.; ZHANG, Y. X.; KHENNANE, A. Numerical modelling of degradation of cement-based materials under leaching and external sulfate attack. Computers and Structures , v. 158, p. 1-14, 2015. ; SOIVE; TRAN, 2017SOIVE, A.; TRAN, V. Q. External sulfate attack of cementitious materials: new insights gained through numerical modeling including dissolution/precipitation kinetics and surface complexation. Cement and Concrete Composites , v. 83, p. 263-272, 2017. ; WANG et al., 2020WANG, Z. et al. Monitoring and modeling the damage evolution in engineered cementitious composites subjected to sulfate attack through continuous ultrasonic measurements. Construction and Building Materials, v. 262, p. 120799, 2020. ) é possível estimar a concentração de sulfato e/ou de cálcio ao longo da profundidade da amostra. Destaca-se a importância deste último, já que a lixiviação de cálcio tem forte efeito na deterioração e, portanto, deve ser incluída ao modelar o ataque externo por sulfato (QIN et al., 2020QIN, S. et al.A chemo-transport-damage model for concrete under external sulfate attack. Cement and Concrete Research , v. 132, p. 106048, 2020. ).

Impacto dos modelos

Para analisar o impacto de cada modelo desenvolvido, fez-se o levantamento do número de citações de cada publicação, além do fator de impacto do periódico onde foi publicado. Os dados obtidos constam nos Quadros 3 e 4.

Pode-se observar que os trabalhos de Tixier e Mobasher (2003aTIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. , 2003bTIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack - II: comparison with experiments. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003b. ) e de Idiart, López e Carol (2011)IDIART, A. E.; LÓPEZ, C. M.; CAROL, I. Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: a meso-scale model. Cement and Concrete Composites , v. 33, n. 3, p. 411-423, 2011. são os que apresentam maior número de citações, evidenciando o nível de interesse de outros pesquisadores nesses trabalhos, que têm grande impacto no tema de modelagens de ataque por sulfato. O modelo apresentado por Idiart, López e Carol (2011)IDIART, A. E.; LÓPEZ, C. M.; CAROL, I. Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: a meso-scale model. Cement and Concrete Composites , v. 33, n. 3, p. 411-423, 2011. estima as expansões resultantes com base em uma expressão simplificada descrita por Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. , que é uma das mais antigas publicações de modelagens numéricas de ataque externo por sulfato. Destaca-se que os três trabalhos com maior número de citações tratam de modelagens numéricas de ataque externo por sulfatos em concreto, que representam a temática da maioria das publicações, como visto nas Figuras 3 a 5.

O alto número de citações dessas publicações está relacionado também ao ano de publicação: as publicações mais antigas foram citadas pelos trabalhos que foram publicados na sequência. O trabalho de Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. , por exemplo, apresentou 170 citações ao longo de 19 anos. Pode-se notar que publicações mais recentes apresentam, de forma geral, menos citações. Portanto, o número de citações por si só não representa que o modelo apresentado no trabalho mais citado seja o mais próximo a uma situação real de ataque por sulfatos. De qualquer forma, essa análise mostra que os modelos pioneiros são utilizados como base para os demais. De forma geral, as modelagens mais recentes vêm para preencher lacunas das primeiras publicações.

Na Figura 6 é apresentada a quantidade de publicações por periódico para aqueles com mais de 1 publicação. Cement and Concrete Research, Cement and Concrete Composites e Construction and Building Materials são os periódicos com maior número de publicações, representando aproximadamente 59% do total nessa temática. A maior parte dos trabalhos (33,3% do total) foi publicada na Construction and Building Materials.

Os três periódicos destacados apresentam alto fator de impacto. O fato de a maior parte das publicações encontrar-se em revista de alto FI é positivo, pois indica a importância das publicações nessa temática. Porém, novamente, esta análise não deve ser realizada de forma isolada. O trabalho de Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. , que é base de muitas outras pesquisas, encontra-se em um periódico com FI de 3.266. A análise do impacto do trabalho deve ser baseada em uma associação de medidas bibliométricas (ANTUNES, 2015ANTUNES, A. A. Como avaliar produção científica. Revista do Colégio Brasileiro de Cirurgiões, v. 42, supl. 1, p. 17-19, 2015. ).

Discussão dos principais modelos

Tendo em vista a maior quantidade de publicações a respeito das modelagens numéricas de ataque externo por sulfatos, a revisão e a discussão apresentadas a seguir tratam dos modelos para esse tipo de ataque.

A linha do tempo se inicia com o modelo matemático-químico-mecânico apresentado por Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. , um dos trabalhos de maior impacto dentro das modelagens numéricas de ataque por sulfatos, que serve de base para boa parte dos modelos desenvolvidos na sequência. O modelo desenvolvido por Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. leva em conta os quatro principais processos envolvidos no ataque externo: o transporte da solução na rede de poros; as reações químicas entre os íons sulfatos e a matriz cimentícia; as forças expansivas originadas devido às reações; e a resposta mecânica da matriz. Para o transporte, os autores consideram apenas a difusão, descrita pela Segunda Lei de Fick. O produto expansivo considerado no estudo é a etringita, com a proposta de que as diferentes equações de formação desse composto sejam simplificadas em uma única, baseada no teor equivalente de cálcio-aluminatos disponíveis. As forças expansivas consideram a teoria do aumento de volume de sólidos. Apesar de a teoria da cristalização ter apoio de trabalhos recentes, sua aplicação em modelos ainda é limitada pela complexidade das análises (IKUMI et al., 2014IKUMI, T. et al. Alternative methodology to consider damage and expansions in external sulfate attack modeling. Cement and Concrete Research , v. 63, p. 105-116, 2014. ). Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. incorporam ainda o efeito do dano gerado na difusividade, já que as fissuras originadas no ataque alteram o coeficiente de difusão e reduzem as propriedades elásticas da matriz. Na segunda parte do trabalho (TIXIER; MOBASHER, 2003bTIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack - II: comparison with experiments. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003b. ), os autores validam o modelo desenvolvido para respostas de tempo de expansão com base em dados da literatura.

Quadro 3
Dados relativos ao impacto das publicações sobre modelos de ataque por sulfatos - 1989 a 2017

Quadro 4
Dados relativos ao impacto das publicações sobre modelos de ataque por sulfatos - 2018 a 2022

Figura 6
Número de publicações sobre modelos de ataque por sulfatos por periódico

A Figura 7 apresenta os modelos numéricos que tratam de ESA baseados no trabalho de Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. dentro da linha do tempo. Destaca-se também que há alguns trabalhos não diretamente ligados pelas hipóteses, mas que estão relacionados, como Soive e Tran (2017)SOIVE, A.; TRAN, V. Q. External sulfate attack of cementitious materials: new insights gained through numerical modeling including dissolution/precipitation kinetics and surface complexation. Cement and Concrete Composites , v. 83, p. 263-272, 2017. , que adotam dados das argamassas apresentadas por Soive, Roziere e Loukili (2016)SOIVE, A.; ROZIERE, E.; LOUKILI, A. Parametrical study of the cementitious materials degradation under external sulfate attack through numerical modeling. Construction and Building Materials, v. 112, p. 267-275, 2016. , e também Yin et al. (2020)YIN, G. et al.An integrated macro-microscopic model for concrete deterioration under external sulfate attack. Engineering Fracture Mechanics, v. 240, p. 107345, 2020. , que adotam parâmetros baseados em Bary et al. (2014)BARY, B. et al. Coupled chemo-transport-mechanical modelling and numerical simulation of external sulfate attack in mortar. Cement and Concrete Composites, v. 49, p. 70-83, 2014. e que, assim como Feng et al. (2018)FENG, P. et al. A model investigation of the mechanisms of external sulfate attack on portland cement binders. Construction and Building Materials, v. 175, p. 629-642, 2018. , se baseiam na teoria da pressão de cristalização. Além disso, a maior parte dos trabalhos mais recentes, mesmo aqueles que não utilizem a mesma abordagem na elaboração dos modelos, utiliza as principais publicações como referências em suas introduções e discussões.

Seguindo na linha do tempo, Basista e Weglewski (2009)BASISTA, M.; WEGLEWSKI, W. Chemically assisted damage of concrete: a model of expansion under external sulfate attack. International Journal of Damage Mechanics, v. 18, n. 2, p. 155-175, 2009. afirmam que a maioria dos modelos publicados até então tratava do dano químico-mecânico acoplado, faltando uma abordagem micromecânica para os danos gerados no ataque. Assim, os autores propõem um modelo micromecânico modelado em microescala. A Segunda Lei de Fick também é adotada para descrever a difusão, e o método de inclusão equivalente da Eshelby é adotado para determinar a expansão da matriz. Basista e Weglewski (2009) consideram a difusão adicional dos íons que ocorre pelas fissuras abertas, análise que tem como resposta uma penetração de sulfatos mais pronunciada.

Idiart, López e Carol (2011)IDIART, A. E.; LÓPEZ, C. M.; CAROL, I. Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: a meso-scale model. Cement and Concrete Composites , v. 33, n. 3, p. 411-423, 2011. desenvolvem um modelo químico-mecânico em mesoescala baseado na proposta de Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. , representando nas simulações as principais heterogeneidades do concreto exposto a soluções de sulfato. Os autores tratam também da difusão pelas fissuras e da possibilidade de diferentes cinéticas para cada reação química. Além disso, consideram o efeito do preenchimento dos poros pelos produtos das reações, que reduz a difusividade, em contrapartida ao efeito de aumento de difusividade devido à fissuração.

Chen et al. (2013aCHEN, D. et al. An elastoplastic damage constitutive model for cementitious materials under wet-dry cyclic sulfate attack. Mathematical Problems in Engineering, v. 2013, p. 1-7, 2013a. , 2013bCHEN, D. et al. Mechanical property and constitutive model of cementitious materials subjected to sulfate attack. Jianzhu Cailiao Xuebao/Journal of Building Materials, v. 16, n. 6, p. 936-941, 2013b. ) apresentam a proposta de um modelo de dano elastoplástico a fim de avaliar o comportamento mecânico - resistência à compressão - das matrizes cimentícias expostas a situações de ESA associado a ciclos de molhagem e secagem. O modelo proposto por Khelifa e Guessasma (2013)KHELIFA, M. R.; GUESSASMA, S. New computational model based on finite element method to quantify damage evolution due to external sulfate attack on self-compacting concretes. Computer-Aided Civil and Infrastructure Engineering, v. 28, n. 4, p. 260-272, 2013. , publicado no periódico de maior FI entre os encontrados nesta revisão, também objetiva quantificar o dano no ESA, neste caso aplicado a concretos autoadensáveis (CAA). Para tanto, geram-se amostras 3D típicas da microestrutura do concreto pelo Método de Monte Carlo. Os autores destacam que esses parâmetros da microestrutura são ajustados levando em conta as propriedades mecânicas e os tamanhos de grãos referentes à CAA, e que, para permitir a aplicação do modelo a concretos convencionais, esses parâmetros iniciais da microestrutura devem ser ajustados. As imagens geradas são convertidas em um modelo de elementos finitos para prever o desempenho mecânico da matriz, tanto em situações de imersão quanto de imersão seguida de secagem.

Bary et al. (2014)BARY, B. et al. Coupled chemo-transport-mechanical modelling and numerical simulation of external sulfate attack in mortar. Cement and Concrete Composites, v. 49, p. 70-83, 2014. consideram a pressão de cristalização também como um dos mecanismos de expansão. Neste caso, as expansões consideradas eram resultado da pressão de cristalização e do volume adicional da formação de etringita. Porém, os autores verificam que a contribuição da pressão de cristalização é desprezível perto do aumento de volume na formação de etringita. No modelo de Cefis e Comi (2014)CEFIS, N.; COMI, C. Damage modelling in concrete subject to sulfate attack. Frattura ed Integrita Strutturale, v. 8, n. 29, p. 222-229, 2014. , os autores analisam a resposta mecânica do material ao ESA baseados também nas equações de Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. e descrevem a estrutura do concreto pela teoria de Biot.

O modelo proposto por Ikumi et al. (2014)IKUMI, T. et al. Alternative methodology to consider damage and expansions in external sulfate attack modeling. Cement and Concrete Research , v. 63, p. 105-116, 2014. é outro de grande impacto na linha do tempo dessa temática. Baseados também em Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. , os autores calculam o coeficiente de difusão pela equação proposta por Idiart, López e Carol (2011)IDIART, A. E.; LÓPEZ, C. M.; CAROL, I. Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: a meso-scale model. Cement and Concrete Composites , v. 33, n. 3, p. 411-423, 2011. , que consideram o preenchimento dos poros. Uma modificação importante nesse modelo está na equação para o cálculo das expansões, pela introdução de uma taxa de formação de etringita. Essa taxa quantifica a precipitação do composto, distinguindo a contribuição de tensão dos diferentes tamanhos de poros. Poros maiores têm a capacidade de acomodar maior quantidade de cristais antes de gerar tensões expansivas.

Yu, Zhang e Khennane (2015)YU, Y.; ZHANG, Y. X.; KHENNANE, A. Numerical modelling of degradation of cement-based materials under leaching and external sulfate attack. Computers and Structures , v. 158, p. 1-14, 2015. , em seu modelo de elementos finitos, consideram o transporte de íons com base no modelo de Poisson-Nernst-Planck, que leva em conta, além da difusão iônica, o acoplamento elétrico, a atividade química e a advecção. Os autores acrescentam ao modelo de Poisson-Nernst-Planck uma parcela devida à sucção capilar pelas fissuras. Além disso, Yu, Zhang e Khennane (2015)YU, Y.; ZHANG, Y. X.; KHENNANE, A. Numerical modelling of degradation of cement-based materials under leaching and external sulfate attack. Computers and Structures , v. 158, p. 1-14, 2015. simulam a descalcificação do C-S-H, obtendo perfis de cálcio e enxofre nas amostras, diferentemente dos modelos anteriores, que tinham como resposta a expansão da matriz.

Figura 7
Esquema cronológico dos modelos numéricos de ESA baseados em Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a.

Chen, Qian e Song (2016)SONG, H.; CHEN, J.; JIANG, J. An internal expansive stress model of concrete under sulfate attack. Acta Mechanica Solida Sinica, v. 29, n. 6, p. 610-619, 2016. propõem um modelo de evolução de danos adotando o método de inclusão equivalente da Eshelby para avaliar a tensão de tração crítica originada pelo preenchimento dos poros por etringita, aquela que representa o momento em que se atinge a resistência à tração do material e tem-se o aparecimento de fissuras. Os parâmetros da equação proposta para descrever a evolução de danos são determinados por ensaios de ultrassom. Song, Chen e Jiang (2016)SONG, H.; CHEN, J.; JIANG, J. An internal expansive stress model of concrete under sulfate attack. Acta Mechanica Solida Sinica, v. 29, n. 6, p. 610-619, 2016. , em trabalho do mesmo grupo de pesquisa, propõe um modelo para avaliar as tensões internas de expansão, também com base no método da inclusão equivalente de Eshelby e na teoria de campo médio.

Soive, Roziere e Loukili (2016)SOIVE, A.; ROZIERE, E.; LOUKILI, A. Parametrical study of the cementitious materials degradation under external sulfate attack through numerical modeling. Construction and Building Materials, v. 112, p. 267-275, 2016. adotam um modelo numérico de transporte para descrever o ataque externo por sulfatos em termos de precipitação e dissolução de fases minerais. Com isso, é possível analisar a frente de precipitação de etringita e o consumo de portlandita. Em seguida, os autores realizam um estudo paramétrico desse modelo, no qual avaliam a influência da renovação da solução agressiva, do pH da solução e da presença de CO2 dissolvido em solução. Soive e Tran (2017)SOIVE, A.; TRAN, V. Q. External sulfate attack of cementitious materials: new insights gained through numerical modeling including dissolution/precipitation kinetics and surface complexation. Cement and Concrete Composites , v. 83, p. 263-272, 2017. também propõem uma modelagem numérica baseada na cinética de dissolução/precipitação, com o intuito de prever a entrada de íons sulfatos em matrizes cimentícias.

Cefis e Comi (2017)CEFIS, N.; COMI, C. Chemo-mechanical modelling of the external sulfate attack in concrete. Cement and Concrete Research , v. 93, p. 57-70, 2017. voltam a apresentar um modelo baseado em Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. . Neste caso, os autores modificam o modelo de difusão-reação de Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. para considerar também condições não saturadas. Esse é um dos poucos modelos que leva em conta, além do dano mecânico devido às forças expansivas, o dano químico devido às reações. Por outro lado, a abordagem negligencia a capacidade de amortecimento das redes de poros, o que é criticado por alguns autores (IKUMI; SEGURA, 2019IKUMI, T.; SEGURA, I. Numerical assessment of external sulfate attack in concrete structures: a review. Cement and Concrete Research , v. 121, p. 91-105, may 2019. ).

Feng et al. (2017)FENG, P. et al. A multiscale microstructure model of cement paste sulfate attack by crystallization pressure. Modelling and simulation in materials science and engineering, v. 25, n. 6, 2017. apresentam um modelo microestrutural que considera a pressão de cristalização como força motriz das expansões observadas no ESA, neste caso aplicado a pastas de cimento. Apesar das diferentes suposições na elaboração do modelo, seus resultados são discutidos e comparados muitas vezes aos de Bary et al. (2014)BARY, B. et al. Coupled chemo-transport-mechanical modelling and numerical simulation of external sulfate attack in mortar. Cement and Concrete Composites, v. 49, p. 70-83, 2014. . Miura et al. (2017)MIURA, T. et al. Feedback system of ion transfer through cracks during deterioration of mortar due to sulfate attack evaluated by RBSM-truss network model. Journal of Advanced Concrete Technology, v. 15, n. 10, p. 610-626, 2017. avaliam a transferência de íons pelas fissuras geradas no ESA, associando modelos de análise da hidratação, modelo de reação-difusão e modelo de propagação de fissuras.

O modelo apresentado por Yin et al. (2017)YIN, G.et al. Modeling of time-varying stress in concrete under axial loading and sulfate attack. Computers and Concrete, v. 19, n. 2, p. 143-152, 2017. avalia o comportamento do concreto submetido ao ataque por sulfatos associado a carregamentos axiais de compressão. Os autores adotam a equação única para formação de etringita proposta por Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. e notam que, antes do ataque por sulfatos, as tensões de compressão se distribuem de forma uniforme na amostra; depois, a região danificada pela penetração de sulfatos tem menores solicitações, que aumentam na zona não danificada.

Feng et al. (2018)FENG, P. et al. A model investigation of the mechanisms of external sulfate attack on portland cement binders. Construction and Building Materials, v. 175, p. 629-642, 2018. propõem uma modelagem da microestrutura baseada na pressão de cristalização. O trabalho de Yu e Zhang (2018)ZHANG, H.; SHE, W. A modulus variation model of concrete under external sulfate attack: new perspective from statistical evolution of microcracks. Journal Wuhan University of Technology, Materials Science Edition, v. 33, n. 6, p. 1465-1471, 2018. é baseado em Yu, Zhang e Khennane (2015)YU, Y.; ZHANG, Y. X.; KHENNANE, A. Numerical modelling of degradation of cement-based materials under leaching and external sulfate attack. Computers and Structures , v. 158, p. 1-14, 2015. , mas neste caso o modelo é utilizado para avaliar a resistência à flexão de compósitos submetidos ao ESA. Zhang e She (2018)ZHANG, H.; SHE, W. A modulus variation model of concrete under external sulfate attack: new perspective from statistical evolution of microcracks. Journal Wuhan University of Technology, Materials Science Edition, v. 33, n. 6, p. 1465-1471, 2018. apresentam um modelo em mesoescala para avaliar a variação do módulo de elasticidade dinâmico de argamassas quando expostas a essa degradação. Os autores comparam seus resultados com os obtidos pelo modelo de Tixier e Mobasher (2003b)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack - II: comparison with experiments. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003b. e conseguem reduzir o erro obtido na previsão dos módulos em relação à literatura. Bai et al. (2019)BAI, W.-F. et al. The Constitutive model of concrete subjected to sulfate attack based on statistical damage theory. Gongcheng Lixue/Engineering Mechanics, v. 36, n. 2, p. 66-77, 2019. propõem um modelo de dano baseado na teoria da estatística do dano. O modelo é aplicado a concretos sob compressão uni e biaxial.

Islam, Golrokh e Lu (2019)ISLAM, M. A.; GOLROKH, A. J.; LU, Y. Chemomechanical modeling of sulfate attack-induced damage process in cement-stabilized pavements. Journal of Engineering Mechanics, v. 145, n. 1, p. 04018117, 2019. , baseados em Cefis e Comi (2017)CEFIS, N.; COMI, C. Chemo-mechanical modelling of the external sulfate attack in concrete. Cement and Concrete Research , v. 93, p. 57-70, 2017. , desenvolvem um modelo para avaliar a falha de pavimentos estabilizados com cimento, considerando situações não saturadas e a influência da temperatura. O trabalho de Min et al. (2019)MIN, H. et al. An effective transport model of sulfate attack in concrete. Construction and Building Materials, v. 216, p. 365-378, 2019. apresenta um modelo de transporte baseado em difusão para previsão da difusão de sulfatos. O modelo proposto por Yi, Chen e Bindiganavile (2019)YI, C.; CHEN, Z.; BINDIGANAVILE, V. A non-homogeneous model to predict the service life of concrete subjected to external sulphate attack. Construction and Building Materials, v. 212, p. 254-265, 2019. considera a influência do tamanho e a fração de agregado na difusão dos íons sulfatos, devido à zona de transição. As equações de difusão-reação consideradas por Yi, Chen e Bindiganavile (2019)YI, C.; CHEN, Z.; BINDIGANAVILE, V. A non-homogeneous model to predict the service life of concrete subjected to external sulphate attack. Construction and Building Materials, v. 212, p. 254-265, 2019. têm como base Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. , Idiart, López e Carol (2011)IDIART, A. E.; LÓPEZ, C. M.; CAROL, I. Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: a meso-scale model. Cement and Concrete Composites , v. 33, n. 3, p. 411-423, 2011. e Ikumi et al. (2014)IKUMI, T. et al. Alternative methodology to consider damage and expansions in external sulfate attack modeling. Cement and Concrete Research , v. 63, p. 105-116, 2014. .

Já a modelagem de Qin et al. (2020)QIN, S. et al.A chemo-transport-damage model for concrete under external sulfate attack. Cement and Concrete Research , v. 132, p. 106048, 2020. avalia os efeitos da lixiviação de cálcio e da temperatura na degradação de concretos nesse tipo de ataque, tendo como base as equações de reação apresentadas por Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. e o efeito de tamponamento dos poros no cálculo do coeficiente de difusão apresentado por Idiart, López e Carol (2011)IDIART, A. E.; LÓPEZ, C. M.; CAROL, I. Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: a meso-scale model. Cement and Concrete Composites , v. 33, n. 3, p. 411-423, 2011. . Yao, Yang e Chen (2020)YAO, J.; YANG, Y.; CHEN, J. A novel chemo-mechanical model for fracture toughness of mortar under sulfate attack. Theoretical and Applied Fracture Mechanics, v. 109, p. 102762, 2020. desenvolveram um modelo de tenacidade à fratura para argamassas nesse tipo de ataque. Para isso, os autores se baseiam nas equações de difusão-reação apresentadas por Ikumi et al. (2014)IKUMI, T. et al. Alternative methodology to consider damage and expansions in external sulfate attack modeling. Cement and Concrete Research , v. 63, p. 105-116, 2014. e Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. , e consideram que a evolução do dano obedece às estatísticas de Weibull. Yin et al. (2020)YIN, G. et al.An integrated macro-microscopic model for concrete deterioration under external sulfate attack. Engineering Fracture Mechanics, v. 240, p. 107345, 2020. consideram em seu modelo tanto a pressão de cristalização como o aumento de volume para as avaliações das tensões de expansão.

Chen et al. (2021)CHEN, X. et al.A chemical-transport-mechanics numerical model for concrete under sulfate attack. Materials, v. 14, n. 24, 2021. propõem um modelo em mesoescala que avalia os processos de difusão, reação e resposta mecânica de concretos no ESA. Para avaliar a difusão-reação, os autores adotam a equação proposta por Idiart, López e Carol (2011)IDIART, A. E.; LÓPEZ, C. M.; CAROL, I. Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: a meso-scale model. Cement and Concrete Composites , v. 33, n. 3, p. 411-423, 2011. , e a formação de etringita é considerada pela equação simplificada proposta por Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. . Chama-se a atenção para esse modelo proposto por Chen et al. (2021) por causa da inclusão da modelagem simultânea, que considera a lixiviação do cálcio e a consequente redução da concentração de cálcio ao longo do tempo, fundamental para a avaliação completa desse mecanismo de degradação. Fu et al. (2021)FU, Q. et al. Resistance to sulfate attack and chemo-damage-transport model of sulfate ions for tunnel lining concrete under the action of loading and flowing groundwater. ACS Sustainable Chemistry and Engineering, v. 9, n. 42, p. 14307-14326, 2021. também incluem a avaliação da lixiviação em um modelo que avalia a reação, a difusão e a resposta mecânica, com base em Qin et al. (2020)QIN, S. et al.A chemo-transport-damage model for concrete under external sulfate attack. Cement and Concrete Research , v. 132, p. 106048, 2020. , neste caso aplicado a concreto de revestimento de túnel sob ação de carga e escoamento de águas subterrâneas.

Hou et al. (2021)HOU, H. et al.A chemo-mechanical coupling model for concrete lining subjected to external sulfate attack. European Journal of Environmental and Civil Engineering, v. 25, n. 14, p. 2674-2691, 2021. também objetivam com seu modelo avaliar revestimentos de concreto, incluindo em sua análise tanto o dano mecânico como o dano químico. Os autores destacam que essas estruturas subterrâneas são solicitadas por tensões de compressão triaxiais, que diferem do que é considerado na maioria dos modelos. A formação de etringita é considerada conforme proposta por Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. . O dano químico é avaliado por ultrassom em análises experimentais. Já o modelo proposto por Song et al. (2021)SONG, H. et al. A chemical-mechanics model for the mechanics deterioration of pervious concrete subjected to sulfate attack. Construction and Building Materials, v. 312, p. 125383, 2021. é aplicado a concretos permeáveis, a fim de avaliar sua variação de resistência. Os autores adotam a equação simplificada de Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. e avaliam o dano mecânico conforme propõem Chen, Qian e Song (2016)CHEN, J. K.; QIAN, C.; SONG, H. A new chemo-mechanical model of damage in concrete under sulfate attack. Construction and Building Materials , v. 115, p. 536-543, 2016. .

Zhou e Ju (2021)ZHOU, S.; JU, J. W. A chemo-micromechanical damage model of concrete under sulfate attack. International Journal of Damage Mechanics , v. 30, n. 8, p. 1213-1237, 2021. apresentam um modelo de dano que divide em três a região onde se formam os produtos expansivos: a zona onde se depositam os produtos, uma em seu entorno, danificada, e a terceira com o concreto ainda sem danos. Os modelos mais recentes propostos são os de Gu et al. (2022)GU, Y.et al. Modeling the sulfate attack induced expansion of cementitious materials based on interface-controlled crystal growth mechanisms. Cement and Concrete Research , v. 152, p. 106676, 2022. e Melara et al. (2022)MELARA, E. K et al. Contribution to the service-life modeling of concrete exposed to sulfate attack by the inclusion of electrical resistivity data. Construction and Building Materials, v. 322, p. 126490, jan. 2022. . A modelagem de Gu et al. (2022)GAO, P. et al. Mechanism and model of sulfate attack on RCC with expansive agent. Shuili Fadian Xuebao/Journal of Hydroelectric Engineering, v. 25, n. 1, 2006. avalia a formação da etringita, considerando que as forças expansivas são geradas devido à pressão de cristalização, que pode ser utilizada para avaliar tanto o ESA quanto a formação de etringita tardia (DEF). Já Melara et al. (2022)MELARA, E. K et al. Contribution to the service-life modeling of concrete exposed to sulfate attack by the inclusion of electrical resistivity data. Construction and Building Materials, v. 322, p. 126490, jan. 2022. avaliam a inclusão de dados de resistividade em modelagens e a substituição do coeficiente de difusão por dados de resistidade, o que facilita a aplicação dos modelos pela utilização de dados que podem ser obtidos em campo. Destaca-se que um dos modelos avaliado por Melara et al. (2022)MELARA, E. K et al. Contribution to the service-life modeling of concrete exposed to sulfate attack by the inclusion of electrical resistivity data. Construction and Building Materials, v. 322, p. 126490, jan. 2022. foi o de Zhou et al. (2015b)ZHOU, Y. et al. Model for sulfate diffusion depth in concrete under complex aggressive environments and its experimental verification. Advances in Materials Science and Engineering, v. 2015, p. 1-11, 2015b., que também tem como base o trabalho de Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. .

Observando de forma geral os modelos numéricos descritos, nota-se que, apesar da evolução, ainda não há consenso na forma de descrever cada processo envolvido no ataque, havendo variações nas considerações do transporte do íon, nas reações químicas, no processo expansivo e/ou na forma de avaliar o dano. Além disso, observa-se que as publicações recentes voltam a basear-se nos trabalhos iniciais, de Tixier e Mobasher (2003a)TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a. , buscando avaliar a influência de diferentes variáveis no ESA (temperatura, grau de saturação, agregados, etc.), bem como avaliar diferentes propriedades da matriz cimentícia (associação com esforços axiais, resistência à flexão, tenacidade a fratura, etc.). Fatores importantes passam a ser acrescentados aos modelos, como a consideração da lixiviação do cálcio. Ainda, esses trabalhos recentes buscam modelar aplicações mais específicas de matrizes, como revestimentos de concretos em túneis (FU et al., 2021FU, Q. et al. Resistance to sulfate attack and chemo-damage-transport model of sulfate ions for tunnel lining concrete under the action of loading and flowing groundwater. ACS Sustainable Chemistry and Engineering, v. 9, n. 42, p. 14307-14326, 2021. ; HOU et al., 2021HOU, H. et al.A chemo-mechanical coupling model for concrete lining subjected to external sulfate attack. European Journal of Environmental and Civil Engineering, v. 25, n. 14, p. 2674-2691, 2021. ), concreto permeável (SONG et al., 2021SONG, H. et al. A chemical-mechanics model for the mechanics deterioration of pervious concrete subjected to sulfate attack. Construction and Building Materials, v. 312, p. 125383, 2021. ), ou considerar a presença de adições minerais (FU et al., 2021FU, Q. et al. Resistance to sulfate attack and chemo-damage-transport model of sulfate ions for tunnel lining concrete under the action of loading and flowing groundwater. ACS Sustainable Chemistry and Engineering, v. 9, n. 42, p. 14307-14326, 2021. ; LEE et al., 2015LEE, K.-M. et al. Mass change prediction model of concrete subjected to sulfate attack. Mathematical Problems in Engineering , v. 2015, p.1-10, 2015. ; LIU et al., 2019LIU, L. et al.A microstructural hydration model for cemented paste backfill considering internal sulfate attacks. Construction and Building Materials, v. 211, p. 99-108, 2019. ). Por fim, chamam a atenção as publicações de modelos numéricos associados a ajustes experimentais, como os modelos propostos por Chen, Qian e Song (2016)SONG, H.; CHEN, J.; JIANG, J. An internal expansive stress model of concrete under sulfate attack. Acta Mechanica Solida Sinica, v. 29, n. 6, p. 610-619, 2016. , Yin et al. (2017)YIN, G.et al. Modeling of time-varying stress in concrete under axial loading and sulfate attack. Computers and Concrete, v. 19, n. 2, p. 143-152, 2017. , Min et al. (2019)MIN, H. et al. An effective transport model of sulfate attack in concrete. Construction and Building Materials, v. 216, p. 365-378, 2019. , Yao, Yang e Chen (2020YAO, J.; YANG, Y.; CHEN, J. A novel chemo-mechanical model for fracture toughness of mortar under sulfate attack. Theoretical and Applied Fracture Mechanics, v. 109, p. 102762, 2020. ), Hou et al. (2021)HOU, H. et al.A chemo-mechanical coupling model for concrete lining subjected to external sulfate attack. European Journal of Environmental and Civil Engineering, v. 25, n. 14, p. 2674-2691, 2021. e Melara et al. (2022)MELARA, E. K et al. Contribution to the service-life modeling of concrete exposed to sulfate attack by the inclusion of electrical resistivity data. Construction and Building Materials, v. 322, p. 126490, jan. 2022. . Hou et al. (2021)HOU, H. et al.A chemo-mechanical coupling model for concrete lining subjected to external sulfate attack. European Journal of Environmental and Civil Engineering, v. 25, n. 14, p. 2674-2691, 2021. e Melara et al. (2022)MELARA, E. K et al. Contribution to the service-life modeling of concrete exposed to sulfate attack by the inclusion of electrical resistivity data. Construction and Building Materials, v. 322, p. 126490, jan. 2022. adotam para esses ajustes dados obtidos em ensaios não destrutivos, que podem ser aplicados tanto em laboratório como em campo, reforçando a importância da associação entre os dois tipos de modelagens.

Considerações finais

A partir das publicações e da revisão de modelos de previsão de ataque por sulfatos disponível na literatura, têm-se como considerações deste estudo os pontos a seguir:

  1. as pesquisas dentro da temática de modelos de ataque por sulfatos encontram-se em ascensão, estando a maior parte delas concentrada nos continentes asiático e europeu. A maior parte das pesquisas tem o foco em modelagens numéricas de ataque externo por sulfatos aplicadas ao concreto, sendo os trabalhos dentro dessa temática os com maior impacto. Alguns trabalhos apresentam associação entre modelos empíricos e numéricos, uma alternativa que permite obter os benefícios de cada tipo de modelagem;

  2. nos modelos numéricos de previsão de ESA é possível estimar a expansão resultante da matriz, e trabalhos mais recentes têm como foco também a estimativa da concentração de sulfato e/ou de cálcio ao longo da profundidade da amostra. As publicações mais recentes buscam ainda avaliar a influência de diferentes variáveis no ESA, bem como a influência do ataque em diferentes propriedades das matrizes cimentícias;

  3. os modelos numéricos de ISA que verificaram sua aplicação a dados experimentais o fazem com base na pirrotita como mineral sulfetado presente no agregado. Já os modelos numéricos de ESA que verificaram sua aplicação a dados experimentais o fazem com base no sulfato de sódio. É necessário analisar a aplicação dos modelos disponíveis e desenvolver novos modelos para ataques por outros tipos de sulfato, como sulfato de magnésio e amônio, que são ainda mais agressivos, e também agregados contaminados por pirita, por exemplo, que é um mineral sulfetado mais comum no Brasil do que a pirrotita;

  4. nota-se a necessidade da elaboração de modelos de previsão de ataque por sulfatos que considerem a presença de adições minerais, especialmente as reativas, já que estas possivelmente se encontram na composição da matriz cimentícia por serem uma das principais formas de mitigar esse tipo de ataque;

  5. como ponto de partida para futuros modelos, analisando o que é adotado na maioria das referências desta revisão sistemática, tem-se a consideração das forças expansivas geradas pela etringita secundária a partir da teoria do aumento do volume, em que a formação do composto é determinada por uma equação simplificada. Deve-se avaliar o efeito do preenchimento dos poros de diferentes tamanhos e fissuras por esse composto. Caso o modelo englobe a análise de dano, o dano físico deve ser analisado. Com base nas últimas publicações, sugere-se que os futuros modelos incluam também a lixiviação; e

  6. os pontos que ainda divergem e que podem ser foco nos futuros estudos são as forças expansivas descritas pela teoria da pressão de cristalização, o dano químico, associações do ataque com solicitações mecânicas e aplicações a tipos específicos de matrizes cimentícias. A associação de ajustes empíricos a esses modelos é recomendada, o que pode ser realizado com ensaios não destrutivos, como medidas de ultrassom e resistividade elétrica, que podem ser aplicados até mesmo em campo.

Agradecimentos

Os autores expressam sua gratidão à Universidade Estadual de Ponta Grossa (UEPG) e ao Programa de Pós-Graduação em Engenharia e Ciência de Materiais (PPGECM), bem como à Universidade Federal do Paraná (UFPR), ao Departamento de Construção Civil (DCC), ao Programa de Pós-Graduação em Engenharia Civil (PPGEC), ao Centro de Estudos de Engenharia Civil (CESEC), à Capes, à Fundação Araucária e à Agência Nacional de Águas (ANA), por suas contribuições na forma de bolsas de estudo, infraestrutura e financiamento para o desenvolvimento desta pesquisa e aquelas associadas.

Referências

  • ANTUNES, A. A. Como avaliar produção científica. Revista do Colégio Brasileiro de Cirurgiões, v. 42, supl. 1, p. 17-19, 2015.
  • BAI, W.-F. et al The Constitutive model of concrete subjected to sulfate attack based on statistical damage theory. Gongcheng Lixue/Engineering Mechanics, v. 36, n. 2, p. 66-77, 2019.
  • BARY, B. et al Coupled chemo-transport-mechanical modelling and numerical simulation of external sulfate attack in mortar. Cement and Concrete Composites, v. 49, p. 70-83, 2014.
  • BASISTA, M.; WEGLEWSKI, W. Chemically assisted damage of concrete: a model of expansion under external sulfate attack. International Journal of Damage Mechanics, v. 18, n. 2, p. 155-175, 2009.
  • BLANCO, A. et al Lessons learned about the diagnosis of pathologies in concrete dams: 30 years of research and practice. Construction and Building Materials, v. 197, p. 356-368, 2019.
  • BREKAILO, F. Aplicação dos ensaios de migração e de difusão natural para cálculo do coeficiente de difusão de íons sulfatos no estado estacionário e não estacionário no concreto. 149 f. 2020. Dissertação (Mestrado em Engenharia e Ciência dos Materiais) - Universidade Estadual de Ponta Grossa, 2020.
  • BROWN, P.W. Thaumasite formation and other forms of sulfate attack. Cement and Concrete Composites , v. 89, n. 1, p. 1-7, 2002.
  • CAMPOS, A.; LÓPEZ, C. M.; AGUADO, A. Diffusion-reaction model for the internal sulfate attack in concrete. Construction and Building Materials , v. 102, p. 531-540, 2016.
  • CAPRARO, A. P. B.; MACIOSKI, G.; MEDEIROS, M. H. F. de. Effect of aggregate contamination with pyrite on reinforcement corrosion in concrete. Engineering Failure Analysis, v. 120, p. 105116, 2021.
  • CASANOVA, I.; AGUADO, A.; AGULLÓ, L. Aggregate expansivity due to sulfide oxidation - II. Physico-chemical modeling of sulfate attack. Cement and Concrete Research, v. 27, n. 11, p. 1627-1632, 1997.
  • CEFIS, N.; COMI, C. Chemo-mechanical modelling of the external sulfate attack in concrete. Cement and Concrete Research , v. 93, p. 57-70, 2017.
  • CEFIS, N.; COMI, C. Damage modelling in concrete subject to sulfate attack. Frattura ed Integrita Strutturale, v. 8, n. 29, p. 222-229, 2014.
  • CHEN, D. et al An elastoplastic damage constitutive model for cementitious materials under wet-dry cyclic sulfate attack. Mathematical Problems in Engineering, v. 2013, p. 1-7, 2013a.
  • CHEN, D. et al Mechanical property and constitutive model of cementitious materials subjected to sulfate attack. Jianzhu Cailiao Xuebao/Journal of Building Materials, v. 16, n. 6, p. 936-941, 2013b.
  • CHEN, J. K.; QIAN, C.; SONG, H. A new chemo-mechanical model of damage in concrete under sulfate attack. Construction and Building Materials , v. 115, p. 536-543, 2016.
  • CHEN, X. et alA chemical-transport-mechanics numerical model for concrete under sulfate attack. Materials, v. 14, n. 24, 2021.
  • FATIMA, T.; MUNTEAN, A. Sulfate attack in sewer pipes: derivation of a concrete corrosion model via two-scale convergence. Nonlinear Analysis: Real World Applications, v. 15, n, 1, p. 326-344, 2014.
  • FENG, P. et al A model investigation of the mechanisms of external sulfate attack on portland cement binders. Construction and Building Materials, v. 175, p. 629-642, 2018.
  • FENG, P. et al A multiscale microstructure model of cement paste sulfate attack by crystallization pressure. Modelling and simulation in materials science and engineering, v. 25, n. 6, 2017.
  • FERRARIS, C. F.; STUTZMAN, P. E.; SNYDER, K. A. Sulfate resistance of concrete: a new approach, Portland Cement Association, 2006. PCA R&D Serial No. 2486.
  • FU, Q. et al Resistance to sulfate attack and chemo-damage-transport model of sulfate ions for tunnel lining concrete under the action of loading and flowing groundwater. ACS Sustainable Chemistry and Engineering, v. 9, n. 42, p. 14307-14326, 2021.
  • GAO, P. et al Mechanism and model of sulfate attack on RCC with expansive agent. Shuili Fadian Xuebao/Journal of Hydroelectric Engineering, v. 25, n. 1, 2006.
  • GU, Y.et al Modeling the sulfate attack induced expansion of cementitious materials based on interface-controlled crystal growth mechanisms. Cement and Concrete Research , v. 152, p. 106676, 2022.
  • HAN, T.; LI, Z.; CHEN, Y. Sulfate attack induced dry-wet failure modes and a constitutive model for mortar specimens with a single intermittent fracture. International Journal of Geomechanics, v. 21, n. 2, 2021.
  • HOU, H. et alA chemo-mechanical coupling model for concrete lining subjected to external sulfate attack. European Journal of Environmental and Civil Engineering, v. 25, n. 14, p. 2674-2691, 2021.
  • IDIART, A. E.; LÓPEZ, C. M.; CAROL, I. Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: a meso-scale model. Cement and Concrete Composites , v. 33, n. 3, p. 411-423, 2011.
  • IKUMI, T. et al Alternative methodology to consider damage and expansions in external sulfate attack modeling. Cement and Concrete Research , v. 63, p. 105-116, 2014.
  • IKUMI, T.; SEGURA, I. Numerical assessment of external sulfate attack in concrete structures: a review. Cement and Concrete Research , v. 121, p. 91-105, may 2019.
  • IKUMI, T.; SEGURA, I.; CAVALARO, S. H.P. Inlfuence of early sulfate exposure on the pore network development of mortars. Construction and Building Materials, v. 143, p. 33-47, 2017.
  • IRASSAR, E. F.; DI MAIO, A.; BATIC, O. R. Sulfate attack on concrete with mineral admixtures. Cement and Concrete Research , v. 26, n. 4, p. 551-556, 1996.
  • ISLAM, M. A.; GOLROKH, A. J.; LU, Y. Chemomechanical modeling of sulfate attack-induced damage process in cement-stabilized pavements. Journal of Engineering Mechanics, v. 145, n. 1, p. 04018117, 2019.
  • KHELIFA, M. R.; GUESSASMA, S. New computational model based on finite element method to quantify damage evolution due to external sulfate attack on self-compacting concretes. Computer-Aided Civil and Infrastructure Engineering, v. 28, n. 4, p. 260-272, 2013.
  • KURTIS, K. E.; MONTEIRO, P. J. M.; MADANAT, S. M. Empirical models to predict concrete expansion caused by sulfate attack. ACI Structural Journal, v. 97, n. 2, p. 156-161, 2000.
  • LEE, K.-M. et al Mass change prediction model of concrete subjected to sulfate attack. Mathematical Problems in Engineering , v. 2015, p.1-10, 2015.
  • LI, Y. et alA stratified-theoretical calculation model of concrete under external sulfate attack. Romanian Journal of Materials , v. 49, n. 1, p. 73-79, 2019.
  • LIAO, Kai Xing et alModeling constitutive relationship of sulfate-attacked concrete. Construction and Building Materials, v. 260, p. 119902, 2020.
  • LIU, L. et alA microstructural hydration model for cemented paste backfill considering internal sulfate attacks. Construction and Building Materials, v. 211, p. 99-108, 2019.
  • LOTHENBACH, B. et al Sulfate ingress in Portland cement. Cement and Concrete Research , v. 40, n. 8, p. 1211-1225, 2010.
  • MARTINS, M. C. et alExternal ammonium sulfate attack in concrete: analysis of the current methodology. Construction and Building Materials, v. 277, p. 122252, 2021.
  • MEHTA, P. K.; MONTEIRO, P. J. M. Concreto: microestrutura, propriedades e materiais. 4. ed. São Paulo: Ibraco, 2014.
  • MELARA, E. K et al Contribution to the service-life modeling of concrete exposed to sulfate attack by the inclusion of electrical resistivity data. Construction and Building Materials, v. 322, p. 126490, jan. 2022.
  • MIN, H. et al An effective transport model of sulfate attack in concrete. Construction and Building Materials, v. 216, p. 365-378, 2019.
  • MIURA, T. et al Feedback system of ion transfer through cracks during deterioration of mortar due to sulfate attack evaluated by RBSM-truss network model. Journal of Advanced Concrete Technology, v. 15, n. 10, p. 610-626, 2017.
  • MONTEIRO, P. J. M.; KURTIS, K. E. Time to failure for concrete exposed to severe sulfate attack. Cement and Concrete Research , v. 33, n. 7, p. 987-993, 2003.
  • NEVILLE, A. The confused world of sulfate attack on concrete. Cement and Concrete Research , v. 34, n. 8, p. 1275-1296, 2004.
  • OLIVEIRA, I.; CAVALARO, S. H. P.; AGUADO, A. New kinetic model to quantify the internal sulfate attack in concrete. Cement and Concrete Research , v. 43, n. 1, p. 95-104, 2013.
  • OUYANG, C. Damage model for sulfate attack of cement mortars. Cement, Concrete and Aggregates, v. 11, n. 2, p. 92-99, 1989.
  • PAN, H.; SI, X.; ZHAO, Q. Damage evolution model of early disturbed concrete under sulfate attack and its experimental verification. Dyna, v. 93, n. 1, p. 52-59, 2018.
  • PAN, H.; WANG, S.; ZHAO, Q. Loading damage model of early disturbed concrete under sulfate attack. Zhongguo Tiedao Kexue/China Railway Science, v. 39, n. 1, p. 23-30, 2018.
  • QIN, L. et al Effect of carbonation curing on sulfate resistance of cement-coal gangue paste. Journal of Cleaner Production, v. 278, p. 123897, 2021.
  • QIN, S. et alA chemo-transport-damage model for concrete under external sulfate attack. Cement and Concrete Research , v. 132, p. 106048, 2020.
  • RAGOUG, R. et al Durability of cement pastes exposed to external sulfate attack and leaching: Physical and chemical aspects. Cement and Concrete Research , v. 116, n. May 2018, p. 134-145, 2019.
  • SAHOO, S.; MAHAPATRA, T. R. ANN Modeling to study strength loss of fly ash concrete against long term sulphate attack. Materials Today:Proceedings, v. 5, p. 24595-24604, 2018.
  • SAMSON, E.; MARCHAND, J. Modeling the transport of ions in unsaturated cement-based materials. Computers and Structures, v. 85, n. 23-24, p. 1740-1756, 2007.
  • SANTHANAM, M.; COHEN, M. D.; OLEK, J. Effects of gypsum formation on the performance of cement mortars during external sulfate attack. Cement and Concrete Research , v. 33, n. 3, p. 325-332, 2003.
  • SANTHANAM, M.; COHEN, M. D.; OLEK, J. Modeling the effects of solution temperature and concentration during sulfate attack on cement mortars. Cement and Concrete Research , v. 32, n. 4, p. 585-592, 2002.
  • SKALNY, J.; MARCHAND, J.; ODLER, I. Sulfate attack on concrete. New York: Spon Spress, 2002.
  • SOIVE, A.; ROZIERE, E.; LOUKILI, A. Parametrical study of the cementitious materials degradation under external sulfate attack through numerical modeling. Construction and Building Materials, v. 112, p. 267-275, 2016.
  • SOIVE, A.; TRAN, V. Q. External sulfate attack of cementitious materials: new insights gained through numerical modeling including dissolution/precipitation kinetics and surface complexation. Cement and Concrete Composites , v. 83, p. 263-272, 2017.
  • SONG, H. et al A chemical-mechanics model for the mechanics deterioration of pervious concrete subjected to sulfate attack. Construction and Building Materials, v. 312, p. 125383, 2021.
  • SONG, H.; CHEN, J.; JIANG, J. An internal expansive stress model of concrete under sulfate attack. Acta Mechanica Solida Sinica, v. 29, n. 6, p. 610-619, 2016.
  • SOUZA, D. J. de; MEDEIROS, M. H. F.; HOPPE FILHO, J. Evaluation of external sulfate attack (Na2SO4 and MgSO4): Portland cement mortars containing siliceous supplementary cementitious materials. Revista IBRACON de Estruturas e Materiais, v. 13, n. 4, p. 1-16, 2020.
  • SOUZA, D. J. de; MEDEIROS, M. H. F.; HOPPE FILHO, J. Evaluation of the SR Portland cement against sodium and magnesium sulfate attack: a physical and comparative analysis of mortars. Revista IBRACON de Estruturas e Materiais , v. 11, n. 5, p. 1053-1075, 2018.
  • TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003a.
  • TIXIER, R.; MOBASHER, B. Modeling of damage in cement-based materials subjected to external sulfate attack - II: comparison with experiments. Journal of Materials in Civil Engineering, v. 15, n. 4, p. 314-322, 2003b.
  • WANG, P. et al A chemo-damage-transport model for chloride ions diffusion n cement-based materials: combined effects of sulfate attack and temperature. Construction and Building Materials, v. 288, p. 123121, 2021a.
  • WANG, P. et al A chemo-thermo-damage-transport model for concrete subjected to combined chloride-sulfate attack considering the effect of calcium leaching. Construction and Building Materials, v. 306, p. 124918, 2021b.
  • WANG, P. et al Chemo-Damage-Transport Model of Combined Chloride-sulfate Attack in Concrete. Kuei Suan Jen Hsueh Pao, v. 50, n. 2, p. 512-521, 2022.
  • WANG, Z. et al Monitoring and modeling the damage evolution in engineered cementitious composites subjected to sulfate attack through continuous ultrasonic measurements. Construction and Building Materials, v. 262, p. 120799, 2020.
  • XIE, C. et al Prediction model of flexural strength of cement mortar under sulfate attack at low temperature. Fuhe Cailiao Xuebao, v. 36, n. 6, p. 1520-1527, 2019.
  • YAO, J.; YANG, Y.; CHEN, J. A novel chemo-mechanical model for fracture toughness of mortar under sulfate attack. Theoretical and Applied Fracture Mechanics, v. 109, p. 102762, 2020.
  • YI, C.; CHEN, Z.; BINDIGANAVILE, V. A non-homogeneous model to predict the service life of concrete subjected to external sulphate attack. Construction and Building Materials, v. 212, p. 254-265, 2019.
  • YIN, G. et alAn integrated macro-microscopic model for concrete deterioration under external sulfate attack. Engineering Fracture Mechanics, v. 240, p. 107345, 2020.
  • YIN, G.et al Modeling of time-varying stress in concrete under axial loading and sulfate attack. Computers and Concrete, v. 19, n. 2, p. 143-152, 2017.
  • YU, Y.; ZHANG, Y. X. Numerical modelling of mechanical deterioration of cement mortar under external sulfate attack. Construction and Building Materials, v. 158, p. 490-502, 2018.
  • YU, Y.; ZHANG, Y. X.; KHENNANE, A. Numerical modelling of degradation of cement-based materials under leaching and external sulfate attack. Computers and Structures , v. 158, p. 1-14, 2015.
  • ZHANG, H.; SHE, W. A modulus variation model of concrete under external sulfate attack: new perspective from statistical evolution of microcracks. Journal Wuhan University of Technology, Materials Science Edition, v. 33, n. 6, p. 1465-1471, 2018.
  • ZHANG, Z.et al Capillary rise height of sulfate in Portland-limestone cement concrete under physical attack: Experimental and modelling investigation. Cement and Concrete Composites , v. 125, p. 104299, 2022.
  • ZHENG, Y.; BAI, T.; LI, X. Bending mechanical model of longitudinal joint in metro shield tunnel after sulfate attack. Tongji Daxue Xuebao, v. 48, n. 6, p. 821-830, 2020.
  • ZHOU, S.; JU, J. W. A chemo-micromechanical damage model of concrete under sulfate attack. International Journal of Damage Mechanics , v. 30, n. 8, p. 1213-1237, 2021.
  • ZHOU, Y. et al Bond behavior of FRP-to-concrete interface under sulfate attack: an experimental study and modeling of bond degradation. Construction and Building Materials, v. 85, p. 9-21, 2015a.
  • ZHOU, Y. et al Model for sulfate diffusion depth in concrete under complex aggressive environments and its experimental verification. Advances in Materials Science and Engineering, v. 2015, p. 1-11, 2015b.

Datas de Publicação

  • Publicação nesta coleção
    09 Jun 2023
  • Data do Fascículo
    Jul-Sep 2023

Histórico

  • Recebido
    17 Maio 2022
  • Aceito
    23 Nov 2022
Associação Nacional de Tecnologia do Ambiente Construído - ANTAC Av. Osvaldo Aranha, 93, 3º andar, 90035-190 Porto Alegre/RS Brasil, Tel.: (55 51) 3308-4084, Fax: (55 51) 3308-4054 - Porto Alegre - RS - Brazil
E-mail: ambienteconstruido@ufrgs.br