Acessibilidade / Reportar erro

Understanding the complexity of Tityus serrulatus venom: A focus on high molecular weight components

Abstract

Tityus serrulatus scorpion is responsible for a significant number of envenomings in Brazil, ranging from mild to severe, and in some cases, leading to fatalities. While supportive care is the primary treatment modality, moderate and severe cases require antivenom administration despite potential limitations and adverse effects. The remarkable proliferation of T. serrulatus scorpions, attributed to their biology and asexual reproduction, contributes to a high incidence of envenomation. T. serrulatus scorpion venom predominantly consists of short proteins acting as neurotoxins (α and β), that primarily target ion channels. Nevertheless, high molecular weight compounds, including metalloproteases, serine proteases, phospholipases, and hyaluronidases, are also present in the venom. These compounds play a crucial role in envenomation, influencing the severity of symptoms and the spread of venom. This review endeavors to comprehensively understand the T. serrulatus scorpion venom by elucidating the primary high molecular weight compounds and exploring their potential contributions to envenomation. Understanding these compounds' mechanisms of action can aid in developing more effective treatments and prevention strategies, ultimately mitigating the impact of scorpion envenomation on public health in Brazil.

Keywords:
Tityus serrulatus; Proteases; Hyaluronidase; Phospholipase; Cysteine-rich secretory proteins

Background

Scorpion stings represent a major public health challenge across the globe, with Brazil being one of the most severely impacted countries [11. Lourenço WR. Scorpion diversity and distribution: past and present patterns. In: Gopalakrishnakone P, Possani LD, Schwartz EF, Rodríguez De La Vega RC, editors. Scorpion venoms. Toxicology, vol 4 [Internet]. Dordrecht: Springer Netherlands; 2015 [cited 2023 May 11]. p. 3-23. Available from: https://link.springer.com/10.1007/978-94-007-6404-0_15
https://link.springer.com/10.1007/978-94...
]. Despite the relatively low lethality rate of scorpionism in Brazil, the number of incidents in the country has risen dramatically over the past decade. Indeed, the number of scorpion sting incidents has increased by over 200% in the last ten years (Figure 1), from approximately 80,000 incidents in 2013 to more than 180,000 in 2022 [22. Ministério da Saúde. Acidente por animais peçonhentos - Notificações registradas no sistema de informação de agravos de notificação - Brasil [Internet]. 2023 [cited 2023 Feb 28]. Available from: http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sinannet/cnv/animaisbr.def
http://tabnet.datasus.gov.br/cgi/tabcgi....
]. The prevalence of scorpions in urban areas, coupled with factors such as deforestation and urbanization, has led to a surge in human-scorpion interactions. These interactions, often resulting in stings, have raised significant public health concerns across the country. The rise in scorpionism has prompted local authorities and healthcare providers to bolster their efforts in terms of prevention, treatment, and education to better address this growing issue and ensure the safety and well-being of the Brazilian population [33. Torrez PPQ, Dourado FS, Bertani R, Cupo P, França FO de S. Scorpionism in Brazil: exponential growth of accidents and deaths from scorpion stings. Rev Soc Bras Med Trop. 2019 May 16;52:e20180350. doi: 10.1590/0037-8682-0350-2018.
https://doi.org/10.1590/0037-8682-0350-2...
,44. Lacerda AB, Lorenz C, Azevedo TS, Cândido DM, Wen FH, Eloy LJ, Chiaravalloti-Neto F. Detection of areas vulnerable to scorpionism and its association with environmental factors in São Paulo, Brazil. Acta Trop. 2022 Jun;230:106390. doi: 10.1016/j.actatropica.2022.106390.]. This trend is a cause for concern and underscores the need for effective prevention and treatment strategies to address this growing public health issue. Among the various scorpion species found in Brazil, those belonging to the Tityus genus are of medical importance. The Tityus serrulatus scorpion is responsible for the most severe cases of envenomation and fatalities [55. Cupo P. Clinical update on scorpion envenoming. Rev Soc Bras Med Trop . 2015 Nov-Dec;48(6):642-9. doi: 10.1590/0037-8682-0237-2015.
https://doi.org/10.1590/0037-8682-0237-2...
,66. Pucca MB, Cerni FA, Pinheiro Junior EL, Bordon KCF, Amorim FG, Cordeiro FA, Longhim HT, Cremonez CM, Oliveira GH, Arantes EC. Tityus serrulatus venom--A lethal cocktail. Toxicon. 2015 Dec 15;108:272-84. doi: 10.1016/j.toxicon.2015.10.015.
https://doi.org/10.1016/j.toxicon.2015.1...
], especially in areas of human population densities [77. Amado TF, Moura TA, Riul P, Lira AFA, Badillo-Montaño R, Martinez PA. Vulnerable areas to accidents with scorpions in Brazil. Trop Med Int Health. 2021 May;26(5):591-601. doi: 10.1111/tmi.13561.
https://doi.org/10.1111/tmi.13561....
]. This scorpion's venom is a complex mixture of various molecules, including low molecular weight peptides such as neurotoxins and high molecular weight proteins such as enzymes [66. Pucca MB, Cerni FA, Pinheiro Junior EL, Bordon KCF, Amorim FG, Cordeiro FA, Longhim HT, Cremonez CM, Oliveira GH, Arantes EC. Tityus serrulatus venom--A lethal cocktail. Toxicon. 2015 Dec 15;108:272-84. doi: 10.1016/j.toxicon.2015.10.015.
https://doi.org/10.1016/j.toxicon.2015.1...
,88. Amorim FG, Longhim HT, Cologna CT, Degueldre M, De Pauw E, Quinton L, Arantes EC. Proteome of fraction from Tityus serrulatus venom reveals new enzymes and toxins. J Venom Anim Toxins incl Trop Dis. 2019 Apr 18;25:e148218. doi: 10.1590/1678-9199-JVATITD-1482-18.
https://doi.org/10.1590/1678-9199-JVATIT...
]. While several studies have explored the toxic and mechanistic effects of neurotoxins, there is a lack of understanding regarding the role of high molecular weight proteins in the pathogenesis of T. serrulatus envenoming.

Figure 1.
Trends in scorpionism in Brazil over the past decade. The left y-axis represents the number of scorpion sting incidents, while the right y-axis represents the lethality rate (%), calculated by the equation Lethality rate (%) = number of deathsnumber of cases x 100. The years 2020, 2021, and 2022 are still subject to review [22. Ministério da Saúde. Acidente por animais peçonhentos - Notificações registradas no sistema de informação de agravos de notificação - Brasil [Internet]. 2023 [cited 2023 Feb 28]. Available from: http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sinannet/cnv/animaisbr.def
http://tabnet.datasus.gov.br/cgi/tabcgi....
].

This review is dedicated to offering a comprehensive insight into the T. serrulatus scorpion, shedding light on the intricate array of molecules present in its venom. Our primary focus lies on the high molecular weight proteins, recognized for their significant involvement in the pathogenesis of envenomation. It is crucial to clarify that, in this context, we define high molecular weight proteins as those exceeding 14 kDa, constituting approximately 20-25% of the venom composition [99. Pucca MB, Amorim FG, Cerni FA, Bordon KCF, Cardoso IA, Anjolette FAP, Arantes EC. Influence of post-starvation extraction time and prey-specific diet in Tityus serrulatus scorpion venom composition and hyaluronidase activity. Toxicon. 2014 Nov;90:326-36. doi: 10.1016/j.toxicon.2014.08.064.
https://doi.org/10.1016/j.toxicon.2014.0...
]. Furthermore, this review will delve into the prominent high molecular weight proteins within T. serrulatus venom, underscoring the imperative need for further research to fully harness their potential applications.

Tityus serrulatus envenomation and treatment

T. serrulatus sting can lead to a wide range of clinical manifestations, varying from mild to severe, and can even result in death in some cases. Local symptoms such as pain, edema, erythema, sudoresis, and paresthesia are among the most commonly reported. These symptoms usually appear within hours of the sting and can last for several days. In addition to local symptoms, systemic manifestations can also occur. Tachycardia, diaphoresis, profuse sweating, psychomotor agitation, tremors, nausea, vomiting, sialorrhea, arterial hypertension, or hypotension are some systemic symptoms observed after T. serrulatus envenoming [33. Torrez PPQ, Dourado FS, Bertani R, Cupo P, França FO de S. Scorpionism in Brazil: exponential growth of accidents and deaths from scorpion stings. Rev Soc Bras Med Trop. 2019 May 16;52:e20180350. doi: 10.1590/0037-8682-0350-2018.
https://doi.org/10.1590/0037-8682-0350-2...
,55. Cupo P. Clinical update on scorpion envenoming. Rev Soc Bras Med Trop . 2015 Nov-Dec;48(6):642-9. doi: 10.1590/0037-8682-0237-2015.
https://doi.org/10.1590/0037-8682-0237-2...
,66. Pucca MB, Cerni FA, Pinheiro Junior EL, Bordon KCF, Amorim FG, Cordeiro FA, Longhim HT, Cremonez CM, Oliveira GH, Arantes EC. Tityus serrulatus venom--A lethal cocktail. Toxicon. 2015 Dec 15;108:272-84. doi: 10.1016/j.toxicon.2015.10.015.
https://doi.org/10.1016/j.toxicon.2015.1...
]. In severe systemic manifestations, other clinical manifestations may occur, including acute pulmonary edema, cardiovascular collapse, cardiac arrhythmia, congestive heart failure, and shock. In addition to clinical evaluation, complementary imaging, and biochemical tests are important for monitoring cases through an electrocardiogram, chest X-ray, echocardiogram, and biochemical tests to assess elevated creatine phosphokinase (CPK), and its MB fraction, hyperglycemia, hyperamylasemia, hypokalemia, and hyponatremia [1010. Amaral CF, Lopes JA, Magalhães RA, De Rezende NA. Electrocardiographic, enzymatic and echocardiographic evidence of myocardial damage after Tityus serrulatus scorpion poisoning. Am J Cardiol. 1991 Mar 15;67(7):655-7. doi: 10.1016/0002-9149(91)90912-5.
https://doi.org/10.1016/0002-9149(91)909...
,1111. Amaral CFS, De Rezende NA, Freire-Maia L. Acute pulmonary edema after Tityus serrulatus scorpion sting in children. Am J Cardiol . 1993 Jan 15;71(2):242-5. doi: 10.1016/0002-9149(93)90746-y.
https://doi.org/10.1016/0002-9149(93)907...
]. These symptoms have the potential to be life-threatening and necessitate prompt medical attention. Generally, the severity of T. serrulatus envenoming depends on the amount of venom injected, the time between the sting and medical intervention, and the individual's age and health status. Indeed, children under six and, less frequently, the elderly with comorbidities are more seriously affected and are related to most deaths [22. Ministério da Saúde. Acidente por animais peçonhentos - Notificações registradas no sistema de informação de agravos de notificação - Brasil [Internet]. 2023 [cited 2023 Feb 28]. Available from: http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sinannet/cnv/animaisbr.def
http://tabnet.datasus.gov.br/cgi/tabcgi....
,1212. Reckziegel GC, Pinto Jr VL. Scorpionism in Brazil in the years 2000 to 2012. J Venom Anim Toxins incl Trop Dis . 2014 Oct 15;20:46. doi: 10.1186/1678-9199-20-46.
https://doi.org/10.1186/1678-9199-20-46....
].

A study was conducted on children under the age of 15 who experienced severe symptoms after being stung by T. serrulatus and were subsequently admitted to the intensive care unit. The study found that the most common symptoms reported by these children were tachycardia, sweating, and agitation. Furthermore, abnormal liver function tests were observed, with significant increases in aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. There was also a high incidence of pulmonary edema, which in rare cases progressed to respiratory failure and even death. These findings underscore the importance of promptly recognizing and aggressively managing severe T. serrulatus envenomation in children, especially those with abnormal liver function tests and pulmonary edema [1313. Bucaretchi F, Baracat EC, Nogueira RJ, Chaves A, Zambrone FA, Fonseca MR, Tourinho FS. A comparative study of severe scorpion envenomation in children caused by Tityus bahiensis and Tityus serrulatus. Rev Inst Med Trop Sao Paulo. 1995 Jul-Aug;37(4):331-6. doi: 10.1590/s0036-46651995000400008.
https://doi.org/10.1590/s0036-4665199500...
].

The T. serrulatus envenoming treatment is primarily supportive, and early administration of analgesics, antihistamines, and benzodiazepines can help alleviate symptoms and prevent complications [1414. Freire-Maia L, Campos JA, Amaral CFS. Approaches to the treatment of scorpion envenoming. Toxicon. 1994;32:1009-14. ]. In mild cases, characterized only by local signs and symptoms, antivenom usage is not recommended, only in symptomatic treatment, and observation of the clinical condition for at least 6 hours after the incident is advised [1515. Ministério da Saúde do Brasil. Guia de vigilância em saúde [Internet]. 5th ed. Brasília: Ministério da Saúde; 2022. Available from: https://bvsms.saude.gov.br/bvs/publicacoes/guia_vigilancia_saude_5ed_rev_atual.pdf
https://bvsms.saude.gov.br/bvs/publicaco...
]. In moderate and severe cases, Brazil has two different antivenoms available: the arachnid antivenom (each vial with 5 mL contains a fraction of heterologous F(ab’)2 immunoglobulins that neutralize a minimum of 15.0 minimum lethal dose (MLD) of Loxosceles gaucho venom, 1.5 MLD of Phoneutria nigriventer venom, and 1.5 MLD of T. serrulatus venom per mL [1616. Instituto Butantan. Soro antiaracnídico (Loxosceles, Phoneutria e Tityus) [Internet]. Instituto Butantan; 2023. Available from: https://butantan.gov.br/assets/arquivos/soros-e-vacinas/soros/26%20BULA%20SORO%20ANTIARACNÍDICO%20(LOXOSCELES,%20PHONEUTRIA%20E%20TITYUS)-PACIENTE.pdf
https://butantan.gov.br/assets/arquivos/...
]) and the scorpion antivenom (each vial with 5 mL contains a fraction of heterologous F(ab’)2 immunoglobulins that neutralize a minimum of 5.0 mg of T. serrulatus reference venom [1717. Instituto Butantan. Soro antiescorpiônico [Internet]. Instituto Butantan; 2023. Available from: https://butantan.gov.br/assets/arquivos/soros-e-vacinas/soros/24%20BULA%20SORO%20ANTIESCORPIÔNICO%20-%20PACIENTE.pdf
https://butantan.gov.br/assets/arquivos/...
]). For moderate cases, patients with signs of intense local pain associated with some manifestations are considered, thus, two to three vials of antivenom are administered. In severe cases, with the presence of more intense and severe local and systemic signs related to the respiratory and cardiovascular systems, four to six vials of antivenom are recommended [1515. Ministério da Saúde do Brasil. Guia de vigilância em saúde [Internet]. 5th ed. Brasília: Ministério da Saúde; 2022. Available from: https://bvsms.saude.gov.br/bvs/publicacoes/guia_vigilancia_saude_5ed_rev_atual.pdf
https://bvsms.saude.gov.br/bvs/publicaco...
].

Additional treatments may also be necessary, such as vasodilators, anti-arrhythmic agents, and inotropes. Therefore, healthcare professionals must thoroughly understand the clinical presentation and management of T. serrulatus envenoming to ensure optimal patient outcomes [66. Pucca MB, Cerni FA, Pinheiro Junior EL, Bordon KCF, Amorim FG, Cordeiro FA, Longhim HT, Cremonez CM, Oliveira GH, Arantes EC. Tityus serrulatus venom--A lethal cocktail. Toxicon. 2015 Dec 15;108:272-84. doi: 10.1016/j.toxicon.2015.10.015.
https://doi.org/10.1016/j.toxicon.2015.1...
]. It is crucial to note that the use of antivenom should be based on clinical criteria, such as the severity of envenomation, rather than solely on the confirmation of a scorpion sting. Although antivenom is considered the mainstay of treatment for moderate and severe T. serrulatus envenoming, it is essential to understand that the use of heterologous antivenom has some limitations and can lead to adverse effects [1818. Pucca MB, Oliveira FN, Schwartz EF, Arantes EC, Lira-Da-Silva RM. Scorpionism and dangerous species of Brazil. In: Gopalakrishnakone P, Possani L, Schwartz EF, Rodríguez de la Vega R. Scorpion Venoms. Dordrecht: Springer Netherlands ; 2015. p. 299-324. ]. As such, a careful risk-benefit assessment should be made before administering antivenom.

Tityus serrulatus biology

Popularly known as the yellow scorpion, T. serrulatus epitomizes a highly specialized species adapted to tropical and subtropical Brazilian ecosystems. Belonging to the arachnid class within the subphylum Chelicerata, scorpions possess four pairs of appendages distributed along their segmented body, comprising the prosoma (cephalothorax) and the opisthosoma (abdomen and tail). T. serrulatus exhibits well-developed chelicerae and pedipalps in the anterior cephalothorax, pivotal in facilitating the feeding process. In the terminal section of the opisthosoma, referred to as the telson, the venom-secreting glands are housing the stinger, a specialized apparatus responsible for venom delivery. Additionally, T. serrulatus showcases a distinctive anatomical feature in the tail (Figure 2), characterized by diminutive tooth-like structures or serrations, which have warranted the species' designation of “serrulatus” [66. Pucca MB, Cerni FA, Pinheiro Junior EL, Bordon KCF, Amorim FG, Cordeiro FA, Longhim HT, Cremonez CM, Oliveira GH, Arantes EC. Tityus serrulatus venom--A lethal cocktail. Toxicon. 2015 Dec 15;108:272-84. doi: 10.1016/j.toxicon.2015.10.015.
https://doi.org/10.1016/j.toxicon.2015.1...
,1919. Lourenço WR. Back to Tityus serrulatus Lutz & Mello, 1922 (Scorpiones: Buthidae): new comments about an old species. J Venom Anim Toxins incl Trop Dis . 2022 Jul 13;28:e20220016. doi: 10.1590/1678-9199-JVATITD-2022-0016.
https://doi.org/10.1590/1678-9199-JVATIT...
,2020. Cologna CT, Marcussi S, Giglio JR, Soares AM, Arantes EC. Tityus serrulatus scorpion venom and toxins: an overview. protein and peptide letters. Protein Pept Lett. 2009;16(8):920-32. doi: 10.2174/092986609788923329.
https://doi.org/10.2174/0929866097889233...
].

Figure 2.
Tityus serrulatus scorpion. Tityus serrulatus, commonly measuring between 7-9 centimeters (approximately 2.75-3.5 inches) in length, is characterized by its brown to dark brown color. The species name "serrulatus" is derived from the Portuguese term "serrilha", which refers to the serrated feature in its tail, indicated by a red circle in the image, setting it apart as a distinctive anatomical hallmark [2121. Lourenço WR. What do we know about some of the most conspicuous scorpion species of the genus Tityus? A historical approach. J Venom Anim Toxins incl Trop Dis . 2015 un 10;21:20. doi: 10.1186/s40409-015-0016-9.
https://doi.org/10.1186/s40409-015-0016-...
].

Parthenogenesis, a form of asexual reproduction, emerges as a pivotal factor propelling the proliferation of T. serrulatus. Within this process, eggs undergo development without the need for fertilization, a relatively uncommon phenomenon in nature, albeit observed in select scorpion species. Despite reports of male T. serrulatus individuals, the extent of sexual reproduction in this species remains incompletely elucidated, as the preponderance of females strongly suggests a propensity towards parthenogenetic reproduction as the primary reproductive mode [2020. Cologna CT, Marcussi S, Giglio JR, Soares AM, Arantes EC. Tityus serrulatus scorpion venom and toxins: an overview. protein and peptide letters. Protein Pept Lett. 2009;16(8):920-32. doi: 10.2174/092986609788923329.
https://doi.org/10.2174/0929866097889233...
,2222. Braga-Pereira GF, Santos AJ. Asexual reproduction in a sexual population of the Brazilian yellow scorpion (Tityus serrulatus, Buthidae) as evidence of facultative parthenogenesis. J Arac. 2021;49:185-90. doi: 10.1636/JoA-S-20-001.
https://doi.org/10.1636/JoA-S-20-001...
].

Similar to other scorpion species, T. serrulatus showcases remarkable resilience during prolonged periods of food deprivation, with reports documenting individuals surviving up to 400 days without sustenance. Nevertheless, this endurance does not extend to the absence of water access, which emerges as a critical determinant for the species' sustenance and survival [2323. Pimenta RJG, Brandão-Dias PFP, Leal HG, Do Carmo AO, De Oliveira-Mendes BBR, Chávez-Olórtegui C, Kalapothakis E. Selected to survive and kill: Tityus serrulatus, the brazilian yellow scorpion. PLoS One. 2019 Apr 3;14(4):e0214075. doi: 10.1371/journal.pone.0214075.
https://doi.org/10.1371/journal.pone.021...
].

Consequently, the synergistic combination of asexual reproduction and resistance to starvation contributes to the rapid expansion of T. serrulatus populations, thereby extending their habitat range and heightening the potential for human encounters and associated incidents [2020. Cologna CT, Marcussi S, Giglio JR, Soares AM, Arantes EC. Tityus serrulatus scorpion venom and toxins: an overview. protein and peptide letters. Protein Pept Lett. 2009;16(8):920-32. doi: 10.2174/092986609788923329.
https://doi.org/10.2174/0929866097889233...
].

Neurotoxicity triggered by low molecular weight compounds

T. serrulatus venom is a highly intricate combination of various compounds. It serves as a valuable repository of small neurotoxic proteins (refer to Table 1), playing crucial roles in prey capture, defense against predators [2424. Gurevitz M, Karbat I, Cohen L, Ilan N, Kahn R, Turkov M, Stankiewicz M, Stühmer W, Dong K, Gordon D. The insecticidal potential of scorpion beta-toxins. Toxicon . 2007 Mar 15;49(4):473-89. doi: 10.1016/j.toxicon.2006.11.015.
https://doi.org/10.1016/j.toxicon.2006.1...
,2525. Guerrero-Vargas JA, Mourão CBF, Quintero-Hernández V, Possani LD, Schwartz EF. Identification and phylogenetic analysis of Tityus pachyurus and Tityus obscurus novel putative Na+- channel scorpion toxins. PLoS One . 2012;7(2):e30478. doi: 10.1371/journal.pone.0030478.
https://doi.org/10.1371/journal.pone.003...
], and interacting with diverse ionic channels in excitable membranes, contributing to their biological effects [2626. Cologna CT, Marcussi S, Giglio JR, Soares AM, Arantes EC. Tityus serrulatus scorpion venom and toxins: an overview. Protein Pept Lett. 2009;16:920-32. doi: 10.2174/092986609788923329.
https://doi.org/10.2174/0929866097889233...
].

Table 1.
Small neurotoxins found on Tityus serrulatus scorpion venom that target ion channels.

Voltage-gated Na+ channel toxins are the primary and highly reactive components responsible for the toxic effects of scorpion envenoming. These toxins are long-chain peptides and can be categorized into two classes: α- and β-scorpion neurotoxins [4141. Jover E, Martin-Moutot N, Couraud F, Rochat H. Binding of scorpion toxins to rat brain synaptosomal fraction. Effects of membrane potential, ions, and other neurotoxins. Biochemistry. 1980 Feb 5;19(3):463-7. doi: 10.1021/bi00544a010.
https://doi.org/10.1021/bi00544a010....
,4242. Gordon D, Savarin P, Gurevitz M, Zinn-Justin S. Functional anatomy of scorpion toxins affecting sodium channels. J Toxic Tox Rev. 1998;17(2):131-59. doi: 10.3109/15569549809009247
https://doi.org/10.3109/1556954980900924...
]. The α-toxins specifically bind to site three, located on extracellular loops S3-S4 of domain IV of the ion channel. This binding hinders or even blocks the inactivation mechanism of these channels, resulting in their prolonged activation [4343. Fontecilla-Camps JC, Habersetzer-Rochat C, Rochat H. Orthorhombic crystals and three-dimensional structure of the potent toxin II from the scorpion Androctonus australis Hector. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7443-7. doi: 10.1073/pnas.85.20.7443.
https://doi.org/10.1073/pnas.85.20.7443....
]. On the other hand, β-toxins bind to site four of the channel, immobilizing it and keeping it in the activated position [4444. Jonas P, Vogel W, Arantes EC, Giglio JR. Toxin gamma of the scorpion Tityus serrulatus modifies both activation and inactivation of sodium permeability of nerve membrane. Pflugers Arch. 1986;407(1):92-9. doi: 10.1007/BF00580727.
https://doi.org/10.1007/BF00580727....
,4545. Cestèle S, Catterall WA. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie. 2000 Sep-Oct;82(9-10):883-92. doi: 10.1016/s0300-9084(00)01174-3.
https://doi.org/10.1016/s0300-9084(00)01...
]. The α and β-toxins, such as Ts1-5, Ts17, Ts18, Ts26-28, and Ts30, have a specific affinity for Na+ channels, thereby modulating the activated channels. Some of these toxins, like Ts5, may also interfere with the permeability of K+ channels [4646. Marangoni S, Toyama MH, Arantes EC, Giglio JR, Da Silva CA, Carneiro EM, Gonçalves AA, Oliveira B. Amino acid sequence of TsTX-V, an alpha-toxin from Tityus serrulatus scorpion venom, and its effect on K+ permeability of beta-cells from isolated rat islets of Langerhans. Biochim Biophys Acta . 1995 Apr 13;1243(3):309-14. doi: 10.1016/0304-4165(94)00142-k.
https://doi.org/10.1016/0304-4165(94)001...
].

K+ channel neurotoxins, including Ts6-9, Ts11, Ts12, Ts15, Ts16, and Ts19-25, exhibit inhibitory or blocking effects on K+ channels [2626. Cologna CT, Marcussi S, Giglio JR, Soares AM, Arantes EC. Tityus serrulatus scorpion venom and toxins: an overview. Protein Pept Lett. 2009;16:920-32. doi: 10.2174/092986609788923329.
https://doi.org/10.2174/0929866097889233...
,4747. Nencioni ALA, Beraldo Neto E, De Freitas LA, Dorce VAC. Effects of brazilian scorpion venoms on the central nervous system. J Venom Anim Toxins incl Trop Dis . 2018 Jan 23;24:3. doi: 10.1186/s40409-018-0139-x.
https://doi.org/10.1186/s40409-018-0139-...
]. Specifically, Ts11-13, which were described by Pimenta et al. [4848. Pimenta AMC, Legros C, Almeida FM, Mansuelle P, De Lima ME, Bougis PE, Martin-Eauclaire MF. Novel structural class of four disulfide-bridged peptides from Tityus serrulatus venom. Biochem Biophys Res Commun. 2003 Feb 21;301(4):1086-92. doi: 10.1016/s0006-291x(03)00082-2.
https://doi.org/10.1016/s0006-291x(03)00...
], are 29 amino-acid peptide sequences that contain four disulfide bridges. Another noteworthy toxin is Ts32, as reported by De Oliveira et al. [4949. De Oliveira UC, Nishiyama Jr MY, Dos Santos MBV, Santos-da-Silva AP, Chalkidis HM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de-Azevedo ILM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One . 2018 Mar 21;13(3):e0193739. doi: 10.1371/journal.pone.0193739.
https://doi.org/10.1371/journal.pone.019...
]. Ts32 is a cell-penetrating peptide and represents the only Ca2+-specific toxin identified in T. serrulatus venom thus far. This particular toxin is capable of increasing intracellular Ca2+ release and holds promising biotechnological potential for the treatment of cancer cells [4040. Oliveira-Mendes BBR, Horta CCR, Do Carmo AO, Biscoto GL, Sales-Medina DF, Leal HG, Brandão-Dias PFP, Miranda SEM, Aguiar CJ, Cardoso VN, De Barros ALB, Chávez-Olortégui C, Leite MF, Kalapothakis E. CPP-Ts: a new intracellular calcium channel modulator and a promising tool for drug delivery in cancer cells. Sci Rep. 2018 Oct 3;8(1):14739. doi: 10.1038/s41598-018-33133-3.
https://doi.org/10.1038/s41598-018-33133...
,4949. De Oliveira UC, Nishiyama Jr MY, Dos Santos MBV, Santos-da-Silva AP, Chalkidis HM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de-Azevedo ILM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One . 2018 Mar 21;13(3):e0193739. doi: 10.1371/journal.pone.0193739.
https://doi.org/10.1371/journal.pone.019...
].

Verano-Braga et al. [5050. Verano-Braga T, Rocha-Resende C, Silva DM, Ianzer D, Martin-Eauclaire MF, Bougis PE, De Lima ME, Santos RAS, Pimenta AMC. Tityus serrulatus Hypotensins: a new family of peptides from scorpion venom. Biochem Biophys Res Commun . 2008 Jul 4;371(3):515-20. doi: 10.1016/j.bbrc.2008.04.104.
https://doi.org/10.1016/j.bbrc.2008.04.1...
] employed a proteomic approach to identify a novel group of peptides within T. serrulatus venom, referred to as hypotensins. These peptides are characterized by their random-coiled linear structure and possess a similar amino acid signature to bradykinin-potentiating peptides. The study revealed that hypotensins exhibit hypotensive effects and induce endothelium-dependent vasorelaxation, which is mediated by the release of nitric oxide (NO) [5050. Verano-Braga T, Rocha-Resende C, Silva DM, Ianzer D, Martin-Eauclaire MF, Bougis PE, De Lima ME, Santos RAS, Pimenta AMC. Tityus serrulatus Hypotensins: a new family of peptides from scorpion venom. Biochem Biophys Res Commun . 2008 Jul 4;371(3):515-20. doi: 10.1016/j.bbrc.2008.04.104.
https://doi.org/10.1016/j.bbrc.2008.04.1...
].

Short-chain toxins found in T. serrulatus venom consist of 30-32 amino acid residues, primarily held together by three disulfide bridges, and this family of peptides constitutes a significant group that primarily targets K+ channels [2626. Cologna CT, Marcussi S, Giglio JR, Soares AM, Arantes EC. Tityus serrulatus scorpion venom and toxins: an overview. Protein Pept Lett. 2009;16:920-32. doi: 10.2174/092986609788923329.
https://doi.org/10.2174/0929866097889233...
]. These toxins exhibit diverse biological activities, including but not limited to bradykinin-potentiating effects, antimicrobial properties, hemolytic activity, hypotensive effects (hypotensins), immune-modulating capabilities, and hormone-like activities [5151. Pimenta AMC, De Lima ME. Small peptides, big world: biotechnological potential in neglected bioactive peptides from arthropod venoms. J Pept Sci. 2005 Nov;11(11):670-6. doi: 10.1002/psc.701.
https://doi.org/10.1002/psc.701....
]. Their wide range of biological activities highlights their versatility and potential for various applications.

Regarding the omic analysis of T. serrulatus venom, there have been two notable reports involving transcriptomic and proteomic analyses. The more recent study, conducted by De Oliveira et al. [4949. De Oliveira UC, Nishiyama Jr MY, Dos Santos MBV, Santos-da-Silva AP, Chalkidis HM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de-Azevedo ILM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One . 2018 Mar 21;13(3):e0193739. doi: 10.1371/journal.pone.0193739.
https://doi.org/10.1371/journal.pone.019...
], identified new peptides capable of modulating ion channels. This analysis shed light on previously unknown components of the venom.

Additionally, T. serrulatus venom has been found to contain various low molecular weight components, which include antimicrobial peptides, hypotensins (previously mentioned), C-type natriuretic peptides, and non-disulfide peptides with angiotensin-converting enzyme inhibitor activity [5252. Kalapothakis Y, Miranda K, Pereira AH, Witt ASA, Marani C, Martins AP, Leal HG, Campos-Júnior E, Pimenta AMC, Borges A, Chávez-Olórtegui C, Kalapothakis E. Novel components of Tityus serrulatus venom: A transcriptomic approach. Toxicon . 2021 Jan 15;189:91-104. doi: 10.1016/j.toxicon.2020.11.001.
https://doi.org/10.1016/j.toxicon.2020.1...
]. These findings demonstrate the diverse range of bioactive molecules present in T. serrulatus venom and their potential for various therapeutic applications.

According to the transcriptomic analysis conducted by Kalapothakis et al. [5252. Kalapothakis Y, Miranda K, Pereira AH, Witt ASA, Marani C, Martins AP, Leal HG, Campos-Júnior E, Pimenta AMC, Borges A, Chávez-Olórtegui C, Kalapothakis E. Novel components of Tityus serrulatus venom: A transcriptomic approach. Toxicon . 2021 Jan 15;189:91-104. doi: 10.1016/j.toxicon.2020.11.001.
https://doi.org/10.1016/j.toxicon.2020.1...
], the most abundant toxin types in T. serrulatus venom are Na+ and K+ channel toxins, accounting for 45.24% and 38.10% of the total toxins, respectively. In addition, nine novel putative toxin sequences (Ts33-Ts41) were identified, being that, Ts33-35, Ts37, and Ts38 possess the conserved Toxin_3 domain, suggesting their potential action on Na+ channels. Ts36, Ts39, and Ts40 do not exhibit this domain, but show similarities, respectively, to toxins such as JAW07013.1 from T. serrulatus, AGT39262.1 from Mesobuthus eupeus, and ADY39581.1 from Hottentotta judaicus, respectively [5252. Kalapothakis Y, Miranda K, Pereira AH, Witt ASA, Marani C, Martins AP, Leal HG, Campos-Júnior E, Pimenta AMC, Borges A, Chávez-Olórtegui C, Kalapothakis E. Novel components of Tityus serrulatus venom: A transcriptomic approach. Toxicon . 2021 Jan 15;189:91-104. doi: 10.1016/j.toxicon.2020.11.001.
https://doi.org/10.1016/j.toxicon.2020.1...
].

High molecular weight compounds and how they could interfere in the envenoming

Several studies have been conducted to investigate the venom of T. serrulatus, using transcriptomes and proteomics techniques. These studies have significantly contributed to our understanding of the venom's composition. Most proteins present in the T. serrulatus venom are neurotoxins with action on ion channels and molecular weights lower than 14 kDa. However, the venom also has many enzymes and other components with molecular weights higher than 14 kDa (~20-25%, Figure 3 A-E ), still little characterized. Therefore, this work highlights the main venom compounds with molecular weight higher than 14 kDa.

Figure 3
Tricine-SDS-PAGE and densitometry of Tityus serrulatus scorpion venom (TsV). (A) Tricine-SDS-PAGE profiles. Lanes 1 and 2: non-reduced TsV, 30 and 100 µg, respectively; Lanes 3 and 4: molecular weight markers (MW); Lanes 5 and 6: reduced TsV, 30 and 100 µg, respectively. (B-E) Densitometry of the bands obtained from Tricine-SDS-PAGE. (B-C) Densitometry showing the molecular weight of the standards. (D-E) Densitometry showing the percentage of the non-reduced and reduced TsV bands, respectively. Tricine-SDS-PAGE was performed as described by Schägger and von Jagow [5353. Schägger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368-79. doi: 10.1016/0003-2697(87)90587-2.
https://doi.org/10.1016/0003-2697(87)905...
]. The densitometry analysis was performed using a densitometer Image Lab™ Software.

Notably, Alvarenga et al. [5454. Alvarenga ER, Mendes TM, Magalhães BF, Siqueira FF, Dantas AE, Barroca TM, Horta CC, Kalapothakis E. Transcriptome analysis of the Tityus serrulatus scorpion venom gland. Open J Gen. 2012;2:210-20. doi: 10.4236/ojgen.2012.24027.
https://doi.org/10.4236/ojgen.2012.24027...
] identified various high molecular weight components using transcriptomic analysis, including antarease, zinc metalloproteases, proteins rich in cysteine, hyaluronidase, and phospholipase A2 (PLA2). Similarly, De Oliveira et al. [4949. De Oliveira UC, Nishiyama Jr MY, Dos Santos MBV, Santos-da-Silva AP, Chalkidis HM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de-Azevedo ILM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One . 2018 Mar 21;13(3):e0193739. doi: 10.1371/journal.pone.0193739.
https://doi.org/10.1371/journal.pone.019...
] identified metalloproteinase, hyaluronidase, cysteine-rich secretory protein (CRISP), PLA2, phospholipase C (PLC), and phospholipase D (PLD) through their research. Additionally, Amorim et al. [88. Amorim FG, Longhim HT, Cologna CT, Degueldre M, De Pauw E, Quinton L, Arantes EC. Proteome of fraction from Tityus serrulatus venom reveals new enzymes and toxins. J Venom Anim Toxins incl Trop Dis. 2019 Apr 18;25:e148218. doi: 10.1590/1678-9199-JVATITD-1482-18.
https://doi.org/10.1590/1678-9199-JVATIT...
] studies revealed the presence of metalloproteinases, CRISPs, phospholipases, and phosphodiesterases (PDE).

Recently, Kalapothakis et al. [5252. Kalapothakis Y, Miranda K, Pereira AH, Witt ASA, Marani C, Martins AP, Leal HG, Campos-Júnior E, Pimenta AMC, Borges A, Chávez-Olórtegui C, Kalapothakis E. Novel components of Tityus serrulatus venom: A transcriptomic approach. Toxicon . 2021 Jan 15;189:91-104. doi: 10.1016/j.toxicon.2020.11.001.
https://doi.org/10.1016/j.toxicon.2020.1...
] reported a novel transcriptomic approach that unveiled the presence of new components in the venom of T. serrulatus, including chitinase, peptidyl-α-hydroxyglycine α-amidating lyase (PAL), peptidyl-glycine α-amidating monooxygenase A (PAM), and peptidylglycine α-hydroxylating monooxygenase (PHM). These findings shed light on the diverse array of bioactive molecules present in T. serrulatus venom.

Metalloproteases

Regarding proteases, metalloproteases are the most commonly present in animal venoms [5555. Carmo AO, Oliveira-Mendes BBR, Horta CCR, Magalhães BF, Dantas AE, Chaves LM, Chávez-Olórtegui C, Kalapothakis E. Molecular and functional characterization of metalloserrulases, new metalloproteases from the Tityus serrulatus venom gland. Toxicon . 2014 Nov;90:45-55. doi: 10.1016/j.toxicon.2014.07.014.
https://doi.org/10.1016/j.toxicon.2014.0...
] and need a cofactor to perform the proteolytic activity, such as bivalent ions [5656. Ortiz E, Rendón-Anaya M, Rego SC, Schwartz EF, Possani LD. Antarease-like Zn-metalloproteases are ubiquitous in the venom of different scorpion genera. Biochim Biophys Acta . 2014 Jun;1840(6):1738-46. doi: 10.1016/j.bbagen.2013.12.012.
https://doi.org/10.1016/j.bbagen.2013.12...
,5757. Markland Jr FS, Swenson S. Snake venom metalloproteinases. Toxicon . 2013 Feb;62:3-18. doi: 10.1016/j.toxicon.2012.09.004.
https://doi.org/10.1016/j.toxicon.2012.0...
]. Some studies have identified the presence of metalloproteases in the venom of T. serrulatus. The study by Fletcher et al. [5858. Fletcher Jr PL, Fletcher MD, Weninger K, Anderson TE, Martin BM. Vesicle-associated membrane protein (VAMP) cleavage by a new metalloprotease from the brazilian scorpion Tityus serrulatus. J Biol Chem. 2010 Mar 5;285(10):7405-16. doi: 10.1074/jbc.M109.028365.
https://doi.org/10.1074/jbc.M109.028365....
] characterized a new metalloproteinase called antarease, which cleaves vesicle-associated membrane protein 2 (VAMP2) close to the transmembrane domain. VAMP2 is a protein that, along with the synaptosome-associated protein of 25 kDa (SNAP25) and Syntaxin, is essential for the release of a variety of biologically active molecules via exocytosis [5959. Kasai H, Takahashi N, Tokumaru H. Distinct initial SNARE configurations underlying the diversity of exocytosis. Physiol Rev. 2012 Oct;92(4):1915-64. doi: 10.1152/physrev.00007.2012.
https://doi.org/10.1152/physrev.00007.20...
]. Zornetta et al. [6060. Zornetta I, Scorzeto M, Mendes Dos Reis PV, De Lima ME, Montecucco C, Megighian A, Rossetto O. Electrophysiological characterization of the antarease metalloprotease from Tityus serrulatus venom. Toxins (Basel) . 2017 Feb 27;9(3):81. doi: 10.3390/toxins9030081.
https://doi.org/10.3390/toxins9030081....
] produced a recombinant antarease from T. serrulatus venom and observed that it caused paralysis of the neuromuscular junction of insects and mammals, and they also indicated that this enzyme could act in voltage-gated calcium channel, inactivating it. Venancio et al. [6161. Venancio EJ, Portaro FCV, Kuniyoshi AK, Carvalho DC, Pidde-Queiroz G, Tambourgi DV. Enzymatic properties of venoms from brazilian scorpions of Tityus genus and the neutralisation potential of therapeutical antivenoms. Toxicon . 2013 Jul;69:180-90. doi: 10.1016/j.toxicon.2013.02.012.
https://doi.org/10.1016/j.toxicon.2013.0...
] identified dynorphin-cleaving metalloproteinases that may be antarease-like molecules.

The action of metalloproteases may be related to the acute pancreatitis that occurs in scorpion stings [66. Pucca MB, Cerni FA, Pinheiro Junior EL, Bordon KCF, Amorim FG, Cordeiro FA, Longhim HT, Cremonez CM, Oliveira GH, Arantes EC. Tityus serrulatus venom--A lethal cocktail. Toxicon. 2015 Dec 15;108:272-84. doi: 10.1016/j.toxicon.2015.10.015.
https://doi.org/10.1016/j.toxicon.2015.1...
], which has already been reported. Machado and Silveira-Filho [6262. Machado JC, Silveira-Filho JF. Indução de pancreatite hemorrágica aguda no cão por veneno escorpiônico de T. serrulatus. Mem Inst Butantan. 1976;40-41:1-9. ] showed hemorrhagic pancreatitis caused by the T. serrulatus toxin in dogs, while Novaes et al. [6363. Novaes G, Cabral AP, De Falco CN, De Queiroz AC. Acute pancreatitis induced by scorpion toxin, tityustoxin. Histopathological study in rats. Arq Gastroenterol. 1989 Jan-Jun;26(1-2):9-12. ] observed acute pancreatitis in rats after the injection of T. serrulatus toxin. Gallagher, Sankaran, and Williams [6464. Gallagher S, Sankaran H, Williams JA. Mechanism of scorpion toxin-induced enzyme secretion in rat pancreas. Gastroenterology. 1981 May;80(5 pt 1):970-3. ] demonstrated that the scorpion venom indirectly prompted the release of amylase by acting on nerve endings to release neurotransmitters.

Carmo et al. [5555. Carmo AO, Oliveira-Mendes BBR, Horta CCR, Magalhães BF, Dantas AE, Chaves LM, Chávez-Olórtegui C, Kalapothakis E. Molecular and functional characterization of metalloserrulases, new metalloproteases from the Tityus serrulatus venom gland. Toxicon . 2014 Nov;90:45-55. doi: 10.1016/j.toxicon.2014.07.014.
https://doi.org/10.1016/j.toxicon.2014.0...
] identified ten proteases named metalloserrulases (TsMs), which showed similarities (from 46 to 95%) with the antarease sequence. These TsMs have a zinc-binding site and a conserved methionine, a common structure in the metzincin family, except for TsMs 10, which presents a great similarity with gluzincins and M13 metalloprotease families [5555. Carmo AO, Oliveira-Mendes BBR, Horta CCR, Magalhães BF, Dantas AE, Chaves LM, Chávez-Olórtegui C, Kalapothakis E. Molecular and functional characterization of metalloserrulases, new metalloproteases from the Tityus serrulatus venom gland. Toxicon . 2014 Nov;90:45-55. doi: 10.1016/j.toxicon.2014.07.014.
https://doi.org/10.1016/j.toxicon.2014.0...
]. Metzincins are related to proteases A Disintegrin and Metalloprotease (ADAM) family, which in snakes are directly involved with the envenoming and blood clotting process [6565. Seals DF, Courtneidge SA. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev. 2003 Jan 1;17(1):7-30. doi: 10.1101/gad.1039703.
https://doi.org/10.1101/gad.1039703....
]. Gluzincins are angiotensin-converting enzyme-like, and are involved in biological processes related to the conversion of angiotensin I into II [4949. De Oliveira UC, Nishiyama Jr MY, Dos Santos MBV, Santos-da-Silva AP, Chalkidis HM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de-Azevedo ILM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One . 2018 Mar 21;13(3):e0193739. doi: 10.1371/journal.pone.0193739.
https://doi.org/10.1371/journal.pone.019...
,6666. Hooper NM. Families of zinc metalloproteases. FEBS Lett. 1994 Oct 31;354(1):1-6. doi: 10.1016/0014-5793(94)01079-x.
https://doi.org/10.1016/0014-5793(94)010...
]. Additionally, Carmo et al. [5555. Carmo AO, Oliveira-Mendes BBR, Horta CCR, Magalhães BF, Dantas AE, Chaves LM, Chávez-Olórtegui C, Kalapothakis E. Molecular and functional characterization of metalloserrulases, new metalloproteases from the Tityus serrulatus venom gland. Toxicon . 2014 Nov;90:45-55. doi: 10.1016/j.toxicon.2014.07.014.
https://doi.org/10.1016/j.toxicon.2014.0...
] also reported that these proteases are involved in the maturation process of other toxins present in the venom, cleaving near arginine and lysine residues, which is also demonstrated by Martin-Eauclaire et al. [6767. Martin-Eauclaire MF, Céard B, Ribeiro AM, Diniz CR, Rochat H, Bougis PE. Biochemical, pharmacological and genomic characterisation of Ts IV, an alpha-toxin from the venom of the South American scorpion Tityus serrulatus. FEBS Lett. 1994 Apr 4;342(2):181-4. doi: 10.1016/0014-5793(94)80496-6.
https://doi.org/10.1016/0014-5793(94)804...
] concerning the median lethal dose (LD50) of different venom toxins.

The number of putative components in the transcriptome of T. serrulatus representing metalloproteases is considerable (~30%) [4949. De Oliveira UC, Nishiyama Jr MY, Dos Santos MBV, Santos-da-Silva AP, Chalkidis HM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de-Azevedo ILM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One . 2018 Mar 21;13(3):e0193739. doi: 10.1371/journal.pone.0193739.
https://doi.org/10.1371/journal.pone.019...
,5454. Alvarenga ER, Mendes TM, Magalhães BF, Siqueira FF, Dantas AE, Barroca TM, Horta CC, Kalapothakis E. Transcriptome analysis of the Tityus serrulatus scorpion venom gland. Open J Gen. 2012;2:210-20. doi: 10.4236/ojgen.2012.24027.
https://doi.org/10.4236/ojgen.2012.24027...
] and in the proteome as well (~20%) [88. Amorim FG, Longhim HT, Cologna CT, Degueldre M, De Pauw E, Quinton L, Arantes EC. Proteome of fraction from Tityus serrulatus venom reveals new enzymes and toxins. J Venom Anim Toxins incl Trop Dis. 2019 Apr 18;25:e148218. doi: 10.1590/1678-9199-JVATITD-1482-18.
https://doi.org/10.1590/1678-9199-JVATIT...
]. However, a significantly larger amount of venom is required to detect any proteolytic activity, compared to snake venoms, for example [5555. Carmo AO, Oliveira-Mendes BBR, Horta CCR, Magalhães BF, Dantas AE, Chaves LM, Chávez-Olórtegui C, Kalapothakis E. Molecular and functional characterization of metalloserrulases, new metalloproteases from the Tityus serrulatus venom gland. Toxicon . 2014 Nov;90:45-55. doi: 10.1016/j.toxicon.2014.07.014.
https://doi.org/10.1016/j.toxicon.2014.0...
].

Although metalloproteases share the same phylogenetic origin [4949. De Oliveira UC, Nishiyama Jr MY, Dos Santos MBV, Santos-da-Silva AP, Chalkidis HM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de-Azevedo ILM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One . 2018 Mar 21;13(3):e0193739. doi: 10.1371/journal.pone.0193739.
https://doi.org/10.1371/journal.pone.019...
,5555. Carmo AO, Oliveira-Mendes BBR, Horta CCR, Magalhães BF, Dantas AE, Chaves LM, Chávez-Olórtegui C, Kalapothakis E. Molecular and functional characterization of metalloserrulases, new metalloproteases from the Tityus serrulatus venom gland. Toxicon . 2014 Nov;90:45-55. doi: 10.1016/j.toxicon.2014.07.014.
https://doi.org/10.1016/j.toxicon.2014.0...
], Figure 4 illustrates a comparison among various metalloproteases, including antarease, antarease-like, metalloprotease, and metalloserrulases. While there are similarities between some of them, only one amino acid residue is common to all of these proteases, with few displaying any significant similarity.

Figure 4.
Multiple align among metalloproteases from Tityus serrulatus scorpion venom. Align among antarease (P86392), antarease-like (V9Z9A3), metalloprotease (P85842) metalloserrulase 2 (A0A076LAV6), 3 (A0A076L3I0), 4 (A0A076L332), 5 (A0A076L7Z5), 6 (A0A076L882), 7 (A0A076LAV7), 8 (A0A076L3I6), 9 (A0A076L339), 11 (A0A1S5QN60), 12 (A0A1S5QN59), 13 (A0A1S5QN77), 14 (A0A1S5QN54), 15 (A0A1S5QN58), 16 (A0A1S5QN57), 17 (A0A1S5QNT5), 18 (A0A1S5QN52), 19 (A0A1S5QN56) and 20 (A0A1S5QN67). Red ID represents data from UniProtKB/Swiss-Prot, while black ID represents data from UniProtKB/TrEMBL. The purple box represents the signal peptide. Amino acid residues are indicated in black. *: fully conserved residues; :: residues with very similar properties; .: residues with dissimilar properties [6868. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489. doi: 10.1093/nar/gkaa1100.
https://doi.org/10.1093/nar/gkaa1100....
].

Serine proteases

Although gangrene, hemolysis, and necrosis are infrequently documented in human envenomation cases caused by T. serrulatus, these manifestations can occur in animals, indicating the presence of proteolytic enzymes within the venom [6969. De Magalhães O. Escorpionismo: IV memória. Mon Inst Oswaldo Cruz. 1946;3:220. ]. Almeida et al. [7070. Almeida FM, Pimenta AMC, De Figueiredo SG, Santoro MM, Martin-Eauclaire MF, Diniz CR, De Lima ME. Enzymes with gelatinolytic activity can be found in Tityus bahiensis and Tityus serrulatus venoms. Toxicon . 2002 Jul;40(7):1041-5. doi: 10.1016/s0041-0101(02)00084-3.
https://doi.org/10.1016/s0041-0101(02)00...
] identified enzymes that provided gelatinolytic activities in vitro, which are potentially serine proteases, because they were inhibited by phenylmethylsulphonyl fluoride (PMSF), a serine protease inhibitor, and their optimal pH was eight, the same for serine proteases [7171. Walsh KA, Wilcox PE. Serine proteases. Methods in Enzymology [Internet]. Elsevier; 1970 [cited 2023 Jun 23]. p. 31-41. Available from: https://linkinghub.elsevier.com/retrieve/pii/0076687970190057
https://linkinghub.elsevier.com/retrieve...
]. Amorim et al. [88. Amorim FG, Longhim HT, Cologna CT, Degueldre M, De Pauw E, Quinton L, Arantes EC. Proteome of fraction from Tityus serrulatus venom reveals new enzymes and toxins. J Venom Anim Toxins incl Trop Dis. 2019 Apr 18;25:e148218. doi: 10.1590/1678-9199-JVATITD-1482-18.
https://doi.org/10.1590/1678-9199-JVATIT...
] also detected serine protease activity using the Fraction I from T. serrulatus. It is important to emphasize that this component was only identified in venom transcriptomics and proteomics [4949. De Oliveira UC, Nishiyama Jr MY, Dos Santos MBV, Santos-da-Silva AP, Chalkidis HM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de-Azevedo ILM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One . 2018 Mar 21;13(3):e0193739. doi: 10.1371/journal.pone.0193739.
https://doi.org/10.1371/journal.pone.019...
].

Hyaluronidases

Hyaluronidases are enzymes able to degrade hyaluronic acid, the major component of the extracellular [7272. Kreil G. Hyaluronidases - a group of neglected enzymes. Protein Sci. 1995 Sep;4(9):1666-9. doi: 10.1002/pro.5560040902.
https://doi.org/10.1002/pro.5560040902....
], and are involved in several physiological and pathological activities such as fertilization, wound healing, embryogenesis, angiogenesis, diffusion of toxins and drugs, metastasis, pneumonia, sepsis, bacteremia, meningitis, inflammation, allergy, and others [7373. Bordon KCF, Wiezel GA, Amorim FG, Arantes EC. Arthropod venom Hyaluronidases: biochemical properties and potential applications in medicine and biotechnology. J Venom Anim Toxins incl Trop Dis . 2015 Oct 22;21:43. doi: 10.1186/s40409-015-0042-7.
https://doi.org/10.1186/s40409-015-0042-...
]. Being present in many animal venoms [7373. Bordon KCF, Wiezel GA, Amorim FG, Arantes EC. Arthropod venom Hyaluronidases: biochemical properties and potential applications in medicine and biotechnology. J Venom Anim Toxins incl Trop Dis . 2015 Oct 22;21:43. doi: 10.1186/s40409-015-0042-7.
https://doi.org/10.1186/s40409-015-0042-...
] and widely identified in scorpions [6161. Venancio EJ, Portaro FCV, Kuniyoshi AK, Carvalho DC, Pidde-Queiroz G, Tambourgi DV. Enzymatic properties of venoms from brazilian scorpions of Tityus genus and the neutralisation potential of therapeutical antivenoms. Toxicon . 2013 Jul;69:180-90. doi: 10.1016/j.toxicon.2013.02.012.
https://doi.org/10.1016/j.toxicon.2013.0...
,7474. Diniz CR, Gonçalves JM. Separation of biologically active components from scorpion venoms by zone electrophoresis. Biochim Biophys Acta . 1960 Jul 15:41:470-7. doi: 10.1016/0006-3002(60)90044-5.
https://doi.org/10.1016/0006-3002(60)900...
,7575. Possani LD, Alagón AC, Fletcher Jr PL, Erickson BW. Purification and properties of mammalian toxins from the venom of Brazilian scorpion Tityus serrulatus Lutz and Mello. Arch Biochem Biophys. 1977 Apr 30;180(2):394-403. doi: 10.1016/0003-9861(77)90053-4.
https://doi.org/10.1016/0003-9861(77)900...
], their major role is the facilitation of venom spread in the victim's tissues [7676. Xu X, Wang XS, Xi XT, Liu J, Huang JT, Lu ZX. Purification and partial characterization of hyaluronidase from five pace snake (Agkistrodon acutus) venom. Toxicon . 1982;20(6):973-81. doi: 10.1016/0041-0101(82)90099-x.
https://doi.org/10.1016/0041-0101(82)900...
].

Hyaluronidase was isolated from T. serrulatus venom by Pessini et al. [7777. Pessini AC, Takao TT, Cavalheiro EC, Vichnewski W, Sampaio SV, Giglio JR, Arantes EC. A hyaluronidase from Tityus serrulatus scorpion venom: isolation, characterization and inhibition by flavonoids. Toxicon . 2001 Oct;39(10):1495-504. doi: 10.1016/s0041-0101(01)00122-2.
https://doi.org/10.1016/s0041-0101(01)00...
], which can confirm the spreading effect performed by this enzyme. Furthermore, the presence of this component may be related to the lethality of the venom. Horta et al. [7878. Horta CCR, Magalhães BF, Oliveira-Mendes BBR, Do Carmo AO, Duarte CG, Felicori LF, Machado-de-Ávila RA, Chávez-Olórtegui C, Kalapothakis E. Molecular, immunological, and biological characterization of Tityus serrulatus venom hyaluronidase: new insights into its role in envenomation. PLoS Negl Trop Dis. 2014 Feb 13;8(2):e2693. doi: 10.1371/journal.pntd.0002693.
https://doi.org/10.1371/journal.pntd.000...
] produced an anti-hyaluronidase antibody from T. serrulatus, which inhibited the enzyme's action both in vitro and in vivo, effectively reducing the venom's toxicity. The same antibody was used by Oliveira-Mendes et al. [7979. Oliveira-Mendes BBR, Miranda SEM, Sales-Medina DF, Magalhães BF, Kalapothakis Y, De Souza RP, Cardoso VN, De Barros ALB, Guerra-Duarte C, Kalapothakis E, Horta CCR. Inhibition of Tityus serrulatus venom hyaluronidase affects venom biodistribution. PLoS Negl Trop Dis . 2019 Apr 19;13(4):e0007048. doi: 10.1371/journal.pntd.0007048.
https://doi.org/10.1371/journal.pntd.000...
], who demonstrated that hyaluronidase not only played a crucial role in venom spreading but also inhibiting it, resulting in a delay in venom biodistribution from the bloodstream to target organs (e.g., lungs and liver), being this inhibitor a potential and a valuable first-aid agent for this type of envenoming.

The structures of hyaluronidases are already deposited in the UniProtKB database [6868. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489. doi: 10.1093/nar/gkaa1100.
https://doi.org/10.1093/nar/gkaa1100....
], demonstrating that the six deposited sequences show high identity among them (> 79%) (Figure 5 A ). Additionally, the molecular model of hyaluronidases exhibits secondary structures, such as α-helix and β-sheets (Figure 5 B-C ), indicating the presence of different epitopes distributed throughout the molecule's structure, as demonstrated by Horta et al. [7878. Horta CCR, Magalhães BF, Oliveira-Mendes BBR, Do Carmo AO, Duarte CG, Felicori LF, Machado-de-Ávila RA, Chávez-Olórtegui C, Kalapothakis E. Molecular, immunological, and biological characterization of Tityus serrulatus venom hyaluronidase: new insights into its role in envenomation. PLoS Negl Trop Dis. 2014 Feb 13;8(2):e2693. doi: 10.1371/journal.pntd.0002693.
https://doi.org/10.1371/journal.pntd.000...
]. In this study, the authors performed a systematic mapping of continuous epitopes which were recognized by anti-hyaluronidase serum with three antigenic regions common to both hyaluronidases TsHyal-1 and TsHyal-2 and could identify among these regions, the active site D101 and E103. Also, the three antigenic regions were mapped onto the 3D models of both hyaluronidases and were found to surround the active sites, which could indicate that the neutralization of Ts venom by anti-hyaluronidase serum was a result of the binding of serum antibodies to specific residues in the Ts hyaluronidase active site [7878. Horta CCR, Magalhães BF, Oliveira-Mendes BBR, Do Carmo AO, Duarte CG, Felicori LF, Machado-de-Ávila RA, Chávez-Olórtegui C, Kalapothakis E. Molecular, immunological, and biological characterization of Tityus serrulatus venom hyaluronidase: new insights into its role in envenomation. PLoS Negl Trop Dis. 2014 Feb 13;8(2):e2693. doi: 10.1371/journal.pntd.0002693.
https://doi.org/10.1371/journal.pntd.000...
].

Figure 5.
Structures of hyaluronidase from Tityus serrulatus scorpion venom. (A) Multiple align among hyaluronidases P85841, W0HFN9, A0A218QWX6, A0A218QX64, A0A7S8RGE3, A0A218QX67 and A0A7S8MU79. Red ID represents data from UniProtKB/Swiss-Prot, while black ID represents data from UniProtKB/TrEMBL. The purple box represents the signal peptide. Amino acid residues are indicated in black. *: fully conserved residues; :: residues with very similar properties; .: residues with dissimilar properties [6868. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489. doi: 10.1093/nar/gkaa1100.
https://doi.org/10.1093/nar/gkaa1100....
]. (B) Front and (C) back view of hyaluronidase-1 (P85841) structure, based on the amino acid sequence using Alphafold [8080. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Žídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022 Jan 7;50(D1):D439-D444. doi: 10.1093/nar/gkab1061.
https://doi.org/10.1093/nar/gkab1061....
,8181. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2.
https://doi.org/10.1038/s41586-021-03819...
]. α-helix and β-sheet are represented in pink and yellow, respectively.

Phospholipases

Phospholipases are enzymes that hydrolyze steric bonds of phospholipids, that could infer in the membrane function and structure [8282. Rosenberg P. Phospholipases. In: Shier WT, Mebs D, editors. Handbook of Toxinology. 1st ed. CRC Press; 1990. p. 67-277. ]. They can be involved in phospholipid metabolism, signal transduction, or other cellular functions, or extracellular when they are present in mammalian pancreatic juice and animal venom and act as platelet aggregators in the blood or as catalysts in the release of arachidonic acid, triggering inflammatory reactions [8383. Arni RK, Ward RJ. Phospholipase A2-a structural review. Toxicon . 1996 Aug;34(8):827-41. doi: 10.1016/0041-0101(96)00036-0.
https://doi.org/10.1016/0041-0101(96)000...
].

Although PLA2 activity was not detected in fraction I of T. serrulatus venom, Amorim et al. [88. Amorim FG, Longhim HT, Cologna CT, Degueldre M, De Pauw E, Quinton L, Arantes EC. Proteome of fraction from Tityus serrulatus venom reveals new enzymes and toxins. J Venom Anim Toxins incl Trop Dis. 2019 Apr 18;25:e148218. doi: 10.1590/1678-9199-JVATITD-1482-18.
https://doi.org/10.1590/1678-9199-JVATIT...
] detected phospholipases in the venom proteome. In addition, De Oliveira et al. [4949. De Oliveira UC, Nishiyama Jr MY, Dos Santos MBV, Santos-da-Silva AP, Chalkidis HM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de-Azevedo ILM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One . 2018 Mar 21;13(3):e0193739. doi: 10.1371/journal.pone.0193739.
https://doi.org/10.1371/journal.pone.019...
] observed the presence of transcripts of PLA2, PLC, and PLD, without proteomic evidence.

Cysteine-rich secretory protein

CRISP was also identified in T. serrulatus venom, and its role is still unclear [88. Amorim FG, Longhim HT, Cologna CT, Degueldre M, De Pauw E, Quinton L, Arantes EC. Proteome of fraction from Tityus serrulatus venom reveals new enzymes and toxins. J Venom Anim Toxins incl Trop Dis. 2019 Apr 18;25:e148218. doi: 10.1590/1678-9199-JVATITD-1482-18.
https://doi.org/10.1590/1678-9199-JVATIT...
]. However, CRISPs are widely distributed in animal venoms, such as snake venoms, being their role on ion channels also demonstrated [8484. Yamazaki Y, Hyodo F, Morita T. Wide distribution of cysteine-rich secretory proteins in snake venoms: isolation and cloning of novel snake venom cysteine-rich secretory proteins. Arch Biochem Biophys . 2003 Apr 1;412(1):133-41. doi: 10.1016/s0003-9861(03)00028-6.
https://doi.org/10.1016/s0003-9861(03)00...
], and in humans, they are involved with the immune system [8585. Kjeldsen L, Cowland JB, Johnsen AH, Borregaard N. SGP28, a novel matrix glycoprotein in specific granules of human neutrophils with similarity to a human testis-specific gene product and a rodent sperm-coating glycoprotein. FEBS Lett . 1996 Feb 19;380(3):246-50. doi: 10.1016/0014-5793(96)00030-0.
https://doi.org/10.1016/0014-5793(96)000...
]. The molecular model of CRISP is demonstrated in Figure 6 A-B . Despite the presence of these compounds in proteomic and transcriptomic approaches of T. serrulatus venom [88. Amorim FG, Longhim HT, Cologna CT, Degueldre M, De Pauw E, Quinton L, Arantes EC. Proteome of fraction from Tityus serrulatus venom reveals new enzymes and toxins. J Venom Anim Toxins incl Trop Dis. 2019 Apr 18;25:e148218. doi: 10.1590/1678-9199-JVATITD-1482-18.
https://doi.org/10.1590/1678-9199-JVATIT...
,4949. De Oliveira UC, Nishiyama Jr MY, Dos Santos MBV, Santos-da-Silva AP, Chalkidis HM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de-Azevedo ILM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One . 2018 Mar 21;13(3):e0193739. doi: 10.1371/journal.pone.0193739.
https://doi.org/10.1371/journal.pone.019...
], their activity was not detected in some articles [6161. Venancio EJ, Portaro FCV, Kuniyoshi AK, Carvalho DC, Pidde-Queiroz G, Tambourgi DV. Enzymatic properties of venoms from brazilian scorpions of Tityus genus and the neutralisation potential of therapeutical antivenoms. Toxicon . 2013 Jul;69:180-90. doi: 10.1016/j.toxicon.2013.02.012.
https://doi.org/10.1016/j.toxicon.2013.0...
,7474. Diniz CR, Gonçalves JM. Separation of biologically active components from scorpion venoms by zone electrophoresis. Biochim Biophys Acta . 1960 Jul 15:41:470-7. doi: 10.1016/0006-3002(60)90044-5.
https://doi.org/10.1016/0006-3002(60)900...
,7575. Possani LD, Alagón AC, Fletcher Jr PL, Erickson BW. Purification and properties of mammalian toxins from the venom of Brazilian scorpion Tityus serrulatus Lutz and Mello. Arch Biochem Biophys. 1977 Apr 30;180(2):394-403. doi: 10.1016/0003-9861(77)90053-4.
https://doi.org/10.1016/0003-9861(77)900...
], with a need for further study on these molecules and their presence in the venom.

Figure 6.
Structure prediction of CRISP from Tityus serrulatus scorpion venom. The structure was predicted through the amino acid sequence of CRISP (A0A218QX58) using Alphafold [8080. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Žídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022 Jan 7;50(D1):D439-D444. doi: 10.1093/nar/gkab1061.
https://doi.org/10.1093/nar/gkab1061....
,8181. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2.
https://doi.org/10.1038/s41586-021-03819...
]. (A) Front and (B) back view. α-helix and β-sheet are represented in pink and yellow, respectively.

Others

Phosphodiesterases are enzymes that hydrolyze cyclic nucleotides and play a role in regulating intracellular levels of cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP) and, therefore, cell function [8686. Boswell-Smith V, Spina D, Page CP. Phosphodiesterase inhibitors. Br J Pharmacol. 2006 Jan;147 Suppl 1(Suppl 1):S252-7. doi: 10.1038/sj.bjp.0706495.
https://doi.org/10.1038/sj.bjp.0706495....
,8787. De Oliveira IS, Pucca MB, Ferreira IG, Cerni FA, Jacob BCS, Wiezel GA, Pinheiro-Júnior EL, Cordeiro FA, Bordon KCF, Arantes EC. State-of-the-art review of snake venom phosphodiesterases (svPDEs). Toxicon . 2022 Oct 15;217:121-130. doi: 10.1016/j.toxicon.2022.08.004.
https://doi.org/10.1016/j.toxicon.2022.0...
]. Its presence in the venom was detected by proteome [88. Amorim FG, Longhim HT, Cologna CT, Degueldre M, De Pauw E, Quinton L, Arantes EC. Proteome of fraction from Tityus serrulatus venom reveals new enzymes and toxins. J Venom Anim Toxins incl Trop Dis. 2019 Apr 18;25:e148218. doi: 10.1590/1678-9199-JVATITD-1482-18.
https://doi.org/10.1590/1678-9199-JVATIT...
].

PAL, PAM, and PHM were found in the transcriptome analysis [5252. Kalapothakis Y, Miranda K, Pereira AH, Witt ASA, Marani C, Martins AP, Leal HG, Campos-Júnior E, Pimenta AMC, Borges A, Chávez-Olórtegui C, Kalapothakis E. Novel components of Tityus serrulatus venom: A transcriptomic approach. Toxicon . 2021 Jan 15;189:91-104. doi: 10.1016/j.toxicon.2020.11.001.
https://doi.org/10.1016/j.toxicon.2020.1...
], and these enzymes are responsible for post-translational modifications of venom toxins, such as C-terminal amidation, which plays a fundamental role in enhancing their lethal effect [4848. Pimenta AMC, Legros C, Almeida FM, Mansuelle P, De Lima ME, Bougis PE, Martin-Eauclaire MF. Novel structural class of four disulfide-bridged peptides from Tityus serrulatus venom. Biochem Biophys Res Commun. 2003 Feb 21;301(4):1086-92. doi: 10.1016/s0006-291x(03)00082-2.
https://doi.org/10.1016/s0006-291x(03)00...
,8888. Eipper BA, Milgram SL, Husten EJ, Yun HY, Mains RE. Peptidylglycine alpha-amidating monooxygenase: a multifunctional protein with catalytic, processing, and routing domains. Protein Sci . 1993 Apr;2(4):489-97. doi: 10.1002/pro.5560020401.
https://doi.org/10.1002/pro.5560020401....
,8989. Coelho VA, Cremonez CM, Anjolette FAP, Aguiar JF, Varanda WA, Arantes EC. Functional and structural study comparing the C-terminal amidated β-neurotoxin Ts1 with its isoform Ts1-G isolated from Tityus serrulatus venom. Toxicon . 2014 Jun;83:15-21. doi: 10.1016/j.toxicon.2014.02.010.
https://doi.org/10.1016/j.toxicon.2014.0...
].

Chitinases play a crucial role in the digestive process of T. serrulatus by being present in its intestinal system [9090. Fuzita FJ, Pinkse MWH, Patane JSL, Juliano MA, Verhaert PDEM, Lopes AR. Biochemical, transcriptomic and proteomic analyses of digestion in the scorpion Tityus serrulatus: insights into function and evolution of digestion in an ancient arthropod. PLoS One . 2015 Apr 15;10(4):e0123841. doi: 10.1371/journal.pone.0123841.
https://doi.org/10.1371/journal.pone.012...
]. Consequently, identifying these enzymes in the transcriptome could be directly linked to the effective digestion of prey organisms [5252. Kalapothakis Y, Miranda K, Pereira AH, Witt ASA, Marani C, Martins AP, Leal HG, Campos-Júnior E, Pimenta AMC, Borges A, Chávez-Olórtegui C, Kalapothakis E. Novel components of Tityus serrulatus venom: A transcriptomic approach. Toxicon . 2021 Jan 15;189:91-104. doi: 10.1016/j.toxicon.2020.11.001.
https://doi.org/10.1016/j.toxicon.2020.1...
].

Identifying antarease, metalloproteases, peptides rich in cysteine, and phospholipases highlights the venom's potential enzymatic activity and its role in disrupting various physiological processes. Moreover, the presence of hyaluronidase suggests a possible involvement in tissue degradation and facilitating venom spread, while CRISP proteins may contribute to modulating the victim's immune response. PDE identification is noteworthy as this enzyme can impact intracellular signaling pathways. Some described components are also involved with the enhancement of the lethality of toxins, as well as the prey’s digestion. These studies have significantly improved our understanding of the T. serrulatus venom composition overall by identifying and characterizing several important venom components. Further research building upon these findings can contribute to developing novel therapeutic interventions and enhancing our knowledge of the molecular mechanisms underlying envenomation.

Conclusion

T. serrulatus envenoming is of great medical importance in Brazil, and it can be more severe and frequent in children and patients with comorbidities. Antivenom treatment is available in healthcare services and recommended for moderate and severe cases. Notably, T. serrulatus scorpion venom is an extraordinary source of proteins with different molecular weights and performing different roles. The high molecular weight components can play crucial roles during the T. serrulatus envenomation strategy and have evolved to subdue prey or defend against predators effectively; thus, some considerations can be inferred. Many of these components in T. serrulatus venom are enzymatic proteins and play various functions, such as facilitating the breakdown of tissues, interfering with physiological processes, disrupting the prey’s defense mechanisms, increasing the lethality of toxins, or helping the digestion of prey. Enzymes identified in T. serrulatus venom often have larger molecular weights due to their complex structures and functional domains, exhibiting complex tertiary structures, which could provide stability and protection against degradation.

Additionally, these components in T. serrulatus venom can participate in intricate interactions with target molecules in the prey or victim's body, may involve binding to specific receptors or interfering in signaling pathways, targeting different physiological systems or employing multiple mechanisms of action simultaneously, increasing their chances of subduing prey or defending themselves effectively, suggesting the enhancement of venom's potency. Although the high molecular weight components were identified in T. serrulatus venom, and some of them were isolated, further research into the venom's composition and function can provide deeper insights into the precise roles of these components and their impact on envenomation.

Abbreviations

ADAM: A Disintegrin and Metalloprotease; ALT: alanine aminotransferase; AST: aspartate aminotransferase; cAMP: cyclic adenosine monophosphate; cGMP: cyclic guanosine monophosphate; CPK: creatine phosphokinase; CRISP: cysteine-rich secretory protein; LD50: median lethal dose; MLD: minimum lethal dose; NO: nitric oxide; PAL: peptidyl-α-hydroxyglycine α-amidating lyase; PAM: peptidyl-glycine α-amidating monooxygenase A; PDE: phosphodiesterase; PHM: peptidylglycine α-hydroxylating monooxygenase; PLA2: phospholipase A2; PLC: phospholipase C; PLD: phospholipase D; PMSF: phenylmethylsulphonyl fluoride; SNAP25: synaptosome-associated protein of 25 kDa; TsMs: metalloserrulases; VAMP2: vesicle associated membrane protein 2.

References

  • 1. Lourenço WR. Scorpion diversity and distribution: past and present patterns. In: Gopalakrishnakone P, Possani LD, Schwartz EF, Rodríguez De La Vega RC, editors. Scorpion venoms. Toxicology, vol 4 [Internet]. Dordrecht: Springer Netherlands; 2015 [cited 2023 May 11]. p. 3-23. Available from: https://link.springer.com/10.1007/978-94-007-6404-0_15
    » https://link.springer.com/10.1007/978-94-007-6404-0_15
  • 2. Ministério da Saúde. Acidente por animais peçonhentos - Notificações registradas no sistema de informação de agravos de notificação - Brasil [Internet]. 2023 [cited 2023 Feb 28]. Available from: http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sinannet/cnv/animaisbr.def
    » http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sinannet/cnv/animaisbr.def
  • 3. Torrez PPQ, Dourado FS, Bertani R, Cupo P, França FO de S. Scorpionism in Brazil: exponential growth of accidents and deaths from scorpion stings. Rev Soc Bras Med Trop. 2019 May 16;52:e20180350. doi: 10.1590/0037-8682-0350-2018.
    » https://doi.org/10.1590/0037-8682-0350-2018.
  • 4. Lacerda AB, Lorenz C, Azevedo TS, Cândido DM, Wen FH, Eloy LJ, Chiaravalloti-Neto F. Detection of areas vulnerable to scorpionism and its association with environmental factors in São Paulo, Brazil. Acta Trop. 2022 Jun;230:106390. doi: 10.1016/j.actatropica.2022.106390.
  • 5. Cupo P. Clinical update on scorpion envenoming. Rev Soc Bras Med Trop . 2015 Nov-Dec;48(6):642-9. doi: 10.1590/0037-8682-0237-2015.
    » https://doi.org/10.1590/0037-8682-0237-2015.
  • 6. Pucca MB, Cerni FA, Pinheiro Junior EL, Bordon KCF, Amorim FG, Cordeiro FA, Longhim HT, Cremonez CM, Oliveira GH, Arantes EC. Tityus serrulatus venom--A lethal cocktail. Toxicon. 2015 Dec 15;108:272-84. doi: 10.1016/j.toxicon.2015.10.015.
    » https://doi.org/10.1016/j.toxicon.2015.10.015.
  • 7. Amado TF, Moura TA, Riul P, Lira AFA, Badillo-Montaño R, Martinez PA. Vulnerable areas to accidents with scorpions in Brazil. Trop Med Int Health. 2021 May;26(5):591-601. doi: 10.1111/tmi.13561.
    » https://doi.org/10.1111/tmi.13561.
  • 8. Amorim FG, Longhim HT, Cologna CT, Degueldre M, De Pauw E, Quinton L, Arantes EC. Proteome of fraction from Tityus serrulatus venom reveals new enzymes and toxins. J Venom Anim Toxins incl Trop Dis. 2019 Apr 18;25:e148218. doi: 10.1590/1678-9199-JVATITD-1482-18.
    » https://doi.org/10.1590/1678-9199-JVATITD-1482-18.
  • 9. Pucca MB, Amorim FG, Cerni FA, Bordon KCF, Cardoso IA, Anjolette FAP, Arantes EC. Influence of post-starvation extraction time and prey-specific diet in Tityus serrulatus scorpion venom composition and hyaluronidase activity. Toxicon. 2014 Nov;90:326-36. doi: 10.1016/j.toxicon.2014.08.064.
    » https://doi.org/10.1016/j.toxicon.2014.08.064.
  • 10. Amaral CF, Lopes JA, Magalhães RA, De Rezende NA. Electrocardiographic, enzymatic and echocardiographic evidence of myocardial damage after Tityus serrulatus scorpion poisoning. Am J Cardiol. 1991 Mar 15;67(7):655-7. doi: 10.1016/0002-9149(91)90912-5.
    » https://doi.org/10.1016/0002-9149(91)90912-5.
  • 11. Amaral CFS, De Rezende NA, Freire-Maia L. Acute pulmonary edema after Tityus serrulatus scorpion sting in children. Am J Cardiol . 1993 Jan 15;71(2):242-5. doi: 10.1016/0002-9149(93)90746-y.
    » https://doi.org/10.1016/0002-9149(93)90746-y.
  • 12. Reckziegel GC, Pinto Jr VL. Scorpionism in Brazil in the years 2000 to 2012. J Venom Anim Toxins incl Trop Dis . 2014 Oct 15;20:46. doi: 10.1186/1678-9199-20-46.
    » https://doi.org/10.1186/1678-9199-20-46.
  • 13. Bucaretchi F, Baracat EC, Nogueira RJ, Chaves A, Zambrone FA, Fonseca MR, Tourinho FS. A comparative study of severe scorpion envenomation in children caused by Tityus bahiensis and Tityus serrulatus. Rev Inst Med Trop Sao Paulo. 1995 Jul-Aug;37(4):331-6. doi: 10.1590/s0036-46651995000400008.
    » https://doi.org/10.1590/s0036-46651995000400008.
  • 14. Freire-Maia L, Campos JA, Amaral CFS. Approaches to the treatment of scorpion envenoming. Toxicon. 1994;32:1009-14.
  • 15. Ministério da Saúde do Brasil. Guia de vigilância em saúde [Internet]. 5th ed. Brasília: Ministério da Saúde; 2022. Available from: https://bvsms.saude.gov.br/bvs/publicacoes/guia_vigilancia_saude_5ed_rev_atual.pdf
    » https://bvsms.saude.gov.br/bvs/publicacoes/guia_vigilancia_saude_5ed_rev_atual.pdf
  • 16. Instituto Butantan. Soro antiaracnídico (Loxosceles, Phoneutria e Tityus) [Internet]. Instituto Butantan; 2023. Available from: https://butantan.gov.br/assets/arquivos/soros-e-vacinas/soros/26%20BULA%20SORO%20ANTIARACNÍDICO%20(LOXOSCELES,%20PHONEUTRIA%20E%20TITYUS)-PACIENTE.pdf
    » https://butantan.gov.br/assets/arquivos/soros-e-vacinas/soros/26%20BULA%20SORO%20ANTIARACNÍDICO%20(LOXOSCELES,%20PHONEUTRIA%20E%20TITYUS)-PACIENTE.pdf
  • 17. Instituto Butantan. Soro antiescorpiônico [Internet]. Instituto Butantan; 2023. Available from: https://butantan.gov.br/assets/arquivos/soros-e-vacinas/soros/24%20BULA%20SORO%20ANTIESCORPIÔNICO%20-%20PACIENTE.pdf
    » https://butantan.gov.br/assets/arquivos/soros-e-vacinas/soros/24%20BULA%20SORO%20ANTIESCORPIÔNICO%20-%20PACIENTE.pdf
  • 18. Pucca MB, Oliveira FN, Schwartz EF, Arantes EC, Lira-Da-Silva RM. Scorpionism and dangerous species of Brazil. In: Gopalakrishnakone P, Possani L, Schwartz EF, Rodríguez de la Vega R. Scorpion Venoms. Dordrecht: Springer Netherlands ; 2015. p. 299-324.
  • 19. Lourenço WR. Back to Tityus serrulatus Lutz & Mello, 1922 (Scorpiones: Buthidae): new comments about an old species. J Venom Anim Toxins incl Trop Dis . 2022 Jul 13;28:e20220016. doi: 10.1590/1678-9199-JVATITD-2022-0016.
    » https://doi.org/10.1590/1678-9199-JVATITD-2022-0016.
  • 20. Cologna CT, Marcussi S, Giglio JR, Soares AM, Arantes EC. Tityus serrulatus scorpion venom and toxins: an overview. protein and peptide letters. Protein Pept Lett. 2009;16(8):920-32. doi: 10.2174/092986609788923329.
    » https://doi.org/10.2174/092986609788923329.
  • 21. Lourenço WR. What do we know about some of the most conspicuous scorpion species of the genus Tityus? A historical approach. J Venom Anim Toxins incl Trop Dis . 2015 un 10;21:20. doi: 10.1186/s40409-015-0016-9.
    » https://doi.org/10.1186/s40409-015-0016-9.
  • 22. Braga-Pereira GF, Santos AJ. Asexual reproduction in a sexual population of the Brazilian yellow scorpion (Tityus serrulatus, Buthidae) as evidence of facultative parthenogenesis. J Arac. 2021;49:185-90. doi: 10.1636/JoA-S-20-001.
    » https://doi.org/10.1636/JoA-S-20-001
  • 23. Pimenta RJG, Brandão-Dias PFP, Leal HG, Do Carmo AO, De Oliveira-Mendes BBR, Chávez-Olórtegui C, Kalapothakis E. Selected to survive and kill: Tityus serrulatus, the brazilian yellow scorpion. PLoS One. 2019 Apr 3;14(4):e0214075. doi: 10.1371/journal.pone.0214075.
    » https://doi.org/10.1371/journal.pone.0214075.
  • 24. Gurevitz M, Karbat I, Cohen L, Ilan N, Kahn R, Turkov M, Stankiewicz M, Stühmer W, Dong K, Gordon D. The insecticidal potential of scorpion beta-toxins. Toxicon . 2007 Mar 15;49(4):473-89. doi: 10.1016/j.toxicon.2006.11.015.
    » https://doi.org/10.1016/j.toxicon.2006.11.015.
  • 25. Guerrero-Vargas JA, Mourão CBF, Quintero-Hernández V, Possani LD, Schwartz EF. Identification and phylogenetic analysis of Tityus pachyurus and Tityus obscurus novel putative Na+- channel scorpion toxins. PLoS One . 2012;7(2):e30478. doi: 10.1371/journal.pone.0030478.
    » https://doi.org/10.1371/journal.pone.0030478.
  • 26. Cologna CT, Marcussi S, Giglio JR, Soares AM, Arantes EC. Tityus serrulatus scorpion venom and toxins: an overview. Protein Pept Lett. 2009;16:920-32. doi: 10.2174/092986609788923329.
    » https://doi.org/10.2174/092986609788923329.
  • 27. Sampaio SV, Arantes EC, Prado WA, Riccioppo Neto F, Giglio JR. Further characterization of toxins T1IV (TsTX-III) and T2IV from Tityus serrulatus scorpion venom. Toxicon . 1991;29(6):663-72. doi: 10.1016/0041-0101(91)90058-y.
    » https://doi.org/10.1016/0041-0101(91)90058-y.
  • 28. Zoccal KF, Bitencourt CS, Secatto A, Sorgi CA, Bordon KCF, Sampaio SV, Arantes EC, Faccioli LH. Tityus serrulatus venom and toxins Ts1, Ts2 and Ts6 induce macrophage activation and production of immune mediators. Toxicon . 2011 Jun;57(7-8):1101-8. doi: 10.1016/j.toxicon.2011.04.017.
    » https://doi.org/10.1016/j.toxicon.2011.04.017.
  • 29. Kirsch GE, Skattebøl A, Possani LD, Brown AM. Modification of Na channel gating by an alpha scorpion toxin from Tityus serrulatus. J Gen Physiol. 1989 Jan;93(1):67-83. doi: 10.1085/jgp.93.1.67.
    » https://doi.org/10.1085/jgp.93.1.67.
  • 30. Sampaio SV, Coutinho-Netto J, Arantes EC, Marangoni S, Oliveira B, Giglio JR. Isolation of toxin TsTX-VI from Tityus serrulatus scorpion venom. Effects on the release of neurotransmitters from synaptosomes. Biochem Mol Biol Int. 1996 Jul;39(4):729-40. doi: 10.1080/15216549600201811.
    » https://doi.org/10.1080/15216549600201811.
  • 31. Arantes EC, Riccioppo Neto F, Sampaio SV, Vieira CA, Giglio JR. Isolation and characterization of TsTX-V, a new neurotoxin from Tityus serrulatus scorpion venom which delays the inactivation of Na+ channels. Biochim Biophys Acta. 1994 Jan 5;1199(1):69-75. doi: 10.1016/0304-4165(94)90098-1.
    » https://doi.org/10.1016/0304-4165(94)90098-1.
  • 32. Cerni FA, Pucca MB, Peigneur S, Cremonez CM, Bordon KC, Tytgat J, Arantes EC. Electrophysiological characterization of Ts6 and Ts7, K⁺ channel toxins isolated through an improved Tityus serrulatus venom purification procedure. Toxins (Basel). 2014 Feb 28;6(3):892-913. doi: 10.3390/toxins6030892.
    » https://doi.org/10.3390/toxins6030892.
  • 33. Pucca MB, Cerni FA, Cordeiro FA, Peigneur S, Cunha TM, Tytgat J, Arantes EC. Ts8 scorpion toxin inhibits the Kv4.2 channel and produces nociception in vivo. Toxicon . 2016 Sep 1;119:244-52. doi: 10.1016/j.toxicon.2016.06.014.
    » https://doi.org/10.1016/j.toxicon.2016.06.014.
  • 34. Blanc E, Lecomte C, Rietschoten JV, Sabatier JM, Darbon H. Solution structure of TsKapa, a charybdotoxin-like scorpion toxin from Tityus serrulatus with high affinity for apamin-sensitive Ca(2+)-activated K+ channels. Proteins. 1997 Nov;29(3):359-69. doi: 10.1002/(sici)1097-0134(199711)29:3<359::aid-prot9>3.0.co;2-5.
    » https://doi.org/10.1002/(sici)1097-0134(199711)29:3<359::aid-prot9>3.0.co;2-5.
  • 35. Cremonez CM, Maiti M, Peigneur S, Cassoli JS, Dutra AAA, Waelkens E, Lescrinier E, Herdewijn P, de Lima ME, Pimenta AM, Arantes EC, Tytgat J. Structural and functional elucidation of peptide Ts11 shows evidence of a novel subfamily of scorpion venom toxins. Toxins (Basel) . 2016 Sep 30;8(10):288. doi: 10.3390/toxins8100288.
    » https://doi.org/10.3390/toxins8100288.
  • 36. Cologna CT, Peigneur S, Rosa JC, Selistre-de-Araujo HS, Varanda WA, Tytgat J, Arantes EC. Purification and characterization of Ts15, the first member of a new α-KTX subfamily from the venom of the brazilian scorpion Tityus serrulatus. Toxicon . 2011 Jul;58(1):54-61. doi: 10.1016/j.toxicon.2011.05.001.
    » https://doi.org/10.1016/j.toxicon.2011.05.001.
  • 37. Pucca MB, Bertolini TB, Cerni FA, Bordon KCF, Peigneur S, Tytgat J, Bonato VL, Arantes EC. Immunosuppressive evidence of Tityus serrulatus toxins Ts6 and Ts15: insights of a novel K(+) channel pattern in T cells. Immunology. 2016 Feb;147(2):240-50. doi: 10.1111/imm.12559. PMID: 26595158.
    » https://doi.org/10.1111/imm.12559. PMID: 26595158.
  • 38. Menezes LFS, Maranhão MM, Tibery DV, de Souza ACB, da Mata DO, Campos LA, Souza AA, Freitas SM, Schwartz EF. Ts17, a Tityus serrulatus β-toxin structurally related to α-scorpion toxins. Biochim Biophys Acta Biomembr. 2023 Jan 1;1865(1):184057. doi: 10.1016/j.bbamem.2022.184057.
    » https://doi.org/10.1016/j.bbamem.2022.184057.
  • 39. Cerni FA, Pucca MB, Amorim FG, Bordon KCF, Echterbille J, Quinton L, De Pauw E, Peigneur S, Tytgat J, Arantes EC. Isolation and characterization of Ts19 Fragment II, a new long-chain potassium channel toxin from Tityus serrulatus venom. Peptides. 2016 Jun;80:9-17. doi: 10.1016/j.peptides.2015.06.004.
    » https://doi.org/10.1016/j.peptides.2015.06.004.
  • 40. Oliveira-Mendes BBR, Horta CCR, Do Carmo AO, Biscoto GL, Sales-Medina DF, Leal HG, Brandão-Dias PFP, Miranda SEM, Aguiar CJ, Cardoso VN, De Barros ALB, Chávez-Olortégui C, Leite MF, Kalapothakis E. CPP-Ts: a new intracellular calcium channel modulator and a promising tool for drug delivery in cancer cells. Sci Rep. 2018 Oct 3;8(1):14739. doi: 10.1038/s41598-018-33133-3.
    » https://doi.org/10.1038/s41598-018-33133-3.
  • 41. Jover E, Martin-Moutot N, Couraud F, Rochat H. Binding of scorpion toxins to rat brain synaptosomal fraction. Effects of membrane potential, ions, and other neurotoxins. Biochemistry. 1980 Feb 5;19(3):463-7. doi: 10.1021/bi00544a010.
    » https://doi.org/10.1021/bi00544a010.
  • 42. Gordon D, Savarin P, Gurevitz M, Zinn-Justin S. Functional anatomy of scorpion toxins affecting sodium channels. J Toxic Tox Rev. 1998;17(2):131-59. doi: 10.3109/15569549809009247
    » https://doi.org/10.3109/15569549809009247
  • 43. Fontecilla-Camps JC, Habersetzer-Rochat C, Rochat H. Orthorhombic crystals and three-dimensional structure of the potent toxin II from the scorpion Androctonus australis Hector. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7443-7. doi: 10.1073/pnas.85.20.7443.
    » https://doi.org/10.1073/pnas.85.20.7443.
  • 44. Jonas P, Vogel W, Arantes EC, Giglio JR. Toxin gamma of the scorpion Tityus serrulatus modifies both activation and inactivation of sodium permeability of nerve membrane. Pflugers Arch. 1986;407(1):92-9. doi: 10.1007/BF00580727.
    » https://doi.org/10.1007/BF00580727.
  • 45. Cestèle S, Catterall WA. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie. 2000 Sep-Oct;82(9-10):883-92. doi: 10.1016/s0300-9084(00)01174-3.
    » https://doi.org/10.1016/s0300-9084(00)01174-3
  • 46. Marangoni S, Toyama MH, Arantes EC, Giglio JR, Da Silva CA, Carneiro EM, Gonçalves AA, Oliveira B. Amino acid sequence of TsTX-V, an alpha-toxin from Tityus serrulatus scorpion venom, and its effect on K+ permeability of beta-cells from isolated rat islets of Langerhans. Biochim Biophys Acta . 1995 Apr 13;1243(3):309-14. doi: 10.1016/0304-4165(94)00142-k.
    » https://doi.org/10.1016/0304-4165(94)00142-k.
  • 47. Nencioni ALA, Beraldo Neto E, De Freitas LA, Dorce VAC. Effects of brazilian scorpion venoms on the central nervous system. J Venom Anim Toxins incl Trop Dis . 2018 Jan 23;24:3. doi: 10.1186/s40409-018-0139-x.
    » https://doi.org/10.1186/s40409-018-0139-x.
  • 48. Pimenta AMC, Legros C, Almeida FM, Mansuelle P, De Lima ME, Bougis PE, Martin-Eauclaire MF. Novel structural class of four disulfide-bridged peptides from Tityus serrulatus venom. Biochem Biophys Res Commun. 2003 Feb 21;301(4):1086-92. doi: 10.1016/s0006-291x(03)00082-2.
    » https://doi.org/10.1016/s0006-291x(03)00082-2.
  • 49. De Oliveira UC, Nishiyama Jr MY, Dos Santos MBV, Santos-da-Silva AP, Chalkidis HM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de-Azevedo ILM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One . 2018 Mar 21;13(3):e0193739. doi: 10.1371/journal.pone.0193739.
    » https://doi.org/10.1371/journal.pone.0193739.
  • 50. Verano-Braga T, Rocha-Resende C, Silva DM, Ianzer D, Martin-Eauclaire MF, Bougis PE, De Lima ME, Santos RAS, Pimenta AMC. Tityus serrulatus Hypotensins: a new family of peptides from scorpion venom. Biochem Biophys Res Commun . 2008 Jul 4;371(3):515-20. doi: 10.1016/j.bbrc.2008.04.104.
    » https://doi.org/10.1016/j.bbrc.2008.04.104.
  • 51. Pimenta AMC, De Lima ME. Small peptides, big world: biotechnological potential in neglected bioactive peptides from arthropod venoms. J Pept Sci. 2005 Nov;11(11):670-6. doi: 10.1002/psc.701.
    » https://doi.org/10.1002/psc.701.
  • 52. Kalapothakis Y, Miranda K, Pereira AH, Witt ASA, Marani C, Martins AP, Leal HG, Campos-Júnior E, Pimenta AMC, Borges A, Chávez-Olórtegui C, Kalapothakis E. Novel components of Tityus serrulatus venom: A transcriptomic approach. Toxicon . 2021 Jan 15;189:91-104. doi: 10.1016/j.toxicon.2020.11.001.
    » https://doi.org/10.1016/j.toxicon.2020.11.001.
  • 53. Schägger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368-79. doi: 10.1016/0003-2697(87)90587-2.
    » https://doi.org/10.1016/0003-2697(87)90587-2.
  • 54. Alvarenga ER, Mendes TM, Magalhães BF, Siqueira FF, Dantas AE, Barroca TM, Horta CC, Kalapothakis E. Transcriptome analysis of the Tityus serrulatus scorpion venom gland. Open J Gen. 2012;2:210-20. doi: 10.4236/ojgen.2012.24027.
    » https://doi.org/10.4236/ojgen.2012.24027.
  • 55. Carmo AO, Oliveira-Mendes BBR, Horta CCR, Magalhães BF, Dantas AE, Chaves LM, Chávez-Olórtegui C, Kalapothakis E. Molecular and functional characterization of metalloserrulases, new metalloproteases from the Tityus serrulatus venom gland. Toxicon . 2014 Nov;90:45-55. doi: 10.1016/j.toxicon.2014.07.014.
    » https://doi.org/10.1016/j.toxicon.2014.07.014.
  • 56. Ortiz E, Rendón-Anaya M, Rego SC, Schwartz EF, Possani LD. Antarease-like Zn-metalloproteases are ubiquitous in the venom of different scorpion genera. Biochim Biophys Acta . 2014 Jun;1840(6):1738-46. doi: 10.1016/j.bbagen.2013.12.012.
    » https://doi.org/10.1016/j.bbagen.2013.12.012.
  • 57. Markland Jr FS, Swenson S. Snake venom metalloproteinases. Toxicon . 2013 Feb;62:3-18. doi: 10.1016/j.toxicon.2012.09.004.
    » https://doi.org/10.1016/j.toxicon.2012.09.004.
  • 58. Fletcher Jr PL, Fletcher MD, Weninger K, Anderson TE, Martin BM. Vesicle-associated membrane protein (VAMP) cleavage by a new metalloprotease from the brazilian scorpion Tityus serrulatus. J Biol Chem. 2010 Mar 5;285(10):7405-16. doi: 10.1074/jbc.M109.028365.
    » https://doi.org/10.1074/jbc.M109.028365.
  • 59. Kasai H, Takahashi N, Tokumaru H. Distinct initial SNARE configurations underlying the diversity of exocytosis. Physiol Rev. 2012 Oct;92(4):1915-64. doi: 10.1152/physrev.00007.2012.
    » https://doi.org/10.1152/physrev.00007.2012.
  • 60. Zornetta I, Scorzeto M, Mendes Dos Reis PV, De Lima ME, Montecucco C, Megighian A, Rossetto O. Electrophysiological characterization of the antarease metalloprotease from Tityus serrulatus venom. Toxins (Basel) . 2017 Feb 27;9(3):81. doi: 10.3390/toxins9030081.
    » https://doi.org/10.3390/toxins9030081.
  • 61. Venancio EJ, Portaro FCV, Kuniyoshi AK, Carvalho DC, Pidde-Queiroz G, Tambourgi DV. Enzymatic properties of venoms from brazilian scorpions of Tityus genus and the neutralisation potential of therapeutical antivenoms. Toxicon . 2013 Jul;69:180-90. doi: 10.1016/j.toxicon.2013.02.012.
    » https://doi.org/10.1016/j.toxicon.2013.02.012.
  • 62. Machado JC, Silveira-Filho JF. Indução de pancreatite hemorrágica aguda no cão por veneno escorpiônico de T. serrulatus. Mem Inst Butantan. 1976;40-41:1-9.
  • 63. Novaes G, Cabral AP, De Falco CN, De Queiroz AC. Acute pancreatitis induced by scorpion toxin, tityustoxin. Histopathological study in rats. Arq Gastroenterol. 1989 Jan-Jun;26(1-2):9-12.
  • 64. Gallagher S, Sankaran H, Williams JA. Mechanism of scorpion toxin-induced enzyme secretion in rat pancreas. Gastroenterology. 1981 May;80(5 pt 1):970-3.
  • 65. Seals DF, Courtneidge SA. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev. 2003 Jan 1;17(1):7-30. doi: 10.1101/gad.1039703.
    » https://doi.org/10.1101/gad.1039703.
  • 66. Hooper NM. Families of zinc metalloproteases. FEBS Lett. 1994 Oct 31;354(1):1-6. doi: 10.1016/0014-5793(94)01079-x.
    » https://doi.org/10.1016/0014-5793(94)01079-x.
  • 67. Martin-Eauclaire MF, Céard B, Ribeiro AM, Diniz CR, Rochat H, Bougis PE. Biochemical, pharmacological and genomic characterisation of Ts IV, an alpha-toxin from the venom of the South American scorpion Tityus serrulatus. FEBS Lett. 1994 Apr 4;342(2):181-4. doi: 10.1016/0014-5793(94)80496-6.
    » https://doi.org/10.1016/0014-5793(94)80496-6.
  • 68. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489. doi: 10.1093/nar/gkaa1100.
    » https://doi.org/10.1093/nar/gkaa1100.
  • 69. De Magalhães O. Escorpionismo: IV memória. Mon Inst Oswaldo Cruz. 1946;3:220.
  • 70. Almeida FM, Pimenta AMC, De Figueiredo SG, Santoro MM, Martin-Eauclaire MF, Diniz CR, De Lima ME. Enzymes with gelatinolytic activity can be found in Tityus bahiensis and Tityus serrulatus venoms. Toxicon . 2002 Jul;40(7):1041-5. doi: 10.1016/s0041-0101(02)00084-3.
    » https://doi.org/10.1016/s0041-0101(02)00084-3.
  • 71. Walsh KA, Wilcox PE. Serine proteases. Methods in Enzymology [Internet]. Elsevier; 1970 [cited 2023 Jun 23]. p. 31-41. Available from: https://linkinghub.elsevier.com/retrieve/pii/0076687970190057
    » https://linkinghub.elsevier.com/retrieve/pii/0076687970190057
  • 72. Kreil G. Hyaluronidases - a group of neglected enzymes. Protein Sci. 1995 Sep;4(9):1666-9. doi: 10.1002/pro.5560040902.
    » https://doi.org/10.1002/pro.5560040902.
  • 73. Bordon KCF, Wiezel GA, Amorim FG, Arantes EC. Arthropod venom Hyaluronidases: biochemical properties and potential applications in medicine and biotechnology. J Venom Anim Toxins incl Trop Dis . 2015 Oct 22;21:43. doi: 10.1186/s40409-015-0042-7.
    » https://doi.org/10.1186/s40409-015-0042-7.
  • 74. Diniz CR, Gonçalves JM. Separation of biologically active components from scorpion venoms by zone electrophoresis. Biochim Biophys Acta . 1960 Jul 15:41:470-7. doi: 10.1016/0006-3002(60)90044-5.
    » https://doi.org/10.1016/0006-3002(60)90044-5.
  • 75. Possani LD, Alagón AC, Fletcher Jr PL, Erickson BW. Purification and properties of mammalian toxins from the venom of Brazilian scorpion Tityus serrulatus Lutz and Mello. Arch Biochem Biophys. 1977 Apr 30;180(2):394-403. doi: 10.1016/0003-9861(77)90053-4.
    » https://doi.org/10.1016/0003-9861(77)90053-4.
  • 76. Xu X, Wang XS, Xi XT, Liu J, Huang JT, Lu ZX. Purification and partial characterization of hyaluronidase from five pace snake (Agkistrodon acutus) venom. Toxicon . 1982;20(6):973-81. doi: 10.1016/0041-0101(82)90099-x.
    » https://doi.org/10.1016/0041-0101(82)90099-x.
  • 77. Pessini AC, Takao TT, Cavalheiro EC, Vichnewski W, Sampaio SV, Giglio JR, Arantes EC. A hyaluronidase from Tityus serrulatus scorpion venom: isolation, characterization and inhibition by flavonoids. Toxicon . 2001 Oct;39(10):1495-504. doi: 10.1016/s0041-0101(01)00122-2.
    » https://doi.org/10.1016/s0041-0101(01)00122-2.
  • 78. Horta CCR, Magalhães BF, Oliveira-Mendes BBR, Do Carmo AO, Duarte CG, Felicori LF, Machado-de-Ávila RA, Chávez-Olórtegui C, Kalapothakis E. Molecular, immunological, and biological characterization of Tityus serrulatus venom hyaluronidase: new insights into its role in envenomation. PLoS Negl Trop Dis. 2014 Feb 13;8(2):e2693. doi: 10.1371/journal.pntd.0002693.
    » https://doi.org/10.1371/journal.pntd.0002693.
  • 79. Oliveira-Mendes BBR, Miranda SEM, Sales-Medina DF, Magalhães BF, Kalapothakis Y, De Souza RP, Cardoso VN, De Barros ALB, Guerra-Duarte C, Kalapothakis E, Horta CCR. Inhibition of Tityus serrulatus venom hyaluronidase affects venom biodistribution. PLoS Negl Trop Dis . 2019 Apr 19;13(4):e0007048. doi: 10.1371/journal.pntd.0007048.
    » https://doi.org/10.1371/journal.pntd.0007048.
  • 80. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Žídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022 Jan 7;50(D1):D439-D444. doi: 10.1093/nar/gkab1061.
    » https://doi.org/10.1093/nar/gkab1061.
  • 81. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2.
    » https://doi.org/10.1038/s41586-021-03819-2.
  • 82. Rosenberg P. Phospholipases. In: Shier WT, Mebs D, editors. Handbook of Toxinology. 1st ed. CRC Press; 1990. p. 67-277.
  • 83. Arni RK, Ward RJ. Phospholipase A2-a structural review. Toxicon . 1996 Aug;34(8):827-41. doi: 10.1016/0041-0101(96)00036-0.
    » https://doi.org/10.1016/0041-0101(96)00036-0.
  • 84. Yamazaki Y, Hyodo F, Morita T. Wide distribution of cysteine-rich secretory proteins in snake venoms: isolation and cloning of novel snake venom cysteine-rich secretory proteins. Arch Biochem Biophys . 2003 Apr 1;412(1):133-41. doi: 10.1016/s0003-9861(03)00028-6.
    » https://doi.org/10.1016/s0003-9861(03)00028-6.
  • 85. Kjeldsen L, Cowland JB, Johnsen AH, Borregaard N. SGP28, a novel matrix glycoprotein in specific granules of human neutrophils with similarity to a human testis-specific gene product and a rodent sperm-coating glycoprotein. FEBS Lett . 1996 Feb 19;380(3):246-50. doi: 10.1016/0014-5793(96)00030-0.
    » https://doi.org/10.1016/0014-5793(96)00030-0.
  • 86. Boswell-Smith V, Spina D, Page CP. Phosphodiesterase inhibitors. Br J Pharmacol. 2006 Jan;147 Suppl 1(Suppl 1):S252-7. doi: 10.1038/sj.bjp.0706495.
    » https://doi.org/10.1038/sj.bjp.0706495.
  • 87. De Oliveira IS, Pucca MB, Ferreira IG, Cerni FA, Jacob BCS, Wiezel GA, Pinheiro-Júnior EL, Cordeiro FA, Bordon KCF, Arantes EC. State-of-the-art review of snake venom phosphodiesterases (svPDEs). Toxicon . 2022 Oct 15;217:121-130. doi: 10.1016/j.toxicon.2022.08.004.
    » https://doi.org/10.1016/j.toxicon.2022.08.004.
  • 88. Eipper BA, Milgram SL, Husten EJ, Yun HY, Mains RE. Peptidylglycine alpha-amidating monooxygenase: a multifunctional protein with catalytic, processing, and routing domains. Protein Sci . 1993 Apr;2(4):489-97. doi: 10.1002/pro.5560020401.
    » https://doi.org/10.1002/pro.5560020401.
  • 89. Coelho VA, Cremonez CM, Anjolette FAP, Aguiar JF, Varanda WA, Arantes EC. Functional and structural study comparing the C-terminal amidated β-neurotoxin Ts1 with its isoform Ts1-G isolated from Tityus serrulatus venom. Toxicon . 2014 Jun;83:15-21. doi: 10.1016/j.toxicon.2014.02.010.
    » https://doi.org/10.1016/j.toxicon.2014.02.010.
  • 90. Fuzita FJ, Pinkse MWH, Patane JSL, Juliano MA, Verhaert PDEM, Lopes AR. Biochemical, transcriptomic and proteomic analyses of digestion in the scorpion Tityus serrulatus: insights into function and evolution of digestion in an ancient arthropod. PLoS One . 2015 Apr 15;10(4):e0123841. doi: 10.1371/journal.pone.0123841.
    » https://doi.org/10.1371/journal.pone.0123841.
  • *
    Correspondence: ecabraga@fcfrp.usp.br
  • Availability of data and materials

    Not applicable.
  • Funding

    This study was financed by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo Research Foundation, scholarships to ISO n. 2020/13176-3 and n. 2022/08964-8, to NMAS n. 2021/11547-7, grants to ECA n. 2019/10173-6 and n. 2021/11936-3), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, The National Council for Scientific and Technological Development, scholarships to JAGS n. 311434/2021-5, WMM n. 309207/2020-7, MBP n. 307184/2020-0 and ECA n. 309399/2021-1).
  • Ethics approval

    Not applicable.
  • Consent for publication

    Not applicable.

Publication Dates

  • Publication in this collection
    22 Jan 2024
  • Date of issue
    2024

History

  • Received
    25 July 2023
  • Accepted
    04 Dec 2023
Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP) Av. Universitária, 3780, Fazenda Lageado, Botucatu, SP, CEP 18610-034, Brasil, Tel.: +55 14 3880-7693 - Botucatu - SP - Brazil
E-mail: editorial.jvatitd@unesp.br