Acessibilidade / Reportar erro

An evaluation of the accumulation of intracellular inorganic nitrogen pools by marine microalgae in batch cultures

Abstracts

Methods of extraction, changes in concentrations with growth, and effects of culture conditions on intracellular inorganic nitrogen pools (IIN - ammonia, nitrite, and nitrate) were studied in nine species of marine microalgae in batch cultures. The microalgae were analysed to compare three methods of extraction of IIN, one of them developed in this study. The extraction of IIN occurs efficient by with all three methods for four out of the nine species tested. However, for five species significant differences were found among the methods, the best results being obtained with the new method. Microalgae accumulate inorganic forms of nitrogen in different proportions. The species show higher concentrations of either ammonia or nitrate, and always lower concentrations of nitrite. Microalgae of smaller cellular volumes tend to attain higher values of IIN per cubic micrometer (the converse in large-volume species), with some exceptions (Amphidinium carterae and Nannochloropsis oculata). The use of aeration in the cultures determines a decrease in the concentrations of IIN, favours nitrogen assimilation, and generates an increase in growth rates and C:N ratio. High concentrations of IIN are characteristic of the exponential growth phase, but in some cases their occurrence may result from carbon deficiency.

Batch Culture; Carbon; Intracellular Inorganic Nitrogen; Marine Microalgae; Nitrogen; Surface : Volume Ratio


Métodos de extração, mudanças na concentração durante o crescimento e efeitos de condições de cultivo sobre conteúdos de nitrogênio inorgânico intracelular (NII - amônia, nitrito e nitrato) foram estudados em nove espécies de microalgas marinhas em cultivos estanques. As microalgas foram analisadas para comparar três métodos de extração de NII, um dos quais desenvolvido neste estudo. A extração de NII ocorre de forma eficiente com os três métodos para quatro espécies. Contudo, para cinco espécies diferenças significativas foram encontradas e os melhores resultados foram obtidos com o método novo. As microalgas acumulam formas inorgânicas de nitrogênio em proporções diferentes. As espécies apresentam concentrações de amônia ou nitrato como as mais altas e sempre menores concentrações de nitrito. Microalgas de menores volumes celulares tendem a atingir valores mais altos de NII por micrômetro cúbico (contrariamente para espécies de volumes celulares maiores), com algumas exceções (Amphidinium carterae e Nannochloropsis oculata). A adição de aeração nos cultivos determina um decréscimo na concentração de NII, favorece a assimilação de nitrogênio e gera um aumento na taxa de crescimento e na razão C:N. Concentrações altas de NII são características da fase de crescimento exponencial, mas em alguns casos sua ocorrência pode resultar de deficiência por carbono.

Carbono; Cultivo Estanque; Microalgas Marinhas; Nitrogênio; Nitrogênio Inorgânico Intracelular; Razão superfície : Volume


  • Aminot, A. & Chaussepied, M. 1983. Manuel des analyses chimiques en milieu marin. Brest, CNEXO. 395p.
  • Asano, C. S.; Colepicolo, P. & Aidar, E. 1995. Nitrate reductase activity in the diatom Biddulphia longicruris: characterization and daily oscillation. Bolm Inst. oceanogr., S Paulo, 43:123-128.
  • Berges, J. A. 1997. Algal nitrate reductases. Eur. J. Phycol. 32(1):3-8.
  • Berges, J. A.; Cochlan, W. P. & Harrison, P. J. 1995. Laboratory and field responses of algal nitrate reductase to diel periodicity in irradiance, nitrate exhaustion, and the presence of ammonium. Mar. Ecol. Prog. Ser., 124:259-169.
  • Burkhardt, S.; Zondervan, I. & Riebesell, U. 1999. Effect of CO2 concentration on C:N:P ratio in marine phytoplankton: A species comparison. Limnol. Oceanogr., 44(3):683-690.
  • Conover, S. A. M. 1975. Partioning of nitrogen and carbon in cultures of the marine diatom Thalasiosira fluviatilis supplied with nitrate, ammonium or urea. Mar. Biol., 32:231-246.
  • Dortch, Q. 1982. Effect of growth conditions on accumulation of internal nitrate, ammonium, amino acids, and protein in three marine diatoms. J. expl. mar. Biol. Ecol., 61:243-264.
  • Dortch, Q. & Conway, H. L. 1984. Interaction between nitrate and ammonium uptake: variation with growth rate, nitrogen source and species. Mar. Biol., 79:151-164.
  • Dortch, Q.; Clayton, Jr, J. R.; Thoresen, S. S. & Ahmed, S. I. 1984. Species differences in accumulation of nitrogen pools in phytoplankton. Mar. Biol., 81:237-250.
  • Fábregas, J.; Ferrón, L.; Abalde, J.; Cabezas, B. & Otero, A. 1995. Changes in the gross chemical composition of mass cultures of the marine microalgae Dunaliella tertiolecta with different aeration rates. Biores. Technol., 53:185-188.
  • Geider, R. J. & La Roche, J. 2002. Redfield revisited: variability on C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol., 37(1):1-17.
  • Grasshoff, K.; Ehrhrdt, K. & Kremling, K. 1983. Methods of seawater analysis. 2nd ed. Weinheim, Verlag Chemie. 419p.
  • Guerrero, M. G.; Veja, J. S. & Losada, M. 1981. The assimilatory nitrate-reducing system and its regulation. Ann. Rev. Plant Physiol., 32:169-204.
  • Guillard, R. R. L. & Ryther, C. B. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Husted, and Detonula convervacea (Cleve) Gran. Can. J. Microbiol., 8:229-239.
  • Hein, M.; Pedersen, M. F. & Sand-Jensen, K. 1995. Size-dependent nitrogen uptake in micro- and macroalgae. Mar. Ecol. Prog. Ser., 118:247-253.
  • Hillebrand, H.; Dürselen, C.; Kirshtel, D.; Pollingher, U. & Zohary, T. 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol., 35:403-424.
  • Huertas, E.; Montero, O. & Lubián, L. M. 2000. Effects of dissolved inorganic carbon availability on growth, nutrient uptake and chlorophyll fluorescence of two species of marine microalgae. Aquacult. Eng., 22:181-197.
  • Lee, K.-S. & Dunton, K. H. 1999. Inorganic nitrogen acquisition in the seagrass Thalassia testudinum: Development of whole-plant nitrogen budget. Limnol. Oceanogr., 44:1204-1215.
  • Lee, R. E. 1999. Phycology. 3ª ed. Cambridge, Cambridge University Press. 614p.
  • Lobban, C. S. & Harrison, P. J. 1994. Seaweed ecology and physiology. New York, Cambridge University Press. 366p.
  • Lomas, M. W. & Glibert, P. M. 1999. Interactions between NH4+ and NO3- uptake and assimilation: comparison of diatoms and dinoflagellates at several growth temperatures. Mar. Biol., 133:541-551.
  • Lomas, M. W. & Glibert, P. M. 2000. Comparisons of nitrate uptake, storage, and reduction in marine diatoms and dinoflagellates. J. Phycol., 36:903-913.
  • Lomas, M. W.; Rumbley, C. J. & Glibert, P. M. 2000. Ammonium release by nitrogen sufficient diatoms in response to rapid increases in irradiance. J. Plankt. Res., 22(12):2351-2366.
  • Lourenço, S. O.; Barbarino, E.; Lanfer Marquez, U. M. & Aidar, E. 1998. Distribution of intracellular nitrogen in marine microalgae: Basis for the calculation of specific nitrogen-to-protein conversion factors. J. Phycol., 34(5):798-811.
  • Lourenço, S. O.; Barbarino, E.; Lavín, P. L.; Lanfer Marquez, U. M. & Aidar, E. 2004. Distribution of intracellular nitrogen in marine microalgae. Calculation of new nitrogen-to-protein conversion factors. Eur. J. Phycol., 39(1):17-32.
  • Lourenço, S. O.; Lanfer Marquez, U. M.; Mancini-Filho, J.; Barbarino, E. & Aidar, E. 1998. Changes in biochemical profile of Tetraselmis gracilis I. Comparison of two culture media. Aquaculture, 148(2-3):153-168.
  • Maurin, C. & Le Gal, Y. 1997. Glutamine synthetase in the marine coccolithophorid Emiliania huxleyi (Prymnesiophyceae): regulation of activity in relation to light and nitrogen availability. Plant Sci., 122:61-69.
  • Montagnes, D. J. S.; Berges, J. A.; Harrison, P. J. & Taylor, F. J. R. 1994. Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr., 39(5):1044-1060.
  • Naldi, M. & Weeler, P. A. 1999. Changes in nitrogen pools in Ulva fenestrata (Chlorophyta) and Gracilaria pacifica (Rhodophyta) under nitrate and ammonium enrichment. J. Phycol., 35(1):70-77.
  • Ning, X.; Cloern, J. E. & Cole, B. E. 2000. Spatial and temporal variability of picocyanobacteria Synechococcus sp. in San Francisco Bay. Limmol. Oceanogr., 45(3):695-702.
  • Pedersen, M. F. & Borum, J. 1996. Nutrient control of algal growth in estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Mar. Ecol. Prog. Ser., 142:261-272.
  • Ramalho, C. B.; Hastings, J. W. & Colepicolo, P. 1995. Circadian oscillation of reductase activity in Gonyaulax polyedra is due to changes in cellular protein levels. Plant Physiol., 107:225-231.
  • Smayda, T. J. 1978. From phytoplankters to biomass. In: Sournia, A. ed. Phytoplankton manual. Paris, Museum National d'Histoire Naturalle. p. 273-277.
  • Strickland, J. D. H. & Parson, T. R. 1968. A practical handbook of seawater analysis. Bull. Fish. Res. Bd Can., 167:1-311.
  • Thoresen, S. S. D.; Dortch, Q. & Ahmed, S. I. 1982. Comparison of methods for extracting intracellular pools of inorganic nitrogen from marine phytoplankton. J. Plankt. Res., 4:695-704.
  • Turpin, D. H. 1991. Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J. Phycol., 27:14-20.
  • Vergara, J. J.; Berges, J. A. & Falkowski, P. G. 1998. Diel periodicity of nitrate reductase activity and protein levels in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J. Phycol., 34(6):952-961.
  • Villareal, T. A. & Lipschultz, F. 1995. Internal nitrate concentrations in single cells of large phytoplankton from the Sargasso Sea. J. Phycol., 31:689-696.
  • Zar, J. H. 1996. Biostatistical analysis. 3rd ed. Upper Saddle River, Prentice Hall, Inc., 920p.

Publication Dates

  • Publication in this collection
    20 Jan 2009
  • Date of issue
    June 2005

History

  • Accepted
    29 Aug 2005
  • Reviewed
    27 June 2005
  • Received
    18 Apr 2005
Universidade de São Paulo, Instituto Oceanográfico Praça do Oceanográfico, 191 , 05508-120 Cidade Universitária, São Paulo - SP - Brasil, Tel.: (55 11) 3091-6501, Fax: (55 11) 3032-3092 - São Paulo - SP - Brazil
E-mail: io@usp.br