Acessibilidade / Reportar erro

Short-term variability and transport of nutrients and Chlorophyll-a in Bertioga Channel, São Paulo State, Brazil

Abstracts

Short-term variability of nutrients, chlorophyll-a (Chl-a) and seston (TSS) concentrations were followed up at a fixed station in the Bertioga Channel (BC), Southeastern Brazil, over two full tidal cycles of neap and spring tides, during the winter of 1991. Simultaneous data on hydrographic structure, tidal level and currents allowed the computation of the net transport of those properties. Tidal advection and freshwater flow were the main forcing agents on the water column structure, nutrient availability and Chl-a distribution. Dissolved inorganic nitrogen and phosphate average values were high (16.88 and 0.98 ¼M, respectively, at neap tide and 10.18 and 0.77¼M at spring tide). Despite N and P availability, Chl-a average values were low: 1.13 in the neap and 3.11 mg m-3 in the spring tide, suggesting that the renovation rate of BC waters limits phytoplankton accumulation inside the estuary. The highest Chl-a was associated with the entrance of saltier waters, while the high nutrient concentrations were associated with brackish waters. Nutrients were exported on both tides, TSS and Chl-a were exported on the spring tide and Chl-a was imported on the neap tide. The study of the main transport components indicated that this system is susceptible to the occasional introduction of pollutants from the coastal area, thus presenting a facet of potential fragility.

Inorganic nutrients; Chlorophyll-a; Séston; Tidal cycle; Transport components; Outwelling; Bertioga Channel; Estuary


Variações de curta escala das concentrações de nutrientes, clorofila-a (Cl-a) e séston foram acompanhadas em uma estação fixa no canal de Bertioga (CB), sudeste do Brasil, em dois ciclos completos de maré de quadratura e sizígia, no inverno de 1991. Dados simultâneos da estrutura hidrográfica, marés e correntes permitiram calcular o transporte resultante daquelas propriedades. A advecção por maré e o fluxo de água doce foram as principais forçantes da estrutura hidrográfica e da distribuição de nutrientes e Cl-a. As concentrações médias de NID e fosfato foram altas (respectivamente: 16,88 e 0,98 ¼M na quadratura e 10,18 e 0,77 ¼M na sizígia). Apesar da disponibilidade de N e P, os valores médios de Cl-a foram baixos: 1,13 mg m-3 (na quadratura) e 3,11 mg m-3 (sizígia), sugerindo que a alta taxa de renovação das águas do CB limitam o acúmulo de fitoplâncton. Os maiores valores de Cl-a relacionaram-se à entrada de águas costeiras enquanto que as altas concentrações de nutrientes foram relacionadas às águas salobras. Os nutrientes dissolvidos foram exportados em ambas as marés, séston e Cl-a foram exportados na sizígia e, na quadratura, a Cl-a foi importada. O estudo dos principais componentes do transporte indicou uma susceptibilidade desse sistema à introdução de poluentes oriundos da área costeira, revelando uma potencial fragilidade ambiental.

Nutrientes inorgânicos; Clorofila-a; Séston; Ciclo de maré; Componentes do transporte; Exportação; Canal de Bertioga; Estuário


  • Alongi, D. M. 1996. The dynamics of benthic nutrient pools and fluxes in tropical mangrove forests. J. Mar. Res., 54:123-148.
  • Aminot, A. & Chaussepied, M. 1983 Manuel des analyses chimiques en milieu marin. Brest, C.N.E.X.O, 379p.
  • APHA (American Public Health Association) 1985. Standard methods for the examination of water and wastewater. Washington, APHA, 1268p.
  • Bowden, K. F. 1963. The mixing processes in a tidal estuary. Int. J. Air Water Pollut., 7:343-365.
  • Carmouze, J. P.; Gianesella-Galvão, S. M. F.; Nishihara, L. & Mesquita, H.S.L. de. 1998. Modeling chemical changes of tidal waters emerging from a mangrove forest at Cananéia, Brazil. Mangr. Salt Marshes, 2:43-49.
  • DAEE (Departamento de Águas e Energia Elétrica) 2005. (www.daee.sp.gov.br).
    » link
  • Dame, R. F. & Allen, D. M. 1996. Between estuaries and the sea. J. expl. Mar. Biol. Ecol., 200:169-185.
  • Dame, R. F.; Childers, D. & Koepfler, E. 1992. A geohydrologic continuum theory for the spatial and temporal evolution of marsh -estuarine ecosystems. Nether. J. Sea Res., 30:63-72.
  • Dortch, Q. & Whitledge, T. E. 1992. Does nitrogen or silicon limit phytoplankton production in the Mississipi river plume and nearby regions? Continent. Shelf Res., 12, 1293-1309.
  • Dyer, K. R. 1974. The Salt Balance in Stratified Estuaries. Estuar. coast. Mar. Sci., 2:273-281.
  • Dyer, K. R. 1997. Estuaries: a Physical Introduction. John Wiley, Chichester. 195 p.
  • Eyre, B. 1998. Transport, retention and transformation of material in Australian estuaries. Estuaries, 21(4):540-551.
  • Eyre, B. D. & Twigg, C. 1997. Nutrient behavior during post-flood recovery of the Richmond River estuary northern NSW, Australia. Estuar. coast. Mar. Sci., 44:311-326.
  • Eyre, B. & Balls, P. 1999. A comparative study of nutrient behavior along the salinity gradient of tropical and temperate estuaries. Estuaries, 22(2A):313-326.
  • Eyre, B., Hossain, S. & McKee, L. 1998. A suspended sediment budget for the modified subtropical Brisbane River Estuary, Australia. Estuar. coast. Mar. Sci., 47(4):513-522.
  • Gianesella, S. M. F.; Saldanha-Corrêa, F. M. P. & Teixeira, C. 2000. Tidal effects on nutrients and phytoplankton distribution in Bertioga Channel, São Paulo, Brazil. Aquat. Ecosys. Health Manag., 3:533-544.
  • Goldman, J. C.; McCarthy, J. J. & Peavey, D. G. 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature, 279:210-215.
  • Grasshoff, K.; Ehrhardt, M. & Kremling, K. 1983. Methods of Seawater Analysis. Weinheim, Verlag Chemie. 419p.
  • Hansen, D.V. & Rattray Jr, M. 1966. New dimensions in estuarine classification. Limnol. Oceanogr., 11:319-326.
  • Harari, J. & Camargo, R. 1997. Simulações da circulação de maré na região costeira de Santos (SP) com modelo numérico hidrodinâmico. Pesq. Naval, 10:173-188.
  • Holm-Hansen, O.; Lorenzen, C. J.; Holmes, R. W. & Strickland, J. D. H. 1965. Fluorimetric determination of chlorophyll. J. Cons. perm. intern. Explor. mer, 30:3-15.
  • Hunkins, K. 1981. Salt dispersion in the Hudson Estuary. J. Phys. Oceanogr., 11:729-738.
  • LOICZ program homepage (http://data.ecology.su.se/MNODE/).
  • Lucas, L. V.; Koseff, J. R.; Cloern, J. E.; Monismith, S. G. & Thompson, J. K. 1999a. Processes governing phytoplankton blooms in estuaries. I. The role of horizontal transport. Mar. Ecol. Prog. Ser., 187:1-15.
  • Lucas, L. V.; Koseff, J. R.; Monismith, S. G.; Cloern, J. E. & Thompson, J. K. 1999b. Processes governing phytoplankton blooms in estuaries. II. The role of horizontal transport. Mar. Ecol. Prog. Ser., 187:17-30.
  • Miranda, L. B. de & Castro, B. M. 1996. On the salt transport in the Cananéia sea during a spring tide experiment. Rev. bras. Oceanogr., 44(2):123-133.
  • Miranda, L. B. de; Castro, B. M. & Kjerfve, B. 2002. Princípios de Oceanografia Física de Estuários. São Paulo. EDUSP. 414 p.
  • Miranda, L. B. de; Castro, B. M. & Kjerfve, B. 1998. Circulation and mixing due to tidal forcing in the Bertioga Channel, São Paulo, Brazil. Estuaries, 21(2):204-214.
  • Moser, G. A .O.; Gianesella, S. M. F.; Barrera-Alba, J. .J.; Bérgamo, A. L.; Saldanha-Corrêa, F. M. P.; Miranda, L. B. de & Harari, J. 2005. Instantaneous transport of salt, nutrients, suspended matter and chlorophyll-a in the tropical estuarine system of Santos. Braz. J. Oceanogr., 53(3-4).
  • Nichols, M. M. & Biggs, R. B. 1985. Estuaries. In: Davies Jr, R. A., ed. Coastal Sedimentary Environments.New York, Springer-Verlag. p.77-173.
  • Officer, C. B. & Kester, D. R. 1991. On estimating the non-advective tidal exchanges and advective gravitational circulation exchanges in an estuary. Estuar. coast. Shelf Sci., 32: 99-103.
  • Pereira Filho, J.; Schettini, C. A. F.; Rörig, L. & Siegle, E. 2001. Intratidal variation and net transport of dissolved inorganic nutrients, POC and chlorophyll a in the Camboriú River estuary, Brazil. Estuar. coast. Shelf Sci., 53:249-257.
  • Poole, H. H. & Atkins, W. R. G. 1929. Photo-electric measurements of submarine illumination throughout the year. J. Mar. Biol.Ass. U. K., 16:297-324.
  • Rendell, A. R.; Horrobin, T. M.; Jickells, T. D.; Edmunds, H. M.; Brown, J. & Malcolm, S. J. 1997. Nutrient cycling in the Great Ouse estuary and its impact on nutrient fluxes to the Walsh, England. Estuar. coast. Shelf Sci., 45:653-668.
  • Robertson, A. I. & Blaber, S. J. M. 1992. Plankton, epibenthos and fish communities. In: Robertson, A. I. & Alongi, D. M., eds. Tropical Mangrove Ecosystems. Washington, DC. American Geophysical Union, p. 173-224.
  • Schubel, J. R. & Kennedy, V. S. 1984. The estuary as a filter, an introduction. In: Kennedy, V. S., ed. The Estuary as a Filter. Florida, Academic Press, p.1-15.
  • Simpson, J. H.; Vennell, R. & Souza, A. J. 2001. The salt fluxes in a tidally-energetic estuary. Estuar. coast. Shelf Sci., 52:131-142.
  • Uncles, R. J. 2002. Estuarine Physical Processes Research, Some Recent Studies and Progress. Estuar. coast. Shelf Sci., 55:829-856.
  • Uncles, R. J.; Elliott, R. C. A. & Weston, S. A. 1985. Observed fluxes of water, salt and suspended sediment in a partly mixed estuary. Estuar. coast. Shelf Sci., 20:147-167.
  • UNESCO, 1973. International oceanographic tables. Tables of oxygen. National Institute of Oceanography of Great Britain and UNESCO 2.
  • UNESCO, 1981. Background papers and supporting data on the Practical Salinity Scale 1978. UNESCO Tech. Pap. Mar. Sci., 37:1-144.
  • Webb, K. L. & D´Elia, C. F. 1979. Nutrient and Oxygen Redistribution During a Spring Neap Tidal Cycle in a Temperature Estuary. Science 207:983-985.
  • Wollast, R. 1983. Interactions in estuaries and coastal waters. In: Bolin, B. & Cook, R. B. eds. The major biogeochemical cycles and their interactions. Paris, SCOPE. p.385-407.
  • Yentsch, C. S. & Menzel, D. W. 1963. A method for the determination of phytoplankton, chlorophyll and phaeophytin by fluorescence. Deep-Sea Res., 10:221-231.
  • Barrera-Alba, J. J.; Gianesella, S. M. F.; Harari, J.; Miranda, L. B.; Moser, G. A. O.; Nishihara, L.; Picarelli, S. S.; Saldanha-Corrêa, F. M. P.; Jakovac, A. C. C.; Ricci, F. P. & Mello, R. L. 2002. Transporte de ferro e silicato dissolvidos nas entradas do sistema estuarino-lagunar de Cananéia-Iguape, julho de 2001. In: Congresso Brasileiro de Pesquisas Ambientais, Anais. 2. Santos, 2002. p.1-5.
  • Moser, G. A. O.; Gianesella, S. M. F.; Cattena, C. O.; David, C. J.; Barrera-Alba, J. J.; Saldanha-Corrêa, F. M. P. & Braga, E. S. 2002. Influência das marés sobre o fitoplâncton no Sistema estuarino de São Vicente Santos. In: Congresso de Pesquisa Ambientais. Anais. 2, Santos, 2002. p.1-5.

Publication Dates

  • Publication in this collection
    08 July 2009
  • Date of issue
    Dec 2005

History

  • Accepted
    31 Dec 2005
  • Received
    03 Feb 2005
  • Reviewed
    05 Aug 2005
Universidade de São Paulo, Instituto Oceanográfico Praça do Oceanográfico, 191 , 05508-120 Cidade Universitária, São Paulo - SP - Brasil, Tel.: (55 11) 3091-6501, Fax: (55 11) 3032-3092 - São Paulo - SP - Brazil
E-mail: io@usp.br