Acessibilidade / Reportar erro

The influence of brown algae alginates on phenolic compounds capability of ultraviolet radiation absorption in vitro

Abstracts

Brown algae phenolic compounds (PC) are secondary metabolites that participate in many biological processes, such as ultraviolet radiation (UV) protection, polyspermy blocking and trace metals bounding. Recently, PC has also been studied due to possible interactions with cell wall polysaccharides. However, there are few evidences of these interactions and their influence in physiological processes. The interactions between PC from the brown alga Padina gymnospora and alginates and the influence of these interactions on the UV absorption properties of PC were investigated in this work. Chromatography and spectrophotometry techniques were used to isolate, characterize and determine UV absorption capacity of studied compounds. Even after the P. gymnospora polysaccharide extraction and isolating methods, the PC was maintained linked to the alginate. The interaction of alginates with PC did not cause modifications on absorbance pattern of electromagnetic spectrum (UV-VIS-IR). The UV absorbance capability of PC linked to alginate was maintained for a longer period of time if compared with the purified PC. The obtained results reveal the strong linkage between PC and alginates and that these linkages preserve the UV absorption capability of PC along time.

Alginate; Phenolic compounds; Ultraviolet radiation; Polysaccharides


Os compostos fenólicos (PC) de algas pardas são metabólitos secundários que participam de diversos processos biológicos, como proteção contra radiação ultravioleta (UV), bloqueio de poliespermia e ligação de metais. Recentemente, os PC têm sido estudados devido a possíveis interações com polissacarídeos da parede celular. Entretanto, existem poucas evidências sobre estas interações e sua influência em processos fisiológicos. Neste trabalho, foram investigadas as interações entre os PC de Padina gymnospora e os alginatos e a influência destas interações na capacidade de absorção de UV pelos PC. Foram utilizadas técnicas cromatográficas e espectrofotométricas para o isolamento, a caracterização e a determinação da capacidade de absorção de UV dos compostos estudados. Mesmo após a extração dos polissacarídeos de P. gymnospora e a utilização dos métodos de isolamento, os PC permaneceram ligados ao alginato. A interação de alginato com PC não causou modificações no padrão de absorção do espectro eletromagnético (UV-VIS-IR). A capacidade de absorção de UV dos PC ligados aos alginatos foi mantida por um tempo mais longo do que a do extrato de PC puros. Os resultados obtidos demonstram que há uma forte ligação entre PC e alginatos e que estas ligações preservam a capacidade de absorção de UV dos PC ao longo do tempo.

Alginato; Compostos fenólicos; Radiação ultravioleta; Polissacarídeos


  • Abdala-Díaz, R. T.; Cabello-Pasini, A.; Pérez-Rodríguez, E.; Conde Álvarez, R. M.C. & Figueroa, F. L.. 2006. Daily and seasonal variations of optimum quantum yield and PC in Cystoseira tamariscifolia (Phaeophyta). Mar. Biol., 148:459-465.
  • Andrade, L. R.; Salgado, L. T.; Farina, M.; Pereira, M. S.; Mourão, P. A. S. & Amado Filho, G. M. 2004. Ultrastructure of acidic polysaccharides from the cell walls of brown algae. J. Struct. Biol., 145:216-225.
  • Arnold, T. M. & Targett, N. M. 2003. To grow and defend: Lack of tradeoffs for brown algae phlorotannins. Oikos, 100 (2):406-408.
  • Arroniz-Crespo, M.; Sinha, R. P.; Martinez-Abaigar, J.; Nunez-Olivera, E. & Hader, D. P. 2005. Ultraviolet radiation-induced changes in mycosporine-like amino acids and physiological variables in the red alga Lemanea fluviatilis J. Freshwat. Ecol., 20 (4):677-687.
  • Berglin, M.; Delage, L.; Potin, P.; Vilter, H. & Elwing, H. 2004. Enzymatic cross-linking of a phenolic polymer extracted from the marine alga Fucus serratus Biomacromolecules, 5:2376-2383.
  • Ceh, J.; Molis, M.; Dzeha, T.M. & Wahl, M. 2005. Induction and reduction of anti-herbivore defenses in brown and red macroalgae of the Kenyan coast. J. Phycol., 41:726—731.
  • Diffey, B. L. 2002. Sources and measurement of ultraviolet radiation. Methods, 28:4-13.
  • Franklin, L. A. & Forster, R. M. 1997. The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur. J. Phycol., 32:207-232.
  • Häder, D. P.; Kumar, H. D.; Smith, R. C. & Worrest, R. C. 1998. Effects on aquatic ecosystems. J. Photochem. Photobiol. B, 46:53—68.
  • Hanelt, D.; Wiencke, C. & Nultsch, W. 1997. Influence of UV-radiation on the photosynthesis of artic macroalgae in the field. J. Photochem. Photobiol. B, 38:40-47.
  • Henry, B. E. & Alstyne, K. L. V. 2004. Effects of UV radiation on growth and phlorotannins in Fucus gardneri (Phaeophyceae) juveniles and embryos. J. Phycol., 40:527—533.
  • Holzinger, A. & Lütz, C. 2006. Algae and UV irradiation: Effects on ultrastructure and related metabolic functions. Micron, 37:190—207.
  • Karez, C. S. & Pereira, R. C. 1995. Metal contents in polyphenolic fractions extracted from the brown alga Padina gymnospora Botanica Mar., 38:151-155.
  • Kloareg, B. & Quatrano, R. S. 1988. Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr. Mar. Biol. A. Rev., 26:259-315.
  • Koivikko, R.; Loponen, J.; Honkanen, T. & Jormalainen, V. 2005. Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implication on their ecological functions. J. Chem. Ecol., 31 (1):195-212.
  • Korbee, N.; Figueroa, F. L. & Aguilera, J. 2005. Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). J. Photochem. Photobiol. B, 80:71—78.
  • Madronich, S.; McKenzie, R. L.; Bjorn, L. O. & Caldwell, M. M. 1998. Changes in biologically active ultraviolet radiation reaching the Earth's surface. J. Photochem. Photobiol. B, 46(1-3):5-19.
  • Moen, E.; Larsen, B.; Østgaard, K. & Jensen, A. 1999. Alginate stability during high salt preservation of Ascophyllum nodosom J. Appl. Phycol., 11:21-25.
  • Pavia, H.; Cervin, G.; Lindgren, A. & Ålberg, P. 1997. Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosom. Mar. Ecol. Prog. Ser., 157:139-156.
  • Ragan, M. A. & Glombitza, K. W. 1986. Phlorotannins, brown algal polyphenols. Progress Phycol. Res., 4:129-241.
  • Reviers, B. 1989. Fucans and alginates without PC. J. Appl. Phycol., 1:75-76.
  • Salgado, L. T.; Andrade, L. R. & Amado Filho, G. M. 2005. Localisation of specific monosaccharides in cells of the brown alga Padina gymnospora and the relation to heavy metal accumulation. Protoplasma, 225:123-128.
  • Shoenwaelder, M. 2002. Phycological Reviews 21. The occurrence and cellular significance of physodes in the brown algae. Phycologia, 41(2):125-139.
  • Vreeland, V. & Laetsch, W. M. 1988. Role of alginate self-associating subunits in the assembly of Fucus embryo cell walls. In: Varner J.E., ed. Self assembling architecture. New York, Alan R. Liss, p. 77-96.
  • Shoenwaelder, M. 1996. The distribution and secretion of PC in the early development of Acrocarpia paniculata and Hormosira Banksii (Phaeophyceae). Ph.D. Thesis. Monash University, Australia. 117 p.

Publication Dates

  • Publication in this collection
    06 Nov 2007
  • Date of issue
    June 2007

History

  • Accepted
    27 Feb 2007
  • Reviewed
    06 Nov 2006
  • Received
    09 June 2006
Universidade de São Paulo, Instituto Oceanográfico Praça do Oceanográfico, 191 , 05508-120 Cidade Universitária, São Paulo - SP - Brasil, Tel.: (55 11) 3091-6501, Fax: (55 11) 3032-3092 - São Paulo - SP - Brazil
E-mail: io@usp.br