Accessibility / Report Error

Quaternary development of resilient reefs on the subsiding kimberley continental margin, Northwest Australia

Abstracts

The Kimberley region in remote northwest Australia has poorly known reef systems of two types; coastal fringing reefs and atoll-like shelf-edge reefs. As a major geomorphic feature (from 12ºS to 18ºS) situated along a subsiding continental margin, the shelf edge reefs are in a tropical realm with warm temperatures, relatively low salinity, clear low nutrient waters lacking sediment input, and Indo-West Pacific corals of moderate diversity. Seismic architecture of the Rowley Shoals reveals that differential pre-Holocene subsidence and relative elevation of the pre-Holocene substrate have controlled lagoon sediment infill and reef morphology, forming an evolutionary series reflecting differential accommodation in three otherwise similar reef systems. The Holocene core described for North Scott Reef confirms previous seismic interpretations, and provides a rare ocean-facing reef record. It demonstrates that the Indo-Pacific reef growth phase (RG111) developed during moderate rates of sea level rise of 10 mm/year from 11 to about 7-6.5 ka BP until sea level stabilization, filling the available 27 m of pre-Holocene accommodation. Despite the medium to high hydrodynamic energy imposed by the 4m tides, swell waves and cyclones the reef-building communities represent relatively low-wave energy settings due to their southeast facing and protection afforded by the proximity of the South Reef platform. This study demonstrates the resilience of reefs on the subsiding margin whilst linking Holocene reef morphology to the relative amount of pre-Holocene subsidence.

Coral reefs; Carbonate platform; Seismic architecture; Quaternary; Holocene; Sea-level; Geochronology; Geomorphology; Australia


Kimberly é uma região remota e pouco conhecida, localizada no noroeste da Austrália, ali são encontrados dois sistemas recifais: recifes costeiros de franja e os tipo-atois localizados na margem da plataforma continental. Esses recifes formam a feição geomórfica mais importante entre 12ºS a 18ºS estando localizados ao longo de uma margem continental em subsidência. Esses recifes encontram-se em um ambiente tropical com temperaturas altas, salinidade relativamente baixa, águas claras com baixa concentração de nutrientes, sem aporte de sedimentos continentais e contendo uma fauna indo-pacífica de diversidade moderada. A arquitetura sísmica do Roley Shoals revela que a subsidência diferencial pré-holocênica e elevações relativas do substrato pré-holocênico controlaram a morfologia e o preenchimento de sedimentos na lagoa. Esta formou uma evolução em série que reflete o espaço de acomodação diferente em sistemas recifais que, de outra forma, seriam considerados semelhantes. O testemunho holocênico descrito para North Reef confirma a interpretação sísmica anterior, e contribui com um raro registro de uma frente recifal em ambiente de mar aberto. Os dados mostram que a fase de crescimento do recife indo-pacífico (RG111) apresentou razões moderadas de elevação do nível do mar de 10 mm/ano entre 11 e aproximadamente 7-6,5 anos BP, até a estabilização do nível do mar, preenchendo assim 27 metros de espaço de acomodação pré-holocênica. Apesar da média a alta energia hidrodinâmica imposta pelos 4 m de amplitude de maré, ondas de alto-mar e furacões, as comunidades construtoras dos recifes representam ambientes relativamente de baixa energia. O presente estudo demonstra a resiliência de recifes de margem de subsidência e relaciona também a morfologia recifal do holoceno à quantidade relativa de subsidência pré-holoceno.

Recifes de corais; Plataforma carbonática; Arquitetura sísmica; Quaternário; Holoceno; Nível do mar; Geocronologia; Geomorfologia; Australia


  • Berry, P. F.; Marsh, L. M. Faunal survey of the Roley Shoals, Scott Reef and Seringapatam Reef, northwestern Australia Records of the Western Australian Museum. Supplement, 25 p., 1986.
  • BOC of Australia, LTD. Scott Reef 1 Well Completion Report. á1971a. (unpublished).
  • BOC of Australia, LTD. North Scott Reef 1 Well Completion Report, 1971b. (unpublished).
  • Blanchon, P.; BLAKEWAY, D. Are catch-up reefs an artefact of coring? Sedimentology v. 50, p. 12711282. 2003.
  • Blanchon, P.; Jones, B.; Ford, D. C. Discovery of a submerged relic reef and shoreline off Grand Cayman: further support for an early Holocene jump in sea level. Sedim. Geol, v. 147, p. 253270. 2002.
  • Blanchon, P.; Shaw, J. Reef drowning during the last deglaciation: Evidence for catastrophic sea-level rise and ice-sheet collapse. Geology v. 23; v. 1,á p. 48.1995.
  • CHIN, A.; SWEATMAN, H.; FORBES, S.; PERKS, H.; WALKER, R.; JONES, G.; WILLIAMSON, D.; EVANS, R.; HARTLEY, F.; ARMSTRONG, S.; MALCOLM, H.; EDGAR G. Status of the coral Reefs in Australia and Papua New Guinea. In: Wilkinson, C. (Ed.). Status of Coral Reefs of the World Global Coral Reef Monitoring Network, Reef and Rainforest Research Centre, á2008. p. 159-176.
  • Collins, L. B. Tertiary Foundations and Quaternary Evolution áof áCoral áReef ááSystems áof áAustralia's North áWest áShelf. áIn: áKeep, M; Moss, S.J., (Ed). The Sedimentary Basis of Western Australia 3. In: áPETROLEUM EXPLORATION SOCIETY OF AUSTRALIA áSYMPOSIUM, áPerth, áWA, á2002.á Proc. à p. 129-152.
  • Collins, L. B.; Zhao, J-X.; Freeman, H. A high precision record of mid-late Holocene sea-level events from emergent coral pavements in the Houtman Abrolhos Islands, southwest Australia. Quater. Intern v. 145/146, p. 78-85. 2006.
  • Davies, P. J.; Marshall, J. F.; Hopley, D. Relationships between reef growth and sea level in the Great Barrier Reef. INTERNATIONAl REEF CONGRESS, 5., áTahiti, á1985. Proc. àv. 3, p. 95103, á1985.
  • Done, T. J.; Williams, D. McB.; Speare, P.; Turak, E.; DeVantier, L.M.; Newman, S.J.; Hutchins, J. B. Surveys of coral and reef communities at Scott Reef and Rowley Shoals. Townsville, Australia: Australian Institute of Marine Science , á1994. 46 p.
  • Embry, A. F.; Klovan, J. E. A late Devonian reef tract on Northeastern Banks Island. Bull. Canad. Petrol. Geol, Calgary, v. 19, p. 730-781. 1971.
  • Fairbridge, R. W. Recent and Pleistocene coral reefs of Australia, J. áGeol, v. 58 p. 330-401. 1950.
  • FANG, F.; MORROW, R. Evolution, movement and decay of warm core Leeuwin Current eddies. Deep-sea Res. II, áv. 50, p. 2245-2261, á2003.
  • Gilmour, J. P.; Smith, L. D. Category 5 cyclone at Scott Reef, northwestern Australia. Coral Reefs, v. 25, p. 200. 2006.
  • Harris, P. T.; Baker, E. K.; Cole, A. R. Physical sedimentology of the Australian continental shelf, with emphasis on Late Quaternary deposits in major shipping channels, port approaches and choke points. Ocean Sciences Institute, Report 51, University of Sydney, á1991. 505 p.
  • Hayes, M. O. Morphology of sand accumulation in estuaries: an introduction to the symposium. In: CRONIN, L.E. (Ed.). Estuarine Research. New York: Academic Press, 1975. áv. II, p. 322.
  • Heyward, A.; Pinceratto, E.; Smith, L. Big Bank shoals of the Timor Sea, an environment resource atlas. BHP Petroleum, á1997. 115 p.
  • Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world's coral reefs. Mar. Freshw. Res., v. 50, p. 839-866. 1999.
  • Hoegh-Guldberg, O.; Mumby, P. J.; Hooten, A. J.; Steneck, R. S.; Greenfield, P.; Gomez, E.; Harvell, C. D.; Sale, P. F.; Edwards, A. J.; Caldeira, K.; Knowlton, N.; Eakin, C.M.; Iglesias-Prieto, R.; Muthiga, N.; Bradbury, R. H.; Dubi, A.; Hatziolos, M. E. Coral reefs under rapid climate change and ocean acidification. Science v. 318, p. 1737-1742, á2007.
  • Hopley, D.; Smithers, S.; Parnell, K. áGeomorphology of the Great Barrier Reef: Development, diversity, change: Cambridge: Cambridge Univ. Press, á2007. á532 p.
  • LOUGH, J. M. Coastal climate of northwest Australia and comparisons with the Great Barrier Reef: 1960 to 1992. Coral Reefs v. 17, p.351-367, á1998.
  • Lavering, I. H. Quaternary and modern environments of the Van Diemen Rise. Timor Sea, and potential effects of additional petroleum exploration activity. J. Austral. Geol. Geophys, áv. 13, p. 281-292, á1993.
  • Montaggioni, L. F. History of Indo-Pacific coral reef systems since the last glaciation: Development patterns ans controlling factors. Earth-Sci. Rev., v. 71, p. 1-75, á2005.
  • MURRAY-WALLACE, C. V.; BELPERIO, A. P.The last interglacial shoreline in Australia - a review. Quat.á Sci áRevs, v. á10, p. 441461, 1991.
  • National Tidal Center. http://www.bom.gov.au/oceanography/tides/MAPS/broome_range.shtml 2009a.
    » link
  • National Tidal Center. http://www.bom.gov.au/oceanography/tides/MAPS/yamder_range.shtml 2009b.
    » link
  • Pearce, A. áF.; Griffiths, R. W. The mesoscale structure of the Leeuwin Current. J. Geophys. Res, v. C96, p. 16739-16757, á1991.
  • Pirazzoli, P. A. Sea-level changes: the last 20.000 years New York: John Wiley, á1996. 211 p.
  • Read, J. F. Carbonate platform facies models. Am. Assoc. Pet. Geol. Bull v. 69, p. 1 21, 1985.
  • SANDIFORD, M. The tilting continent: A new constraint on the dynamic topographic field from Australia. Earthá planet.á Sciá Letts , v. 261,á p. 152163, 2007.
  • Smith, S. V. Coral reef calcification. In: BARNES, D.J. (Ed.), Perspectives on Coral Reefs Manuka, Australia: Brian Clouston Publ., 1983. p. 240 247.
  • Smith, L. D.; Gilmour, J. P.; Heyward, A. J.; REES, M. Mass-bleaching, mortality and slow recovery of three common groups of scleractinian at an isolated reef. In: INTERNATIONAL CORAL REEF SYMPOSIUM, 10., áJapan, 2006. Procà. p. 651-656, 2006.
  • Smith, L. D.; Gilmour, J. P.; Heyward, A. J. Resilience of coral communities on an isolated system of reefs following catastrophic mass-bleaching. Coral Reefs, v. 27, p. 197205. 2008.
  • Stephenson, A. E.; Cadman, S. Browse Basin, northwest Australia: the evolution, palaeogeography and petroleum potential of a passive continental margin, Palaeo. Palaeo. Palaeo. v. 111, p. 337-366. 1994.
  • Struckmeyer, H. I. M.; Belvin, J. E.; Sayers, J.; Totterdell, J. M.; Baxter, K.; Cathro, D. L. Structural evolution of the Browse Basin, North West Shelf.á In: áPURCELL, P. G.; PURCELL, R. R., (Ed.). The Sedimentary Basins of Western Australia, 2:.á PETROLEUM EXPLORATION SOCIETY OF AUSTRALIA SYMPOSIUM, áPerth, 1998. Procàá p. á345-366, 1998.
  • Symonds, P. A.; Collins, C. D. N.; Bradshaw, J. Deep structure of the Browse Basin: implications for basin development and petroleum exploration. In: áPURCELL, P. G.; PURCELL, R. R.. á(Ed.)., The Sedimentary Basins of Western Australia PETROLEUM EXPLORATION SOCIETY OF AUSTRALIA SYMPOSIUM, Perth, 1994. Proc à p. 315-331, 1994.
  • Veron, J. E. N. A biogeographic database of Hermatypic Corals. Species of the Central Indo-Pacific. Genera of the World. Australian Institute of Marine Science Monograph Series , Townsville, v. 10,á 433 p., 1993.
  • Wilkinson, C. (Ed.). Status of Coral Reefs of the World Global Coral Reef Monitoring Network, Reef and Rainforest Research Centre., 2008. p. 5-19.
  • Yu, K.-F.; Zhao, J.-X.; Shi, Q.; Chen, T.-G.; Wang, P.-X.; Collerson, K. D.; Liu, T.-S. U-series dating of dead Porites corals in the South China Sea: evidence for episodic coral mortality over the past two centuries. Quat. Geochron. v. 1, p. 129-141. 2006.
  • Zhao, J. X.; Hu, K.; Collerson, K. D.; Xu, H. K. Thermal ionization mass spectrometry U-series dating of a hominid site near Nanjing, China. Geology. v. 29, n. 1, p. 27-30, á2001.
  • ZHU, Z. Z.; COLLINS, L. B.; WYRWOLL, K-H.; CHEN, J.; WASSERBURG, G.; EISENHAUER, A. High precision U-series dating of Last Interglacial events by mass spectrometry; Houtmaná Abrolhos Islands.á Earth plan. Sci. Letts, v. 118; p. 281-293. 1993.

Publication Dates

  • Publication in this collection
    23 Aug 2010
  • Date of issue
    2010

History

  • Reviewed
    14 Dec 2009
  • Received
    28 Aug 2009
  • Accepted
    03 Mar 2010
Universidade de São Paulo, Instituto Oceanográfico Praça do Oceanográfico, 191 , 05508-120 Cidade Universitária, São Paulo - SP - Brasil, Tel.: (55 11) 3091-6501, Fax: (55 11) 3032-3092 - São Paulo - SP - Brazil
E-mail: io@usp.br