Acessibilidade / Reportar erro

Fouling assemblages associated with estuarine artificial reefs in new South Wales, Australia

Abstracts

Previous studies examining the dynamics of succession on artificial reefs have predominantly focussed on fish communities and largely ignored the role of fouling assemblages in explaining the patterns of community structure associated with artificial reefs. The objective of this study was to record the development of epibiotic assemblages on three "design specific" (Reef Ball®) estuarine artificial reefs systems located in Lake Macquarie, Botany Bay and St Georges Basin in New South Wales, Australia. Recruitment to the artificial reefs was relatively rapid with the majority of taxa identified over the two-year study period observed within the first year post-deployment. The artificial reefs in Lake Macquarie and St Georges Basin were characterised by low diversity with four and nine taxa recorded respectively in contrast to the sixteen taxa observed on the Botany Bay reefs. Results indicated no significant differences in percentage cover of taxa among reefs in either St Georges Basin or Lake Macquarie. In contrast, comparisons between individual Botany Bay reefs identified significant differences in the percentage cover of species between artificial reefs. Analysis of assemblage structure with reef age indicated discrete patterns among estuaries with an overall reduction in the percentage cover of filamentous turfing algae (FTA) identified for all reef systems with an increase in reef age. Variations in environmental and physical conditions (turbidity, water flow, wave action and proximity to naturally occurring reef) may have contributed to the observed differences in fouling assemblages between estuaries and between artificial reefs within Botany Bay.

Artificial reef; Fouling; Epibenthos; Succession; Estuaries


Estudos prévios que examinaram a dinâmica de sucessão em recifes artificiais foram focalizados nas comunidades de peixes, e sempre ignoraram o papel exercido pelos organismos incrustantes sobre a estruturação das comunidades associadas aos recifes artificiais. O presente estudo tem por objetivo registrar o desenvolvimento das assembléias epibióticas em três sistemas de recifes artificiais estuarinos com desenho específico (Reef Ball®) localizados em Macquarie Lake, Botany Bay e Bacia de St Georges em New South Wales, Australia. O recrutamento nos recifes artificiais foi relativamente rápido e a maioria dos táxons identificados durante o período dos dois anos de estudo já pode ser observada no primeiro ano. Os recifes de Macquarie Lake e da Bacia de St Georges foram caracterizados por baixa diversidade, sendo registrado o número máximo de seis táxons; em contraste, nos recifes de Botany Bay foram observados dezesseis taxa. Os resultados indicaram que não houve diferença significativa na porcentagem de cobertura dos grupos taxonômicos, tanto na Bacia de St Georges quanto em Macquarie Lake. Por sua vez, as porcentagens de cobertura das espécies nos recifes de Botany Bay mostraram diferenças significativas dentro do complexo recifal. A análise da estrutura das assembléias, quando se considera a idade do recife, indicou a ocorrência de padrões discretos entre os estuários, havendo em geral uma redução da porcentagem de cobertura das algas filamentosas formadoras de tufos (AFT) com o aumento da idade recifal. As diferenças nas condições ambientais e físicas (turbidez, fluxo de água, ação das ondas e proximidade do recife natural) existentes entre estuários e recifes artificiais, podem ter contribuído para as variações observadas nas assembléias incrustantes em Botany Bay.

Recifes artificiais; Incrustação; Epibentos; Sucessão; Estuários


  • ABELSON, A. Hydrodynamic impediments to settlement of marine propagules, and adhesive-filament solutions. Limnol. Oceanogr , v. 39, n. 1, p. 164-169,  1994.
  • ABELSON, A.; DENNY, M. Settlement of marine organisms in flow. A. Rev. Ecol. Syst, v. 28, p. 317-339,  1997.
  • ABURTO - OROPEZA, O.; BALART, E. F. Community structure of reef fish in several habitats of a rocky reef in the Gulf of California. Mar. Ecol, v. 22, n. 4, p. 283-305,  2001.
  • AIROLDI, L. Roles of disturbance, sediment stress, and substratum retention on spatial dominance in algal turf. Ecology, v. 79, n. 8, p. 2759-2770,  1998.
  • ALBANI, A. Environmental assessment of Botany Bay: sediments, sediment geochemistry & foraminifera. Parramatta: Sydney Metropolitan Catchment Management Authority, 2008.
  • ANDERSON, M. J.; UNDERWOOD, A. J. Effects of substratum on the recruitment and development of an intertidal estuarine fouling assemblage. J. expl mar. Biol. Ecol, v. 184, p. 217-236,  1994.
  • BAILEY-BROCK, J. H. Fouling community development on an artificial reef in Hawaiian waters. Bull. mar. Sci, v. 44, n. 2, p. 580-591,  1989.
  • BAINE, M. Artificial reefs: a review of their design, application, management and performance. Ocean Coast Mgmt., v. 44, n. 3-4, p. 241-259,  2001.
  • BALATA, D.; PIAZZI, L.; CECCHI, E.; CINELLI, F. Variability of Mediterranean coralligenous assemblages subject to local variation in sediment deposition. Mar environ. Res, v. 60, n. 4, p. 403-421,  2005.
  • BAYNES, T. W.; SZMANT, A. M. Effect of current on the sessilembenthic community structure of an artificial reef. Bull. mar. Sci, v. 44, n. 2, p. 545-566,  1989.
  • BEHRENTS, K. C. The influence of shelter availability on recruitment and early juvenile survivorship of Lythrypnus dalli Gilbert (Pisces: Gobiidae). J. expl mar. Biol. Ecol, v. 107, n. 1, p. 45-59,  1987.
  • BOAVENTURA, D.; MOURA, A.; LEITAO, F.; CARVALHO, S.; CURDIA, J.; PEREIRA, P.; FONSECA, L.; SANTOS, M. N.; MONTEIRO, C. C. Macrobenthic colonisation of artiûcial reefs on the southern coast of Portugal (Ancao, Algarve). Hydrobiologia, v. 555, p. 335-343,  2006.
  • BOHNSACK, J. A. Photographic quantitative sampling of hard-bottom benthic communities. Bull. mar. Sci, v. 29, n. 2, p. 242-252,  1979.
  • BRANDEN, K. L.; POLLARD, D. A.; REIMERS, H. A. A review of recent artificial reef developments in Australia. Bull. mar. Sci, v. 55, n. 2-3, p. 982-994,  1994.
  • BROCK, R. E., NORRIS, J. E. An analysis of the efficacy of four artificial reef designs in tropical waters. Bull. Mar. Sci. v44, p. 934-941 1989.
  • BRICKHILL, M. J.; LEE, S. Y.; CONNOLLY, R. M. Fishes associated with artificial reefs: attributing changes to attraction or production using novel approaches. J. Fish Biol., v. 67, p. 53-71,  2005.
  • BUTLER, A. J. Effect of patch size on communities of sessile invertebrates in Gulf St Vincent, South Australia. J. expl mar. Biol. Ecol, v. 153, n. 2, p. 255-280,  1991.
  • BUTLER, A. J.; CONNOLLY, R. M. Development and long term dynamics of a fouling assemblage of sessile marine invertebrates. Biofouling, v. 9, p. 187-209,  1996.
  • CARR, M. H. Effects of macroalgal assemblages on the recruitment of temperate zone reef fishes. J. expl mar Biol. Ecol, v. 126, n. 1, p. 59-76,  1989.
  • CARR, M. H.; HIXON, M. A. Artificial reefs: The importance of comparisons with natural reefs. Fisheries, v. 22, n. 4, p. 28-33,  1997.
  • CHAPMAN, M. G.; CLYNICK, B. G. Experiments testing the use of waste material in estuaries as habitat for subtidal organisms. J. expl mar. Biol. Ecol, v. 338, n. 2, p. 164-178,  2006.
  • CLARKE, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. Ecol, v. 18, n. 1, p. 117-143,  1993.
  • CLARKE, K. R.; WARWICK, R. M. Change in marine communities: an approach to statistical analysis and interpretation UK: Natural Environment Research Council, 1994.
  • CLYNICK, B. G.; CHAPMAN, M. G.; UNDERWOOD, A. J. Effects of epibiota on assemblages of fish associated with urban structures. Mar. Ecol. Prog. Ser, v. 332, p. 201-210, 2007.
  • COLEMAN, M. A.; CONNELL, S. D. Weak effects of epibiota on the abundances of ûshes associated with pier pilings in Sydney Harbour. Environ. Biol. Fishes, v. 61, p. 231-239,  2001.
  • CONNELL, J. H. Diversity in tropical rain forests and coral reefs. Science, v. 199, n. 4335, p. 1302,  1978.
  • CONNELL, J. H.; KEOGH, M. J. Disturbance and patch dynamics of subtidal marine animals on hard substrata. . In: PICKETT, S. T. A.; WHITE, P. S. (Ed.). The ecology of natural disturbance and patch dynamics New York: Academic Press, 1985. p. 125-151.
  • CONNELL, S. D. The monopolization of understorey habitat by subtidal encrusting coralline algae: a test of the combined effects of canopy-mediated light and sedimentation. Mar. Biol, v. 142, n. 6, p. 1065-1071,  2003.
  • CONNELL, S. D. Assembly and maintenance of subtidal habitat heterogeneity: synergistic effects of light penetration and sedimentation. Mar. Ecol. Prog. Ser, v. 289, p. 53-61,  2005.
  • COPERTINO, M. S.; CHESHIRE, A.; WATLING, J. Photoinhibition and photoacclimation of turf algal communities on a temperate reef, after in situ transplantation experiments. J. Phycol, v. 42, n. 3, p. 580-592,  2006.
  • COUTIN, P. Artificial reefs: applications in Victoria from a literature review Marine and Freshwater Resources Institute, 2001.
  • METHODS: New York: Cambridge University Press, 1985. p. 7-32.
  • EDWARDS, R. A.; SMITH, S. D. A. Subtidal assemblages associated with a geotextile reef in south-east Queensland, Australia. Mar. Freshwat. Res, v. 56, n. 2, p. 133-142,  2005.
  • EKLUND, A. M. The importance of post-settlement predation and reef resource limitation on the structure of reef fish assemblages. In: INTERNATIONAL CORAL REEF SYMPOSIUM, 8. Proceedings…, v. 2, p. 1139-1142,  1997.
  • ENGLAND, P. R.; PHILLIPS, J.; WARING, J. R.; SYMONDS, G.; BABCOCK, R. Modelling wave-induced disturbance in highly biodiverse marine macroalgal communities: support for the intermediate disturbance hypothesis. Mar. Freshwat. Res, v. 59, p. 515-520,  2008.
  • FABI, G.; GRATI, F.; LUCCHETTI, A.; TROVARELLI, L. Evolution of the fish assemblage around a gas platform in the northern Adriatic Sea. ICES J. mar. Sci, v. 59, n. suppl, p. S309-315,  2002.
  • FOWLER-WALKER, M. J.; CONNELL, S. D. Opposing states of subtidal habitat across temperate Australia: consistency and predictability in kelp canopy-benthic associations. Mar. Ecol. Prog. Ser, v. 240, p. 49-56,  2002.
  • GLASBY, T. M. Effects of shading on subtidal epibiotic assemblages. J. Exp. mar. Biol. Ecol, v. 234, n. 2, p. 275-290, 1999.
  • GLASBY, T. M.; CONNELL, S. D. Urban structures as marine habitats. Urban Struct. Mar. Habitats, v. 28, n. 7, p. 595-598,  1999.
  • GLASBY, T. M.; CONNELL, S. D. Orientation and position of substrata have large effects on epibiotic assemblages. Mar. Ecol. Prog. Ser, v. 214, p. 127-135,  2001.
  • GORGULA, S. K.; CONNELL, S. D. Expansive covers of turf-forming algae on human-dominated coast: the relative effects of increasing nutrient and sediment loads. Mar. Biol, v. 145, n. 3, p. 613-619,  2004.
  • HURD, C. L. Water motion, marine macroalgal physiology, and production. J. Phycol, v. 36, n. 3, p. 453-472,  2000.
  • IRVING, A. D.; CONNELL, S. D. Interactive effects of sedimentation and microtopography on the abundance of subtidal turf-forming algae. Phycologia, v. 41, p. 517-522,  2002.
  • JUDGE, M. L.; CRAIG, S. F. Positive flow dependence in the initial colonization of a fouling community: results from in situ water current manipulations. J. expl mar. Biol. Ecol., v. 210, n. 2, p. 209-222,  1997.
  • KASS, G. V. An exploratory technique for investigating large quantities of categorical data. J. Roy. Stat. Soc, Series C., v. 29, n. 2, p. 119-127,  1980.
  • KENNELLY, S. J.; LARKUM, A. W. D. A preliminary study of temporal variation in the colonization of subtidal algae in an Ecklonia radiata community. Aquat. Biol, v. 17, n. 3-4, p. 275-282,  1983.
  • KNOTT, N. A.; UNDERWOOD, A. J.; CHAPMAN, M. G.; GLASBY, T. M. Epibiota on vertical and on horizontal surfaces on natural reefs and on artificial structures. J mar. biol. Assoc. U. K, v. 84, n. 6, p. 1117-1130,  2004.
  • KOHLER, K. E.; GILL, S. M. Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci., v. 32, p. 1259-1269,  2006.
  • KROHLING, W.; BROTTO, D. S.; ZALMON, I. R. Functional role of fouling community on an artificial reef at the northern coast of Rio de Janeiro State, Brazil. Braz. J. Oceanogr, v. 54, n. 4, p. 183-191,  2006.
  • LOH, T. L.; TANZIL, J. T. I.; CHOU, L. M. Preliminary study of community development and scleractinian recruitment on fibreglass artificial reef units in the sedimented waters of Singapore. Aquat. Conserv. mar Freshwat. Ecosystem, v. 16, n. 1, p. 61-76,  2006.
  • LUKENS, R. R.; BELL, M.; BUCHANAN, M.; CULBERTSON, J.; DODRILL, J.; KASPRZAK, R.; TATUM, W. Guidelines for marine artificial reef materials U.S. Fish and Wildlife Service. Technical Coordinating Committee Gulf States Marine Fisheries Commission, 1997
  • MOURA, A.; BOAVENTURA, D.; CÚRDIA, J.; CARVALHO, S.; CANCELA DA FONSECA, L.; LEITÃO, F.; SANTOS, M.; MONTEIRO, C. Effect of depth and reef structure on early macrobenthic communities of the Algarve artificial reefs (southern Portugal). Hydrobiologia, v. 580, n. 1, p. 173-180,  2007.
  • NLWRA - NATIONAL LAND & WATER RESOURCES AUDIT OzCoasts: Botany Bay. v. 2009. n. 1, Jun 2009.
  • PITCHER, T. J.; SEAMAN JR, W. Petrarchs Principle: how protected human-made reefs can help the reconstruction of fisheries and marine ecosystems. Fish and Fisheries., v. 1, n. 1, p. 73-81,  2000.
  • POLLARD, D. A. Artificial habitats for fisheries enhancements in the Australia region. Mar. Fish. Rev, v. 51, n. 4, p. 11-28,  1989.
  • POLLARD, D. A.; MATTHEWS, J. Experience in the construction and siting of artificial reefs and fish aggregation devices in Australian waters, with notes on and a bibliography of Australian studies. Bull. mar. Sci, v. 37, n. 1, p. 299-304,  1985.
  • REDMAN, R. A.; SZEDLMAYER, S. T. The effects of epibenthic communities on reef fishes in the northern Gulf of Mexico. Fish. Mngt. Ecol, v. 16, n. 5, p. 360-367,  2009.
  • RILOV, G.; BENAYAHU, Y. Fish assemblage on natural versus vertical artificial reefs: the rehabilitation perspective. Mar. Biol, v. 136, n. 5, p. 931-942,  2000.
  • RILOV, G.; BENAYAHU, Y. Rehabilitation of coral reef-fish communities: The importance of artificial-reef relief to recruitment rates. Bull. mar. Sci, v. 70, n. 1, p. 185-197,  2002.
  • ROKACH, L.; MAIMON, O. Data mining with decision trees: theory and applications. World Scientific Pub Co., 2008.
  • RULE, M. J.; SMITH, S. D. A. Depth-associated patterns in the development of benthic assemblages on artificial substrata deployed on shallow, subtropical reefs. J. expl Mar. Biol. Ecol, v. 345, n. 1,  2007.
  • SEAMAN JR, W. Artificial reef evaluation with application to natural marine habitats Boca Raton, Fla.: Taylor & Francis, 2000.
  • SEAMAN, JR, W.; JENSEN, A. C. Purposes and practices of artificial reef evaluation. In: SEAMAN JR, W.; (Ed.). Artificial reef evaluation with natural marine habitat. Boca Raton, Fla: CRC Press, 2000. p. 1.
  • SEAMAN JR, W.; SPRAGUE, L. M. Artificial habitats for marine and freshwater fisheries San Diego: Academic Press, 1991
  • SEAMAN, JR, W.; BUCKLEY, R. M.; POLOVINA, J. J. Advances in knowledge and priorities for research, technology and management related to artificial aquatic habitats. Bull. Mar. Sci, v. 44, n. 2, p. 527-532,  1989.
  • SHENG, Y. P.Physical characteristics and engineering at reef sites. In: SEAMAN JR, W.; (Ed.). Artificial reef evaluation with natural marine habitat. Boca Raton, Fla: CRC Press, 2000., p.51 2000.
  • SHERMAN, R. L.; GILLIAM, D. S.; SPIELER, R. E. A preliminary examination of depth associated spatial variation in fish assemblages on small artificial reefs. J. appl. Ichthy, v. 15, n. 3, p. 116-121,  1999.
  • SPIELER, R. E.; GILLIAM, D.S.; SHERMAN, R. L.; Artificial substrate and coral reef restoration: What do we need to know to know what we need. Bull. Mar. Sci. v 69, p. 1013-1030. 2001
  • SU, D. T.; LUI, T. L.; OU, C. H. Numerical investigation into effects of seabed topography on flows in and around artificial reefs. Fish. Sci, v. 74, n. 2, p. 236-254,  2008.
  • SUTTON, S. G.; BUSHNELL, S. L. Socio-economic aspects of artificial reefs: Considerations for the Great Barrier Reef Marine Park. Ocean Coast. Mgmt, v. 50, p. 829-846,  2007.
  • SVANE, I.; PETERSEN, J. K. On the problems of epibioses, fouling and artificial reefs, a review. Mar. Ecol, v. 22, n. 3, p. 169-188,  2001.
  • WALDICHUK, M. Incineration at sea and artificial reefs: Options for marine waste disposal MAR. POLLUT. BULL.. v 19 n 11, p 11 -22 1988.
  • WALKER, S. J.; SCHLACHER, T. A.; SCHLACHER-HOENLINGER, M. A. Spatial heterogeneity of epibenthos on artificial reefs: fouling communities in the early stages of colonization on an east Australian shipwreck. Mar. Ecol, v. 28, n. 4, p. 435-445,  2007.
  • WERNBERG, T.; CONNELL, S. D. Physical disturbance and subtidal habitat structure on open rocky coasts: Effects of wave exposure, extent and intensity. J. Sea Res, v. 59, n. 4, p. 237-248,  2008.
  • WERNBERG, T.; THOMSEN, M. S. The effect of wave exposure on the morphology of Ecklonia radiata. Aquat Bot, v. 83, n. 1, p. 61-70,  2005.
  • WHITE, A. T.; MING, C. L.; DE SILVA, M. W. R. N.; GUARIN, F. Y. Artificial reefs for marine habitat enhancement. Manila: International Center for Living Aquatic Resources Management, 1990.

Publication Dates

  • Publication in this collection
    11 Oct 2011
  • Date of issue
    2011

History

  • Received
    23 May 2010
  • Accepted
    15 June 2011
  • Reviewed
    31 May 2011
Universidade de São Paulo, Instituto Oceanográfico Praça do Oceanográfico, 191 , 05508-120 Cidade Universitária, São Paulo - SP - Brasil, Tel.: (55 11) 3091-6501, Fax: (55 11) 3032-3092 - São Paulo - SP - Brazil
E-mail: io@usp.br