Acessibilidade / Reportar erro

Numerical simulation of wind waves on the Río de la Plata: evaluation of four global atmospheric databases

Abstracts

The performance of NCEP/NCAR I, NCEP/DOE II, JRA-25 and ERA-Interim global databases, implemented as atmospheric forcings of the SWAN model in the Río de la Plata region, was quantitatively tested by calculating the bias, the mean square root error, the determination coefficient and the slope of the line fitted between observed and simulated wave parameters (significant wave height, mean period and direction). Even though statistical estimators showed no evident differences for wave periods and directions some noticeable differences were observed for simulated significant wave heights depending on the forcing used. The lowest bias (0.22 m) was obtained when the SWAN model was forced by ERA-Interim. With regard to the mean square root errors, the lowest values were obtained when NCEP/NCAR I (0.16 m) and NCEP/DOE II (0.19 m) were used as forcing. In addition, the best slope for simulated heights (0.79) was obtained using NCEP/DOE II. Computed determination coefficients for heights, periods and directions were very similar (0.89-0.93) for all the simulations carried out in this study. Energetic and severe wave events were given special consideration. The most energetic wave episode recorded in the Río de la Plata mouth (24 August, 2005) was analyzed and discussed in particular. It was concluded that during energetic atmospheric conditions the best agreement is achieved by implementing NCEP/DOE II as forcing. In the light of these results it is concluded that NCEP/DOE II is the most suitable atmospheric forcing to simulate wave heights with the SWAN model in the Río de la Plata region.

NCEP/NCAR Reanalysis I; NCEP/DOE reanalysis II; JRA-25 reanalysis; ERA-Interim; SWAN model; Río de la Plata


Na região do Rio de la Plata, o desempenho das reanálises globais do NCEP/NCAR I, NCEP/DOE II, JRA-25 e ERAInterim implementadas como forçantes atmosféricas do modelo SWAN foram quantitativamente acessados através do viés, erro quadrático médio, coeficiente de determinação e inclinação da reta. Estes índices foram obtidos dos parâmetros de ondas observados e simulados (alturas significativas de ondas, período principal e direção). Embora as estimativas estatísticas não mostrem diferenças evidentes para períodos e direções, algumas diferenças notáveis foram obtidas para altura de ondas simuladas, dependendo do vento utilizado. O menor viés para altura significativa (0.22 m) foi obtido quando o SWAM foi forçado com a ERAInterim, enquanto o NCEP/NCAR I (0.16 m) e NCEP/DOE II (0.19 m) forneceram menor erro quadrático médio. A melhor inclinação da reta entre simulação e observação de altura significativa (0.79) foi obtida usando NCEP/DOE II. No período de estudo, o maior episódio de onda registrado na boca do Río de la Plata foi analisado e discutido. Neste evento de condições atmosféricas energéticas o melhor ajuste foi alcançado utilizando os ventos do NCEP/DOE II como forçante. Conclui-se que a base de dados NCEP/DOE II é forçante atmosférica mais adequada para simular alturas significativas de ondas com o modelo SWAN na região estudada.

Reanalises de NCEP; Reanalises japonês de 25 anos; Modelo Swan; Rio da Prata


  • ALLARD, R. A.; KAIHATU, J.; HSU, Y. L.; DYKES, J. D. The integrated ocean prediction system (IOPS): Special issue: Navy operational models: Ten years later. Oceanography, v. 15, n. 1, p. 67-76, 2002.
  • BOOIJ, N.; RIS, R. C.; HOLTHUIJSEN, L. H. A third generation wave model for coastal regions. 1: Model description and validation. J. Geophys. Res-Oceans, v.104 , C4, p. 7649-7666, 1999.
  • CAMPETELLA, C.; SAULO, C. Verificación objetiva del modelo LAHM/CIMA sobre el centro-este de Argentina y Uruguay. Meteorológica, v. 28, n. 1-2, p. 83-96, 2003.
  • CODIGNOTTO, J.; DRAGANI, W.; MARTIN, P.; MEDINA, R.; ALONSO, G. Wind waves climate change as an explanation of the erosion in Samborombón Bay, Argentine. Cont. Shelf Res., 2012, doi: 10.1016/j.csr.2012.03.013.
  • CONTENTO, G.; LUPIERI, G.; VENTURI, M.; CIUFFARDI, T. A medium-resolution wave hindcast study over the Central and Western Mediterranean Sea. Ocean Dynam., v. 62, n. 1, 87-104, 2012.
  • DA ROCHA, R.; SUGAHARA, S.; DA SILVEIRA, R. Sea waves generated by extratropical cyclones in the South Atlantic Ocean: Hindcast and validation against Altimeter data. Weather Forecast., v. 19, p. 398-410, 2004.
  • DATAWELL. Manual for the waverider LM Haarlem, The Netherlands: Laboratory for Instrumentation, 1997.
  • DEE, D. P. et al.-35 co-authors. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc, v. 137, p. 553-597, 2004, doi: 10.1002/qj.828.
  • DRAGANI, W.; ROMERO, S. Impact of a possible local wind change on the wave climate in the upper Río de la Plata. Int. J. Climatol, n. 24, p. 1149-1157, 2004.
  • DRAGANI, W.; GARAVENTO, E.; SIMIONATO, C.; NUÑEZ, M.; MARTÍN, P.; CAMPOS, M.I. Wave simulation in the outer Río de la Plata estuary: an evaluation of SWAN model. J. Waterway, Port, Coastal Ocean Engineering, v. 134, n. 5, p. 299-305, 2008.
  • GEBCO. User's guide to the centenary edition of the GEBCO digital atlas and its data sets JONES, M. T. (Ed.). UK: Natural Environment Research Council, 2003.
  • HOLTHUIJSEN, L. H. et al. Swan cycle III version 40.31, user's manual. Delft: Delft Univ. of Technology, Faculty of Civil Engineering and Geosciences, Environmental Fluid Mechanics Section, 2004.
  • INNOCENTI, V.; CAETANO NETO, E. A case study of the 9 August 1988 South Atlantic storm: Numerical simulations of the wave activity. Weather Forecast., v. 11, n. 1, p. 78-88, 1996.
  • KALNAY, E. et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc, v. 77, n. 3, p. 437 - 471, 1996.
  • KANAMITSU, M.; EBISUZAKI, W.; WOOLEN, J.; YANG, S., FIORINO, H.; POTTER, G. NCEP-DOE amy -II Reanalysis (R-2). Boston, Mass.: American Meteorological Society, November, 2002. p. 1631-1643.
  • LIN, W.; SANDFORD, L. P.; SUTTLES, S. E. Wave measured and modeling in Chesapeake Bay. Cont. Shelf Res., v. 22, n. 18, p. 2673- 2683, 2002.
  • ONOGI, K.; TSUTSUI, J.; KOIDE, H.; SAKAMOTO, M.; KOBAYASHI, S.; HATSUSHIKA, H.; MATSUMOTO, T.; YAMAZAKI, H.; KAMAHORI, K.; TAKAHASHI, S.; KADOKURA, K.; WADA, K.; KATO, R.; OYAMA, T.; OSE, T.; MANNOJI, N.; TAIRA, R. The JRA-25 Reanalysis. J. Meteorol. Soc. Japan, v. 85, p. 369-432, 2007.
  • PIANCA, C.; MAZZINI, P.; SIEGLE, E. 2010. Brazilian offshore wave climate based on NWW3 reanalysis. Braz. J. Oceanogr, v. 58, n. 1. P. 53-70, 2010.
  • POSSIA, N.; VIDAL, L.; CAMPETELLA, C. Un temporal de viento en el Río de la Plata. Rev. Meteorolog, v. 36, p. 33-44, 2011.
  • RIS, R. C.; HOLTHUIJSEN, L. H.; BOOIJ, N. A third generation wave model for coastal regions. 2: Verification. J. Geophys. Res, v. 104, C04, p. 7667-7681, 1999.
  • RUIZ ,J. J.; SAULO, C.; NOGUÉS-PAEGLE, J. 2010. WRF Model Sensitivity to Choice of Parameterization over South America: Validation against surface variables. Mon. Weather Rev., v. 138, p. 3342-3355, 2010 doi: 10.1175/2010MWR3358.
  • SHIKLOMANOV, I. A. A summary of the monograph world water resources: A new appraisal and assessment for the 21st Century, report, U. N. Environ. Programme, Nairobi, 1998.
  • SHN. Mar Argentino, de Río de la Plata al Cabo de Hornos, Nautical Chart, 50. 4th ed. Servicio de Hidrografia Naval, Armada Argentina, 1986.
  • SHN. Acceso al Río de la Plata, Nautical Chart H1, 5th ed., Servicio de Hidrografia Naval, Armada Argentina, 1992.
  • SHN. Río de la Plata Exterior, Nautical Chart H113. 2nd ed. Servicio de Hidrografia Naval, Armada Argentina, 1999a.
  • SHN, El Río de la Plata Medio y Superior, Nautical Chart H116. 4th ed. Servicio de Hidrografia Naval, Armada Argentina, 1999b.
  • SIMIONATO, C.; VERA, C.; SIEGISMUND, F. Surface wind variability on seasonal and interannual scales over Río de la Plata area. J. Coast. Res., v. 21, n. 4, 770-783, 2005.
  • SIMIONATO, C. G.; MECCIA, V. L.; DRAGANI, W. C.; NUÑEZ, M. N. On the use of the NCEP/NCAR surface winds for modeling barotropic circulation in the Río de la Plata Estuary. Estuar. Coast. Shelf Sci, v. 70, p. 195-206, 2006a.
  • SIMIONATO, C., MECCIA, V., DRAGANI, W., GUERRERO, R., NUÑEZ, M.. The Río de la Plata estuary response to wind variability in synoptic to intraseasonal scales: barotropic response. J. Geophys. Res, v. 111, C09031, 2006b doi:10.1029/2005JC003297.
  • SIMIONATO, C. G.; MECCIA, V. L.; GUERRERO, R. A.; DRAGANI, W. C.; NUÑEZ, M. N. Río de la Plata estuary response to wind variability in synoptic to intraseasonal scales: 2. Currents' vertical structure and its implications for the salt wedge structure. J. Geophys. Res, v. 112, C007005, 2007, doi: 10.1029/2006JC003815, 2007.
  • SIMMONDS, I.; KEAY, K. Mean southern hemisphere extratropical cyclone behavior in the 40-year NCEP/NCAR reanalysis. J. Climate, v. 13, n. 5, p. 873-885, 2000.
  • WHITHAM, G. B. Linear and nonlinear waves New York: Wiley, 1974.
  • WU, J. Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res, C 12, Oceans Atmos., v.87, p. 9704 - 9706, 1982.

Publication Dates

  • Publication in this collection
    18 Feb 2013
  • Date of issue
    Dec 2012

History

  • Received
    11 June 2012
  • Accepted
    26 Nov 2012
  • Reviewed
    25 Nov 2012
Universidade de São Paulo, Instituto Oceanográfico Praça do Oceanográfico, 191 , 05508-120 Cidade Universitária, São Paulo - SP - Brasil, Tel.: (55 11) 3091-6501, Fax: (55 11) 3032-3092 - São Paulo - SP - Brazil
E-mail: io@usp.br