Acessibilidade / Reportar erro

Submarine groundwater discharge revealed by radium isotopes (Ra-223 and Ra-224) near a paleochannel on the Southern Brazilian continental shelf

Abstracts

Submarine Groundwater Discharge (SGD) has been recognized as an important component of the ocean-continent interface. The few previous studies in Brazil have focused on nearshore areas. This paper explores SGD on the Southern Brazilian Continental Shelf using multiple lines of evidence that include radium isotopes, dissolved nutrients, and water mass observations. The results indicated that SGD may be occurring on the Continental Shelf in the Albardão region, near a paleochannel located 50 km offshore. This paleochannel may thus be a preferential pathway for the delivery of nutrient- and metal-enriched groundwater and porewater into continental shelf waters.

Porewater; Subterranean estuary; Permeable sediments


A descarga de água subterrânea ("Submarine Groundwater Discharge"; SGD) é um importante elo entre continente-oceano. No Brasil, embora haja um crescente interesse em estudos sobre este tema, eles ainda são raros e se restringem às zonas costeiras. A presente investigação explora as evidências SGD na Plataforma Continental do Sul do Brasil, as quais incluem isótopos de rádio, nutrientes dissolvidos e distribuição das massas d'água. Os resultados indicam que a SGD pode ocorrer na Plataforma Continental na região do Albardão, próximo a um paleocanal localizado a 50 km da costa. Esse paleocanal pode, assim, ser o caminho preferencial de entrada de nutrientes e de águas subterrâneas ricas em metais na plataforma continental.

Água intersticial; Estuário subterrâneo; Sedimentos permeáveis


  • ABREU, J. G. N.; CALLIARI, L. J. Paleocanais na plataforma continental interna do Rio Grande do Sul: evidências de uma drenagem fluvial pretérita. Rev. Bras. Geofis., v. 23, n. 2, p. 123-132, 2005.
  • ATTISANO, K. K.; NIENCHESKI, L. F. H.; MILANI, I. C. B.; MACHADO, C. S.; MILANI, M. R.; ZARZUR, S. Contribution from continental groundwater to the shelf zone in Albardão area, RS, Brazil. Braz. J. Oceanogr., v. 56, n. 3, p. 189-200, 2008.
  • BAUMGARTEN, M. G. Z.; WALLNER-KERSANACH, M.; NIENCHESKI, L. F. H. Manual de análises em oceanografia química 2. ed. Rio Grande: FURG, 2010. 132 p.
  • BRATTON, J. F. The three scales of submarine groundwater flow and discharge across passive continental margins. J. Geol., v. 118, n. 5, p. 565-575, 2010.
  • BURNETT, W. C.; DULAIOVA, H. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. J. Environ. Radioact., v. 69, n. 1/2, p. 21-35, 2003.
  • BURNETT, W. C.; PETERSON, R.; MOORE, W. S.; OLIVEIRA, J. Radon and radium isotopes as tracers of submarine groundwater discharge: results from the Ubatuba, Brazil SGD assessment intercomparison. Estuarine, Coastal Shelf Sci., v. 76, n.3, p. 501-511, 2008.
  • BUSSMANN, I.; SUESS, E. Groundwater seepage in eckernfoerde bay (western baltic sea): effect on methane and salinity distribution of the water column. Cont. Shelf Res., v. 18, p. 1795–1806, 1998.
  • CABLE, J.; BURNETT, W.; CHANTON, J.; WEATHERLY, G. Estimating groundwater discharge into the northeastern Gulf of Mexico using 222Rn. Earth Planet. Sci. Lett., v. 144, p. 591–604, 1996.
  • CALLIARI, L. J. Geological setting. In: SEELIGER, U.; ODEBRECHT, C.; CASTELLO, J. P. (Eds.). Subtropical convergence environments: the coast and sea in the Southwestern Atlantic. Berlin: Springer-Verlag, 1997. p. 13-18.
  • CAMPOS, P. C.; WEIGERT, S. C.; MADUREIRA, L. Ecobatimetria e características acústicas do leito oceânico na região do canal do Albardão - Rio Grande do Sul - Brasil. Rev. Atlântica, v. 31, n. 1, p. 5-23, 2009.
  • CAPÍTOLI, R. R.; BEMVENUTI, C. E. Associações de macroinvertebrados bentônicos de fundos inconsolidados da Plataforma Continental e Talude superior no extremo sul do Brasil. Rev. Atlântica, v. 28, n. 1, p. 47-59, 2006.
  • CASTELLO, J. P.; MÖLLER Jr., O. O. On the oceanographic conditions in the Rio Grande do Sul State. Rev. Atlântica, v. 2, n. 2, p. 25-110, 1997.
  • CORBETT, D. R.; CHANTON, J.; BURNETT, W.; DILLON, K.; RUTKOWSKI, C. A; FOURQUREAN, J. Patterns of groundwater discharge into Florida Bay. Limnol. Oceanogr., v. 44, p. 1045-1055, 1999.
  • GODOY, J. M.; CARVALHO, Z.; FERNANDES, F. C.; DANELON, O. M.; GODOY, M. L. D. P.; FERREIRA, A. C. M.; ROLDÃO, L. A. 228Ra and 226Ra in coastal seawater samples from the Ubatuba region - Brazilian southeastern coastal region. J. Braz. Chem. Soc., v. 17, n. 4, p. 730-736, 2006.
  • HOVLAND, M.; JUDD, A. G. Seabed pockmarks and seepages: impacto n geology, biology, and the marine environment. London: Graham & Trotman, 1988. 293 p.
  • HUSSAIN, N.; CHURCH, T. M.; KIM, G. Use of 222Rn and 226Ra to trace groundwater discharge into the Chesapeake Bay. Mar. Chem., v. 65, p. 127-134, 1999.
  • KIM, G.; RYU, J. W.; YANG, H. S.; YUN, S. T. Submarine groundwater discharge (SGD) into the Yellow Sea revealed by Ra-228 and Ra-226 isotopes: implications for global silicate fluxes. Earth Planet. Sci. Lett., v. 237, n. 1/2, p. 156-166., 2005.
  • KOHOUT, F. A. Ground-water flow and the geothermal regime of the Floridian Plateau. Gulf Coast Association of Geological Societies Transactions, v. 17, p. 339-354, 1967.
  • KROEGER, K. D.; SWARZENSKI, P. W.; GREENWOOD, W. J.; REICH, C. Submarine groundwater discharge to Tampa Bay: nutrient fluxes and biogeochemistry of the coastal aquifer. Mar. Chem., v. 104, p. 85-97, 2007.
  • MAHER, D. T.; SANTOS, I. R.; GOLSBY-SMITH, J.; GLEESON, J.; EYRE, B. D. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink? Limnol. Oceanogr., v. 58, n. 2, p. 475-488, 2013.
  • MIRANDA, L. B.; CASTRO FILHO, B. M. Aplicação do diagrama T-S estatístico- volume à análise das massas de água da plataforma continental do Rio Grande do Sul. Bol. Inst. Oceanogr., v. 28, n. 1, p. 185-200, 1979.
  • MÖLLER Jr., O. O.; PIOLA, A. R.; FREITAS, A. C. E CAMPOS, E. J. D. The effects of river discharge and seasonal winds on the shelf off southeastern South America. Cont. Shelf Res., v. 28, n. 13, p. 1607-1624, 2008. [Synoptic characterization of the Southeastern South American Continental shelf: the NICOP/Plata Experiment]
  • MOORE, W. S. Sampling 228Ra in the deep ocean. Deep-Sea Res. Oceanogr. Abstr., v. 23, n. 7, p. 647-651, 1976.
  • MOORE, W.S.; ARNOLD, R. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. J. Geophys. Res.: Oceans, v. 101, n. C1, p. 1321-1329, 1996.
  • MOORE, W. S.; OLIVEIRA, J. Determination of residence time and mixing processes of the Ubatuba, Brazil, inner shelf waters using natural radisotopes. Estuarine, Coastal Shelf Sci., v. 76, n. 3, p. 512-521, 2008.
  • MULLIGAN, A. E.; EVANS, R. L.; LIZARRALDE, D. The role of paleochannels in groundwater/seawater exchange. J. Hydrol., v. 335, p. 313–329, 2007.
  • NIENCHESKI, L. F. H.; WINDOM, H. L.; MOORE, W. S.; JAHNKE, R. A. Submarine groundwater discharge of nutrients to the ocean along a coastal lagoon barrier, southern Brazil. Mar. Chem., v. 106, n. 3/4, p. 546–561, 2007.
  • OLIVEIRA, J.; COSTA, P.; BRAGA, E. S. Seasonal variations of Rn-222 and SGD fluxes to Ubatuba embayments, Sao Paulo. J. Radioanal. Nucl. Chem., v. 269, n. 3, p. 689-695, 2006.
  • SANTOS, I. R.; COOK, P. L. M.; ROGERS, L.; DE WEYS, J.; EYRE, B. D. The "salt wedge pump": convection-driven porewater exchange as a source of dissolved organic and inorganic carbon and nitrogen to an estuary. Limnol. Oceanogr., v. 57, n. 5, p. 1415-1426, 2012a.
  • SANTOS, I. R.; PETERSON, R. N.; EYRE, B. D.; BURNETT, W. C. Significant lateral inputs of fresh groundwater into a stratified tropical estuary: evidence from radon and radium isotopes. Mar. Chem., v. 121, n. 1/4, p. 37-48, 2010.
  • SANTOS, I. R.; EYRE, B. D.; HUETTEL, M. The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuarine, Coastal Shelf Sci., v. 98, p. 1-15, 2012b.
  • SANTOS, I. R.; BURNETT, W. C.; GODOY, J. M. Radionuclides as tracers of coastal processes in Brazil: review, synthesis, and perspectives. Braz. J. Oceanogr., v. 56, n. 2, p. 115-131, 2008.
  • SANTOS, I. R.; BURNETT, W. C.; DITTMAR, T.; SURYAPUTRA, I. G. N. A.; CHANTON, J. Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary. Geochim. Cosmochim. Acta, v. 73, n. 5, p. 1325-1339, 2009.
  • SMOAK, J. M.; SANDERS, C. J.; PATCHINEELAM, S. R.; MOORE, W. S. Radium mass balance and submarine groundwater discharge in Sepetiba Bay, Rio de Janeiro State, Brazil. J. South Am. Earth Sci., v. 39, p. 44-51, 2012.
  • STIEGLITZ, T. Submarine groundwater discharge into the near-shore zone of the Great Barrier Reef, Australia. Mar. Pollut. Bull., v. 51, n. 1/4, p. 51–59, 2005.
  • SVERDRUP, H. U.; JOHNSON, M. W.; FLEMING, R. H. The oceans: their physics, chemistry, and general biology. New York: Prentice-Hall, 1942. 1087p.
  • WEBSTER, I. T.; NORQUAY, S. J.; ROSS, F. C.; WOODING, R. A. Solute exchange by convection within estuarine sediments. Estuarine, Coastal Shelf Sci., v. 42, p. 171-183, 1996.
  • WINDOM, H. L.; MOORE, W. S.; NIENCHESKI, L. F. H.; JAHNKE, R. A. Submarine groundwater discharge: a large, previously unrecognized source of dissolved iron to the South Atlantic Ocean. Mar. Chem., v. 102 , n. 3/4, p. 252-266, 2006.

Publication Dates

  • Publication in this collection
    18 Aug 2016
  • Date of issue
    Sept 2013

History

  • Received
    13 Sept 2010
  • Accepted
    21 June 2012
  • Reviewed
    27 Apr 2012
Universidade de São Paulo, Instituto Oceanográfico Praça do Oceanográfico, 191 , 05508-120 Cidade Universitária, São Paulo - SP - Brasil, Tel.: (55 11) 3091-6501, Fax: (55 11) 3032-3092 - São Paulo - SP - Brazil
E-mail: io@usp.br