Acessibilidade / Reportar erro

Influence of the shoot density of Halodule wrightii Ascherson from rocky and sandy habitats on associated macroalgal communities

Abstracts

This study evaluated the influence of the shoot density of the shoal grass Halodule wrightii on the composition of the associated algal community, in rocky and sandy habitats on the coast of Ceará in northeastern Brazil. The phycological community included 18 species in 10 families, members of Rodophyta (72.2%), Chlorophyta (22.2%) and Phaeophyceae (5.5%). The largest proportion were epilithic (50%), followed by epiphytes on H. wrightii (38.4%), epipsammics (8%), and epiphytes on other algae (4%). Epiphytes on H. wrightii occurred mainly associated with rhizomes, but also tendrils of H. musciformis occurred attached to the leaves. The phycological community varied according to the density of H. wrightii, independently of particular characters of the meadows, although both habitat and other environmental variables seemed to influence the macroalgae composition and diversity. The rocky habitat was more diverse than the sandy habitat, but in the sandy habitat the shoal grass was important for algal settlement in areas where hard substrates were scarce or absent.

Northeastern Brazil; Shoal grass; Seaweeds; Habit; Ecological relationships; Hypnea musciformis


Este estudo avaliou a influência da densidade do capim-agulha Halodule wrightii sobre a composição da comunidade algal associada, em habitats rochosos e arenosos da costa do Ceará, Nordeste do Brasil. A comunidade ficológica incluiu 18 espécies em de 10 famílias, integrantes de Rodophyta (72.2%), Chlorophyta (22.2%) e Phaeophyceae (5.5%). A maior proporção foi epilítica (50%), seguida pelas epífitas de H. wrightii (38.4%), epífitas de outras algas (8%) e epipsâmicas (4%). Epífitas de H. wrightii ocorreram associadas com os rizomas, mas gavinhas de H. musciformis ocorreram presas às folhas. A comunidade ficológica variou de acordo com a densidade de H. wrightii independentemente das características particulares dos prados estudados, embora tanto o habitat quanto outras variáveis ambientais pareceram influenciar a composição e diversidade das macroalgas. O habitat rochoso foi mais diverso que o arenoso, mas no habitat arenoso o capim-agulha foi importante para o assentamento de algas em áreas onde substratos duros foram raros ou ausentes.

Nordeste do Brasil; Capim-agulha; Macroalgas; Hábito; Relações ecológicas; Hypnea musciformis


  • ALBRECHT, A. S. Soft bottom versus hard rock: community ecology of macroalgae on intertidal mussel beds in the Wadden Sea. J. Exp. Mar. Biol. Ecol., v. 229, n.1, p. 85-109, 1998.
  • BALATA, D.; NESTI, U.; PIAZZI, L.; CINELLI, F. Patterns of spatial variability of seagrass epiphytes in the north-west Mediterranean Sea. Mar. Biol., v. 151, n. 6, p. 2025–2035, 2007.
  • BANDEIRA, S. O. Leaf production rates of Thalassodendron ciliatum from rocky and sandy habitats. Aquat. Bot., v. 72, n, 1, p. 13–24, 2002.
  • BARRIOS, J.; DÍAZ, O. Algas epífitas de Thalassia testudinum en el Parque Nacional Mochima, Venezuela. Bol. Cent. Invest. Biol., v. 39, n. 1, p. 1–14, 2005.
  • BIBER, P. D.; HARWELL, M. A.; CROPPER Jr., W. P. Modeling the dynamics of three functional groups of macroalgae in tropical seagrass habitats. Ecol. Modell., v. 175, p. 25-54, 2004.
  • BOROWITZKA, M. A.; LAVERY, P. S.; VAN KEULEN, M. Epiphytes of seagrasses. In: LARKUM, A. W. D.; ORTH, R. J.; DUARTE. C. M. (Eds.). Seagrasses: biology, ecology and conservation. Dordrecht: Springer, 2006. p. 446-461.
  • BOROWITZKA, M. A.; LETHBRIDGE, R. C. Seagrass epiphytes. In: LARKUM, A. W. D.; MCCOMB, A. J.; SHEPHERD, S. A. (Eds.). Biology of seagrasses: a treatise on the biology of seagrases with special reference to the Australian region. Amsterdam: Elsevier, 1989. p. 458-499. (Aquatic plant studies; 2).
  • BOROWITZKA, M. A.; LETHBRIDGE, R. C.; CHARLTON, L. Species richness, spatial distribution and colonization pattern of algal and invertebrate epiphytes on the seagrass Amphibolis griffithii. Mar. Ecol.: Prog. Ser., v. 64, p. 281–291, 1990.
  • BURDICK, D. M.; KENDRICK, G. A. Standards for seagrass collection, identification and sample design. In: SHORT, F. T.; COLES, R. G. (Eds.). Global seagrass research methods Amsterdam: London: Elsevier, 2001. p. 79-100.
  • BRUN, F. G.; VERGARA, J. J.; NAVARRO, G.; HERNANDEZ, I.; PEREZ-LLORENS, J. L. Effect of shading by Ulva rígida canopies on growth and carbon balance of the seagrass Zostera noltii Mar. Ecol.: Prog. Ser., v. 265, p. 85-96, 2003.
  • CARVALHO, M. A.; MAIA, L. P.; DOMINGUEZ, J. M. L. A deriva e o transporte litorâneo de sedimentos no trecho entre Cumbuco e Matões – costa noroeste do estado do Ceará. Arq. Cienc. Mar., v. 40, n. 1, p. 43-51, 2007.
  • CASTELO BRANCO, M. P. N.; LEHUGEUR, L. G. O.; FREIRE, G. S. S. Transporte eólico nas praias de Pontal do Maceió, município de Fortim, e Canoa Quebrada, município de Aracati, Estado do Ceará, Brasil. Arq. Cienc. Mar., v. 34. p. 99-105, 2001.
  • CECCHERELLI, G.; CINELLI, F. Short-term effects of nutrient enrichment of the sediment and interactions between the seagrass Cymodocea nodosa and the introduced green alga Caulerpa taxifolia in a Mediterranean bay. J. Exp. Mar. Biol. Ecol., v. 217, n. 2, p. 165–177, 1997.
  • CECCHERELLI, G.; CINELLI, F. Habitat effect on spatio-temporal variability of size and density of the introduced alga Caulerpa taxifolia Mar. Ecol.: Progr. Ser., v. 163, p. 289-294, 1998.
  • CECCHERELLI, G.; CINELLI, F. Effects of Posidonia oceanica canopy on Caulerpa taxifolia size in a north-western Mediterranean bay. J. Exp. Mar. Biol. Ecol., v. 240, n. 1, p. 19-36, 1999.
  • CHO, T. O.; FREDERICQ, S.; YATES, K. K. Characterization of macroalgal epiphytes on Thalassia testudinum in Tampa bay, Florida. J. Phycol., v. 38, suppl. 1, p. 4, 2002.
  • COUTINHO, R.; SEELIGER, U. The horizontal distribution of the benthic algal flora in the Patos Lagoon Estuary, Brazil, in relation to salinity, substratum and wave exposure. J. Exp. Mar. Biol. Ecol., v. 80, n. 3, p. 247-257, 1984.
  • DAHL, A. L. Benthic algal ecology in a deep reef and sand habitat of Puerto Rico. Bot. Mar., v. 16, n. 3, p. 171-175, 1973.
  • HARLIN, M. M. Epiphyte–host relations in seagrass communities. Aquat. Bot., v. 1, p. 125–131, 1975.
  • HAY, M. E. Herbivory, algal distribution, and the maintenance of between-habitat diversity on a tropical fringing reef. Am. Nat., v. 18, n. 4, p. 520-540, 1981.
  • HAYS, C. G. Effect of nutrient availability, grazer assemblage and seagrass source population on the interaction between Thalassia testudinum (turtle grass) and its algal epiphytes. J. Exp. Mar. Biol. Ecol., v. 314, n. 1, p. 53-68, 2005.
  • KOCH, E. W.; ACKERMAN, J. D.; VERDUIN, J.; VAN KEULEN, M. Fluid dynamics in seagrass ecology—from molecules to ecosystems. In: LARKUM, A. W. D.; ORTH, R. J.; DUARTE. C. M. (Eds.). Seagrasses: biology, ecology and conservation. Dordrecht: Springer, 2006. p. 195-225.
  • KÖPPEN, W. Climatologia: con un estudio de los climas de la tierra. México: Fondo de Cultura Econômica, 1948. 479p.
  • KUENEN, M. M. C. E.; DEBROT, A. O. A quantitative study of the seagrass and algal meadows of the Spanse Water, Curaçao, the Netherlands Antilles. Aquat. Bot., v. 51, n. 3/4, p. 291-310, 1995.
  • LAVERY, P. S.; VANDERKLIFT, M. A. A comparison of spatial and temporal patterns in epiphytic macroalgal assemblages of the seagrasses Amphibolis griffithii and Posidonia coriacea Mar. Ecol.: Prog. Ser., v. 236, p. 99-112, 2002.
  • LEE, S. Y.; FONG, C. W.; WU, R. S. S. The effects of seagrass (Zostera japonica) canopy structure on associated fauna: a study using artificial seagrass units and sampling of natural beds. J. Exp. Mar. Biol. Ecol., v. 259, n. 1, p. 23–50, 2001.
  • LELIAERT, F.; VANREUSEL, W.; DE CLERCK, O.; COPPEJANS, E. Epiphytes on the seagrasses of Zanzibar Island (Tanzania), floristic and ecological aspects. Belg. J. Bot., v. 134, n. 1, p. 3-20, 2001.
  • LEPOINT, G.; NYSSEN, F.; GOBERT, S.; DAUBY, P.; BOUQUEGNEAU, J. -M. Relative impact of a seagrass bed and its adjacent epilithic algal community in consumer diets. Mar. Biol., v. 136, n. 3, p. 513-158, 2000.
  • MARBÀ, N.; DUARTE, C. M.; ALEXANDRE, A.; CABAÇO, S. How do seagrasses grow and spread. In: BORUM, J.; DUARTE, C. M.; KRAUSE-JENSEN, D.; GREVE, T. M. (Eds.). European seagrasses: an introduction to monitoring and management. [S.l.]: M&MS PROJECT, 2004. p. 11-18.
  • MAZZELLA, L.; ALBERTE, R. S. Light adaptation and the role of autotrophic epiphytes in primary production of the temperate seagrass Zostera marina L. J. Exp. Mar. Biol. Ecol., v. 100, p. 165–180, 1986.
  • MORAIS, J. O. Aspectos do transporte de sedimentos no litoral do município de Fortaleza, estado do Ceará, Brasil. Arq. Cienc. Mar., v. 20, n. 1/2, p.71-100, 1980.
  • MORAIS, J. O.; FREIRE, G. S. S.; PINHEIRO, L. S.; SOUZA, M. J. N.; CARVALHO, A. M.; PESSOA, P. R. S.; OLIVEIRA, S. H. M. Ceará. In: MUEHE, D. (Org.). Erosão e progradação do litoral brasileiro Brasília: Ministério do Meio Ambiente, 2006, p. 132-154.
  • NORKKO, J.; BONSDORFF, E.; NORKKO, A. Drifting algal mats as an alternative habitat for benthic invertebrates: species specific responses to a transient resource. J. Exp. Mar. Biol. Ecol., v. 248, n. 1, p. 79–104, 2000.
  • PAULA, A. F.; FIGUEIREDO, M. A. O.; CREED, J. C. Structure of the macroalgal community associated with the seagrass Halodule wrightii ascherson in the Abrolhos Marine National Park, Brazil. Bot. Mar., v. 46, n. 5, p. 413-424, 2003.
  • PEDRINI, A. G.; LIMA, D. S.; PEREIRA-FILHO, O.; MUSQUIM, V. S.; DE-PAULA, J. C. Algas bentônicas da Lagoa de Marapendi, Rio do Janeiro, RJ, Brasil. Albertoa, v. 4, n. 18, p. 233-244, 1997.
  • PEDRINI, A. G.; SILVEIRA, I. C. A. Composição taxonômica e estimativa da biomassa das macroalgas epífitas em Ruppia marítima L. na Lagoa de Marapendi. Rio de Janeiro, RJ, Brasil. Atas Soc. Bot. Brasil., v. 3, n. 6, p. 45-60, 1985.
  • PENHALE, P. A.; SMITH, W. O. Excretion of dissolved organic carbon by eelgrass (Zostera marina) and its epiphytes. Limnol. Oceanogr., v. 22, n. 3, p. 400-407, 1977.
  • PERGENT, G.; BOUDOURESQUE, C. -F.; DUMAY, O.; PERGENT-MARTINI, C.; WYLLIE-ECHEVERRIA, S. Competition between the invasive macrophyte Caulerpa taxifolia and the seagrass Posidonia oceanica: contrasting strategies. BMC Ecol., v.8, p.1-20, 2008.
  • PHILLIPS, R. C.; VADAS, R.L.; OGDEN, N. The marine algae and seagrasses of the Miskito Bank, Nigaragua. Aquat. Bot., v. 13, p. 187-195, 1982.
  • PINHEIRO-JOVENTINO, F.; DANTAS, N. P.; MARASCHIN, C. D. H. Distribuição de algas marinhas no litoral de Fortaleza, Ceará, Brasil. Arq. Cienc. Mar., v. 31, n. 1/2, p. 29-40, 1998.
  • PLUS, M.; DESLOUS-PAOLI, J. M.; AUBY, I.; DAGAULT, F. Factors influencing primary production of seagrass beds (Zostera noltii Hornem) in the Thau lagoon (French Mediterranean coast). J. Exp. Mar. Biol. Ecol., v. 259, n. 1, p. 63–84, 2001.
  • REIS, R. P; YONESHIGUE-VALENTIN, Y. Variação espaço-temporal de populações de Hypnea musciformis (RHODOPHYTA, GIGARTINALES) na Baía de Sepetiba e Armação dos Búzios, RJ, Brasil. Acta Bot. Bras., v. 12, n.3, p.465-483, 1998.
  • ROSA, L. C.; BEMVENUTI, C. E. Seria a macrofauna bentônica de fundos não consolidados influenciada pelo aumento na complexidade estrutural do habitat? O caso do estuário da Lagoa dos Patos. Braz. J. Aquat. Sci. Technol., v. 11, n. 1, p. 51-56, 2007.
  • SAND-JENSEN, K. Effect of epiphytes on eelgrass photosynthesis. Aquat. Bot., v. 3, p. 55–63, 1977.
  • SAND-JENSEN, K.; REVSBACH, N. P.; JORGENSEN, B. B. Microprofiles of oxygen in epiphyte communities on submerged macrophytes. Mar. Biol., v. 89, n. 1, p. 55–62, 1985.
  • SILBERSTEIN, K.; CHIFFINGS, A. W.; McCOMB, A. J. The loss of seagrass in cockburn sound, Western Australia. III. The effect of epiphytes on productivity of Posidonia australis Hook. F. Aquat. Bot., v. 24, n. 4, p. 355–371, 1986.
  • SILVA, E. T.; ASMUS, M. L. A dynamic simulation model of the widgeon grass Ruppia marítima and its epiphytes in the estuary of the Patos Lagoon, RS, Brazil. Ecol. Modell., v. 137, n. 2/3, p. 161-179, 2001.
  • SILVA, R. L.; PEREIRA, S. M. B.; OLIVEIRA-FILHO, E. C. D.; ESTON, V. R. Structure of a bed of Gracilaria spp. (Rhodophyta) in northeastern Brazil. Bot. Mar., v. 30, n. 6, p. 517-523, 1987.
  • STAFFORD, N. B.; BELL, S. S. Space competition between seagrass and Caulerpa prolifera (Forsskaal) Lamouroux following simulated disturbances in Lassing Park, FL. J. Exp. Mar. Biol. Ecol., v. 333, n. 1, p. 49-57, 2006.
  • TAPLIN, K. A.; IRLANDI, E. A.; RAVES, R. Interference between the macroalga Caulerpa prolifera and the seagrass Halodule wrightii Aquat. Bot., v. 83, n. 3, p. 175–186, 2005.
  • VAN ELVEN, B. R.; LAVERY, P. S.; KENDRICK, G. A. Reefs as contributors to diversity of epiphytic macroalgae assemblages in seagrass meadows. Mar. Ecol.: Prog. Ser., v. 276, p. 71–83, 2004.
  • VIRNSTEIN, R. W.; CARBONARA, P. A. Seasonal abundance and distribution of drift algae and seagrasses in the mid-Indian River Lagoon, Florida. Aquat. Bot., v. 23, n. 1, p. 67-82, 1985.
  • WILLIAMS, S. L. Experimental studies of Caribbean seagrass bed development. Ecol Monogr., v. 60, n. 4, p. 449–469, 1990.
  • WILLIAMS, S. L.; HECK, K. L. Seagrass community ecology. In: BERTNESS, M. D.; GAINES, S. D.; HAY, M. E. (Eds.). Marine community ecology Sunderland: Sinauer Associates, 2001. p. 317-338.
  • ZIEMAN, J. C.; ZIEMAN, R. T. The ecology of the seagrass meadows of the west coast of Florida: a community profile. Charlottesville: U.S. Department of the Interior Fish and Wildlife Service Research and Development, 1989. 155 p. (U.S. Fish and Wildlife Service Biological Report, 85).

Publication Dates

  • Publication in this collection
    10 Apr 2014
  • Date of issue
    Dec 2013

History

  • Received
    13 Nov 2012
  • Accepted
    09 Dec 2013
  • Reviewed
    24 Nov 2013
Universidade de São Paulo, Instituto Oceanográfico Praça do Oceanográfico, 191 , 05508-120 Cidade Universitária, São Paulo - SP - Brasil, Tel.: (55 11) 3091-6501, Fax: (55 11) 3032-3092 - São Paulo - SP - Brazil
E-mail: io@usp.br