Acessibilidade / Reportar erro

Metabolic rates of the antarctic amphipod Gondogeneia antarctica at different temperatures and salinities

Abstracts

Changes in environmental factors may deeply affect the energy budget of Antarctic organisms as many of them are stenothermal and/or stenohaline ectotherms. In this context, the aim of this study is to contribute to knowledge on variations in the energy demand of the Antarctic amphipod, Gondogeneia antarctica as a function of temperature and salinity. Experiments were held at the Brazilian Antarctic Station "Comandante Ferraz", under controlled conditions. Animals collected at Admiralty Bay were acclimated to temperatures of 0ºC; 2.5ºC and 5ºC and to salinities of 35, 30 and 25. Thirty measurements were made for each of the nine combinations of the three temperatures and three salinities, totalling 270 measurements. Metabolic rates were assessed by oxygen consumption and total nitrogenous ammonia excretion, in sealed respirometers. When acclimated to salinities 30 or 35, metabolic rates at 0ºC and 2.5ºC were very similar indicating a possible mechanism of metabolic compensation for temperature. At 5.0ºC, however, metabolic rates were always higher. Lower salinities enhanced the effects of temperature on metabolism and ammonia excretion rates. The physiological adaptations of individuals of G. antarctica suggest adaptive mechanisms for energy saving, adjusted to an environment with stable conditions of temperature and salinity. Little is known about the joint effects of salinity and temperature and this study is an important contribution to the understanding of the mechanism of polar organisms in their adaptation to both factors.

Antarctica; Amphipods; Metabolism; Temperature; Salinity


Alterações ambientais podem modificar a alocação de energia dos organismos, principalmente dos ectotermos estenotérmicos e/ou estenohalinos. Nesse contexto, este trabalho contribui com o conhecimento da demanda de energia do anfípode antártico Gondogeneia antarctica em função da temperatura e da salinidade. Experimentos foram realizados na Estação Antártica Brasileira "Comandante Ferraz", em condições laboratoriais controladas. Animais coletados na Baía do Almirantado foram aclimatados a temperaturas de 0ºC; 2.5ºC e 5ºC e salinidades de 35, 30 and 25. Foram realizadas trinta medições para cada uma das nove combinações das três temperaturas com as três salinidades, totalizando 270 medições. As taxas metabólicas foram estimadas por meio do consumo de oxigênio e excreção de amônia, em câmaras respirométricas seladas. Quando aclimatados a salinidades 30 ou 35, as taxas metabólicas a 0ºC e 2.5ºC foram semelhantes indicando possível mecanismo de compensação térmica, nessa faixa de variação dos fatores. A 5.0ºC, no entanto, as taxas metabólicas foram sempre mais elevadas. Baixas salinidades potencializaram os efeitos da temperatura no consumo de oxigênio e na excreção de produtos nitrogenados. Os resultados estão relacionados a mecanismos adaptativos para economia de energia em indivíduos G. antarctica, ajustados a um ambiente que tem condições estáveis de temperatura e de salinidade. Pouco se sabe sobre os efeitos conjugados da salinidade e temperatura nos organismos e este trabalho é uma importante contribuição para esse conhecimento.

Antártica; Anfípodes; Metabolismo; Temperatura; Salinidade


  • AARSET, A. V.; AUNAAS, T. Effects of osmotic stress on oxygen consumption and ammonia excretion of the Arctic sympagic amphipod Gammarus wilkitzkii Mar. Ecol.: Prog. Ser., v. 58, p. 217-224, 1990.
  • ALLAN, E. L.; FRONEMAN, P. W.; HODGSON, A. N. Effects of temperature and salinity on the standard metabolic rate (SMR) of the caridean shrimp Palaemon peringueyi J. Exp. Mar. Biol. Ecol., v. 337, n. 1, p. 103-108, 2006.
  • ARNTZ, W. E.; BREY, T.; GALLARDO, V. A. Antarctic zoobenthos. Oceanogr.Mar. Biol., v. 32, p. 241-304, 1994.
  • CHAPELLE, G.; PECK, L. S. The influence of acclimation and substratum on the metabolism of the Antarctic amphipods Waldeckia obesa (Chevreux, 1905) and Bovallia gigantea (Pfeffer, 1888). Polar Biol., v. 15, n. 3, p. 225-232, 1995.
  • CLARKE, A.; JOHNSTON, N. M.; MURPHY, E. J.; ROGERS, A. D. Introduction. Antarctic ecology from genes to ecosystems: the impact of climate change and the importance of scale. Philos. Trans. R. Soc. London, Ser. B, v. 362, n. 1477, p. 5-9, 2007.
  • DE BROYER, C.; JAZDZEWSKI, K. Contribution to the marine biodiversity inventory: a checklist of the Amphipoda (Crustacea) of the Southern Ocean. Brussels: Institut Royal des Sciences Naturalles de Belgique, 1993. 154 p. (Documents de travail; v. 73).
  • DUARTE, W. E.; MORENO, C. A. The specialized diet of Harpagifer bispinis Hydrobiologia, v. 80, n. 3, p. 241-250, 1981.
  • ECHEVARRÉA, G.; ZARAUZ, N.; LÓPEZ-RUIZ, J.; ZAMORA, S. Study of nitrogen excretion in the gilthead sea bream (Sparus aurata L.): influence of nutritional state. Comp. Biochem. Physiol., Part A: Physiol., v. 105, n. 1, p. 17-19, 1993.
  • EICKEN, H. The role of sea ice in structuring Antarctic ecosystems. Polar Biol., v. 12, n. 1, p. 3-13, 1992.
  • EVANS, C. W.; WILLIAMS, D. E.; VACCHI, M.; BRIMBLE, M. A.; DeVRIES, A. L. Metabolic and behavioural adaptations during early development of the Antarctic silverfish, Pleuragramma antarcticum Polar Biol., v. 35, n. 6, p. 891-898, 2012.
  • FILIPPOV, A. A. Adaptability of the amphipod Pontoporeia affinis (Crustacea, Amphipoda) to salinity changes. Russ. J. Mar. Biol., v. 32, n. 3, p. 198-200, 2006.
  • FOX, H. M.; WINGFIELD, C. A. A portable apparatus for the determination of oxygen dissolved in a small volume of water. J. Exp. Biol., v. 15, p. 437-445, 1938.
  • FRICK, N. T.; WRIGHT, P. A. Nitrogen metabolism and excretion in the mangrove killifish Rivulus marmoratus I. The influence on environmental salinity and external ammonia. J. Exp. Biol., v. 205, pt. 1, p. 79-89, 2002.
  • GOMES, V.; PHAN, V. N.; PASSOS, M. J. A. C. R. Estudo do metabolismo de rotina e da excreção de amônia do anfípoda antártico Waldeckia obesa em duas temperaturas distintas. Bol. Inst. Oceanogr., v. 43, n. 2, p. 129-139, 1995.
  • GOMES, V.; PASSOS, M. J. A. C. R.; LEME, N. M. P.; SANTOS, T. C. A.; CAMPOS, D. Y. F.; HASUE, F. M.; PHAN, V. N. Photo-induced toxicity of anthracene in the Antarctic shallow water amphipod, Gondogeneia antarctica Polar Biol., v. 32, n. 7, p. 1009-1021, 2009.
  • HEMPEL, G. Antarctic ecosystems changes and conservation: review of the Fifth Symposium on Antarctic Biology. In: KERRY, K. R.; HEMPEL, G. (Eds.). Antarctic ecosystems ecological change and conservation Berlin: Springer-Verlag, 1990. p. 407-414.[Symposium on Antarctic Biology (Scar), 5, Hobart, Australia, 1988]
  • JANECKI, T.; KIDAWA, A.; POTOCKA, M. The effects of temperature and salinity on vital biological functions of the Antarctic crustacean Serolis polita Polar Biol., v. 33, n. 8, p. 1013-1020, 2010.
  • JAZDZEWSKI, K.; DE BROYER, C.; PUDLARZ, M.; ZIELINSKI, D. Seasonal fluctuations of vagile benthos in the uppermost sublittoral of a maritime Antarctic fjord. Polar Biol., v. 24, n. 12, p. 910-917, 2001.
  • JAZDZESKI, K.; JURASZ, W.; KITTEL, W.; PRESLER, E.; PRESLER, P.; SICINSKI, J. Abundance and biomass estimates of the benthic fauna in Admiralty Bay, King George Island, South Shetland Islands. Polar Biol., v. 6, n. 1, p. 5-16, 1986.
  • JOHNSTON, I. A.; CLARKE, A.; WARD, P. Temperature and metabolic rate in sedentary fish from the Antarctic, North Sea and Indo-West Pacific Ocean. Mar. Biol., v. 109, n. 2, p. 191-195, 1991.
  • KOROLEFF, F. Direct determination of ammonia in natural waters as indophenol blue. 1970. In: GRASSHOFF, K.; KREMLING, K.; EHRHARDT, M. (Eds.). Methods of seawater analysis. Weinheim, New York: Wiley-VCH, 1999, p. 191-193.
  • MAYZAUD, P. Respiration and nitrogen excretion of zooplankton. II. Studies of the metabolic characteristics of starved animals. Mar. Biol., v. 21, n. 1, p. 19-28, 1973.
  • MAYZAUD, P.; CONOVER, R. J.O:N atomic ratios as a tool to describe zooplankton metabolism. Mar. Ecol.: Prog. Ser., v. 45, p. 289-302, 1988.
  • MÖLLER, H.The effects of salinity and temperature on the development and survival of fish parasites. J. Fish Biol., v. 12, n. 4, p. 311-323, 1978.
  • MONTONE, R. C.; ALVAREZ, C. E.; BÍCEGO, M. C.; BRAGA, E. S.; BRITO, T. A. S.; CAMPOS, L. S.; FONTES, R. F. C.; CASTRO, B. M.; CORBISIER, T. N.; EVANGELISTA, H.; FRANCELINO, M.; GOMES, V.; ITO, R. G.; LAVRADO, H. P.; PAES LEME, N.; MAHIQUES, M. M.; MARTINS, C. C.; NAKAYAMA, C. R.; NGAN, P. V.; PELLIZARI, V. H.; PEREIRA, A. B.; PETTI, M. A. V.; SANDER, M.; SCHAEFER, C. E. G. R.; WEBER, R. R. Environmental assessment of Admiralty Bay, King George, Antarctica. In: VERDE, C.; DI PRISCO, G. (Eds.). Adaptation and evolution in marine environments, from pole to pole Berlin: Heidelberg: Springer-Verlag, 2013. v. 2, p. 157-175.
  • NORMANT, M.; LAMPRECHT, I. Does scope for growth change as a result of salinity stress in the amphipod Gammarus oceanicus? J. Exp. Mar. Biol. Ecol., v. 334, n. 1, p. 158-163, 2006.
  • OBERMÜLLER, B.; PUNTARULO, S.; ABELE, D.UV-tolerance and instantaneous physiological stress responses of two Antarctic amphipod species Gondogeneia antarctica and Djerboa forcipes during exposure to UV radiation. Mar. Environ. Res., v. 64, n. 3, p. 267-285, 2007.
  • PECK, L. S. Ecophysiology of Antarctic marine ectotherms: limits to life. Polar Biol., v. 25, n. 1, p. 31-40, 2002.
  • PECK, L. S. Prospects for survival in the Southern Ocean: vulnerability of benthic species to temperature change. Antarct.Sci., v. 17, n. 4, p. 497-507, 2005.
  • PÖRTNER, H. O. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., v. 132, n. 4, p. 739-761, 2002.
  • PÖRTNER, H. O. Climate-dependent evolution of Antarctic ectotherms: an integrative analysis. Deep Sea Res., Part II, v. 53, n. 8/10, p. 1071-1104, 2006.[EASIZ: Ecology of the Antarctic Sea Ice Zone; Ecology of the Antarctic Sea Ice Zone: Final Symposium]
  • PÖRTNER, H. O.; BENNETT, A. F.; BAZINOVIC, F.; CLARKE, A.; LARDIE, M. A.; LUCASSEN, M.; PELSTER, B.; SCHIEMER, F.; STILLMAN, J. H. Trade-offs in thermal adaptation: the need for a molecular to ecological integration. Physiol. Biochem. Zool., v. 79, n. 2, p. 295-313, 2006.
  • PÖRTNER, H. O.; BERDAL, B.; BLUST, R.; BRIX, O.; COLOSIMO, A.; DE WACHTER, B.; GIULIANI, A.; JOHANSEN, T.; FISCHER, T.; KNUST, R.; LANNIG, G.; NAEVDAL, G.; NEDENES, A.; NYHAMMER, G.; SARTORIS, F. J.; SERENDERO, I.; SIRABELLA, P.; THORKILDSEN, S.; ZAKHARTSEV, M. Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: developing hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus). Cont. Shelf Res., v. 21, n. 18/19, p. 1975-1997, 2001.[Review]
  • PÖRTNER, H. O.; KNUST, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, v. 315, n. 5808, p. 95-97, 2007.
  • PRUSZAK, Z. Currents circulation in the waters of Admiralty Bay (region of Arctowski Station on King George Island). Pol. Polar Res., v. 1, n. 1, p. 55-74, 1980.
  • RAKUSA-SUSZCZEWSKI, S. Environmental conditions and the functioning of Admiralty Bay (South Shetland Islands) as part of the near shore Antarctic ecosystem. Pol. Polar Res., v. 1, n. 1, p. 11-27, 1980.
  • RICHARDSON, M. G. The dietary composition of some Antarctic fish. Br. Antarct. Surv. Bull., v. 41/42, p. 113-120, 1975.
  • ROCHA, A. J. S.; GOMES, V.; PHAN, V. N.; PASSOS, M. J. A. C. R. Variações na demanda de energia metabólica de juvenis de Haemulon steindachneri (Perciformes, Haemulidae) em função da temperatura. Rev. Bras. Oceanogr., v. 49, n. 1/2, p. 87-97, 2001.
  • ROCHA, A. J. S.; GOMES, V.; PHAN, V. N.; PASSOS, M. J. A. C. R.; FURIA, R. R. Metabolic demand and growth of juveniles of Centropomus parallelus as function of salinity. J. Exp. Mar. Biol. Ecol., v. 316, n. 2, p. 157-165, 2005.
  • ROGERS, A. D.; MURPHY, E. J.; JOHNSTON, N. M.; CLARKE, A. Introduction. Antarctic ecology: from genes to ecosystems. Part 2. Evolution, diversity and functional ecology. Philos. Trans. R. Soc. London, Ser. B, v. 362, n. 1488, p. 2187-2189, 2007.
  • SZAFRANSKI, Z.; LIPSKI, M. Characteristics of water, temperature and salinity at Admiralty Bay (King George Island, South Shetland Islands, Antarctica) during the austral summer 1978/1979. Pol. Polar Res., v. 3, n. 1/2, p. 7-24, 1982.
  • TOMANEK, L. The importance of physiological limits in determining biogeographical range shifts due to global climate change: the heat-shock response. Physiol. Biochem. Zool., v. 81, n. 6, p. 709-717, 2008.
  • WEBER, R. R.; MONTONE, R. C. (Coords.). Rede-2: Gerenciamento ambiental na Baía do Almirantado, Ilha Rei George, Antártica Relatório Final da Rede-2. Brasília: Ministério do Meio Ambiente, CNPq-PROANTAR, SECIRM, 2006. 261 p.
  • WHITE, M. G. Marine benthos. In: LAWS, R. M. (Ed.). Antarctic ecology London: Academic Press, 1984. v. 2, p. 421-461.
  • WILSON, R. S.; KUCHEL, L. J.; FRANKLIN, C. E.; DAVISON, W. Turning up the heat on subzero fish: thermal dependence of sustained swimming in an Antarctic notothenioid. J. Therm. Biol., v. 27, n. 5, p. 381-386, 2002.

Publication Dates

  • Publication in this collection
    10 Apr 2014
  • Date of issue
    Dec 2013

History

  • Received
    11 Jan 2013
  • Accepted
    02 Nov 2013
  • Reviewed
    01 Oct 2013
Universidade de São Paulo, Instituto Oceanográfico Praça do Oceanográfico, 191 , 05508-120 Cidade Universitária, São Paulo - SP - Brasil, Tel.: (55 11) 3091-6501, Fax: (55 11) 3032-3092 - São Paulo - SP - Brazil
E-mail: io@usp.br