Acessibilidade / Reportar erro

Cálculo de velocidades em acidentes de trânsito: Um software para investigação em física forense

(Speed calculations for traffic accidents: A software for research in Forensic Physics)

Resumos

Neste trabalho apresentamos e validamos o software Speed Calculations for Traffic Accidents (SCTA). Este aplicativo é voltado para a perícia forense e segue um protocolo que possibilita ao perito criminal, mesmo aquele sem formação em física, estimar as velocidades de veículos envolvidos em colisões e atropelamentos no trânsito. SCTA utiliza conceitos básicos de mecânica clássica, considera diferentes coeficientes de atrito e leva em conta as avarias e as características dos veículos envolvidos. Isso permite determinar as velocidades nas mais distintas situações de acidente. O software segue uma filosofia open source, possibilitanto implementar novas situações de acidentes. Finalmente, como dados de entrada, SCTA depende apenas de poucas medidas realizadas no momento do levantamento pericial. Isso evita observações desnecessárias, otimiza e assegura confiabilidade da perícia forense.

Palavras-chave:
dinâmica de partículas e sistemas; acidentes de trânsito; física forense


In this paper we present and evaluate the Speed Calculations software for Traffic Accidents (SCTA). This application is designed for forensic studies and follows a protocol that allows the expert in crime scene analysis, even one that has no knowledge of physics, to estimate vehicle speeds involved in collisions and pedestrian accidents. SCTA uses basic concepts of classical mechanics, employs different coefficients of friction and takes into account the damage and the characteristics of the vehicles involved. This allows to determine the speeds in various accident situations. The software follows an open source philosophy, allowing implementation of new accident scenarios. Finally, as input data, SCTA needs only a few measurements performed by an expert. This avoids unnecessary scene observation and, optimizes and ensures reliability of forensic expertise.

Keywords:
particle dynamics and systems; traffic accidents; forensic physics


1. Introdução

A perícia forense tem papel central no sistema judiciário brasileiro, viabilizando provas materiais essenciais à elucidação de crimes contra a vida e patrimônio. A perícia criminal no trânsito é um claro exemplo. A cada ano cresce consideravelmente o número de acidentes de trânsito com vítimas, o que implica no aumento de levantamentos periciais. O excesso de velocidade representa 30% dos acidentes e mortes no trânsito nos países desenvolvidos e 50% dos acidentes e das mortes nos países em desenvolvimento [1[1] L.F. Gomes e N. Macedo, Quanto Mais Velocidade, Maior a Tragédia (Instituto Avante Brasil, São Paulo), publicado em 25/04/2011. Disponível em http:\\www.institutoavantebrasil.com.br, acessado em 10/10/2014.
http:\www.institutoavantebrasil.com.br...
]. Assim, o problema central na perícia forense de acidentes de trânsito consiste em determinar as velocidades de veículos envolvidos em colisões. Nesse âmbito, conceitos de física básica e análise dos elementos encontrados no local do sinistro são indispensáveis ao perito criminal. A falta de formação específica do perito criminal é outro complicador. No estado do Pará, por exemplo, o quadro de formação dos peritos criminais é muito diversificado. Ao todo, existem 299 peritos criminais no estado paraense (Secretaria de Segurança Pública do Estado do Pará. Centro de Perícias Científicas “Renato Chaves”, Setor de Recursos Humanos). Destes, apenas 5 possuem formação específica na área de física, o que corresponde a apenas 1,68 % do quadro de profissionais. Em Marabá, no Sudeste do estado paraense, o Centro de Perícias Científicas “Renato Chaves” apontou em 2012 que 24% das mortes violentas se deram em acidentes automotivos. Apenas um ano depois esse número alcançou a marca de 27%, chegando à 30% em 2104 (Secretaria de Segurança Pública do Estado do Pará. Centro de Perícias Científicas “Renato Chaves”, Unidade Regional do Sul e Sudeste do Pará). Esta também a realidade de muitos Centros de Perícia Criminal espalhados pela Federação.

A importância da perícia criminal, bem como as dificuldades encontradas pelo perito justificam o desenvolvimento e a busca por mecanismos que viabilizem a perícia forense em diferentes áreas. Nesse sentido, Almeida [2[2] L.L. Almeida, Manual de Perícias em Acidentes de Trânsito (Millennium, Campinas, 2011).,3[3] L.L. Almeida, Acidente de Trânsito: Novos Métodos de Cálculo de Velocidades (Millennium, Campinas, 2014).] tem aplicado conceitos de Mecânica Clássica (MC) à certas situações de acidentes de trânsito, obtendo soluções para o cálculo da velocidade de veículos. Nessa trabalho iremos apresentar seis situações de acidentes de trânsito nas quais é possível obter uma solução para o cálculo das velocidades, sendo que as cinco primeiras situações são obtidas de forma analítica e a ultima de forma empírica. (i) O primeiro caso consiste em uma situação em que o veículo trafega por um trecho retilíneo e aciona os freio até parar ou colidir com dado objeto rígido. Esse trecho pode ser plano, inclinado ou declinado. (ii) Em uma segunda situação o veículo trafega por vários trechos retilíneos e aciona os freios até parar ou se chocar com um objeto rígido, vindo a se imobilizar. (iii) Na terceira situação a estimativa da velocidade se dá para um caso de atropelamento, (iv) enquanto que a quarta estima velocidades crítica em curvas. (v) A quinta situação permite a estimativa de velocidade para um veículo que se projeta em rampa inclinada ou horizontal. (vi) Finalmente, a última situação trata da estimativa de velocidades considerando os danos sofridos por motocicletas.

O método exposto nos seis casos acima estima as velocidades em função das características dos veículos e das evidências materiais observadas e medidas no local do acidente. Essa metodologia evita que sejam efetuadas medidas desnecessárias no levantamento do local do acidente, mas como desvantagem, esse protocolo demanda domínio de princípios básicos de MC, sendo um problema para peritos sem formação sólida em física.

Na última década tem surgido uma variedade de simuladores com aplicações que variam desde a modelagem molecular, computação quântica, engenharia e ensino de ciências. Softwares tipo bancada virtual têm sido utilizados como metodologia alternativa em situações em que experimentos reais seriam impraticáveis [4[4] G.F de S. Filho, Simuladores Computacionais Para o Ensino de Física Básica: Uma Discussão Sobre Produção e Uso. Dissertação de Mestrado, UFRJ, 2010.,5[5] J.A. Macêdo, A.G. Dickman e I.F.S. Andrade, Caderno Brasileiro de Ensino de Física 29 , 567 (2012).]. Tais objetos simuladores viabilizam a fixação de conceitos e leis físicas universais sem que o usuário sofra traumas em contato com o ferramental matemático. Na área forense, o software comercial Velocalc [6[6] O.N. Neto, Revista Brasileira de Ensino de Física 24 , 124 (2002).] é uma das poucas iniciativas que permite uma rápida análise do acidente, reconstituindo-o esquematicamente e possibilitando, simultaneamente, a avaliação das velocidades através da aplicação direta da conservação da quantidade de movimento.

Neste trabalho apresentamos o software SCTA 1.0 (Speed Calculations for Traffic Accidents) que permite estimar as velocidades de veículos envolvidos em colisões, partindo apenas de elementos coletados no local do sinistro. SCTA foi construído utilizando o programa Lazarus Free Pascal [7[7] J.P.F. Santos, Desenvolvendo Aplicativos com Lazarus (Agbook, São Paulo, 2011), e-book.,8[8] Lazarus IDE v1.2.6. Disponível em http:\\www.lazarus-_ide.org, acessado em 10/8/2014.
http:\www.lazarus-_ide.org...
], que é um ambiente de desenvolvimento integrado desenvolvido para o compilador Free Pascal. O compilador Lazarus é uma versão gratuita do Delphi, sendo compatível com o mesmo e suporta diversas arquiteturas e sistemas operacionais, como Windows, Linux e Mac OS X.

Por utilizar uma filosofia open source (código aberto), SCTA permite ao usuário acrescentar mais situações de acidentes de trânsito menos frequentes. Cabe apenas escolher uma situação concreta e aplicar os princípios físicos adequados para o cálculo das velocidades e implementá-los à rotina de programação do software através do código fonte. Para tanto, desenvolvedor precisa possuir apenas o mínimo de conhecimentos de Delphi, que é uma linguagem de programação comercial e bem difundida. Em todas as situações de acidente, o sofware considera uma margem de erro de ±10% para a velocidade, o que permite estimar a velocidade em um intervalo de valores.

2. Fundamentação teórica

2.1. Velocidade em trecho retilíneo plano

Considere um veículo viajando em um trecho retilíneo, quando seus freios são acionados, vindo o mesmo a colidir com um objeto rígido, que no caso, pode ser um segundo veículo em repouso ou mesmo um muro. A dinâmica envolvida [3[3] L.L. Almeida, Acidente de Trânsito: Novos Métodos de Cálculo de Velocidades (Millennium, Campinas, 2014).] assume que o veículo trafega com uma velocidade modular inicial Vi. Após acionar os freios, a aceleração resultante pode ser encontrada através da aplicação imediata da segunda lei de Newton

(1)FR=ma.

Como o atrito é a única força resultante atuando sobre o veículo durante a frenagem, a Eq. (1) pode ser reescrita como

(2)a=-μg,
onde μ é o coeficiente de atrito e g a aceleração da gravidade. Para encontrarmos a velocidade inicial de frenagem (Vfren) do veículo, podemos aplicar a equação de Torricelli
(3)Vf2=Vfren2+2adf.
Substituindo a Eq. (2) na Eq. (3) e considerando nula a velocidade no final do processo de frenagem, podemos chegar à velocidade inicial de frenagem
(4)Vfren=2μgdf.
Embora tenhamos encontrado uma solução para o cálculo da velocidade do veículo, a Eq. (4) se aplica apenas à situações em que não há colisões. Contudo, estamos particularmente interessados nos casos em que há uma colisão com um objeto rígido em repouso. Podemos obter essa solução usando o princípio da conservação da energia [2[2] L.L. Almeida, Manual de Perícias em Acidentes de Trânsito (Millennium, Campinas, 2011).]. Iremos considerar o veículo com energia inicial Ei associada à velocidade inicial Vi. Antes de colidir com o objeto, o veículo freia por uma determinada distância. Nessa situação, o principio da conservação da energia nos diz que
(5)Ei=Edissipada=Wfat+Wdanos.

A energia dissipada nesse processo corresponde às parcelas de trabalho associados às forças de atrito e aos danos verificados no veículo. Como o trabalho corresponde à variação da energia cinética, podemos reescrever a Eq. (5) como

(6)12mVi2=12mVfren2+12mVd2,
onde Vd é a parcela de velocidade associada aos danos no veículo. A Eq. (6) pode ser facilmente simplificada em
(7)Vi=Vfren2+Vd2.
Como a velocidade de frenagem já foi determinada na Eq. (4), ao substituirmos a Eq. (4) na Eq. (7), teremos
(8)Vi=2μgdf+Vd2.

De acordo com a Eq. (8) a velocidade inicial do veículo depende de três variáveis e uma constante, que nesse caso, é a aceleração gravitacional. No momento da realização do levantamento pericial, o perito deve realizar apenas a medida da distância de frenagem na pista df. Para as outras duas variáveis serão utilizadas tabelas que podem ser consultadas diretamente no software.

O cálculo da velocidade para essa primeira situação é apresentado em uma tela do software (Fig. 1). O coeficiente de atrito pode ser consultado ao pressionar com o mouse na opção consultar tabela, localizada ao lado do espaço onde devemos entrar com o valor numérico do coeficiente de atrito. Ao selecionarmos essa opção, abre-se uma janela onde é possível consultar três tabelas com coeficientes de atrito variados e relacionados à superfícies distintas. A física da frenagem depende também de fatores geométricos [9[9] O.N. Neto e R. Kleinübing, Dinâmica dos Acidentes de Trânsito (Millennium, Campinas, 2009), 3ed.]. Isto significa que os coeficientes de atrito usados pelo SCTA consideram não somente os materiais que constituem as superfícies, mas também as características físicas dos veículos.

Figura 1
Interface do software SCTA para o caso em que um veículo trafega em um trecho retilíneo plano, aciona os freios até colidir com um objeto em repouso, como descrito na seção 2.1.

O valor a ser preenchido na velocidade de danos do veículo também pode ser consultado em tabela, onde os danos são avaliados de acordo com a intensidade de suas avarias e segundo as características físicas do veículo em movimento. Essa tabela de danos por intensidade de avarias pode ser utilizada de forma genérica, quando não existem dados mais detalhados sobre o veículo envolvido.

2.2. Velocidade em trecho retilíneo em aclive

Nesse caso, ao acionar os freios, o veículo está sob a ação de duas forças. A componente tangencial da força peso e o atrito. Usando a segunda lei de Newton, tem-se que

(9)FR=-Psinθ-Fat.

Da Eq. (9), podemos encontrar facilmente a aceleração resultante. Usando um pouco de álgebra, pode-se mostrar que

(10)a=-g(sinθ+μcosθ).

De posse da Eq. (10), podemos substituí-la na equação de Torricelli para obter Vi. Após algumas manipulações algébricas, temos que

(11)Vi=2gdf(μcosθ+sinθ).
No entanto, esta equação é valida apenas para o caso no qual o veículo atinge o repouso após a frenagem. Quando ocorre uma colisão com um objeto rígido, é necessário consideramos a parcela de danos, conforme feito na Eq. (8). Assim
(12)Vi=2gdf(μcosθ+sinθ)+Vd2.

A Eq. (12) é a solução analítica para a velocidade inicial do veículo. De acordo com essa equação podemos observar que além das variáveis que já havíamos encontrado na Eq. (8), surge uma dependência com o ângulo de aclive. Logo, além de efetuar a medida da distância de frenagem no momento da realização do levantamento do local de acidente de trânsito, o perito deve também medir esse ângulo de aclive em graus. A medida da distância de frenagem é facilmente obtida com a utilização de uma trena manual ou a laser. Já a determinação do ângulo de aclive pode ser facilmente medida utilizando alguns aplicativos para Android que funcionam como medidor de nível digital. Uma dica é o aplicativo para Android denominado Nível [10[10] Aplicativo para Android Nível. Antoine Vianey. Disponível em https://play.google.com/store/apps, acessado em 12/10/2014.
https://play.google.com/store/apps...
]. Com esse aplicativo, o perito pode medir facilmente o aclive da via, devendo apenas colocar o aparelho celular sobre a superfície na qual deseja aferir esse desnível. Para essa situação, a tela do software é a mesma utilizada na situação do item 2.1, onde o usuário deve selecionar a geometria do trecho. Enquanto a Fig. 1 seleciona a opção de geometria do trecho plano, a Fig. 2 é selecionada a opção em aclive.

Figura 2
Interface do software SCTA para um veículo percorrendo um trecho em aclive, como descrito na seção 2.2.

2.3. Velocidade em trecho retilíneo em declive

A diferença entre o trecho em aclive e declive é que ao aplicarmos a segunda lei de Newton, as forças de atrito e o peso tangencial têm sentidos opostos. Logo

(13)FR=Psinθ-Fat.

Da Eq. (13) podemos encontrar facilmente a aceleração resultante. Empregando pouco de álgebra, pode-se mostrar que

(14)a=g(sinθ-μcosθ).
De posse do valor da aceleração e utilizando o mesmo raciocínio empregado no item 2.2, é fácil verificar que:
(15)Vi=2gdf(μcosθ-sinθ)+Vd2.

Para a situação em declive, a tela do software é a mesma utilizada nas duas situações anteriores. O usuário deve apenas selecionar a geometria em declive. Conforme a Fig. 3, deve-se novamente entrar com o valor do ângulo de declive, que deverá ser medido pelo perito no momento dos exames periciais.

Figura 3
Interface do software SCTA para o caso em que um veículo percorre um trecho em declive, como descrito na seção 2.3.

2.4. Velocidade em vários trechos em superfície plana

Analisaremos agora a situação em que, em processo de frenagem, um veículo percorre vários trechos de uma superfície plana com diferentes coeficientes de atrito, conforme mostrado na Fig. 4.

Figura 4
Interface do software SCTA mostrando um veículo em processo de frenagem sobre superfície plana com três coeficientes de atrito diferentes, como descrito na seção 2.4.

Nessa situação iremos utilizar novamente o principio da conservação de energia, agora aplicado aos três trechos. Conforme a Eq. (6), devemos acrescentar as velocidades Vfren1 (trecho de asfalto), Vfren2 (trecho de terra), Vfren3 (trecho de vegetação), bem como a parcela de energia associada à velocidade de danos Vd. Usando uma analogia com a situação 2.1, é fácil escrever uma equação para a velocidade inicial considerando as três parcelas de velocidade juntamente com a velocidade de danos. Desse modo

(16)Vi=2g(μ1d1+μ2d2+μ3d3)+Vd2.

Ao comparar a Eq. (16) à situação descrita na situação 2.1, vemos que, no momento do levantamento pericial do local do acidente, o perito deve medir as distâncias de frenagem para cada trecho d1, d2 e d3. Os coeficientes de atrito μ1, μ2 e μ3, assim como a velocidade de danos, devem ser consultados diretamente através de tabelas no software. Uma tela do programa para essa situação é apresentada na Fig. 5.

Figura 5
Tela do software para a situação 2.4.

2.5. Velocidade em atropelamentos

Iremos considerar a situação em que o pedestre rompe o para-brisa de um veículo imediatamente após ser atropelado pelo mesmo. Nesse caso a velocidade inicial que desejamos encontrar é aquela que o veículo desenvolvia ao atingir a vítima [2[2] L.L. Almeida, Manual de Perícias em Acidentes de Trânsito (Millennium, Campinas, 2011).,9[9] O.N. Neto e R. Kleinübing, Dinâmica dos Acidentes de Trânsito (Millennium, Campinas, 2009), 3ed.]. Para encontramos essa velocidade, determina-se a energia necessária para romper o material do para-brisa. O rompimento do vidro ocorre devido à aplicação da força de contato do corpo da vítima contra a área do vidro. Essa força perpendicular pode ser determinada a partir de uma equação que relaciona a tensão de rompimento do vidro TR com a área de contato entre o corpo do pedestre e o vidro. Pela definição de Tensão, podemos escrever

(17)TR=FAc.

A energia necessária para deslocar um objeto por aplicação de força é dada por

(18)E=Fd,
onde d representa o deslocamento (afundamento provocado no para-brisa). A energia que produz o rompimento do para-brisa é proveniente do veículo colidente, que é dotado de energia cinética. Ao substituir a Eq. (17) na Eq. (18) e substituindo E pela energia cinética do veículo, podemos obter facilmente uma solução para o cálculo da velocidade do veículo colidente. Desse modo
(19)V=2TRAcdm.

A Eq. (19) mostra que a estimativa do cálculo da velocidade leva em consideração a resistência do vidro à compressão TR, a área de contato Ac, a deformação d e a massa do veículo m.

A vantagem da utilização da Eq. (19) é que o levantamento desses dados pode ser feito posteriormente pelo perito. A tela do software referente à entrada desses dados é apresentada na Fig. 6.

Figura 6
Interface dosoftware SCTA para a situação de atropelamento descrita na seção 2.5.

2.6. Velocidade crítica em curvas

Vamos encontrar agora uma solução que permita calcular a velocidade limite em curvas planas e com um ângulo θ de superelevação.

Em um trecho curvilíneo plano, ao aplicarmos a segunda lei de Newton verificamos que na vertical o veículo fica sujeito à força normal e a força peso, que se equilibram. Na horizontal, é a força de atrito que sustenta o veículo na pista, não deixando que este sofra os efeitos da inércia. Para que o veículo efetue a curva sem se desprender desta e não seguir em linha reta devido a sua inércia, é preciso que a força centrípeta seja igual à força de atrito. Dessa forma, pela segunda lei de Newton

(20)Fc=Fat.

Substituindo os valores da força de atrito e da força centrípeta podemos encontrar facilmente o valor de da velocidade, dada por

(21)Vmax=μRg.

Se considerarmos o caso de uma pista em superelevação com uma inclinação dada por θ, devemos decompor as componentes normal da força de atrito e da componente normal. Ao realizarmos esse procedimento, a segunda Lei de Newton aplicada às componentes verticais será dada por

(22)Ncosθ=mgsinθ+Fat.

Como esse ângulo é muito pequeno para inclinações em curvas, consideraremos sinθ0. Dessa forma, o segundo termo à direita na Eq. (22) se anula. Aplicando a segunda Lei de Newton às componentes horizontais, teremos que

(23)Fc=Nsinθ+Fatcosθ.

A velocidade pode ser facilmente obtida relacionando as Eqs. (22) e (23)

(24)Vmax=Rg(μ+tanθ).

A solução para a estimativa de velocidade nessa situação é dada pelas Eqs. (21) e (24). Foi utilizado Vmax para representar a velocidade máxima para que um veículo possa percorrer a curva sem desprender-se devido à inércia. Quando veículo chega a escapar da pista de rolamento, significa que o limite de velocidade de desprendimento em trecho de curva foi ultrapassado [2[2] L.L. Almeida, Manual de Perícias em Acidentes de Trânsito (Millennium, Campinas, 2011).].

Resta agora obter o raio R de curvatura que aparece na Eq. (24). Pela Fig. 7 podemos perceber que a medida D equivale à metade do comprimento da corda BC¯, enquanto que a medida da flecha d é dada pelo segmento ED¯. Pelo teorema de Pitágoras aplicado ao triângulo ABE¯

(25)R2=(R-d)2+D2.

Figura 7
Esquema geométrico para se obter R em função das medidas de D e d.

Utilizando um pouco de álgebra na Eq. (25) podemos mostrar facilmente que o raio da curva R é dado por

(26)R=D2+d22d.

Escrever R como uma função de D e d é evidente, pois é muito mais fácil medirmos essas duas grandezas do que diretamente o raio em uma curva.

Pelas Eqs. (21) e (24), no local do acidente, o perito apenas precisa medir o raio de curvatura e o ângulo de elevação. Para a medida do ângulo de elevação, no item 2.2 sugerimos a utilização do aplicativo para smartphone Nível [10[10] Aplicativo para Android Nível. Antoine Vianey. Disponível em https://play.google.com/store/apps, acessado em 12/10/2014.
https://play.google.com/store/apps...
]. Para encontrar o raio de curvatura R, pode-se utilizar como ferramenta o Google Earth [11[11] Software Google Earth. Disponível em http://www.google.com.br/earth/download, acessado em 15/10/2014.
http://www.google.com.br/earth/download...
]. A Fig. 8 mostra como podemos usar esse programa para aferir o raio de uma curva através das medidas de D (linha vermelha que corresponde à metade do comprimento da corda) e da flecha d (linha amarela), que é a distância do centro da corda até o arco da curva.

Figura 8
Trecho em curva na saída de uma ponte na BR 155. Na presente figura D = 68,5 m (linha em vermelho na versão eletrínica) e d = 38,5 m (linha em amarelo na versão eletrônica). Créditos:Google Earth.

Após obter R e θ, devemos entrar com esses valores na tela do software, conforme podemos observar na Fig. 9.

Figura 9
Para o cálculo de velocidade em curvas podemos escolher duas geometrias diferentes, uma plana e outra em superelevação.

2.7. Velocidade em projeções

Para a estimativa de velocidade em projeções, consideraremos três situações distintas. Na primeira, o veículo escapa de uma pista inclinada em lançamento oblíquo vindo a se projetar até uma determinada distância horizontal. Para encontrarmos uma solução para essa situação, podemos decompor o movimento nas direções X e Y . Na horizontal (eixo X), o movimento se caracteriza por ser retilíneo uniforme. A velocidade inicial na qual o veículo se projeta não sofre alteração. Na vertical (eixo Y ), o movimento se caracteriza por ser retilíneo uniformemente variado. O objetivo pericial é encontrar a velocidade inicial que o veículo se desprendeu da rampa, ou seja, a velocidade inicial Vi com que o veículo foi lançado. Considerando a posição horizontal inicial igual a zero e a posição vertical inicial igual à altura H, podemos determinar as equações horárias da posição para X e Y

(27)X=Vicosθt,
(28)Y=H+Visinθt-12gt2.

Isolando t na Eq. (27) e substituindo-a na Eq. (28), pode-se mostrar que a velocidade inicial é dada por

(29)Vi=Xcosθg2(H+Xtanθ).

Pela Eq. (29) percebe-se que no levantamento do local de acidente, o perito deve realizar três medidas. O alcance horizontal X desde o início do ponto onde o veículo se desprendeu até o ponto onde o veículo atingiu o solo, a altura da depressão H onde o veículo caiu em relação ao leito da via e o ângulo θ de inclinação:

Na segunda situação, vamos considerar um lançamento horizontal onde o ângulo de inclinação é zero. Dessa forma, ao substituir esse valor na Eq. (29)

(30)Vi=Xg2H.

No caso do lançamento em rampa horizontal, faz-se necessário apenas a realização das medidas de X e H. Uma tela do software para essas duas situações é mostrada na Fig. 10. Para a situação em que o veículo é projetado em um lançamento oblíquo, faz-se necessário diferenciar a projeção em aclive e em declive.

Figura 10
Mostra a tela do software para a situação 2.7.

Na projeção em aclive vamos considerar esse ângulo θ positivo sendo gerado por uma rotação no sentido trigonométrico. Para a projeção em declive, esse ângulo será tomado como negativo sendo gerado por uma rotação no sentido horário. Isso se justifica pelo fato de estarmos considerando no aclive um ângulo θ no primeiro quadrante do ciclo trigonométrico enquanto que para o declive vamos considerar esse ângulo -θ no quarto quadrante. Uma tela do software é apresentada na Fig. 10 onde primeiro selecionamos o tipo de lançamento e depois podemos entrar com os valores de X, H e θ.

Na tela do software existe um terceiro caso, que consiste em uma estimativa de velocidade para lançamento de motoqueiro. Para esse caso iremos considerar que uma motocicleta atinge um obstáculo fixo ou mesmo um veículo em movimento. A barreira faz com que a motocicleta gire em torno do eixo dianteiro. Devido a esse giro, o condutor é arremessado como se estivesse em uma catapulta [2[2] L.L. Almeida, Manual de Perícias em Acidentes de Trânsito (Millennium, Campinas, 2011).]. A velocidade de lançamento do condutor da motocicleta pode ser definida pela Eq. (29), onde agora H é a altura do piso até a linha da cintura do condutor. Com a Eq. (29) podemos encontrar a velocidade de lançamento do condutor, no entanto, o que nos interessa é a velocidade da motocicleta. Como o deslocamento da motocicleta ocorre na horizontal a sua velocidade pode ser encontrada através da componente horizontal da velocidade de lançamento do motoqueiro

(31)VM=VLcosθ.

Sabemos que VL é dado pela Eq. (29). Substituindo-o na Eq. (31), teremos

(32)VM=Xg2(H+Xtanθ).

A Eq. (32) indica que além do ângulo de lançamento do motociclista, o perito deveria medir apenas o alcance horizontal X desde o centro da motocicleta (local onde o motoqueiro se senta) até o ponto onde o motoqueiro atingiu o solo, bem como a altura do piso até a linha da cintura do condutor da motocicleta. Contudo, quando motocicletas colidem com um veículo ou objeto fixo, giram em torno do seu eixo anterior, elevando-se de 30° a 35°, conforme o modelo da motocicleta. Normalmente o condutor é lançado para cima coma metade desse ângulo, variando de 15° a 17° [12[12] R.F. Aragão, Acidentes de Trânsito - Aspectos Técnicos e Jurídicos (Millennium, Campinas, 2009), 3ed.].

A tela do software para estimativa de velocidade em lançamento de motoqueiro é mostrada na Fig. 11, onde precisamos entrar apenas com os dados de H e X. O software utiliza automaticamente o valor de 15° para o ângulo de lançamento do motoqueiro.

Figura 11
Tela do software para a situação de lançamento do motoqueiro.

2.8. Velocidade pela análise de danos em motocicletas

É possível estimar a velocidade tomando como base apenas os danos causados em motocicletas. Foram coletados vários dados de colisões que, quando representados em um gráfico, apresentaram uma relação linear entre as distâncias de deformação (X) dos garfos das motocicletas e suas respectivas velocidades (veja o esquema na Fig. 12). Um simples ajuste linear permite relacionar essas quantidades determinando assim os coeficientes angulares (a) e lineares (b) da reta V=aX+b. Esses coeficientes foram obtidos independentemente [3[3] L.L. Almeida, Acidente de Trânsito: Novos Métodos de Cálculo de Velocidades (Millennium, Campinas, 2014).] por Servey

(33)V=1,38X+16,5.

Figura 12
Tela do software para a situação 2.8.

Fricke

(34)V=85X+12.
e Irureta
(35)V=53X+5.

Pelas Eqs. (33)-(35), podemos observar que o perito deve realizar apenas a medida da deformação linear X. Para tal, faz-se necessário apenas conhecer distância L entre eixos antes da colisão (que depende do modelo da motocicleta) e a distância Y entre eixos reduzida (medida após a colisão). O interessante desse método é que assim como no item 2.5 (estimativa de velocidade por atropelamento), a deformação (X=L-Y) pode ser realizada posteriormente ao acidente, durante a perícia de danos no veículo. Uma tela do software para essa situação é apresentada na Fig. 12. O cálculo da velocidade é feito utilizando as Eqs. (33)-(35), onde o resultado final de saída para o usuário é o da média aritmética dessas três velocidades.

3. Validação do software

Nesta secção validaremos os softwares SCTA estimando a velocidade média de um veículo considerando apenas as marcas de frenagem deixadas em uma rodovia. O acidente ocorreu em 03/08/2014, por volta de 21h00min, na rodovia PA 275, município de Parauapebas-PA. Nessa situação, um caminhão percorreu um trecho de 27,5 m em processo de frenagem até colidir com uma motocicleta que trafegava em sentido contrário. Após a colisão, o caminhão ainda percorreu uma distância de 25 m, ainda em processo de frenagem, mas agora acoplado à motocicleta, conforme a Fig. 13.

Figura 13
Croqui do local do acidente de trânsito.

Podemos resolver esse problema considerando dois trechos. No primeiro trecho, que corresponde aos 27,5 m percorridos antes da colisão, o coeficiente de atrito entre os pneu do caminhão e o solo é 0,49. Para o segundo trecho do movimento, temos uma frenagem com acoplamento [2[2] L.L. Almeida, Manual de Perícias em Acidentes de Trânsito (Millennium, Campinas, 2011).], para essa situação, como os dois veículos percorrem o trecho acoplados, é correto afirmar que possuem uma desaceleração de mesmo valor, cujo valor médio pode ser considerado a=μmg, sendo μm o coeficiente de atrito médio. Dessa forma, aplicando a segunda lei de Newton a essa situação, teremos

(36)Fr=fat1+fat2.

Da Eq. (36), após algumas manipulações algébricas, pode-se escrever μm sob a forma

(37)μm=μ1m1+μ2m2m1+m2.

Para o caso tratado aqui, a massa do caminhão (m1) é muito maior que a massa da motocicleta (m2). Desse modo

limm2m10=μ1+μ2m2m11+m2m1=μ1.

Logo o problema se reduz a utilizar apenas o coeficiente de atrito μ1=0,49 ao longo do trecho total, que é dado por 52,5 m. Esse caso se encaixa perfeitamente àquele discutido no item 2.1. Ao entramos com os valores para d e μ no software e desprezando a parcela de danos, encontramos uma velocidade de 81 km/h, conforme Fig. 14.

Figura 14
Tela do software para o nosso estudo de caso real.

Uma leitura parcial do tacógrafo do caminhão indicou uma velocidade de aproximadamente 85 km/h antes de iniciar o processo de frenagem, portanto a predição de 81 km/h obtida com o SCTA está dentro da margem de erro adotada pelo software, que estabelece que o caminhão trafegava entre 73 km/h e 89 km/h.

4. Considerações finais e conclusões

Neste trabalho mostramos como a física é importante para a compreensão da dinâmica dos acidentes de trânsito e apresentamos o software SCTA que permite calcular as velocidades de veículos envolvidos em sinistros. A vantagem da utilização desse software é que os cálculos são realizados na rotina do próprio programa, não sendo necessário que o usuário possua conhecimentos aprofundados de dinâmica, cabendo ao perito apenas entrar com os dados referentes à medidas efetuadas durante a realização da perícia.

Neste trabalho foram apresentadas apenas seis situações de estimativa de cálculo de velocidade, no entanto, o programador pode acrescentar quantas mais forem necessárias, para isso é preciso encontrar a equação cuja solução forneça a velocidade para a situação de interesse, implementando-a posteriormente na rotina de programação do software.

Embora trate-se de um software desenvolvido para investigações em ciência forense, tendo como tema gerador a mecânica dos acidentes de trânsito e devido à sua interface amigável, o SCTA pode ser utilizado como ferramenta auxiliar no ensino de física. Além de temas como as conservações do momento linear e energia, que são fundamentais no estudo de colisões, pode-se perfeitamente atacar a cinemática de lançamentos oblíquos e os aspectos fundamentais das Leis de Newton, bem como suas aplicações.

O software SCTA ainda está em processo de registro. Os leitores interessados no aplicativo podem entrar em contato com os autores através do e-mail wpgurgel@gmail.com.

Agradecimentos

À CAPES pelo suporte financeiro. WPG agradece ao professor Dr. L.L. Almeida pelas discuções técnicas e científicas.

Referências

  • [1]
    L.F. Gomes e N. Macedo, Quanto Mais Velocidade, Maior a Tragédia (Instituto Avante Brasil, São Paulo), publicado em 25/04/2011. Disponível em http:\\www.institutoavantebrasil.com.br, acessado em 10/10/2014.
    » http:\www.institutoavantebrasil.com.br
  • [2]
    L.L. Almeida, Manual de Perícias em Acidentes de Trânsito (Millennium, Campinas, 2011).
  • [3]
    L.L. Almeida, Acidente de Trânsito: Novos Métodos de Cálculo de Velocidades (Millennium, Campinas, 2014).
  • [4]
    G.F de S. Filho, Simuladores Computacionais Para o Ensino de Física Básica: Uma Discussão Sobre Produção e Uso Dissertação de Mestrado, UFRJ, 2010.
  • [5]
    J.A. Macêdo, A.G. Dickman e I.F.S. Andrade, Caderno Brasileiro de Ensino de Física 29 , 567 (2012).
  • [6]
    O.N. Neto, Revista Brasileira de Ensino de Física 24 , 124 (2002).
  • [7]
    J.P.F. Santos, Desenvolvendo Aplicativos com Lazarus (Agbook, São Paulo, 2011), e-book
  • [8]
    Lazarus IDE v1.2.6. Disponível em http:\\www.lazarus-_ide.org, acessado em 10/8/2014.
    » http:\www.lazarus-_ide.org
  • [9]
    O.N. Neto e R. Kleinübing, Dinâmica dos Acidentes de Trânsito (Millennium, Campinas, 2009), 3ed.
  • [10]
    Aplicativo para Android Nível. Antoine Vianey. Disponível em https://play.google.com/store/apps, acessado em 12/10/2014.
    » https://play.google.com/store/apps
  • [11]
    Software Google Earth. Disponível em http://www.google.com.br/earth/download, acessado em 15/10/2014.
    » http://www.google.com.br/earth/download
  • [12]
    R.F. Aragão, Acidentes de Trânsito - Aspectos Técnicos e Jurídicos (Millennium, Campinas, 2009), 3ed.
  • [13]
    Brasil, Centro de Perícias Científicas “Renato Chaves”. Laudo n. 2014.11.000020-CCV, Parauapebas-PA, p. 01-03, Dez. 2014.

Datas de Publicação

  • Publicação nesta coleção
    Oct-Dec 2015

Histórico

  • Recebido
    28 Abr 2015
  • Aceito
    05 Jul 2015
Sociedade Brasileira de Física Caixa Postal 66328, 05389-970 São Paulo SP - Brazil - São Paulo - SP - Brazil
E-mail: marcio@sbfisica.org.br