SciELO - Scientific Electronic Library Online

 
vol.39 issue3Performance comparison between the mycobacteria growth indicator tube system and Löwenstein-Jensen medium in the routine detection of Mycobacterium tuberculosis at public health care facilities in Rio de Janeiro, Brazil: preliminary results of a pragmatic clinical trialSmoke inhalation injury during enclosed-space fires: an update author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Jornal Brasileiro de Pneumologia

Print version ISSN 1806-3713

J. bras. pneumol. vol.39 no.3 São Paulo May/June 2013

http://dx.doi.org/10.1590/S1806-37132013000300015 

Brief Comunication

Lung cysts in chronic paracoccidioidomycosis*

André Nathan  Costa1 

Edson  Marchiori2 

Gil  Benard3 

Mariana Sponholz  Araújo4 

Bruno Guedes  Baldi5 

Ronaldo Adib  Kairalla6 

Carlos Roberto Ribeiro  Carvalho7 

1Attending Physician. Department of Pulmonology, Heart Institute, University of São Paulo School of Medicine Hospital das Clínicas, São Paulo, Brazil

2Associate Professor of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

3Physician in Charge of the Laboratory for Medical Research 61 (Medical Mycology), University of São Paulo School of Medicine Hospital das Clínicas, São Paulo, Brazil

4Resident Physician. Department of Pulmonology, Heart Institute, University of São Paulo School of Medicine Hospital das Clínicas, São Paulo, Brazil

5Attending Physician. Department of Pulmonology, Heart Institute, University of São Paulo School of Medicine Hospital das Clínicas, São Paulo, Brazil

6Assistant Professor. Department of Pulmonology, Heart Institute, University of São Paulo School of Medicine Hospital das Clínicas, São Paulo, Brazil

7Full Professor of Pulmonology. University of São Paulo School of Medicine, São Paulo, Brazil

ABSTRACT

On HRCT scans, lung cysts are characterized by rounded areas of low attenuation in the lung parenchyma and a well-defined interface with the normal adjacent lung. The most common cystic lung diseases are lymphangioleiomyomatosis, Langerhans cell histiocytosis, and lymphocytic interstitial pneumonia. In a retrospective analysis of the HRCT findings in 50 patients diagnosed with chronic paracoccidioidomycosis, we found lung cysts in 5 cases (10%), indicating that patients with paracoccidioidomycosis can present with lung cysts on HRCT scans. Therefore, paracoccidioidomycosis should be included in the differential diagnosis of cystic lung diseases.

Key words: Paracoccidioidomycosis; Cysts; Multidetector computed tomography

Lung cysts are rounded, well-circumscribed spaces surrounded by an epithelial or fibrous wall. On HRCT scans, lung cysts are characterized by rounded areas of low attenuation (air content) in the lung parenchyma and a well-defined interface with the normal adjacent lung.( 1 ) The most common cystic lung diseases are lymphangioleiomyomatosis, Langerhans cell histiocytosis, and lymphocytic interstitial pneumonia.( 1 - 3 ) Paracoccidioidomycosis, however, does not currently feature on the list of differential diagnoses of cystic parenchymal lung diseases.

Paracoccidioidomycosis primarily affects the lung and is the most common systemic mycosis in Brazil.( 4 - 6 ) Caused by the dimorphic fungus Paracoccidioides brasiliensis, chronic paracoccidioidomycosis affects mainly males in their economically productive years (30-60 years of age).( 6 ) Similarly to tuberculosis and histoplasmosis, paracoccidioidomycosis is acquired by inhalation of viable propagules that undergo reactivation in adults, causing the chronic form of the disease, the primary target of which is the respiratory system.( 4 , 7 ) In infected tissues of immunocompetent individuals, innate immunity induces a granulomatous inflammatory reaction in an attempt to inhibit the proliferation of the fungus and prevent its dissemination to other organs.( 8 ) Tuder et al. described, in addition to the presence of granulomas, dense fibrosis and reticulin fiber proliferation even in areas where there were no granulomas in chronically injured lungs.( 9 ) The chronic form of lung involvement is progressive and typically manifests as a bilateral, diffuse reticulomicronodular interstitial infiltrate on X-rays, correlating with the pathophysiology of the disease, which begins in the mediastinal lymph nodes and disseminates to the periphery of the lung via the lymphatic vessels.( 4 , 6 , 7 ) Residual parenchymal scarring might be present in more than half of the individuals after antifungal treatment.( 10 , 11 ) However, to our knowledge, no studies have described the incidence of lung cysts in this condition.

The chest X-ray abnormalities in patients with chronic paracoccidioidomycosis are often multiple and nonspecific, the most common patterns being linear and reticular opacities, nodules of different sizes, ill-defined opacities, air-space consolidation, and cavities.( 12 , 13 ) In endemic areas, the finding of a "butterfly wing" pattern, with symmetrical opacities in the middle lung regions, associated with emphysema, should suggest that diagnosis.( 13 ) In chronic paracoccidioidomycosis, architectural distortion, paracicatricial emphysema, and bronchiectasis are also common manifestations that reflect the residual fibrotic changes of this disease.( 7 , 10 )

Because HRCT allows a more detailed evaluation of the type of lesion, disease extent, and therapeutic response, it has gained popularity in the evaluation of patients with paracoccidioidomycosis.( 14 ) Abnormal HRCT findings occur in more than 90% of patients with chronic paracoccidioidomycosis, and ground-glass opacities, consolidations, nodules, masses, cavities, septal thickening, reversed halo sign, emphysema, and fibrotic changes are reported to be the most prevalent findings. However, despite the epidemiological significance of paracoccidioidomycosis in Latin America, few studies have attempted to describe the chest HRCT findings of this disease.( 7 , 15 , 16 )

According to Funari et al., who studied 42 patients with chronic paracoccidioidomycosis (with or without a history of antifungal treatment), the most common CT findings are interlobular septal thickening (in 88%), nodules (in 83%), traction bronchiectasis (in 83%), peribronchovascular interstitial thickening (in 78%), paracicatricial emphysema (in 68%), centrilobular opacities (in 63%), and intralobular lines (in 59%). These changes are often seen in combination, tend to be bilateral and symmetrical, and involve all lung zones.( 7 ) Gasparetto et al., reviewing 148 HRCT scans from patients with paracoccidioidomycosis, reported the presence of the reversed halo sign in 10% of the patients with active infection with P. brasiliensis.( 17 ) Souza et al. evaluated 77 untreated patients and found ground-glass opacities (in 58.4%), centrilobular nodules (in 45.5%), nodules (in 41.6%), parenchymal bands (in 33.8%), cicatricial emphysema (in 33.8%), interlobular septal thickening (in 31.2%), and architectural distortion (in 29.9%). The findings were distributed predominantly in the peripheral region (in 53%) and in posterior regions (in 88%), involving all lung zones.( 15 ) Extrapulmonary findings in the thorax are uncommon and include tracheal, pleural, lymph node, and osseous involvement.( 18 )

Our study, conducted in the outpatient clinics of the departments of pulmonology and infectious diseases of the University of São Paulo School of Medicine Hospital das Clínicas, showed that lung cysts are another possible CT pattern related to paracoccidioidomycosis.

The study was a reanalysis of 50 CT scans from patients who had previously been evaluated from the radiological and functional standpoint.( 19 ) In this reevaluation, the presence of lung cysts, a CT change that had not been described previously, was of note. We studied patients diagnosed with chronic paracoccidioidomycosis and treated for more than six months in whom the skin lesions resolved, microbiological test results were negative, and anti-P. brasiliensis antibody titers, as determined by counterimmunoelectrophoresis, were low (< 1:4 or a drop of at least 4 dilutions).( 5 ) Patients with lung cancer or respiratory coinfections (tuberculosis or other chronic infections) were excluded. Of the 50 patients studied, 47 were male and 3 were female. Ages ranged from 33 to 73 years (mean, 56.9 ± 9.7 years). In all patients, the diagnosis was confirmed by microbiological analysis (direct visualization or culture of the lesions) or by histopathology. The study and the content of the consent form were approved by the Ethics Committee for the Analysis of Research Projects of the Clinical Board of the University of São Paulo School of Medicine Hospital das Clínicas (Protocol no. 870/06). All study participants gave written informed consent.

The HRCT scans were obtained with a Philips Brilliance CT 40 multislice scanner (Philips Medical Systems, Cleveland, OH, USA) by using the following parameters: collimation, 8 × 3; increment, 1.6 mm; rotation time, 0.75; voltage, 120 Kv; amperage, 150 mAs/image; and a 7.5-mm reconstruction interval with 7.5-mm increments. Fifty-seven 7.5-mm CT slices and two hundred and ten 3.3-mm slices were obtained. Image slices at maximum inhalation and maximum exhalation were obtained for all patients. The changes were classified in accordance with the latest Brazilian Thoracic Association guidelines.( 1 ) All analyses were independently performed by a radiologist specializing in chest CT and by a pulmonologist specializing in interstitial diseases, both of whom were blinded to the clinical data of the patients. In cases of disagreement, the final results were obtained by consensus.

Lung cysts were found in 5 cases (10% of the patients): in 1 of the cases, there was a single cyst in the right lower lobe; and in the other 4, there were two or more parenchymal cysts with no preferential location (Figure 1).

Figure 1  HRCT scans. In A, HRCT scan slice at the level of the aortic arch showing a thin-walled cyst in the right lung of a 41-year-old female patient (arrows). Also note faint reticular and nodular opacities in the lung, which are probably residual in nature. In B, HRCT scan slice at the level of the lower lobes showing a thin-walled cyst in the left lung of a 68-year-old male patient (arrows). Note the presence of faint reticular opacities predominantly in the posterior regions. 

The clinical and demographic characteristics, as well as the number of lung cysts, of the 5 patients are shown in Table 1.

Table 1  Clinical and demographic characteristics, as well as number of lung cysts, of the patients studied.ª 

Variable Result
Age, years 55.0 ± 9.2
Body mass index, kg/m2 23.9 ± 3.6
Current or former smokingb 5 (100)
Active smokersb 3 (60)
Smoking history, pack-years 46.6 ± 30.9
Treatment duration, months 16.7 ± 8.5
CIE, titrationc 1:2 (0-1:4)
Lung cysts, n
Patient 1 2
Patient 2 3
Patient 3 1
Patient 4 multiple
Patient 5 multiple

ªCIE: serology with counterimmunoelectrophoresis. Values expressed as mean ± SD, except where otherwise indicated

bValues expressed as n (%).

cValue expressed as median (interquartile range)

The present study is, to our knowledge, the first to describe the presence of parenchymal cysts in patients with chronic paracoccidioidomycosis.

Multiple mechanisms can explain the formation of cysts in various lung diseases. These mechanisms would include vascular occlusion followed by ischemia and necrosis, bronchial dilatation, smooth muscle cell proliferation, and even a check-valve mechanism in small airways, which, because of inflammatory cell infiltration and subsequent centrilobular fibrosis, would lead to bronchial obstruction and dilatation downstream of the lesion.( 2 , 3 , 20 ) It can be speculated that, in paracoccidioidomycosis, centrilobular fibrosis, with involvement of the small airways and small vessels( 9 , 16 ) would cause bronchial obstruction and distal airway dilatation, similarly to the check-valve mechanism identified in bronchiolitis.( 21 ) Another possible explanation would be the presence of peribronchial nodules or granulomas associated with mycosis, promoting dilatation of a small airway, with the consequent formation of lung cysts, similarly to what is observed in Langerhans cell histiocytosis.( 2 , 3 ) Another plausible explanation would be that the cysts or pneumatoceles would result from an inflammatory process leading to central necrosis and elastic recoil of the adjacent lung tissue, with localized air expansion, whether in the airways or in the lung interstitium, as occurs in other infectious diseases, such as staphylococcal pneumonia.( 3 )

Finally, we must consider the high level of smoking in the study population, which would make it possible to attribute the formation of the cysts to a smoking-related disease, such as Langerhans cell histiocytosis and desquamative interstitial pneumonia. However, no other characteristics related to the cysts and suggesting those diagnoses were found on the HRCT scans from those 5 patients.

In conclusion, patients with chronic paracoccidioidomycosis can present with lung cysts on HRCT scans. Therefore, paracoccidioidomycosis should be included in the differential diagnosis of cystic lung lesions.

Acknowledgements

We would like to thank Dr. Carmem Lucia Fujita for her assistance in the CT analysis.

References

1.Silva CI,Marchiori E,Souza Júnior AS, Müller NL; Comissão de Imagem da Sociedade Brasileira de Pneumologia e Tisiologia. Illustrated Brazilian consensus of terms and fundamental patterns in chest CT scans. J Bras Pneumol. 2010;36(1):99-123. http://dx.doi.org/10.1590/S1806-37132010000100016 PMid:20209314Links ]

2. Seaman DM, Meyer CA, Gilman MD, McCormack FX. Diffuse cystic lung disease at high-resolution CT. AJR Am J Roentgenol. 2011;196(6):1305-11. http://dx.doi.org/10.2214/AJR.10.4420 PMid:21606293Links ]

3. Cordier JF, Johnson SR. Multiple cystic lung diseases. Eur Respir Mon. 2011;54:46-83. http://dx.doi.org/10.1183/1025448x.10007510Links ]

4. Bethlem EP, Capone D, Maranhao B, Carvalho CR, Wanke B. Paracoccidioidomycosis. Curr Opin Pulm Med. 1999;5(5):319-25. http://dx.doi.org/10.1097/00063198-199909000-00010 PMid:10461538Links ]

5. Shikanai-Yasuda MA, Telles Filho Fde Q, Mendes RP, Colombo AL, Moretti ML. Guidelines in paracoccidioidomycosis. Rev Soc Bras Med Trop. 2006;39(3):297-310. PMid:16906260 [ Links ]

6. Londero AT. Paracoccidioidomicose: I. Patogenia, formas clínicas, manifestações pulmonares e diagnóstico.J Pneumol. 1986;12(1):41-57. [ Links ]

7. Funari M, Kavakama J, Shikanai-Yasuda MA, Castro LG, Bernard G, Rocha MS, et al. Chronic pulmonary paracoccidioidomycosis (South American blastomycosis): high-resolution CT findings in 41 patients. AJR Am J Roentgenol. 1999;173(1):59-64. http://dx.doi.org/10.2214/ajr.173.1.10397100 PMid:10397100Links ]

8. Benard G. An overview of the immunopathology of human paracoccidioidomycosis. Mycopathologia. 2008;165(4-5):209-21. http://dx.doi.org/10.1007/s11046-007-9065-0 PMid:18777630Links ]

9. Tuder RM, el Ibrahim R, Godoy CE, De Brito T. Pathology of the human pulmonary paracoccidioidomycosis. Mycopathologia. 1985;92(3):179-88. http://dx.doi.org/10.1007/BF00437631 PMid:4088291Links ]

10. Tobón AM, Agudelo CA, Osorio ML, Alvarez DL, Arango M, Cano LE, et al. Residual pulmonary abnormalities in adult patients with chronic paracoccidioidomycosis: prolonged follow-up after itraconazole therapy. Clin Infect Dis. 2003;37(7):898-904. http://dx.doi.org/10.1086/377538 PMid:13130400Links ]

11. Restrepo S, Tobon A, Trujillo J, Restrepo A. Development of pulmonary fibrosis in mice during infection with Paracoccidioides brasiliensis conidia. J Med Vet Mycol. 1992;30(3):173-84. http://dx.doi.org/10.1080/02681219280000241 PMid:1517956Links ]

12.Trad HS,Trad CS,Elias Junior JE,Muglia VF. Revisão radiológica de 173 casos consecutivos de paracoccidioidomicose. Radiol Bras. 2006;39(3):175-9. http://dx.doi.org/10.1590/S0100-39842006000300005Links ]

13. do Valle AC, Guimarães RR, Lopes DJ, Capone D. Thoracic radiologic aspects in paracoccidioidomycosis. Rev Inst Med Trop Sao Paulo. 1992;34(2):107-15. http://dx.doi.org/10.1590/S0036-46651992000200005 PMid:1340023Links ]

14. Barreto MM, Marchiori E, Amorim VB, Zanetti G, Takayassu TC, Escuissato DL, et al. Thoracic paracoccidioidomycosis: radiographic and CT findings. Radiographics. 2012;32(1):71-84. Erratum in: Radiographics. 2012;32(4):1258. .http://dx.doi.org/10.1148/rg.321115052 PMid:22236894Links ]

15. Souza AS Jr, Gasparetto EL, Davaus T, Escuissato DL, Marchiori E. High-resolution CT findings of 77 patients with untreated pulmonary paracoccidioidomycosis. AJR Am J Roentgenol. 2006;187(5):1248-52. http://dx.doi.org/10.2214/AJR.05.1065 PMid:17056912Links ]

16. Marchiori E, Valiante PM, Mano CM, Zanetti G, Escuissato DL, Souza AS Jr, et al. Paracoccidioidomycosis: high-resolution computed tomography-pathologic correlation. Eur J Radiol. 2011;77(1):80-4. http://dx.doi.org/10.1016/j.ejrad.2009.06.017 PMid:19608361Links ]

17. Gasparetto EL, Escuissato DL, Davaus T, de Cerqueira EM, Souza AS Jr, Marchiori E, et al. Reversed halo sign in pulmonary paracoccidioidomycosis. AJR Am J Roentgenol. 2005;184(6):1932-4. http://dx.doi.org/10.2214/ajr.184.6.01841932 PMid:15908556Links ]

18. Freitas RM, Prado R, Prado FL, Paula IB, Figueiredo MT, Ferreira CS, et al. Pulmonary paracoccidioidomycosis: radiology and clinical-epidemiological evaluation. Rev Soc Bras Med Trop. 2010;43(6):651-6. http://dx.doi.org/10.1590/S0037-86822010000600010 PMid:21181017Links ]

19. Costa AN, Benard G, Albuquerque AL, Fujita CL, Magri AS, Salge JM, et al. The lung in paracoccidioidomycosis: new insights into old problems. Clinics (Sao Paulo). 2013;68(4)441-8. http://dx.doi.org/10.6061/clinics/2013(04)02Links ]

20. Silva CI, Flint JD, Levy RD, Müller NL. Diffuse lung cysts in lymphoid interstitial pneumonia: high-resolution CT and pathologic findings. J Thorac Imaging. 2006;21(3):241-4. http://dx.doi.org/10.1097/01.rti.0000213554.61752.73 PMid:16915074Links ]

21. Kawano-Dourado L, Baldi BG, Dias OM, Bernardi FD, Carvalho CR, Dolhnikoff M, et al. Scattered lung cysts as the main radiographic finding of constrictive bronchiolitis. Am J Respir Crit Care Med. 2012;186(3):294-5. http://dx.doi.org/10.1164/ajrccm.186.3.294 PMid:22855547Links ]

*Study carried out in the Department of Pulmonology, Heart Institute, University of São Paulo School of Medicine Hospital das Clínicas , São Paulo, Brazil.

Financial support: None.

Received: December 23, 2012; Accepted: February 15, 2013

Correspondence to: André Nathan Costa Avenida Dr. Enéas de Carvalho Aguiar, 255, 6º andar CEP 05403-000, São Paulo, SP, Brasil Tel. 55 11 26615695 E-mail: nathan.andre@gmail.com

Creative Commons License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.