Acessibilidade / Reportar erro

Pharmacological management of osteogenesis

Abstract

Osteogenesis and bone remodeling are complex biological processes that are essential for the formation of new bone tissue and its correct functioning. When the balance between bone resorption and formation is disrupted, bone diseases and disorders such as Paget's disease, fibrous dysplasia, osteoporosis and fragility fractures may result. Recent advances in bone cell biology have revealed new specific targets for the treatment of bone loss that are based on the inhibition of bone resorption by osteoclasts or the stimulation of bone formation by osteoblasts. Bisphosphonates, antiresorptive agents that reduce bone resorption, are usually recommended as first-line therapy in women with postmenopausal osteoporosis. Numerous studies have shown that bisphosphonates are able to significantly reduce the risk of femoral and vertebral fractures. Other antiresorptive agents indicated for the treatment of osteoporosis include selective estrogen receptor modulators, such as raloxifene. Denosumab, a human monoclonal antibody, is another antiresorptive agent that has been approved in Europe and the USA. This agent blocks the RANK/RANKL/OPG system, which is responsible for osteoclastic activation, thus reducing bone resorption. Other approved agents include bone anabolic agents, such as teriparatide, a recombinant parathyroid hormone that improves bone microarchitecture and strength, and strontium ranelate, considered to be a dual-action drug that acts by both osteoclastic inhibition and osteoblastic stimulation. Currently, anti-catabolic drugs that act through the Wnt-β catenin signaling pathway, serving as Dickkopf-related protein 1 inhibitors and sclerostin antagonists, are also in development. This concise review provides an overview of the drugs most commonly used for the control of osteogenesis in bone diseases.

Antiresorptive Drugs; Bone Formation; Osteoblasts; Osteogenesis; RANKL Inhibitors


INTRODUCTION

Osteoblasts play a crucial role both in the promotion of bone formation and, indirectly, in the modulation of osteoclast differentiation through the expression of the receptor activator of nuclear factor NFκB ligand (RANKL) and of osteoprotegerin (OPG), which are known, together with RANK, to regulate osteoclast formation and activity (11. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165-76, http://dx.doi.org/10.1016/S0092-8674(00)81569-X.
http://dx.doi.org/10.1016/S0092-8674(00)...
,22. Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology. 2001;142(12):5050-5, http://dx.doi.org/10.1210/endo.142.12.8536.
http://dx.doi.org/10.1210/endo.142.12.85...
). RANKL, a transmembrane protein that is highly expressed by pre-osteoblasts and osteoblasts (33. Collin-Osdoby P. Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin. Circ Res. 2004;95(11):1046-57, http://dx.doi.org/10.1161/01.RES.0000149165.99974.12.
http://dx.doi.org/10.1161/01.RES.0000149...
), periosteal cells (44. Silvestrini G, Ballanti P, Patacchioli F, Leopizzi M, Gualtieri N, Monnazzi P, et al. Detection of osteoprotegerin (OPG) and its ligand (RANKL) mRNA and protein in femur and tibia of the rat. J Mol Histol. 2005;36(1-2):59-67, http://dx.doi.org/10.1007/s10735-004-3839-1.
http://dx.doi.org/10.1007/s10735-004-383...
), and osteocytes (55. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng QJ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231-4, http://dx.doi.org/10.1038/nm.2452.
http://dx.doi.org/10.1038/nm.2452...
), binds and activates its receptor RANK, which is mainly expressed by osteoclasts and their precursors (66. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A. 1999;96(7):3540-5, http://dx.doi.org/10.1073/pnas.96.7.3540.
http://dx.doi.org/10.1073/pnas.96.7.3540...
). After binding to RANK, RANKL stimulates the formation, activity and survival of osteoclasts (77. Fonseca JE Rebalancing bone turnover in favour of formation with strontium ranelate: Implications for bone strength. Rheumatology (Oxford). 2008;47 Suppl 4:iv17-19.,88. Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007;9 Suppl 1:S1, http://dx.doi.org/10.1186/ar2165.
http://dx.doi.org/10.1186/ar2165...
), resulting in increased bone resorption (99. Hofbauer LC, Heufelder AE Role of receptor activator of nuclear factor-kappa B ligand and osteopr otegerin in bone cell biology. J Mol Med. 2001;79(5-6):243-53, http://dx.doi.org/10.1007/s001090100226.
http://dx.doi.org/10.1007/s001090100226...
). OPG, a member of the tumor necrosis factor (TNF) superfamily of proteins that is secreted by osteoblasts, is another key molecule in this process because it inhibits RANKL-induced osteoclastogenesis (1313. Lala R, Matarazzo P, Bertelloni S, Buzi F, Rigon F, De Sanctis C. Pamidronate treatment of bone fibrous dysplasia in nine children with McCune-Albright sindrome. Acta Paediatr. 2000;89(2):188-93, http://dx.doi.org/10.1111/j.1651-2227.2000.tb01214.x.
http://dx.doi.org/10.1111/j.1651-2227.20...
). In fact, OPG binds to RANKL with high affinity and competes with RANK for binding to RANKL on the surface of osteoclasts and their precursors (1010. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337-42, http://dx.doi.org/10.1038/nature01658.
http://dx.doi.org/10.1038/nature01658...
,1111. Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA. 2004;292(4):490-5, http://dx.doi.org/10.1001/jama.292.4.490.
http://dx.doi.org/10.1001/jama.292.4.490...
). This RANK/RANKL/OPG system is regulated by various cytokines (interleukin (IL)-1, 4, 6, 11 and 17 and TNF-α), hormones (glucocorticoids, vitamin D and estrogen), and mesenchymal transcription factors (cbfa-1 and peroxisome proliferator-activated receptor gamma) (99. Hofbauer LC, Heufelder AE Role of receptor activator of nuclear factor-kappa B ligand and osteopr otegerin in bone cell biology. J Mol Med. 2001;79(5-6):243-53, http://dx.doi.org/10.1007/s001090100226.
http://dx.doi.org/10.1007/s001090100226...
) and determines osteoclast activity (Figure 1).

Figure 1
RANK/RANKL/OPG system. Osteoblasts produce RANKL and OPG under the control of various cytokines, hormones, and growth factors. OPG binds and inactivates RANKL, resulting in the inhibition of osteoclastogenesis. In the absence of OPG, RANKL activates its receptor, RANK, expressed on osteoclasts and preosteoclast precursors. The RANK-RANKL interaction leads to preosteoclast recruitment and fusion into multinucleated osteoclasts and to osteoclast activation and survival.

Bone is continually reabsorbed and formed. This process is called bone remodeling, in which bone cells have an extremely important role in ensuring a balance between the processes of bone formation and resorption. When this balance is disrupted, various diseases and conditions, such as osteogenesis imperfecta, tumors, osteoarthritis and osteoporosis may arise. In particular, osteoporosis is characterized by a progressive loss of bone mass and microarchitecture, which leads to increased fracture risk.

Currently, the available drugs used in the treatment of bone diseases can be divided into two categories: antiresorptive agents, such as bisphosphonates (BPs), estrogen, selective estrogen receptor modulators (SERMs) and RANKL inhibitors that inhibit osteoclastogenesis and bone-forming agents that increase bone strength by increasing bone mass, such as parathyroid hormone (PTH) peptides, strontium ranelate (SR) and anti-Dickkopf-related protein 1 (DKK1) and anti-sclerostin (SOST) antibodies (Figure 2 and Table 1).

Figure 2
Summary of the main drugs used in the control of osteogenesis.

Table 1
Comparisons of the principal drugs used in bone diseases.

The purpose of this review is to provide an overview of the drugs commonly used for the control of osteogenesis in bone diseases.

Bisphosphonates

BPs are a class of drugs generally used in the treatment of bone disorders that are characterized by excessive osteoclastic bone resorption, such as osteoporosis, Paget's disease, fibrous dysplasia, hypercalcemia of malignancy, and inflammation-related bone loss (1212. Eggelmeijer F, Papapoulos SE, Van Paassen HC, Dijkmans BA, Breedveld FC. Clinical and biochemical response to single infusion of pamidronate in patients with active rheumatoid arthritis: a double blind placebo controlled study. J Rheumatol. 1994;21(11):2016-20.

13. Lala R, Matarazzo P, Bertelloni S, Buzi F, Rigon F, De Sanctis C. Pamidronate treatment of bone fibrous dysplasia in nine children with McCune-Albright sindrome. Acta Paediatr. 2000;89(2):188-93, http://dx.doi.org/10.1111/j.1651-2227.2000.tb01214.x.
http://dx.doi.org/10.1111/j.1651-2227.20...

14. Rodan GA, Martin TJ Therapeutic approaches to bone diseases. Science. 2000;289(5484):1508-14, http://dx.doi.org/10.1126/science.289.5484.1508.
http://dx.doi.org/10.1126/science.289.54...
-1515. Lane JM, Khan SN, O'Connor WJ, Nydick M, Hommen JP, Schneider R, Tomin E, et al. Bisphosphonate therapy in fibrous dysplasia. Clin Orthop. 2001;(382):6-12, http://dx.doi.org/10.1097/00003086-200101000-00003.
http://dx.doi.org/10.1097/00003086-20010...
).

The clinical efficacy of BPs primarily stems from two key properties: their ability to bind strongly to bone mineral and their inhibitory effects on mature osteoclasts (1616. Tassone P, Tagliaferri P, Viscomi C, Palmieri C, Caraglia M, D'Alessandro A, et al. Zoledronic acid induces antiproliferative and apoptotic effects in human pancreatic cancer cells in vitro. Br J Cancer. 2003;88(12):1971-8.).

In fact, these drugs are able to bind with high affinity to hydroxyapatite crystals, where they remain for prolonged periods. The drugs then act selectively on osteoblasts, particularly in areas of high bone turnover, resulting in an antiresorptive effect (1717. Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J, et al. Cellular and molecular mechanisms of action of bisphosphonates. Cancer. 2000;88(12 Suppl):2961-78, http://dx.doi.org/10.1002/1097-0142(20000615)88:12+<2961::AID-CNCR12>3.0.CO;2-L.
http://dx.doi.org/10.1002/1097-0142(2000...
,1818. Jung A, Bisaz S, Fleisch H. The binding of pyrophosphate and two diphosphonates on hydroxyapatite crystals. Calcif Tissue Res. 1973;11(4):269-80, http://dx.doi.org/10.1007/BF02547227.
http://dx.doi.org/10.1007/BF02547227...
). The drugs are subsequently released from the bone matrix upon exposure to acid and enzymes secreted by active osteoclasts (1919. Sudhoff H, Jung JY, Ebmeyer J, Faddis BT, Hildmann H, Chole RA. Zoledronic acid inhibits osteoclastogenesis in vitro and in a mouse model of inflammatory osteolysis. Ann Otol Rhinol Laryngol. 2003;112(9 Pt 1):780-6.,2020. Evdokiou A, Labrinidis A, Bouralexis S, Hay S, Findlay DM. Induction of cell death of human osteogenic sarcoma cells by zoledronic acid resembles anoikis. Bone. 2003;33(2):216-28, http://dx.doi.org/10.1016/S8756-3282(03)00223-0.
http://dx.doi.org/10.1016/S8756-3282(03)...
).

Studies to date suggest that the mechanisms by which BPs are internalized by osteoclasts are similar for different BPs, which can be divided into two categories: nitrogen-containing BPs and non- nitrogen-containing BPs.

Nitrogen-containing BPs, such as alendronate, ibandronate, pamidronate, risedronate, and zoledronate, have a side chain that contains a nitrogen atom, in contrast to the non-nitrogen-containing BPs, such as clodronate and etidronate.

Nitrogen-containing BPs principally act by inhibiting farnesyl pyrophosphate (FPP) synthase, an enzyme in the cholesterol synthesis pathway and preventing the prenylation of small guanosine triphosphate (GTP)-binding proteins, which are indispensable for cytoskeletal organization and vesicular traffic in the osteoclast, causing osteoclast inactivation (2121. Green JR. Bisphosphonates: preclinical review. Oncologist. 2004;9 Suppl 4:3-13, http://dx.doi.org/10.1634/theoncologist.9-90004-3.
http://dx.doi.org/10.1634/theoncologist....
,2222. Rodan GA, Reszka AA. Bisphosphonate mechanism of action. Curr Mol Med. 2002;2(6):571-7, http://dx.doi.org/10.2174/1566524023362104.
http://dx.doi.org/10.2174/15665240233621...
).

In contrast, in osteoclasts' cytosol, non-nitrogen-containing BPs are metabolized into adenosine triphosphate (ATP) analogs that block osteoclast function and induce osteoclast apoptosis (2323. D'Aoust P, McCulloch CA, Tenenbaum HC, Lekic PC. Etidronate (HEBP) promotes osteoblast differentiation and wound closure in rat calvaria. Cell Tissue Res. 2000;302(3):353-63, http://dx.doi.org/10.1007/s004419900165.
http://dx.doi.org/10.1007/s004419900165...
).

In vitro, several BPs inhibit osteoclast differentiation in human bone marrow cultures (2424. Hughes D.E., MacDonald BR, Russell RGG, and Gowen M. Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow. J Clin Invest. 1989;83(6):1930-5, http://dx.doi.org/10.1172/JCI114100.
http://dx.doi.org/10.1172/JCI114100...
) and promote the apoptosis of murine osteoclasts, which was also confirmed by in vivo studies in mice. More specifically, in vitro studies have shown that BPs are not always selective for osteoclasts and can inhibit cell growth and induce apoptosis in a wide range of cell types (1616. Tassone P, Tagliaferri P, Viscomi C, Palmieri C, Caraglia M, D'Alessandro A, et al. Zoledronic acid induces antiproliferative and apoptotic effects in human pancreatic cancer cells in vitro. Br J Cancer. 2003;88(12):1971-8.,1919. Sudhoff H, Jung JY, Ebmeyer J, Faddis BT, Hildmann H, Chole RA. Zoledronic acid inhibits osteoclastogenesis in vitro and in a mouse model of inflammatory osteolysis. Ann Otol Rhinol Laryngol. 2003;112(9 Pt 1):780-6.,2525. Von Knoch F, Jaquiery C, Kowalsky M, Schaeren S, Alabre C, Martin I, et al. Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells. Biomaterials. 2005;26(34):6941-9, http://dx.doi.org/10.1016/j.biomaterials.2005.04.059.
http://dx.doi.org/10.1016/j.biomaterials...

26. Still K, Phipps RJ, Scutt A. Effects of risedronate, alendronate, and etidronate on the viability and activity of rat bone marrow stromal cells in vitro. Calcif Tissue Int. 2003;72(2):143-50, http://dx.doi.org/10.1007/s00223-001-2066-y.
http://dx.doi.org/10.1007/s00223-001-206...

27. Reinholz GG, Getz B, Sanders ES, Karpeisky MY, Padyukova NS, Mikhailov SN, et al. Distinct mechanisms of bisphosphonate action between osteoblasts and breast cancer cells: identity of a potent new bisphosphonate analogue. Breast Cancer Res Treat. 2002;71(3):257-68, http://dx.doi.org/10.1023/A:1014418017382.
http://dx.doi.org/10.1023/A:101441801738...
-2828. Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, et al. Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res. 2000;60(21):6001-7.) and in many cancer cell types (2020. Evdokiou A, Labrinidis A, Bouralexis S, Hay S, Findlay DM. Induction of cell death of human osteogenic sarcoma cells by zoledronic acid resembles anoikis. Bone. 2003;33(2):216-28, http://dx.doi.org/10.1016/S8756-3282(03)00223-0.
http://dx.doi.org/10.1016/S8756-3282(03)...
) at high doses.

In the 1990s, in vitro studies demonstrated that osteoblasts treated with BPs did not exhibit osteoclastogenesis (2929. Sahni M, Guenther HL, Fleisch H, Collin P, Martin TJ. Bisphosphonates act on rat bone resorption through the mediation of osteoblasts. J Clin Invest. 1993;91(5):2004-11, http://dx.doi.org/10.1172/JCI116422.
http://dx.doi.org/10.1172/JCI116422...
,3030. Nishikawa M, Akatsu T, Katayama Y, Yasutomo Y, Kado S, Kugal N, et al. Bisphosphonates act on osteoblastic cells and inhibit osteoclast formation in mouse marrow cultures. Bone. 1996;18(1):9-14, http://dx.doi.org/10.1016/8756-3282(95)00426-2.
http://dx.doi.org/10.1016/8756-3282(95)0...
). Additionally, numerous studies performed to evaluate the effects of BPs on osteoblasts have demonstrated the non-selectivity of these drugs for osteoclastic cells.

In addition, BPs are able to inhibit the apoptosis of osteocyte cell lines and primary murine osteoblasts (3131. Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest. 1999;104(10):1363-74, http://dx.doi.org/10.1172/JCI6800.
http://dx.doi.org/10.1172/JCI6800...
), as well as human osteoblasts (3232. Y Abe Y, Kawakami A, Nakashima T, Ejima E, Fujiyama K, Kiriyama T, et al. Etidronate inhibits human osteoblast apoptosis by inhibition of pro-apoptotic factor(s) produced by activated T cells. J Lab Clin Med. 2000;136(5):344-54, http://dx.doi.org/10.1067/mlc.2000.109757.
http://dx.doi.org/10.1067/mlc.2000.10975...
).

Nitrogen-containing BPs appear to induce collagen type I (COLIA1) gene expression (2828. Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, et al. Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res. 2000;60(21):6001-7.). Moreover, alendronate and etidronate enhance IL-6 production in osteoblasts (3333. Giuliani N, Pedrazzoni M, Passeri G, Girasole G. Bisphosphonates inhibit IL-6 production by human osteoblast-like cells. Scand. J. Rheumatol. 1998;27(1):38-41.).

Clodronate stimulates osteoblast differentiation in ST2 and MC3T3-E1 cells, whereas etidronate promotes osteoinduction only in MC3T3-E1 cells (3434. Itoh F, Aoyagi S, Furihata-Komatsu H, Aoki M, Kusama H, Kojima M, et al. Clodronate stimulates osteoblast differentiation in ST2 and MC3T3-E1 cells and rat organ cultures. Eur J Pharmacol. 2003;477(1):9-16.). In addition, it has been shown that BPs decrease the expression of RANKL and increase the expression of OPG in human osteoblastic cells (3535. Viereck V, Emons G, Lauck V, Frosch KH, Blaschke S, Grundker C, et al. Bisphosphonates pamidronate and zoledronic acid stimulate osteoprotegerin production by primary human osteoblasts. Biochem Biophys Res Commun. 2002;291(3):680-6, http://dx.doi.org/10.1006/bbrc.2002.6510.
http://dx.doi.org/10.1006/bbrc.2002.6510...
,3636. Pan B, Farrugia AN, To LB, Findlay DM, Green J, Lynch K, et al. The nitrogencontaining bisphosphonate, zoledronic acid, influences RANKL expression in human osteoblastlike cells by activating TNF-alpha converting enzyme (TACE). J Bone Miner Res. 2004;19(1):147-54, http://dx.doi.org/10.1359/jbmr.2004.19.1.147.
http://dx.doi.org/10.1359/jbmr.2004.19.1...
). Finally, trabecular cultures of MG-63 cells and primary human bone have shown that risedronate and alendronate each increase osteoblast and osteoblast progenitor numbers and also enhance the gene expression of bone morphogenetic protein 2 (BMP-2), COLIA1, and osteocalcin (OCN) (3737. Im GI, Qureshi SA, Kenney J, Rubash HE, Shanbhag AS. Osteoblast proliferation and maturation by bisphosphonates. Biomaterials. 2004;25(18):4105-15, http://dx.doi.org/10.1016/j.biomaterials.2003.11.024.
http://dx.doi.org/10.1016/j.biomaterials...
,3838. Xiong Y, Yang HJ, Feng J, Shi ZL, Wu LD. Effects of alendronate on the proliferation and osteogenic differentiation of MG-63 cells. J Int Med Res. 2009;37(2):407-16.).

It has been demonstrated that these drugs increase the proliferation and formation of mineralized nodules in murine and human bone marrow cultures in vitro (2525. Von Knoch F, Jaquiery C, Kowalsky M, Schaeren S, Alabre C, Martin I, et al. Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells. Biomaterials. 2005;26(34):6941-9, http://dx.doi.org/10.1016/j.biomaterials.2005.04.059.
http://dx.doi.org/10.1016/j.biomaterials...
,3939. Giuliani N, Pedrazzoni M, Negri G, Passeri G, Impicciatore M, Girasole G. Bisphosphonates stimulate formation of osteoblast precursors and mineralized nodules in murine and human bone marrow cultures in vitro and promote early osteoblastogenesis in young and aged mice in vivo. Bone. 1998;22(5):455-61, http://dx.doi.org/10.1016/S8756-3282(98)00033-7.
http://dx.doi.org/10.1016/S8756-3282(98)...

40. Klein BY, Ben-Bassat H, Breuer E, Solomon V, Golomb G, Structurally different bisphosphonates exert opposing effects on alkaline. J Cell Biochem. 1998;68(2):186-94, http://dx.doi.org/10.1002/(SICI)1097-4644(19980201)68:2<186::AID-JCB5>3.0.CO;2-R.
http://dx.doi.org/10.1002/(SICI)1097-464...

41. Kim HK, Kim JH, Abbas AA, Yoon TR. Alendronate enhances osteogenic differentiation of bone marrow stromal cells: a preliminary study. Clin Orthop Relat Res. 2009;467(12):3121-8, http://dx.doi.org/10.1007/s11999-008-0409-y.
http://dx.doi.org/10.1007/s11999-008-040...
-4242. Pan B, To LB, Farrugia AN, Findlay DM, Green J, Gronthos S, et al. The nitrogen-containing bisphosphonate, zoledronic acid, increases mineralisation of human bone-derived cells in vitro. Bone. 2004;34(1):112-23, http://dx.doi.org/10.1016/j.bone.2003.08.013.
http://dx.doi.org/10.1016/j.bone.2003.08...
) and promote early osteoblastogenesis in both young and aged mice in vivo (3939. Giuliani N, Pedrazzoni M, Negri G, Passeri G, Impicciatore M, Girasole G. Bisphosphonates stimulate formation of osteoblast precursors and mineralized nodules in murine and human bone marrow cultures in vitro and promote early osteoblastogenesis in young and aged mice in vivo. Bone. 1998;22(5):455-61, http://dx.doi.org/10.1016/S8756-3282(98)00033-7.
http://dx.doi.org/10.1016/S8756-3282(98)...
). In contrast, other studies have demonstrated that BPs decrease proliferation and inhibit osteoblast differentiation and mineralization (2727. Reinholz GG, Getz B, Sanders ES, Karpeisky MY, Padyukova NS, Mikhailov SN, et al. Distinct mechanisms of bisphosphonate action between osteoblasts and breast cancer cells: identity of a potent new bisphosphonate analogue. Breast Cancer Res Treat. 2002;71(3):257-68, http://dx.doi.org/10.1023/A:1014418017382.
http://dx.doi.org/10.1023/A:101441801738...
,2828. Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, et al. Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res. 2000;60(21):6001-7.,4343. Idris AI, Rojas J, Greig IR, Van’t Hof RJ, Ralston SH. Aminobisphosphonates cause osteoblast apoptosis and inhibit bone nodule formation in vitro. Calcif Tissue Int. 2008;82(3):191-201, http://dx.doi.org/10.1007/s00223-008-9104-y.
http://dx.doi.org/10.1007/s00223-008-910...
,4444. Orriss IR, Key ML, Colston KW, Arnett TR. Inhibition of osteoblast function in vitro by aminobisphosphonates. J Cell Biochem. 2009; 106(1):109-18, http://dx.doi.org/10.1002/jcb.21983.
http://dx.doi.org/10.1002/jcb.21983...
). In particular, an in vitro study has demonstrated that pamidronate and zoledronate decrease osteoblast proliferation in a dose-dependent manner and increase differentiation and bone-forming activities among immortalized human fetal osteoblasts (2828. Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, et al. Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res. 2000;60(21):6001-7.). However, another in vitro study on mouse calvarial osteoblasts has shown that pamidronate and alendronate inhibit osteoblast growth and bone nodule formation (4343. Idris AI, Rojas J, Greig IR, Van’t Hof RJ, Ralston SH. Aminobisphosphonates cause osteoblast apoptosis and inhibit bone nodule formation in vitro. Calcif Tissue Int. 2008;82(3):191-201, http://dx.doi.org/10.1007/s00223-008-9104-y.
http://dx.doi.org/10.1007/s00223-008-910...
).

These conflicting results are explained by the fact that low concentrations of BPs, from 10−9 M to 10−6 M, were shown to increase growth and have induction effects, whereas concentrations higher than 10−5 M had inhibitory effects (4545. Bellido T, Plotkin LI. Novel actions of bisphosphonates in bone: preservation of osteoblast and osteocyte viability. Bone. 2011;49(1):50-5, http://dx.doi.org/10.1016/j.bone.2010.08.008.
http://dx.doi.org/10.1016/j.bone.2010.08...
). Finally, BPs such as alendronate, risedronate, and zoledronate have been shown to reduce the risk of new vertebral, non-vertebral, and hip fractures (4646. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356(18):1809-22.

47. Black DM, Thompson DE, Bauer DC, Ensrud K, Musliner T, Hochberg MC, et al. Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. FIT Research Group. J Clin Endocrinol Metab. 2000;85(11):4118-24, http://dx.doi.org/10.1210/jcem.85.11.6953.
http://dx.doi.org/10.1210/jcem.85.11.695...

48. McClung MR, Geusens P, Miller PD, Zippel H, Bensen WG, Roux C, et al. Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med. 2001;344(5):333-40.
-4949. Harris ST, Watts NB, Genant HK, McKeever CD, Hangartner T, Keller M, et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA. 1999;282(14):1344-52, http://dx.doi.org/10.1001/jama.282.14.1344.
http://dx.doi.org/10.1001/jama.282.14.13...
). Interestingly, the long-term use (up to 10 years) of BPs in the treatment of osteoporosis has been associated with a good safety profile (5050. Black DM, Schwartz AV, Ensrud KE, Cauley JA, Levis S, Quandt SA, et al. Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA. 2006;296(24):2927-38, http://dx.doi.org/10.1001/jama.296.24.2927.
http://dx.doi.org/10.1001/jama.296.24.29...
), although several studies have associated BP therapy with a potential risk of osteonecrosis of the jaw and atypical subtrochanteric femoral fractures (5151. Rizzoli R, Burlet N, Cahall D, Delmas PD, Eriksen EF, Felsenberg D, et al. Osteonecrosis of the jaw and bisphosphonate treatment for osteoporosis. Bone. 2008;42(5):841-7, http://dx.doi.org/10.1016/j.bone.2008.01.003.
http://dx.doi.org/10.1016/j.bone.2008.01...

52. Rizzoli R, Akesson K, Bouxsein M, Kanis JA, Napoli N, Papapoulos S, et al. Subtrochanteric fractures after long-term treatment with bisphosphonates: a european society on clinical and economic aspects of osteoporosis and osteoarthritis, and international osteoporosis foundation working group report. Osteoporos Int. 2011;22(2):373-90, http://dx.doi.org/10.1007/s00198-010-1453-5.
http://dx.doi.org/10.1007/s00198-010-145...
-5353. Shane E, Burr D, Ebeling PR, Abrahamsen B, Adler RA, Brown TD, et al. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2010;25(11):2267-94, http://dx.doi.org/10.1002/jbmr.253.
http://dx.doi.org/10.1002/jbmr.253...
).

Denosumab

The RANK/RANKL/OPG pathway is key to maintaining the balance between the activities of osteoblasts and osteoclasts to prevent bone loss and ensure normal bone turnover. Thus, manipulation of the RANKL system has been a target of pharmaceutical development. In particular, human OPG constructs, such as OPG fusion proteins (OPG-Fc) (5454. Body JJ, Greipp P, Coleman RE, Facon T, Geurs F, Fermand JP, et al. A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer. 2003;97(3 Suppl):887-92, http://dx.doi.org/10.1002/cncr.11138.
http://dx.doi.org/10.1002/cncr.11138...
), have been valuable research tools because they strongly inhibit bone resorption in a variety of species, including rats (5555. Stolina M, Adamu S, Ominsky MS, Dzamba BJ, Asuncion F, Geng Z, et al. RANKL is a marker and mediator of local and systemic bone loss in two rat models of inflammatory arthritis. J Bone Miner Res 2005;20(10):1756-65, http://dx.doi.org/10.1359/JBMR.050601.
http://dx.doi.org/10.1359/JBMR.050601...
,5656. Padagas J, Colloton M, Shalhoub V, Kostenuik PJ, Morony S, Munyakazi L, et al. The receptor activator of nuclear factor-kB ligand inhibitor osteoprotegerin is a bone-protective agent in a rat model of chronic renal insufficiency and hyperparathyroidism. Calcif Tissue Int 2006;78(1):35-44, http://dx.doi.org/10.1007/s00223-005-0161-1.
http://dx.doi.org/10.1007/s00223-005-016...
), pigs (5757. Kim H, Morgan-Bagley S, Kostenuik PJ. RANKL inhibition: A novel strategy to decrease femoral head deformity after ischemic necrosis. J Bone Miner Res. 2006;21(12):1946-54, http://dx.doi.org/10.1359/jbmr.060905.
http://dx.doi.org/10.1359/jbmr.060905...
), monkeys (5858. Ominsky MS, Kostenuik PJ, Cranmer P, Smith SY, Atkinson JE. The RANKL inhibitor OPG-Fc increases cortical and trabecular bone mass in intact cynomolgus monkeys. Osteoporos Int 2007;18(8):1073-82, http://dx.doi.org/10.1007/s00198-007-0363-7.
http://dx.doi.org/10.1007/s00198-007-036...
), and humans (5454. Body JJ, Greipp P, Coleman RE, Facon T, Geurs F, Fermand JP, et al. A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer. 2003;97(3 Suppl):887-92, http://dx.doi.org/10.1002/cncr.11138.
http://dx.doi.org/10.1002/cncr.11138...
,5959. Bekker PJ, Holloway D, Nakanishi A, Arrighi M, Leese PT, Dunstan CR. The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res. 2001;16(2):348-60, http://dx.doi.org/10.1359/jbmr.2001.16.2.348.
http://dx.doi.org/10.1359/jbmr.2001.16.2...
). However, the clinical development of OPG-Fc was abandoned in favor of denosumab due to several limitations concerning half-life and specificity. Denosumab (AMG 162) is currently the only RANKL-targeted therapy available, offering a new approach in the treatment of osteoporosis (6060. European Public Assessment Report. Available at http://www.ema.europa.eu/ema/index.jsp?curl = pages/medicines/human/medicines/001120/human_med_001324.jsp&murl = menus/medicines/medicines.jsp&mid = WC0b01ac058001d124 (last accessed 2011).
http://www.ema.europa.eu/ema/index.jsp?c...
,6161. Rizzoli R, Yasothan U, Kirkpatrick P. Denosumab. Nat Rev Drug Discov 2010;9(8):591-2, http://dx.doi.org/10.1038/nrd3244.
http://dx.doi.org/10.1038/nrd3244...
). This human monoclonal IgG2 antibody was developed using transgenic mouse technology. Denosumab binds RANKL with high affinity and specificity, thereby inhibiting osteoclastogenesis, as demonstrated by numerous studies (6161. Rizzoli R, Yasothan U, Kirkpatrick P. Denosumab. Nat Rev Drug Discov 2010;9(8):591-2, http://dx.doi.org/10.1038/nrd3244.
http://dx.doi.org/10.1038/nrd3244...

62. Belavic JM. Denosumab (Prolia): a new option in the treatment of osteoporosis. Nurse Pract. 2011;36(1):11-2, http://dx.doi.org/10.1097/01.NPR.0000391178.47878.73.
http://dx.doi.org/10.1097/01.NPR.0000391...

63. Lipton A, Goessl C. Clinical development of anti- RANKL therapies for treatment and prevention of bone metastasis. Bone. 2011;48(1):96-9, http://dx.doi.org/10.1016/j.bone.2010.10.161.
http://dx.doi.org/10.1016/j.bone.2010.10...

64. Miller PD, Bolognese MA, Lewiecki EM, McClung MR, Ding B, Austin M, et al. Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone. 2008;43(2):222-9, http://dx.doi.org/10.1016/j.bone.2008.04.007.
http://dx.doi.org/10.1016/j.bone.2008.04...
-6565. Lewiecki EM. Treatment of osteoporosis with denosumab. Maturitas. 2010;66(2):182-6, http://dx.doi.org/10.1016/j.maturitas.2010.02.008
http://dx.doi.org/10.1016/j.maturitas.20...
) and also increasing bone mass and reducing the risk of fractures (6666. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756-65.).

Finally, several studies have demonstrated that denosumab is able to reduce the expression of specific markers of bone resorption in postmenopausal women (6767. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med. 2006;354(8):821-31.) and in subjects with bone metastases or multiple myeloma (6868. Body JJ, Facon T, Coleman RE, Lipton A, Geurs F, Fan M, et al. A study of the biological receptor activator of nuclear factor-kB ligant inhibitor, Denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res. 2006;12(4):1221-8, http://dx.doi.org/10.1158/1078-0432.CCR-05-1933.
http://dx.doi.org/10.1158/1078-0432.CCR-...
).

Selective Estrogen Receptor Modulators

SERMs, such as estrogen, are potent inhibitors of bone resorption and are currently Food and Drug Administration (FDA) approved for the prevention and treatment of osteoporosis in postmenopausal women (6969. Khajuria DK, Razdan R, Mahapatra DR. Drugs for the management of osteoporosis: a review. Rev Bras Reumatol. 2011;51(4):365-71,379-82.). In particular, estrogen is a systemic hormone with direct effects on bone that plays an important role in osteoporosis. In postmenopausal women, the deficiency of estrogen leads to an upregulation of RANKL on bone marrow cells, resulting in an increase in bone resorption (7070. Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest. 2003;111(8):1221-30, http://dx.doi.org/10.1172/JCI200317215.
http://dx.doi.org/10.1172/JCI200317215...
).

In contrast, estrogen itself stimulates OPG production in osteoblasts and thus exerts antiresorptive effects on bone (7171. Bord S, Ireland DC, Beavan SR, Compston JE. The effects of estrogen on osteoprotegerin, RANKL, and estrogen receptor expression in human osteoblasts. Bone. 2003;32(2):136-41, http://dx.doi.org/10.1016/S8756-3282(02)00953-5.
http://dx.doi.org/10.1016/S8756-3282(02)...
). The extraskeletal effects of estrogen deficiency are mainly based on increased renal calcium excretion and decreased intestinal calcium absorption (7272. McKane WR, Khosla S, Burritt MF, Kao PC, Wilson DM, Ory SJ, et al. Mechanism of renal calcium conservation with estrogen replacement therapy in women in early postmenopause - a clinical research center study. J Clin Endocrinol Metab. 1995;80(12):3458-64.,7373. Gennari C, Agnusdei D, Nardi P, Civitelli R. Estrogen preserves a normal intestinal responsiveness to 1,25-dihydroxyvitamin D3 in oophorectomized women. J Clin Endocrinol Metab. 1990;71(5):1288-93, http://dx.doi.org/10.1210/jcem-71-5-1288.
http://dx.doi.org/10.1210/jcem-71-5-1288...
). Tamoxifen was the first SERM to be widely used in clinical practice, based on its now well-recognized estrogen antagonist activity in the breast.

The prolonged use of tamoxifen was associated with an increase in uterine cancer (7474. Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst. 1998;90(18):1371-88, http://dx.doi.org/10.1093/jnci/90.18.1371.
http://dx.doi.org/10.1093/jnci/90.18.137...
), leading to the search for other SERMs with different pharmacological profiles. Thus, raloxifene, a new SERM, was developed for the treatment and prevention of postmenopausal osteoporosis, with the goal of improving the drug safety profile. Raloxifene has a spectrum of tissue-specific agonist-antagonist effects on estrogen target tissues but acts on bone as an estrogen agonist (7575. Cosman F, Lindsay R. Selective estrogen receptor modulators: Clinical spectrum. Endocr Rev. 1999;20(3):418-34.). This drug has been extensively studied and data support its estrogen agonist profile in the skeletal system. The drug specifically acts on estrogenic receptor-α and estrogenic receptor-β, binding to the receptors in the same ligand-binding pocket as does estradiol, and causes the C-terminal α-helix of the receptor to change its conformation to block access to the activation function-2 region of the receptor. This event in turn likely blocks access to the transcriptional coactivators necessary to facilitate the activation of estrogen-responsive genes (7676. Muchmore DB. Raloxifene: A Selective Estrogen Receptor Modulator (SERM) with Multiple Target System Effects. Oncologist. 2000;5(5):388-92, http://dx.doi.org/10.1634/theoncologist.5-5-388.
http://dx.doi.org/10.1634/theoncologist....
). In the ovariectomized (OVX) rat model, raloxifene acts as an antiresorptive, with preservation of both bone mineral density (BMD) and bone strength (7676. Muchmore DB. Raloxifene: A Selective Estrogen Receptor Modulator (SERM) with Multiple Target System Effects. Oncologist. 2000;5(5):388-92, http://dx.doi.org/10.1634/theoncologist.5-5-388.
http://dx.doi.org/10.1634/theoncologist....
). It has been demonstrated that raloxifene modulates the homeostasis of bone cells in vitro by inhibiting osteoclastogenesis and bone resorption, reducing the number of preosteoclasts and mature osteoclasts in OVX rats (7777. Luvizuto ER, Queiroz TP, Dias SM, Okamoto T, Dornelles RC, Garcia IR Jr, et al. Histomorphometric analysis and immunolocalization of RANKL and OPG during the alveolar healing process in female ovariectomized rats treated with oestrogen or raloxifene. Arch Oral Biol. 2010;55: 52-9, http://dx.doi.org/10.1016/j.archoralbio.2009.11.001.
http://dx.doi.org/10.1016/j.archoralbio....
) by suppressing osteoblast apoptosis and increasing osteoblast proliferation and differentiation in MC3T3-E1 cultures (7878. Olivier S, Fillet M, Malaise M, Piette J, Bours V, Merville MP, et al. Sodium nitroprusside-induced osteoblast apoptosis is mediated by long chain ceramide and is decreased by raloxifene. Biochem Pharmacol. 2005;69(6):891-901, http://dx.doi.org/10.1016/j.bcp.2004.11.030.
http://dx.doi.org/10.1016/j.bcp.2004.11....

79. Taranta A, Brama M, Teti A, De luca V, Scandurra R, Spera G, Agnusdeiet al. The selective estrogen receptor modulator raloxifene regulates osteoclast and osteoblast activity in vitro. Bone 2002;30(2): 368-76, http://dx.doi.org/10.1016/S8756-3282(01)00685-8.
http://dx.doi.org/10.1016/S8756-3282(01)...
-8080. Viereck V, Gründker C, Blaschke S, Niederkleine B, Siggelkow H, Frosch KH, et al. Raloxifene concurrently stimulates osteoprotegerin and inhibits interleukin-6 production by human trabecular osteoblasts. J Clin Endocrinol Metab. 2003;88(9):4206-13, http://dx.doi.org/10.1210/jc.2002-021877.
http://dx.doi.org/10.1210/jc.2002-021877...
). Other studies in OVX rats have shown that raloxifene was able to decrease RANKL and increase OPG expression (7777. Luvizuto ER, Queiroz TP, Dias SM, Okamoto T, Dornelles RC, Garcia IR Jr, et al. Histomorphometric analysis and immunolocalization of RANKL and OPG during the alveolar healing process in female ovariectomized rats treated with oestrogen or raloxifene. Arch Oral Biol. 2010;55: 52-9, http://dx.doi.org/10.1016/j.archoralbio.2009.11.001.
http://dx.doi.org/10.1016/j.archoralbio....
,8181. Kawamoto S, Ejiri S, Nagaoka E, Ozawa H. Effects of oestrogen deficiency on osteoclastogenesis in the rat periodontium. Arch Oral Bio. 2002;47(1):67-73, http://dx.doi.org/10.1016/S0003-9969(01)00086-3.
http://dx.doi.org/10.1016/S0003-9969(01)...
,8282. Michael H1, Härkönen PL, Kangas L, Väänänen HK, Hentunen TA. Differential effects of selective oestrogen receptor modulators (SERMs) tamoxifen, ospemifene and raloxifene on human osteoclasts in vitro. Br J Pharmacol. 2007;151(3):384-95.). Finally, an in vitro study on human fetal osteoblast cell lines treated with raloxifene, which expressed a G-protein-coupled receptor (GPR30) but lacked estrogen receptor, has shown that this drug was able to induce cell proliferation, although the function of GPR30 in bone remains unclear (8383. Noda-Seino H, Sawada K, Hayakawa J, Ohyagi-Hara C, Mabuchi S, Takahashi K, et al. Estradiol and Raloxifene induce the proliferation of osteoblasts through G-protein-coupled receptor GPR30. J Endocrinol Invest. 2013;36(1):21-7.).

Parathyroid Hormone Therapy

The first molecule to be approved by the FDA as the only anabolic therapy for osteoporosis was a PTH analog (8484. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434-41.). This analog is available in the form of human recombinant PTH peptide 1-34 (teriparatide, or PTH1-34), a fragment of PTH that has similar affinity for PTH receptor-1.

PTH is released from the parathyroid gland, and its secretion is chiefly controlled by serum [Ca2+] through negative feedback (8585. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, et al. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature. 1993;366(6455):575-80, http://dx.doi.org/10.1038/366575a0.
http://dx.doi.org/10.1038/366575a0...
).

Pharmacologically, when PTH is administered intermittently (once daily) at low doses, it has an anabolic effect on osteoblasts (8585. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, et al. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature. 1993;366(6455):575-80, http://dx.doi.org/10.1038/366575a0.
http://dx.doi.org/10.1038/366575a0...
), stimulating bone formation both in vitro and in vivo and increasing in BMD (8484. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434-41.).

Many studies have demonstrated the efficacy of PTH1-34 therapy in a variety of skeletal repair models, suggesting that PTH1-34 enhanced and accelerated not only bone remodeling but also osteogenesis and chondrogenesis during skeletal repair (8787. Bukata SV, Puzas JE. Orthopedic uses of teriparatide. Curr Osteoporos Rep. 2010;8(1):28-33, http://dx.doi.org/10.1007/s11914-010-0006-3.
http://dx.doi.org/10.1007/s11914-010-000...
). In 1999, Andreassen et al. were the first to report the efficacy of intermittent PTH1-34 therapy on rat tibial fracture healing (8888. Andreassen TT, Ejersted C, Oxlund H. Intermittent parathyroid hormone (1-34) treatment increases callus formation and mechanical strength of healing rat fractures. J Bone Miner Res. 1999;14(6):960-8, http://dx.doi.org/10.1359/jbmr.1999.14.6.960.
http://dx.doi.org/10.1359/jbmr.1999.14.6...
). In particular, it has been shown that intermittent PTH administration promotes bone formation by increasing the number and activity of osteoblasts, enhances the mean cortical thickness and trabecular bone volume and improves bone microarchitecture (8989. Compston JE. Skeletal actions of intermittent parathyroid hormone: effects on bone remodelling and structure. Bone. 2007;40(6):1447-52, http://dx.doi.org/10.1016/j.bone.2006.09.008.
http://dx.doi.org/10.1016/j.bone.2006.09...
). At the molecular level, PTH enhances Wnt signaling through inhibition of the Wnt antagonist SOST and induces the local production of bone anabolic growth factors such as insulin-like growth factor 1 (IGF1) (8686. Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone. 2007;40(6):1434-46, http://dx.doi.org/10.1016/j.bone.2007.03.017.
http://dx.doi.org/10.1016/j.bone.2007.03...
). Furthermore, PTH1-34 enhances the differentiation of mesenchymal stem cells (MSCs) into osteoblasts via the induction of osterix (OSX) and Runt-related transcription factor 2 (RUNX-2) expression in vitro, increasing both OSX expression at the fracture site in vivo and the expression of osteoblastic marker genes, including COLIA1 and OCN (9090. Kaback LA, Soung do Y, Naik A, Geneau G, Schwarz EM, Rosier RN, et al. Teriparatide (1-34 human PTH) regulation of osterix during fracture repair. J Cell Biochem. 2008;105(1):219-26, http://dx.doi.org/10.1002/jcb.21816.
http://dx.doi.org/10.1002/jcb.21816...
). Several studies have shown that PTH1-34 can promote the proliferation and differentiation of MSCs in the early phase of bone healing (9191. Nakajima A, Shimoji N, Shiomi K, Shimizu S, Moriya H, Einhorn TA, et al. Mechanisms for the enhancement of fracture healing in rats treated with intermittent low-dose human parathyroid hormone (1-34). J Bone Miner Res. 2002;17(11):2038-47, http://dx.doi.org/10.1359/jbmr.2002.17.11.2038.
http://dx.doi.org/10.1359/jbmr.2002.17.1...
) and to induce the proliferation of chondroprogenitors at a fracture site, contributing to increased bone formation during fracture healing (9292. Nakazawa T, Nakajima A, Shiomi K, Moriya H, Einhorn TA, Yamazaki M. Effects of low-dose, intermittent treatment with recombinant human parathyroid hormone (1-34) on chondrogenesis in a model of experimental fracture healing. Bone. 2005;37(5):711-9, http://dx.doi.org/10.1016/j.bone.2005.06.013.
http://dx.doi.org/10.1016/j.bone.2005.06...
) and accelerating articular cartilage repair (8787. Bukata SV, Puzas JE. Orthopedic uses of teriparatide. Curr Osteoporos Rep. 2010;8(1):28-33, http://dx.doi.org/10.1007/s11914-010-0006-3.
http://dx.doi.org/10.1007/s11914-010-000...
,9393. Bukata SV, Puzas JE. Orthopedic Uses of Teriparatide. Curr Osteoporos Rep. 2010;8(1):28-33, http://dx.doi.org/10.1007/s11914-010-0006-3.
http://dx.doi.org/10.1007/s11914-010-000...
,9494. Kakar S, Einhorn TA, Vora S, Miara LJ, Hon G, Wigner NA, et al. Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. Journal of bone and mineral research. J Bone Miner Res. 2007;22(12):1903-12, http://dx.doi.org/10.1359/jbmr.070724.
http://dx.doi.org/10.1359/jbmr.070724...
), respectively. These data were supported by clinical studies that have demonstrated positive effects of intermittent PTH therapy, including increasing bone mass and reducing the bone fragility associated with osteoporosis due to age, sex hormone deficiency and glucocorticoid therapy (9595. Hodsman AB, Bauer DC, Dempster DW, Dian L, Hanley DA, Harris ST, et al. Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev. 2005;26(5):688-703, http://dx.doi.org/10.1210/er.2004-0006.
http://dx.doi.org/10.1210/er.2004-0006...
).

Conversely, in certain studies, toxicity has been reported for the use of PTH therapy. In particular, the toxic effect of treatment with teriparatide or parathyroid hormone 1-84, which appears to be unique to animals and not applicable to human subjects, is osteosarcoma (9696. Subbiah V, Madsen VS, Raymond AK, Benjamin RS, Ludwig JA. Of mice and men: divergent risks of teriparatide-induced osteosarcoma. Osteoporos Int. 2010;21(6):1041-5, http://dx.doi.org/10.1007/s00198-009-1004-0.
http://dx.doi.org/10.1007/s00198-009-100...
). In fact, it has been reported that rats treated with high doses of either teriparatide or parathyroid hormone 1-84 for prolonged periods of time developed osteosarcoma (9797. Saag KG, Shane E, Boonen S, Marin F, Donley DW, Taylor KA, et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med. 2007;357(20):2028-39.

98. Vahle JL, Long GG, Sandusky G, Westmore M, Ma YL, Sato M. Bone neoplasms in F344 rats given teriparatide [rhPTH(1-34)] are dependent on duration of treatment and dose. Toxicol Pathol. 2004;32(4):426-38.
-9999. Wilker C, Jolette J, Smith S, Doyle N, Hardisty J, Metcalfe AJ, et al. A no observable carcinogenic effect dose level identified in Fischer 344 rats following daily treatment with PTH(1-84) for 2 years: role of the C-terminal PTH receptor?. J Bone Miner Res. 2004;19 Supp 1:SA435.).

Treatment with teriparatide is approved by the FDA for a limited duration, from 18-24 months and in many European countries, approval is limited to 18 months. However, in several studies, the period of treatment with teriparatide was prolonged to 24-30 months (100100. Ryder KM, Tanner SB, Carbone L, Williams JE, Taylor HM, Bush A, et al. Teriparatide is safe and effectively increases bone biomarkers in institutionalized individuals with osteoporosis. J Bone Miner Metab. 2010;28(2):233-9, http://dx.doi.org/10.1007/s00774-009-0123-1.
http://dx.doi.org/10.1007/s00774-009-012...
,101101. Losada B, Zanchetta J, Zerbini C, Molina J, de la Pena P, Liu C, et al. Active comparator trial of teriparatide vs alendronate for treating glucocorticoid-induced osteoporosis: results from the Hispanic and non-Hispanic cohorts. J Clin Densitom. 2009;12(1):63-70, http://dx.doi.org/10.1016/j.jocd.2008.10.002.
http://dx.doi.org/10.1016/j.jocd.2008.10...
).

Although it has been reported that the teriparatide-related risk of osteosarcoma development is low (102102. Harper KD, Krege JH, Marcus R, Mitlak BH. Osteosarcoma and teriparatide? J Bone Miner Res. 2007;22(2):334.), there are still no clear scientific data. The general recommendation for this treatment is to closely follow patients who have risk factors, i.e., subjects with Paget's disease, prior skeletal irradiation, or unexplained increases in serum bone-specific alkaline phosphatase (ALP) and adolescents in whom the epiphyses have not yet closed (9696. Subbiah V, Madsen VS, Raymond AK, Benjamin RS, Ludwig JA. Of mice and men: divergent risks of teriparatide-induced osteosarcoma. Osteoporos Int. 2010;21(6):1041-5, http://dx.doi.org/10.1007/s00198-009-1004-0.
http://dx.doi.org/10.1007/s00198-009-100...
).

Strontium Ranelate

SR is a drug commonly used for the treatment of osteoporosis and fragility fractures (103103. Cesareo R, Napolitano C, Iozzino M. Strontium ranelate in postmenopausal osteoporosis treatment: a critical appraisal. Int J Womens Health. 2010;2:1-6.,104104. Roux C, Fechtenbaum J, Kolta S, Isaia G, Andia JB, Devogelaer JP. Strontium ranelate reduces the risk of vertebral fracture in young postmenopausal women with severe osteoporosis. Ann Rheum Dis. 2008;67(12):1736-8, http://dx.doi.org/10.1136/ard.2008.094516.
http://dx.doi.org/10.1136/ard.2008.09451...
). SR consists of two cations of strontium, representing the active component, and one anion of ranelate, which acts as a carrier (105105. Marie P. Strontium ranelate: a novel mode of action optimizing bone formation and resorption. Osteoporos Int. 2005;16:7-10, http://dx.doi.org/10.1007/s00198-004-1753-8.
http://dx.doi.org/10.1007/s00198-004-175...
). In contrast to other drugs, SR has a dual effect on bone remodeling, both stimulating bone formation and decreasing bone resorption. In vitro experiments have shown that SR increased osteoblastic activity, enhancing preosteoblastic cell proliferation and differentiation (77. Fonseca JE Rebalancing bone turnover in favour of formation with strontium ranelate: Implications for bone strength. Rheumatology (Oxford). 2008;47 Suppl 4:iv17-19.,1111. Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA. 2004;292(4):490-5, http://dx.doi.org/10.1001/jama.292.4.490.
http://dx.doi.org/10.1001/jama.292.4.490...
,106106. Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol. 2009;157(7):1291-1300.,107107. Marie PJ. Strontium ranelate: new insights into its dual mode of action. Bone. 2007;40-S5-8.) and stimulating osteoblastic differentiation markers, such as ALP, hydroxyapatite (HA) deposit formation, bone sialoprotein (BSP), and OCN, in primary murine osteoblasts (108108. Bonnelye E, Chabadel A, Saltel F, Jurdic P. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone. 2008;42(1):129-38, http://dx.doi.org/10.1016/j.bone.2007.08.043.
http://dx.doi.org/10.1016/j.bone.2007.08...
).

In addition, in in vitro animal models, SR was observed to reduce osteoblast apoptosis (99. Hofbauer LC, Heufelder AE Role of receptor activator of nuclear factor-kappa B ligand and osteopr otegerin in bone cell biology. J Mol Med. 2001;79(5-6):243-53, http://dx.doi.org/10.1007/s001090100226.
http://dx.doi.org/10.1007/s001090100226...
,107107. Marie PJ. Strontium ranelate: new insights into its dual mode of action. Bone. 2007;40-S5-8.) and to decrease osteoclast differentiation marker expression, with an enhancement of osteoclast apoptosis (109109. Baron R, Tsouderos Y. In vitro effects of S12911-2 on osteoclast function and bone marrow macrophage differentiation. Eur J Pharmacol. 2002;450(1):11-7.

110. Takahashi N, Sasaki T, Tsouderos Y, Suda T. S 12911-2 Inhibits osteoclastic bone resorption in vitro. J Bone Miner Res. 2003;18(6):1082-7, http://dx.doi.org/10.1359/jbmr.2003.18.6.1082.
http://dx.doi.org/10.1359/jbmr.2003.18.6...
-111111. Mentaverri R, Hurtel AS, Kamel S, Robin B, Brazier M. Extracellular concentrations of strontium directly stimulates osteoclast apoptosis. J Bone Min Res. 2003;18:M237, http://dx.doi.org/10.1359/jbmr.2003.18.2.237.
http://dx.doi.org/10.1359/jbmr.2003.18.2...
). Furthermore, in vitro data on primary human osteoblasts indicate that this drug promotes the ultimate differentiation of osteoblasts into osteocytes, as indicated by the increased expression of SOST, a marker of osteoblast differentiation (106106. Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol. 2009;157(7):1291-1300.). In vitro studies on rodent (112112. Chattopadhyay N, Quinn SJ, Kifor O, Ye C, Brown EM. The calcium-sensing receptor (CaR) is involved in strontium ranelate-induced osteoblast proliferation. Biochem Pharmacol. 2007;74(3):438-47, http://dx.doi.org/10.1016/j.bcp.2007.04.020.
http://dx.doi.org/10.1016/j.bcp.2007.04....
,113113. Zhu LL, Zaidi S, Peng Y, Zhou H, Moonga BS, Blesius A, et al. Induction of a program gene expression during osteoblast differentiation with strontium ranelate. Biochem Biophys Res Commun. 2007;355(2):307-11, http://dx.doi.org/10.1016/j.bbrc.2007.01.120.
http://dx.doi.org/10.1016/j.bbrc.2007.01...
) and human (106106. Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol. 2009;157(7):1291-1300.) primary osteoblast cultures have shown that SR, similar to calcium, acts as an agonist of the calcium-sensing receptor (CaSR), promotes cell proliferation (106106. Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol. 2009;157(7):1291-1300.,112112. Chattopadhyay N, Quinn SJ, Kifor O, Ye C, Brown EM. The calcium-sensing receptor (CaR) is involved in strontium ranelate-induced osteoblast proliferation. Biochem Pharmacol. 2007;74(3):438-47, http://dx.doi.org/10.1016/j.bcp.2007.04.020.
http://dx.doi.org/10.1016/j.bcp.2007.04....
) via activation of the CaSR, and increases bone cell differentiation (106106. Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol. 2009;157(7):1291-1300.,113113. Zhu LL, Zaidi S, Peng Y, Zhou H, Moonga BS, Blesius A, et al. Induction of a program gene expression during osteoblast differentiation with strontium ranelate. Biochem Biophys Res Commun. 2007;355(2):307-11, http://dx.doi.org/10.1016/j.bbrc.2007.01.120.
http://dx.doi.org/10.1016/j.bbrc.2007.01...
) and bone cell survival (106106. Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol. 2009;157(7):1291-1300.).

SR induces osteoblastic differentiation of human MSCs, stimulating the expression of genes of the bone extracellular matrix: COLIA1, BSP, OCN and RUNX-2. These genes are essential for osteoinduction (114114. Sila-Asna M, Bunyaratvej A, Maeda S, Kitaguchi H, Bunyaratavej N. Osteoblast Differentiation and Bone Formation Gene Expression in Strontium-inducing Bone Marrow Mesenchymal Stem Cell. Kobe J Med Sci. 2007;53(1-2):25-35.). Furthermore, numerous studies using various cellular models have been performed to evaluate the effects of strontium in combination with different biomaterials on osteogenesis (115115. Hao Y, Yan H, Wang X, Zhu B, Ning C, Ge S. Evaluation of osteoinduction and proliferation on nano-Sr-HAP: a novel orthopedic biomaterial for bone tissue regeneration. J Nanosci Nanotechnol. 2012;12(1):207-12, http://dx.doi.org/10.1166/jnn.2012.5125.
http://dx.doi.org/10.1166/jnn.2012.5125...

116. Ni GX, Yao ZP, Huang GT, Liu WG, Lu WW. The effect of strontium incorporation in hydroxyapatite on osteoblasts in vitro. J Mater Sci Mater Med. 2011;22(4):961-7, http://dx.doi.org/10.1007/s10856-011-4264-0.
http://dx.doi.org/10.1007/s10856-011-426...

117. Isaac J, Nohra J, Lao J, Jallot E, Nedelec JM, Berdal A, et al. Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur Cell Mater. 2011;21:130-43.

118. Liu F, Zhang X, Yu X, Xu Y, Feng T, Ren D. In vitro study in stimulating the secretion of angiogenic growth factors of strontium-doped calcium polyphosphate for bone tissue engineering. J Mater Sci Mater Med. 2011;22(3):683-92, http://dx.doi.org/10.1007/s10856-011-4247-1.
http://dx.doi.org/10.1007/s10856-011-424...
-119119. Zhang W, Shen Y, Pan H, Lin K, Liu X, Darvell BW, et al. Effects of strontium in modified biomaterials. Acta Biomater. 2011;7(2):800-8, http://dx.doi.org/10.1016/j.actbio.2010.08.031
http://dx.doi.org/10.1016/j.actbio.2010....
). In particular, it has been demonstrated that strontium released into the culture medium by a previously loaded amidated carboxymethylcellulose (CMCA) hydrogel was able to promote osteoinduction as detected based on the production of ALP and the formation of HA deposits in a clonal cell line derived from human adipose tissue-derived MSCs (120120. Nardone V, Fabbri S, Marini F, Zonefrati R, Galli G, Carossino A, et al. Osteodifferentiation of human preadipocytes induced by strontium released from hydrogels. Int J Biomater. 2012;2012:865291.).

Wnt/β-catenin Pathway Antagonists

The Wnt/β-catenin pathway plays an important role in the main processes controlling osteogenesis (121121. Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signalling. J Clin Invest. 2006;116(5):1202-9, http://dx.doi.org/10.1172/JCI28551.
http://dx.doi.org/10.1172/JCI28551...
). This pathway regulates the gene transcription of proteins important for osteoblast function (6363. Lipton A, Goessl C. Clinical development of anti- RANKL therapies for treatment and prevention of bone metastasis. Bone. 2011;48(1):96-9, http://dx.doi.org/10.1016/j.bone.2010.10.161.
http://dx.doi.org/10.1016/j.bone.2010.10...
).

In vitro and in vivo experiments have shown that activation of the canonical Wnt/β-catenin pathway induces the cellular replication and differentiation of osteoblasts, reducing adipogenic differentiation in MSCs (122122. Bodine PV and Komm BS. Wnt signaling and osteoblastogenesis. Rev Endocr Metab Disord. 2006;7(1-2):33-9.,123123. Qiu W, Andersen TE, Bollerslev J, Mandrup S, Abdallah BM, Kassem M. Patients with high bone mass phenotype exhibit enhanced osteoblast differentiation and inhibition of adipogenesis of human mesenchymal stem cells. J Bone Miner Res. 2007;22(11):1720-31, http://dx.doi.org/10.1359/jbmr.070721.
http://dx.doi.org/10.1359/jbmr.070721...
).

The Wnt pathway is composed of Wnt proteins, frizzled transmembrane receptors and low-density lipoprotein receptor-related protein 5/6 (LRP5/6). Wnt signaling is activated by the presence of the Wnt ligand, which interacts with its receptor, thereby inhibiting the receptor. This interaction leads to cytoplasmic accumulation of β-catenin, which translocates to the nucleus, activating a fundamental transcription factor, RUNX-2, involved in osteogenic differentiation. However, in the absence of the Wnt ligand, β-catenin is phosphorylated by glycogen synthase kinase 3 beta (GSK3B), leading to its degradation, and gene transcription is halted (124124. Baron R, Rawadi G. Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology. 2007;148(6):2635-43, http://dx.doi.org/10.1210/en.2007-0270.
http://dx.doi.org/10.1210/en.2007-0270...
). Various studies have demonstrated that modifications in Wnt signaling contributed to age-related bone loss in mouse models (125125. Manolagas SC & Almeida M. Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Molecular Endocrinology. 2007; 21(11):2605-14, http://dx.doi.org/10.1210/me.2007-0259.
http://dx.doi.org/10.1210/me.2007-0259...
). In aged or OVX osteopenic mice, with the use of GSK3B, the Wnt signaling cascade enhanced bone formation and increased trabecular and cortical bone density and bone strength (126126. Clément-Lacroix P, Ai M, Morvan F, Roman-Roman S, Vayssiàre B, Belleville C, et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci U S A. 2005;102(48):17406-11, http://dx.doi.org/10.1073/pnas.0505259102.
http://dx.doi.org/10.1073/pnas.050525910...
,127127. Kulkarni NH, Onyia JE, Zeng Q, Tian X, Liu M, Halladay DL, Frolik CA et al. Orally bioavailable GSK-3alpha/beta dual inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo. J Bone Miner Res. 2006;21(6):910-20, http://dx.doi.org/10.1359/jbmr.060316.
http://dx.doi.org/10.1359/jbmr.060316...
).

Studies of the Wnt/β-catenin pathway have led to the further discovery of inhibitors of Wnt signaling that are secreted by osteocytes. These inhibitors include SOST and DKK1 protein, which are Wnt antagonists specific to bone. Both block the binding of Wnt to LRP5, thereby inhibiting osteoblast stimulation (6464. Miller PD, Bolognese MA, Lewiecki EM, McClung MR, Ding B, Austin M, et al. Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone. 2008;43(2):222-9, http://dx.doi.org/10.1016/j.bone.2008.04.007.
http://dx.doi.org/10.1016/j.bone.2008.04...
,128128. Marie PJ, Kassem M. Osteoblasts in osteoporosis: past, emerging, and future anabolic targets. Eur J Endocrinol. 2011;165(1):1-10.). In fact, it has been observed that a loss-of-function mutation of SOST leads to an increase in bone formation and bone mass (129129. Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D'Agostin D, et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 2008;23(6):860-9, http://dx.doi.org/10.1359/jbmr.080216.
http://dx.doi.org/10.1359/jbmr.080216...
). Many forms of cancer are associated with such mutations within the Wnt signaling pathway (130130. Rey JP, Ellies DL. Wnt modulators in the biotech pipeline. Dev Dyn. 2010;239(1):102-14.,131131. Enders GH. Wnt therapy for bone loss: golden goose or Trojan horse?. J Clin Invest. 2009;119(4):758-60, http://dx.doi.org/10.1172/JCI38973.
http://dx.doi.org/10.1172/JCI38973...
).

Currently, based on promising results in animal models, monoclonal antibodies designed to block the inhibitory action of both SOST and DKK1 have been introduced for use in clinical trials (6565. Lewiecki EM. Treatment of osteoporosis with denosumab. Maturitas. 2010;66(2):182-6, http://dx.doi.org/10.1016/j.maturitas.2010.02.008
http://dx.doi.org/10.1016/j.maturitas.20...
,6666. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756-65.,132132. Morvan F, Boulukos K, Clément-Lacroix P, Roman Roman S, Suc-Royer I, Vayssiàre B, et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res. 2006;21(6):934-45, http://dx.doi.org/10.1359/jbmr.060311.
http://dx.doi.org/10.1359/jbmr.060311...

133. Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M, et al. Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone. 2006;39(4):754-66, http://dx.doi.org/10.1016/j.bone.2006.03.017.
http://dx.doi.org/10.1016/j.bone.2006.03...
-134134. Guo J, Liu M, Yang D, Bouxsein ML, Saito H, Galvin RJ, et al. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab. 2010; 11(2):161-71, http://dx.doi.org/10.1016/j.cmet.2009.12.007.
http://dx.doi.org/10.1016/j.cmet.2009.12...
).

The development of pharmacological SOST and DKK1 antagonists that increase bone formation and bone mass is a new strategy in the treatment of bone disorders. In vivo studies on monkeys and OVX rats have shown that systemic administration of an anti-SOST MAB increased bone formation, bone mass, and strength (135135. Li X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res. 2009;24(4):578-88, http://dx.doi.org/10.1359/jbmr.081206.
http://dx.doi.org/10.1359/jbmr.081206...
). Furthermore, the anti-SOST antibody was able to enhance bone formation markers in postmenopausal women (136136. Padhi D, Jang G, Stouch B, Fang L, Posvar E. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011;26(1):19-26, http://dx.doi.org/10.1002/jbmr.173.
http://dx.doi.org/10.1002/jbmr.173...
). Finally, an increase in bone formation on trabecular, periosteal, endocortical, and intracortical surfaces, without increased bone resorption and with enhanced trabecular thickness, BMD and bone strength, was shown in preclinical studies with the administration of SOST-neutralizing monoclonal antibodies (137137. Ominsky MS, Vlasseros F, Jolette J, Smith SY, Stouch B, Doellgast G, et al. Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res. 2010;25(5):948-59, http://dx.doi.org/10.1002/jbmr.14.
http://dx.doi.org/10.1002/jbmr.14...
,138138. Li X, Warmington KS, Niu QT, Asuncion FJ, Barrero M, Grisanti M, et al. Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, and bone strength in aged male rats. J Bone Miner Res. 2010;25(12):2647-56, http://dx.doi.org/10.1002/jbmr.182.
http://dx.doi.org/10.1002/jbmr.182...
).

Today, the prevention and treatment of several bone disorders are possible. This progress is due to the development of a variety of drugs that act to halt excessive bone resorption by inhibiting osteoclasts or by promoting bone formation.

BPs such as alendronate and zoledronic acid have been demonstrated to significantly reduce the risk of vertebral, non-vertebral and femoral fractures by decreasing bone remodeling via the inhibition of osteoclasts with increased bone mass, although their long-term use has been correlated with the occurrence of atypical femoral fractures (5353. Shane E, Burr D, Ebeling PR, Abrahamsen B, Adler RA, Brown TD, et al. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2010;25(11):2267-94, http://dx.doi.org/10.1002/jbmr.253.
http://dx.doi.org/10.1002/jbmr.253...
). However, a new approach targeting the inhibition of osteoclast activity inhibits RANKL, which is involved in the survival and differentiation of mature osteoclasts. Denosumab is among the RANKL inhibitors that have been most studied and used, and numerous studies have demonstrated that denosumab exerts an inhibitory action on osteoclastogenesis (6161. Rizzoli R, Yasothan U, Kirkpatrick P. Denosumab. Nat Rev Drug Discov 2010;9(8):591-2, http://dx.doi.org/10.1038/nrd3244.
http://dx.doi.org/10.1038/nrd3244...

62. Belavic JM. Denosumab (Prolia): a new option in the treatment of osteoporosis. Nurse Pract. 2011;36(1):11-2, http://dx.doi.org/10.1097/01.NPR.0000391178.47878.73.
http://dx.doi.org/10.1097/01.NPR.0000391...

63. Lipton A, Goessl C. Clinical development of anti- RANKL therapies for treatment and prevention of bone metastasis. Bone. 2011;48(1):96-9, http://dx.doi.org/10.1016/j.bone.2010.10.161.
http://dx.doi.org/10.1016/j.bone.2010.10...

64. Miller PD, Bolognese MA, Lewiecki EM, McClung MR, Ding B, Austin M, et al. Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone. 2008;43(2):222-9, http://dx.doi.org/10.1016/j.bone.2008.04.007.
http://dx.doi.org/10.1016/j.bone.2008.04...
-6565. Lewiecki EM. Treatment of osteoporosis with denosumab. Maturitas. 2010;66(2):182-6, http://dx.doi.org/10.1016/j.maturitas.2010.02.008
http://dx.doi.org/10.1016/j.maturitas.20...
).

In animal models, it has been demonstrated that teriparatide accelerates bone fracture healing, thereby enhancing bone remodeling (139139. Cipriano CA, Issack PS, Shindle L, Werner CM, Helfet DL, Lane JM. Recent advances toward the clinical application of PTH (1-34) in fracture healing. HSS J. 2009;5(2):149-53.). In studies of bone histomorphometry, PTH1-34 was able to increase the trabecular bone mass in postmenopausal women (140140. Arlot M, Meunier PJ, Boivin G, Haddock L, Tamayo J, Correa-Rotter R, et al. Differential effects of teriparatide and alendronate on bone remodeling in postmenopausal women assessed by histomorphometric parameters. Bone Miner Res. 2005;20(7):1244-53, http://dx.doi.org/10.1359/JBMR.050309.
http://dx.doi.org/10.1359/JBMR.050309...
). Raloxifene also modulates the homeostasis of bone cells in vitro by inhibiting osteoclastogenesis and bone resorption, with a reduction in the numbers of preosteoclasts and mature osteoclasts in OVX rats (7777. Luvizuto ER, Queiroz TP, Dias SM, Okamoto T, Dornelles RC, Garcia IR Jr, et al. Histomorphometric analysis and immunolocalization of RANKL and OPG during the alveolar healing process in female ovariectomized rats treated with oestrogen or raloxifene. Arch Oral Biol. 2010;55: 52-9, http://dx.doi.org/10.1016/j.archoralbio.2009.11.001.
http://dx.doi.org/10.1016/j.archoralbio....
). Additionally, it has been shown that raloxifene suppressed osteoblast apoptosis in MC3T3-E1 cells (7878. Olivier S, Fillet M, Malaise M, Piette J, Bours V, Merville MP, et al. Sodium nitroprusside-induced osteoblast apoptosis is mediated by long chain ceramide and is decreased by raloxifene. Biochem Pharmacol. 2005;69(6):891-901, http://dx.doi.org/10.1016/j.bcp.2004.11.030.
http://dx.doi.org/10.1016/j.bcp.2004.11....
) and increased osteoblast proliferation and differentiation in murine cell cultures (7979. Taranta A, Brama M, Teti A, De luca V, Scandurra R, Spera G, Agnusdeiet al. The selective estrogen receptor modulator raloxifene regulates osteoclast and osteoblast activity in vitro. Bone 2002;30(2): 368-76, http://dx.doi.org/10.1016/S8756-3282(01)00685-8.
http://dx.doi.org/10.1016/S8756-3282(01)...
,8080. Viereck V, Gründker C, Blaschke S, Niederkleine B, Siggelkow H, Frosch KH, et al. Raloxifene concurrently stimulates osteoprotegerin and inhibits interleukin-6 production by human trabecular osteoblasts. J Clin Endocrinol Metab. 2003;88(9):4206-13, http://dx.doi.org/10.1210/jc.2002-021877.
http://dx.doi.org/10.1210/jc.2002-021877...
). Finally, in vitro studies have demonstrated that SR promotes the survival, proliferation and differentiation of osteoblasts and inhibits osteoclastic activity and clinical studies have shown that SR improves bone strength, increasing BMD. Furthermore, no change in the porosity of bone was evident in patients treated with SR (141141. Briot K, Benhamou CL, Roux C. Hip cortical thickness assessment in postmenopausal women with osteoporosis and strontium ranelate effect on hip geometry. J Clin Densitom. 2012;15(2):176-85, http://dx.doi.org/10.1016/j.jocd.2011.11.006.
http://dx.doi.org/10.1016/j.jocd.2011.11...
).

In conclusion, an understanding of the molecular and cellular mechanisms of bone fragility is essential for the development of successful cell therapies that support new pharmacological approaches.

REFERENCES

  • 1
    Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165-76, http://dx.doi.org/10.1016/S0092-8674(00)81569-X.
    » http://dx.doi.org/10.1016/S0092-8674(00)81569-X
  • 2
    Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology. 2001;142(12):5050-5, http://dx.doi.org/10.1210/endo.142.12.8536.
    » http://dx.doi.org/10.1210/endo.142.12.8536
  • 3
    Collin-Osdoby P. Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin. Circ Res. 2004;95(11):1046-57, http://dx.doi.org/10.1161/01.RES.0000149165.99974.12.
    » http://dx.doi.org/10.1161/01.RES.0000149165.99974.12
  • 4
    Silvestrini G, Ballanti P, Patacchioli F, Leopizzi M, Gualtieri N, Monnazzi P, et al. Detection of osteoprotegerin (OPG) and its ligand (RANKL) mRNA and protein in femur and tibia of the rat. J Mol Histol. 2005;36(1-2):59-67, http://dx.doi.org/10.1007/s10735-004-3839-1.
    » http://dx.doi.org/10.1007/s10735-004-3839-1
  • 5
    Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng QJ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231-4, http://dx.doi.org/10.1038/nm.2452.
    » http://dx.doi.org/10.1038/nm.2452
  • 6
    Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A. 1999;96(7):3540-5, http://dx.doi.org/10.1073/pnas.96.7.3540.
    » http://dx.doi.org/10.1073/pnas.96.7.3540
  • 7
    Fonseca JE Rebalancing bone turnover in favour of formation with strontium ranelate: Implications for bone strength. Rheumatology (Oxford). 2008;47 Suppl 4:iv17-19.
  • 8
    Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007;9 Suppl 1:S1, http://dx.doi.org/10.1186/ar2165.
    » http://dx.doi.org/10.1186/ar2165
  • 9
    Hofbauer LC, Heufelder AE Role of receptor activator of nuclear factor-kappa B ligand and osteopr otegerin in bone cell biology. J Mol Med. 2001;79(5-6):243-53, http://dx.doi.org/10.1007/s001090100226.
    » http://dx.doi.org/10.1007/s001090100226
  • 10
    Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337-42, http://dx.doi.org/10.1038/nature01658.
    » http://dx.doi.org/10.1038/nature01658
  • 11
    Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA. 2004;292(4):490-5, http://dx.doi.org/10.1001/jama.292.4.490.
    » http://dx.doi.org/10.1001/jama.292.4.490
  • 12
    Eggelmeijer F, Papapoulos SE, Van Paassen HC, Dijkmans BA, Breedveld FC. Clinical and biochemical response to single infusion of pamidronate in patients with active rheumatoid arthritis: a double blind placebo controlled study. J Rheumatol. 1994;21(11):2016-20.
  • 13
    Lala R, Matarazzo P, Bertelloni S, Buzi F, Rigon F, De Sanctis C. Pamidronate treatment of bone fibrous dysplasia in nine children with McCune-Albright sindrome. Acta Paediatr. 2000;89(2):188-93, http://dx.doi.org/10.1111/j.1651-2227.2000.tb01214.x.
    » http://dx.doi.org/10.1111/j.1651-2227.2000.tb01214.x
  • 14
    Rodan GA, Martin TJ Therapeutic approaches to bone diseases. Science. 2000;289(5484):1508-14, http://dx.doi.org/10.1126/science.289.5484.1508.
    » http://dx.doi.org/10.1126/science.289.5484.1508
  • 15
    Lane JM, Khan SN, O'Connor WJ, Nydick M, Hommen JP, Schneider R, Tomin E, et al. Bisphosphonate therapy in fibrous dysplasia. Clin Orthop. 2001;(382):6-12, http://dx.doi.org/10.1097/00003086-200101000-00003.
    » http://dx.doi.org/10.1097/00003086-200101000-00003
  • 16
    Tassone P, Tagliaferri P, Viscomi C, Palmieri C, Caraglia M, D'Alessandro A, et al. Zoledronic acid induces antiproliferative and apoptotic effects in human pancreatic cancer cells in vitro Br J Cancer. 2003;88(12):1971-8.
  • 17
    Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J, et al. Cellular and molecular mechanisms of action of bisphosphonates. Cancer. 2000;88(12 Suppl):2961-78, http://dx.doi.org/10.1002/1097-0142(20000615)88:12+<2961::AID-CNCR12>3.0.CO;2-L.
    » http://dx.doi.org/10.1002/1097-0142(20000615)88:12+<2961::AID-CNCR12>3.0.CO;2-L
  • 18
    Jung A, Bisaz S, Fleisch H. The binding of pyrophosphate and two diphosphonates on hydroxyapatite crystals. Calcif Tissue Res. 1973;11(4):269-80, http://dx.doi.org/10.1007/BF02547227.
    » http://dx.doi.org/10.1007/BF02547227
  • 19
    Sudhoff H, Jung JY, Ebmeyer J, Faddis BT, Hildmann H, Chole RA. Zoledronic acid inhibits osteoclastogenesis in vitro and in a mouse model of inflammatory osteolysis. Ann Otol Rhinol Laryngol. 2003;112(9 Pt 1):780-6.
  • 20
    Evdokiou A, Labrinidis A, Bouralexis S, Hay S, Findlay DM. Induction of cell death of human osteogenic sarcoma cells by zoledronic acid resembles anoikis. Bone. 2003;33(2):216-28, http://dx.doi.org/10.1016/S8756-3282(03)00223-0.
    » http://dx.doi.org/10.1016/S8756-3282(03)00223-0
  • 21
    Green JR. Bisphosphonates: preclinical review. Oncologist. 2004;9 Suppl 4:3-13, http://dx.doi.org/10.1634/theoncologist.9-90004-3.
    » http://dx.doi.org/10.1634/theoncologist.9-90004-3
  • 22
    Rodan GA, Reszka AA. Bisphosphonate mechanism of action. Curr Mol Med. 2002;2(6):571-7, http://dx.doi.org/10.2174/1566524023362104.
    » http://dx.doi.org/10.2174/1566524023362104
  • 23
    D'Aoust P, McCulloch CA, Tenenbaum HC, Lekic PC. Etidronate (HEBP) promotes osteoblast differentiation and wound closure in rat calvaria. Cell Tissue Res. 2000;302(3):353-63, http://dx.doi.org/10.1007/s004419900165.
    » http://dx.doi.org/10.1007/s004419900165
  • 24
    Hughes D.E., MacDonald BR, Russell RGG, and Gowen M. Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow. J Clin Invest. 1989;83(6):1930-5, http://dx.doi.org/10.1172/JCI114100.
    » http://dx.doi.org/10.1172/JCI114100
  • 25
    Von Knoch F, Jaquiery C, Kowalsky M, Schaeren S, Alabre C, Martin I, et al. Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells. Biomaterials. 2005;26(34):6941-9, http://dx.doi.org/10.1016/j.biomaterials.2005.04.059.
    » http://dx.doi.org/10.1016/j.biomaterials.2005.04.059
  • 26
    Still K, Phipps RJ, Scutt A. Effects of risedronate, alendronate, and etidronate on the viability and activity of rat bone marrow stromal cells in vitro Calcif Tissue Int. 2003;72(2):143-50, http://dx.doi.org/10.1007/s00223-001-2066-y.
    » http://dx.doi.org/10.1007/s00223-001-2066-y
  • 27
    Reinholz GG, Getz B, Sanders ES, Karpeisky MY, Padyukova NS, Mikhailov SN, et al. Distinct mechanisms of bisphosphonate action between osteoblasts and breast cancer cells: identity of a potent new bisphosphonate analogue. Breast Cancer Res Treat. 2002;71(3):257-68, http://dx.doi.org/10.1023/A:1014418017382.
    » http://dx.doi.org/10.1023/A:1014418017382
  • 28
    Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, et al. Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res. 2000;60(21):6001-7.
  • 29
    Sahni M, Guenther HL, Fleisch H, Collin P, Martin TJ. Bisphosphonates act on rat bone resorption through the mediation of osteoblasts. J Clin Invest. 1993;91(5):2004-11, http://dx.doi.org/10.1172/JCI116422.
    » http://dx.doi.org/10.1172/JCI116422
  • 30
    Nishikawa M, Akatsu T, Katayama Y, Yasutomo Y, Kado S, Kugal N, et al. Bisphosphonates act on osteoblastic cells and inhibit osteoclast formation in mouse marrow cultures. Bone. 1996;18(1):9-14, http://dx.doi.org/10.1016/8756-3282(95)00426-2.
    » http://dx.doi.org/10.1016/8756-3282(95)00426-2
  • 31
    Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest. 1999;104(10):1363-74, http://dx.doi.org/10.1172/JCI6800.
    » http://dx.doi.org/10.1172/JCI6800
  • 32
    Y Abe Y, Kawakami A, Nakashima T, Ejima E, Fujiyama K, Kiriyama T, et al. Etidronate inhibits human osteoblast apoptosis by inhibition of pro-apoptotic factor(s) produced by activated T cells. J Lab Clin Med. 2000;136(5):344-54, http://dx.doi.org/10.1067/mlc.2000.109757.
    » http://dx.doi.org/10.1067/mlc.2000.109757
  • 33
    Giuliani N, Pedrazzoni M, Passeri G, Girasole G. Bisphosphonates inhibit IL-6 production by human osteoblast-like cells. Scand. J. Rheumatol. 1998;27(1):38-41.
  • 34
    Itoh F, Aoyagi S, Furihata-Komatsu H, Aoki M, Kusama H, Kojima M, et al. Clodronate stimulates osteoblast differentiation in ST2 and MC3T3-E1 cells and rat organ cultures. Eur J Pharmacol. 2003;477(1):9-16.
  • 35
    Viereck V, Emons G, Lauck V, Frosch KH, Blaschke S, Grundker C, et al. Bisphosphonates pamidronate and zoledronic acid stimulate osteoprotegerin production by primary human osteoblasts. Biochem Biophys Res Commun. 2002;291(3):680-6, http://dx.doi.org/10.1006/bbrc.2002.6510.
    » http://dx.doi.org/10.1006/bbrc.2002.6510
  • 36
    Pan B, Farrugia AN, To LB, Findlay DM, Green J, Lynch K, et al. The nitrogencontaining bisphosphonate, zoledronic acid, influences RANKL expression in human osteoblastlike cells by activating TNF-alpha converting enzyme (TACE). J Bone Miner Res. 2004;19(1):147-54, http://dx.doi.org/10.1359/jbmr.2004.19.1.147.
    » http://dx.doi.org/10.1359/jbmr.2004.19.1.147
  • 37
    Im GI, Qureshi SA, Kenney J, Rubash HE, Shanbhag AS. Osteoblast proliferation and maturation by bisphosphonates. Biomaterials. 2004;25(18):4105-15, http://dx.doi.org/10.1016/j.biomaterials.2003.11.024.
    » http://dx.doi.org/10.1016/j.biomaterials.2003.11.024
  • 38
    Xiong Y, Yang HJ, Feng J, Shi ZL, Wu LD. Effects of alendronate on the proliferation and osteogenic differentiation of MG-63 cells. J Int Med Res. 2009;37(2):407-16.
  • 39
    Giuliani N, Pedrazzoni M, Negri G, Passeri G, Impicciatore M, Girasole G. Bisphosphonates stimulate formation of osteoblast precursors and mineralized nodules in murine and human bone marrow cultures in vitro and promote early osteoblastogenesis in young and aged mice in vivo Bone. 1998;22(5):455-61, http://dx.doi.org/10.1016/S8756-3282(98)00033-7.
    » http://dx.doi.org/10.1016/S8756-3282(98)00033-7
  • 40
    Klein BY, Ben-Bassat H, Breuer E, Solomon V, Golomb G, Structurally different bisphosphonates exert opposing effects on alkaline. J Cell Biochem. 1998;68(2):186-94, http://dx.doi.org/10.1002/(SICI)1097-4644(19980201)68:2<186::AID-JCB5>3.0.CO;2-R.
    » http://dx.doi.org/10.1002/(SICI)1097-4644(19980201)68:2<186::AID-JCB5>3.0.CO;2-R
  • 41
    Kim HK, Kim JH, Abbas AA, Yoon TR. Alendronate enhances osteogenic differentiation of bone marrow stromal cells: a preliminary study. Clin Orthop Relat Res. 2009;467(12):3121-8, http://dx.doi.org/10.1007/s11999-008-0409-y.
    » http://dx.doi.org/10.1007/s11999-008-0409-y
  • 42
    Pan B, To LB, Farrugia AN, Findlay DM, Green J, Gronthos S, et al. The nitrogen-containing bisphosphonate, zoledronic acid, increases mineralisation of human bone-derived cells in vitro Bone. 2004;34(1):112-23, http://dx.doi.org/10.1016/j.bone.2003.08.013.
    » http://dx.doi.org/10.1016/j.bone.2003.08.013
  • 43
    Idris AI, Rojas J, Greig IR, Van’t Hof RJ, Ralston SH. Aminobisphosphonates cause osteoblast apoptosis and inhibit bone nodule formation in vitro Calcif Tissue Int. 2008;82(3):191-201, http://dx.doi.org/10.1007/s00223-008-9104-y.
    » http://dx.doi.org/10.1007/s00223-008-9104-y
  • 44
    Orriss IR, Key ML, Colston KW, Arnett TR. Inhibition of osteoblast function in vitro by aminobisphosphonates. J Cell Biochem. 2009; 106(1):109-18, http://dx.doi.org/10.1002/jcb.21983.
    » http://dx.doi.org/10.1002/jcb.21983
  • 45
    Bellido T, Plotkin LI. Novel actions of bisphosphonates in bone: preservation of osteoblast and osteocyte viability. Bone. 2011;49(1):50-5, http://dx.doi.org/10.1016/j.bone.2010.08.008.
    » http://dx.doi.org/10.1016/j.bone.2010.08.008
  • 46
    Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356(18):1809-22.
  • 47
    Black DM, Thompson DE, Bauer DC, Ensrud K, Musliner T, Hochberg MC, et al. Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. FIT Research Group. J Clin Endocrinol Metab. 2000;85(11):4118-24, http://dx.doi.org/10.1210/jcem.85.11.6953.
    » http://dx.doi.org/10.1210/jcem.85.11.6953
  • 48
    McClung MR, Geusens P, Miller PD, Zippel H, Bensen WG, Roux C, et al. Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med. 2001;344(5):333-40.
  • 49
    Harris ST, Watts NB, Genant HK, McKeever CD, Hangartner T, Keller M, et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA. 1999;282(14):1344-52, http://dx.doi.org/10.1001/jama.282.14.1344.
    » http://dx.doi.org/10.1001/jama.282.14.1344
  • 50
    Black DM, Schwartz AV, Ensrud KE, Cauley JA, Levis S, Quandt SA, et al. Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA. 2006;296(24):2927-38, http://dx.doi.org/10.1001/jama.296.24.2927.
    » http://dx.doi.org/10.1001/jama.296.24.2927
  • 51
    Rizzoli R, Burlet N, Cahall D, Delmas PD, Eriksen EF, Felsenberg D, et al. Osteonecrosis of the jaw and bisphosphonate treatment for osteoporosis. Bone. 2008;42(5):841-7, http://dx.doi.org/10.1016/j.bone.2008.01.003.
    » http://dx.doi.org/10.1016/j.bone.2008.01.003
  • 52
    Rizzoli R, Akesson K, Bouxsein M, Kanis JA, Napoli N, Papapoulos S, et al. Subtrochanteric fractures after long-term treatment with bisphosphonates: a european society on clinical and economic aspects of osteoporosis and osteoarthritis, and international osteoporosis foundation working group report. Osteoporos Int. 2011;22(2):373-90, http://dx.doi.org/10.1007/s00198-010-1453-5.
    » http://dx.doi.org/10.1007/s00198-010-1453-5
  • 53
    Shane E, Burr D, Ebeling PR, Abrahamsen B, Adler RA, Brown TD, et al. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2010;25(11):2267-94, http://dx.doi.org/10.1002/jbmr.253.
    » http://dx.doi.org/10.1002/jbmr.253
  • 54
    Body JJ, Greipp P, Coleman RE, Facon T, Geurs F, Fermand JP, et al. A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer. 2003;97(3 Suppl):887-92, http://dx.doi.org/10.1002/cncr.11138.
    » http://dx.doi.org/10.1002/cncr.11138
  • 55
    Stolina M, Adamu S, Ominsky MS, Dzamba BJ, Asuncion F, Geng Z, et al. RANKL is a marker and mediator of local and systemic bone loss in two rat models of inflammatory arthritis. J Bone Miner Res 2005;20(10):1756-65, http://dx.doi.org/10.1359/JBMR.050601.
    » http://dx.doi.org/10.1359/JBMR.050601
  • 56
    Padagas J, Colloton M, Shalhoub V, Kostenuik PJ, Morony S, Munyakazi L, et al. The receptor activator of nuclear factor-kB ligand inhibitor osteoprotegerin is a bone-protective agent in a rat model of chronic renal insufficiency and hyperparathyroidism. Calcif Tissue Int 2006;78(1):35-44, http://dx.doi.org/10.1007/s00223-005-0161-1.
    » http://dx.doi.org/10.1007/s00223-005-0161-1
  • 57
    Kim H, Morgan-Bagley S, Kostenuik PJ. RANKL inhibition: A novel strategy to decrease femoral head deformity after ischemic necrosis. J Bone Miner Res. 2006;21(12):1946-54, http://dx.doi.org/10.1359/jbmr.060905.
    » http://dx.doi.org/10.1359/jbmr.060905
  • 58
    Ominsky MS, Kostenuik PJ, Cranmer P, Smith SY, Atkinson JE. The RANKL inhibitor OPG-Fc increases cortical and trabecular bone mass in intact cynomolgus monkeys. Osteoporos Int 2007;18(8):1073-82, http://dx.doi.org/10.1007/s00198-007-0363-7.
    » http://dx.doi.org/10.1007/s00198-007-0363-7
  • 59
    Bekker PJ, Holloway D, Nakanishi A, Arrighi M, Leese PT, Dunstan CR. The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res. 2001;16(2):348-60, http://dx.doi.org/10.1359/jbmr.2001.16.2.348.
    » http://dx.doi.org/10.1359/jbmr.2001.16.2.348
  • 60
    European Public Assessment Report. Available at http://www.ema.europa.eu/ema/index.jsp?curl = pages/medicines/human/medicines/001120/human_med_001324.jsp&murl = menus/medicines/medicines.jsp&mid = WC0b01ac058001d124 (last accessed 2011).
    » http://www.ema.europa.eu/ema/index.jsp?curl = pages/medicines/human/medicines/001120/human_med_001324.jsp&murl = menus/medicines/medicines.jsp&mid = WC0b01ac058001d124
  • 61
    Rizzoli R, Yasothan U, Kirkpatrick P. Denosumab. Nat Rev Drug Discov 2010;9(8):591-2, http://dx.doi.org/10.1038/nrd3244.
    » http://dx.doi.org/10.1038/nrd3244
  • 62
    Belavic JM. Denosumab (Prolia): a new option in the treatment of osteoporosis. Nurse Pract. 2011;36(1):11-2, http://dx.doi.org/10.1097/01.NPR.0000391178.47878.73.
    » http://dx.doi.org/10.1097/01.NPR.0000391178.47878.73
  • 63
    Lipton A, Goessl C. Clinical development of anti- RANKL therapies for treatment and prevention of bone metastasis. Bone. 2011;48(1):96-9, http://dx.doi.org/10.1016/j.bone.2010.10.161.
    » http://dx.doi.org/10.1016/j.bone.2010.10.161
  • 64
    Miller PD, Bolognese MA, Lewiecki EM, McClung MR, Ding B, Austin M, et al. Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone. 2008;43(2):222-9, http://dx.doi.org/10.1016/j.bone.2008.04.007.
    » http://dx.doi.org/10.1016/j.bone.2008.04.007
  • 65
    Lewiecki EM. Treatment of osteoporosis with denosumab. Maturitas. 2010;66(2):182-6, http://dx.doi.org/10.1016/j.maturitas.2010.02.008
    » http://dx.doi.org/10.1016/j.maturitas.2010.02.008
  • 66
    Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756-65.
  • 67
    McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med. 2006;354(8):821-31.
  • 68
    Body JJ, Facon T, Coleman RE, Lipton A, Geurs F, Fan M, et al. A study of the biological receptor activator of nuclear factor-kB ligant inhibitor, Denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res. 2006;12(4):1221-8, http://dx.doi.org/10.1158/1078-0432.CCR-05-1933.
    » http://dx.doi.org/10.1158/1078-0432.CCR-05-1933
  • 69
    Khajuria DK, Razdan R, Mahapatra DR. Drugs for the management of osteoporosis: a review. Rev Bras Reumatol. 2011;51(4):365-71,379-82.
  • 70
    Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest. 2003;111(8):1221-30, http://dx.doi.org/10.1172/JCI200317215.
    » http://dx.doi.org/10.1172/JCI200317215
  • 71
    Bord S, Ireland DC, Beavan SR, Compston JE. The effects of estrogen on osteoprotegerin, RANKL, and estrogen receptor expression in human osteoblasts. Bone. 2003;32(2):136-41, http://dx.doi.org/10.1016/S8756-3282(02)00953-5.
    » http://dx.doi.org/10.1016/S8756-3282(02)00953-5
  • 72
    McKane WR, Khosla S, Burritt MF, Kao PC, Wilson DM, Ory SJ, et al. Mechanism of renal calcium conservation with estrogen replacement therapy in women in early postmenopause - a clinical research center study. J Clin Endocrinol Metab. 1995;80(12):3458-64.
  • 73
    Gennari C, Agnusdei D, Nardi P, Civitelli R. Estrogen preserves a normal intestinal responsiveness to 1,25-dihydroxyvitamin D3 in oophorectomized women. J Clin Endocrinol Metab. 1990;71(5):1288-93, http://dx.doi.org/10.1210/jcem-71-5-1288.
    » http://dx.doi.org/10.1210/jcem-71-5-1288
  • 74
    Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst. 1998;90(18):1371-88, http://dx.doi.org/10.1093/jnci/90.18.1371.
    » http://dx.doi.org/10.1093/jnci/90.18.1371
  • 75
    Cosman F, Lindsay R. Selective estrogen receptor modulators: Clinical spectrum. Endocr Rev. 1999;20(3):418-34.
  • 76
    Muchmore DB. Raloxifene: A Selective Estrogen Receptor Modulator (SERM) with Multiple Target System Effects. Oncologist. 2000;5(5):388-92, http://dx.doi.org/10.1634/theoncologist.5-5-388.
    » http://dx.doi.org/10.1634/theoncologist.5-5-388
  • 77
    Luvizuto ER, Queiroz TP, Dias SM, Okamoto T, Dornelles RC, Garcia IR Jr, et al. Histomorphometric analysis and immunolocalization of RANKL and OPG during the alveolar healing process in female ovariectomized rats treated with oestrogen or raloxifene. Arch Oral Biol. 2010;55: 52-9, http://dx.doi.org/10.1016/j.archoralbio.2009.11.001.
    » http://dx.doi.org/10.1016/j.archoralbio.2009.11.001
  • 78
    Olivier S, Fillet M, Malaise M, Piette J, Bours V, Merville MP, et al. Sodium nitroprusside-induced osteoblast apoptosis is mediated by long chain ceramide and is decreased by raloxifene. Biochem Pharmacol. 2005;69(6):891-901, http://dx.doi.org/10.1016/j.bcp.2004.11.030.
    » http://dx.doi.org/10.1016/j.bcp.2004.11.030
  • 79
    Taranta A, Brama M, Teti A, De luca V, Scandurra R, Spera G, Agnusdeiet al. The selective estrogen receptor modulator raloxifene regulates osteoclast and osteoblast activity in vitro Bone 2002;30(2): 368-76, http://dx.doi.org/10.1016/S8756-3282(01)00685-8.
    » http://dx.doi.org/10.1016/S8756-3282(01)00685-8
  • 80
    Viereck V, Gründker C, Blaschke S, Niederkleine B, Siggelkow H, Frosch KH, et al. Raloxifene concurrently stimulates osteoprotegerin and inhibits interleukin-6 production by human trabecular osteoblasts. J Clin Endocrinol Metab. 2003;88(9):4206-13, http://dx.doi.org/10.1210/jc.2002-021877.
    » http://dx.doi.org/10.1210/jc.2002-021877
  • 81
    Kawamoto S, Ejiri S, Nagaoka E, Ozawa H. Effects of oestrogen deficiency on osteoclastogenesis in the rat periodontium. Arch Oral Bio. 2002;47(1):67-73, http://dx.doi.org/10.1016/S0003-9969(01)00086-3.
    » http://dx.doi.org/10.1016/S0003-9969(01)00086-3
  • 82
    Michael H1, Härkönen PL, Kangas L, Väänänen HK, Hentunen TA. Differential effects of selective oestrogen receptor modulators (SERMs) tamoxifen, ospemifene and raloxifene on human osteoclasts in vitro Br J Pharmacol. 2007;151(3):384-95.
  • 83
    Noda-Seino H, Sawada K, Hayakawa J, Ohyagi-Hara C, Mabuchi S, Takahashi K, et al. Estradiol and Raloxifene induce the proliferation of osteoblasts through G-protein-coupled receptor GPR30. J Endocrinol Invest. 2013;36(1):21-7.
  • 84
    Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434-41.
  • 85
    Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, et al. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature. 1993;366(6455):575-80, http://dx.doi.org/10.1038/366575a0.
    » http://dx.doi.org/10.1038/366575a0
  • 86
    Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone. 2007;40(6):1434-46, http://dx.doi.org/10.1016/j.bone.2007.03.017.
    » http://dx.doi.org/10.1016/j.bone.2007.03.017
  • 87
    Bukata SV, Puzas JE. Orthopedic uses of teriparatide. Curr Osteoporos Rep. 2010;8(1):28-33, http://dx.doi.org/10.1007/s11914-010-0006-3.
    » http://dx.doi.org/10.1007/s11914-010-0006-3
  • 88
    Andreassen TT, Ejersted C, Oxlund H. Intermittent parathyroid hormone (1-34) treatment increases callus formation and mechanical strength of healing rat fractures. J Bone Miner Res. 1999;14(6):960-8, http://dx.doi.org/10.1359/jbmr.1999.14.6.960.
    » http://dx.doi.org/10.1359/jbmr.1999.14.6.960
  • 89
    Compston JE. Skeletal actions of intermittent parathyroid hormone: effects on bone remodelling and structure. Bone. 2007;40(6):1447-52, http://dx.doi.org/10.1016/j.bone.2006.09.008.
    » http://dx.doi.org/10.1016/j.bone.2006.09.008
  • 90
    Kaback LA, Soung do Y, Naik A, Geneau G, Schwarz EM, Rosier RN, et al. Teriparatide (1-34 human PTH) regulation of osterix during fracture repair. J Cell Biochem. 2008;105(1):219-26, http://dx.doi.org/10.1002/jcb.21816.
    » http://dx.doi.org/10.1002/jcb.21816
  • 91
    Nakajima A, Shimoji N, Shiomi K, Shimizu S, Moriya H, Einhorn TA, et al. Mechanisms for the enhancement of fracture healing in rats treated with intermittent low-dose human parathyroid hormone (1-34). J Bone Miner Res. 2002;17(11):2038-47, http://dx.doi.org/10.1359/jbmr.2002.17.11.2038.
    » http://dx.doi.org/10.1359/jbmr.2002.17.11.2038
  • 92
    Nakazawa T, Nakajima A, Shiomi K, Moriya H, Einhorn TA, Yamazaki M. Effects of low-dose, intermittent treatment with recombinant human parathyroid hormone (1-34) on chondrogenesis in a model of experimental fracture healing. Bone. 2005;37(5):711-9, http://dx.doi.org/10.1016/j.bone.2005.06.013.
    » http://dx.doi.org/10.1016/j.bone.2005.06.013
  • 93
    Bukata SV, Puzas JE. Orthopedic Uses of Teriparatide. Curr Osteoporos Rep. 2010;8(1):28-33, http://dx.doi.org/10.1007/s11914-010-0006-3.
    » http://dx.doi.org/10.1007/s11914-010-0006-3
  • 94
    Kakar S, Einhorn TA, Vora S, Miara LJ, Hon G, Wigner NA, et al. Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. Journal of bone and mineral research. J Bone Miner Res. 2007;22(12):1903-12, http://dx.doi.org/10.1359/jbmr.070724.
    » http://dx.doi.org/10.1359/jbmr.070724
  • 95
    Hodsman AB, Bauer DC, Dempster DW, Dian L, Hanley DA, Harris ST, et al. Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev. 2005;26(5):688-703, http://dx.doi.org/10.1210/er.2004-0006.
    » http://dx.doi.org/10.1210/er.2004-0006
  • 96
    Subbiah V, Madsen VS, Raymond AK, Benjamin RS, Ludwig JA. Of mice and men: divergent risks of teriparatide-induced osteosarcoma. Osteoporos Int. 2010;21(6):1041-5, http://dx.doi.org/10.1007/s00198-009-1004-0.
    » http://dx.doi.org/10.1007/s00198-009-1004-0
  • 97
    Saag KG, Shane E, Boonen S, Marin F, Donley DW, Taylor KA, et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med. 2007;357(20):2028-39.
  • 98
    Vahle JL, Long GG, Sandusky G, Westmore M, Ma YL, Sato M. Bone neoplasms in F344 rats given teriparatide [rhPTH(1-34)] are dependent on duration of treatment and dose. Toxicol Pathol. 2004;32(4):426-38.
  • 99
    Wilker C, Jolette J, Smith S, Doyle N, Hardisty J, Metcalfe AJ, et al. A no observable carcinogenic effect dose level identified in Fischer 344 rats following daily treatment with PTH(1-84) for 2 years: role of the C-terminal PTH receptor?. J Bone Miner Res. 2004;19 Supp 1:SA435.
  • 100
    Ryder KM, Tanner SB, Carbone L, Williams JE, Taylor HM, Bush A, et al. Teriparatide is safe and effectively increases bone biomarkers in institutionalized individuals with osteoporosis. J Bone Miner Metab. 2010;28(2):233-9, http://dx.doi.org/10.1007/s00774-009-0123-1.
    » http://dx.doi.org/10.1007/s00774-009-0123-1
  • 101
    Losada B, Zanchetta J, Zerbini C, Molina J, de la Pena P, Liu C, et al. Active comparator trial of teriparatide vs alendronate for treating glucocorticoid-induced osteoporosis: results from the Hispanic and non-Hispanic cohorts. J Clin Densitom. 2009;12(1):63-70, http://dx.doi.org/10.1016/j.jocd.2008.10.002.
    » http://dx.doi.org/10.1016/j.jocd.2008.10.002
  • 102
    Harper KD, Krege JH, Marcus R, Mitlak BH. Osteosarcoma and teriparatide? J Bone Miner Res. 2007;22(2):334.
  • 103
    Cesareo R, Napolitano C, Iozzino M. Strontium ranelate in postmenopausal osteoporosis treatment: a critical appraisal. Int J Womens Health. 2010;2:1-6.
  • 104
    Roux C, Fechtenbaum J, Kolta S, Isaia G, Andia JB, Devogelaer JP. Strontium ranelate reduces the risk of vertebral fracture in young postmenopausal women with severe osteoporosis. Ann Rheum Dis. 2008;67(12):1736-8, http://dx.doi.org/10.1136/ard.2008.094516.
    » http://dx.doi.org/10.1136/ard.2008.094516
  • 105
    Marie P. Strontium ranelate: a novel mode of action optimizing bone formation and resorption. Osteoporos Int. 2005;16:7-10, http://dx.doi.org/10.1007/s00198-004-1753-8.
    » http://dx.doi.org/10.1007/s00198-004-1753-8
  • 106
    Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol. 2009;157(7):1291-1300.
  • 107
    Marie PJ. Strontium ranelate: new insights into its dual mode of action. Bone. 2007;40-S5-8.
  • 108
    Bonnelye E, Chabadel A, Saltel F, Jurdic P. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro Bone. 2008;42(1):129-38, http://dx.doi.org/10.1016/j.bone.2007.08.043.
    » http://dx.doi.org/10.1016/j.bone.2007.08.043
  • 109
    Baron R, Tsouderos Y. In vitro effects of S12911-2 on osteoclast function and bone marrow macrophage differentiation. Eur J Pharmacol. 2002;450(1):11-7.
  • 110
    Takahashi N, Sasaki T, Tsouderos Y, Suda T. S 12911-2 Inhibits osteoclastic bone resorption in vitro J Bone Miner Res. 2003;18(6):1082-7, http://dx.doi.org/10.1359/jbmr.2003.18.6.1082.
    » http://dx.doi.org/10.1359/jbmr.2003.18.6.1082
  • 111
    Mentaverri R, Hurtel AS, Kamel S, Robin B, Brazier M. Extracellular concentrations of strontium directly stimulates osteoclast apoptosis. J Bone Min Res. 2003;18:M237, http://dx.doi.org/10.1359/jbmr.2003.18.2.237.
    » http://dx.doi.org/10.1359/jbmr.2003.18.2.237
  • 112
    Chattopadhyay N, Quinn SJ, Kifor O, Ye C, Brown EM. The calcium-sensing receptor (CaR) is involved in strontium ranelate-induced osteoblast proliferation. Biochem Pharmacol. 2007;74(3):438-47, http://dx.doi.org/10.1016/j.bcp.2007.04.020.
    » http://dx.doi.org/10.1016/j.bcp.2007.04.020
  • 113
    Zhu LL, Zaidi S, Peng Y, Zhou H, Moonga BS, Blesius A, et al. Induction of a program gene expression during osteoblast differentiation with strontium ranelate. Biochem Biophys Res Commun. 2007;355(2):307-11, http://dx.doi.org/10.1016/j.bbrc.2007.01.120.
    » http://dx.doi.org/10.1016/j.bbrc.2007.01.120
  • 114
    Sila-Asna M, Bunyaratvej A, Maeda S, Kitaguchi H, Bunyaratavej N. Osteoblast Differentiation and Bone Formation Gene Expression in Strontium-inducing Bone Marrow Mesenchymal Stem Cell. Kobe J Med Sci. 2007;53(1-2):25-35.
  • 115
    Hao Y, Yan H, Wang X, Zhu B, Ning C, Ge S. Evaluation of osteoinduction and proliferation on nano-Sr-HAP: a novel orthopedic biomaterial for bone tissue regeneration. J Nanosci Nanotechnol. 2012;12(1):207-12, http://dx.doi.org/10.1166/jnn.2012.5125.
    » http://dx.doi.org/10.1166/jnn.2012.5125
  • 116
    Ni GX, Yao ZP, Huang GT, Liu WG, Lu WW. The effect of strontium incorporation in hydroxyapatite on osteoblasts in vitro J Mater Sci Mater Med. 2011;22(4):961-7, http://dx.doi.org/10.1007/s10856-011-4264-0.
    » http://dx.doi.org/10.1007/s10856-011-4264-0
  • 117
    Isaac J, Nohra J, Lao J, Jallot E, Nedelec JM, Berdal A, et al. Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur Cell Mater. 2011;21:130-43.
  • 118
    Liu F, Zhang X, Yu X, Xu Y, Feng T, Ren D. In vitro study in stimulating the secretion of angiogenic growth factors of strontium-doped calcium polyphosphate for bone tissue engineering. J Mater Sci Mater Med. 2011;22(3):683-92, http://dx.doi.org/10.1007/s10856-011-4247-1.
    » http://dx.doi.org/10.1007/s10856-011-4247-1
  • 119
    Zhang W, Shen Y, Pan H, Lin K, Liu X, Darvell BW, et al. Effects of strontium in modified biomaterials. Acta Biomater. 2011;7(2):800-8, http://dx.doi.org/10.1016/j.actbio.2010.08.031
    » http://dx.doi.org/10.1016/j.actbio.2010.08.031
  • 120
    Nardone V, Fabbri S, Marini F, Zonefrati R, Galli G, Carossino A, et al. Osteodifferentiation of human preadipocytes induced by strontium released from hydrogels. Int J Biomater. 2012;2012:865291.
  • 121
    Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signalling. J Clin Invest. 2006;116(5):1202-9, http://dx.doi.org/10.1172/JCI28551.
    » http://dx.doi.org/10.1172/JCI28551
  • 122
    Bodine PV and Komm BS. Wnt signaling and osteoblastogenesis. Rev Endocr Metab Disord. 2006;7(1-2):33-9.
  • 123
    Qiu W, Andersen TE, Bollerslev J, Mandrup S, Abdallah BM, Kassem M. Patients with high bone mass phenotype exhibit enhanced osteoblast differentiation and inhibition of adipogenesis of human mesenchymal stem cells. J Bone Miner Res. 2007;22(11):1720-31, http://dx.doi.org/10.1359/jbmr.070721.
    » http://dx.doi.org/10.1359/jbmr.070721
  • 124
    Baron R, Rawadi G. Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology. 2007;148(6):2635-43, http://dx.doi.org/10.1210/en.2007-0270.
    » http://dx.doi.org/10.1210/en.2007-0270
  • 125
    Manolagas SC & Almeida M. Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Molecular Endocrinology. 2007; 21(11):2605-14, http://dx.doi.org/10.1210/me.2007-0259.
    » http://dx.doi.org/10.1210/me.2007-0259
  • 126
    Clément-Lacroix P, Ai M, Morvan F, Roman-Roman S, Vayssiàre B, Belleville C, et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci U S A. 2005;102(48):17406-11, http://dx.doi.org/10.1073/pnas.0505259102.
    » http://dx.doi.org/10.1073/pnas.0505259102
  • 127
    Kulkarni NH, Onyia JE, Zeng Q, Tian X, Liu M, Halladay DL, Frolik CA et al. Orally bioavailable GSK-3alpha/beta dual inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo J Bone Miner Res. 2006;21(6):910-20, http://dx.doi.org/10.1359/jbmr.060316.
    » http://dx.doi.org/10.1359/jbmr.060316
  • 128
    Marie PJ, Kassem M. Osteoblasts in osteoporosis: past, emerging, and future anabolic targets. Eur J Endocrinol. 2011;165(1):1-10.
  • 129
    Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D'Agostin D, et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 2008;23(6):860-9, http://dx.doi.org/10.1359/jbmr.080216.
    » http://dx.doi.org/10.1359/jbmr.080216
  • 130
    Rey JP, Ellies DL. Wnt modulators in the biotech pipeline. Dev Dyn. 2010;239(1):102-14.
  • 131
    Enders GH. Wnt therapy for bone loss: golden goose or Trojan horse?. J Clin Invest. 2009;119(4):758-60, http://dx.doi.org/10.1172/JCI38973.
    » http://dx.doi.org/10.1172/JCI38973
  • 132
    Morvan F, Boulukos K, Clément-Lacroix P, Roman Roman S, Suc-Royer I, Vayssiàre B, et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res. 2006;21(6):934-45, http://dx.doi.org/10.1359/jbmr.060311.
    » http://dx.doi.org/10.1359/jbmr.060311
  • 133
    Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M, et al. Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone. 2006;39(4):754-66, http://dx.doi.org/10.1016/j.bone.2006.03.017.
    » http://dx.doi.org/10.1016/j.bone.2006.03.017
  • 134
    Guo J, Liu M, Yang D, Bouxsein ML, Saito H, Galvin RJ, et al. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab. 2010; 11(2):161-71, http://dx.doi.org/10.1016/j.cmet.2009.12.007.
    » http://dx.doi.org/10.1016/j.cmet.2009.12.007
  • 135
    Li X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res. 2009;24(4):578-88, http://dx.doi.org/10.1359/jbmr.081206.
    » http://dx.doi.org/10.1359/jbmr.081206
  • 136
    Padhi D, Jang G, Stouch B, Fang L, Posvar E. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011;26(1):19-26, http://dx.doi.org/10.1002/jbmr.173.
    » http://dx.doi.org/10.1002/jbmr.173
  • 137
    Ominsky MS, Vlasseros F, Jolette J, Smith SY, Stouch B, Doellgast G, et al. Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res. 2010;25(5):948-59, http://dx.doi.org/10.1002/jbmr.14.
    » http://dx.doi.org/10.1002/jbmr.14
  • 138
    Li X, Warmington KS, Niu QT, Asuncion FJ, Barrero M, Grisanti M, et al. Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, and bone strength in aged male rats. J Bone Miner Res. 2010;25(12):2647-56, http://dx.doi.org/10.1002/jbmr.182.
    » http://dx.doi.org/10.1002/jbmr.182
  • 139
    Cipriano CA, Issack PS, Shindle L, Werner CM, Helfet DL, Lane JM. Recent advances toward the clinical application of PTH (1-34) in fracture healing. HSS J. 2009;5(2):149-53.
  • 140
    Arlot M, Meunier PJ, Boivin G, Haddock L, Tamayo J, Correa-Rotter R, et al. Differential effects of teriparatide and alendronate on bone remodeling in postmenopausal women assessed by histomorphometric parameters. Bone Miner Res. 2005;20(7):1244-53, http://dx.doi.org/10.1359/JBMR.050309.
    » http://dx.doi.org/10.1359/JBMR.050309
  • 141
    Briot K, Benhamou CL, Roux C. Hip cortical thickness assessment in postmenopausal women with osteoporosis and strontium ranelate effect on hip geometry. J Clin Densitom. 2012;15(2):176-85, http://dx.doi.org/10.1016/j.jocd.2011.11.006.
    » http://dx.doi.org/10.1016/j.jocd.2011.11.006
  • No potential conflict of interest was reported.

Publication Dates

  • Publication in this collection
    June 2014

History

  • Received
    11 Oct 2013
  • Reviewed
    6 Nov 2013
  • Accepted
    11 Dec 2013
Faculdade de Medicina / USP Rua Dr Ovídio Pires de Campos, 225 - 6 and., 05403-010 São Paulo SP - Brazil, Tel.: (55 11) 2661-6235 - São Paulo - SP - Brazil
E-mail: clinics@hc.fm.usp.br