Acessibilidade / Reportar erro

Ovicidal effect of the essential oils from 18 Brazilian Piper species: controlling Anticarsia gemmatalis (Lepidoptera, Erebidae) at the initial stage of development

Efeito ovicida de óleos essenciais de 18 espécies brasileiras de Piper: controlando Anticarsia gemmatalis (Lepidoptera, Erebidae) no estágio inicial de desenvolvimento

ABSTRACT.

The toxicities of essential oils (EOs) from 18 species of Brazilian Piperaceae were assessed on eggs of the velvetbean caterpillar, Anticarsia gemmatalis. Oils were extracted using steam distillation, and dilutions were made for bioassays at concentrations of 0.25, 0.5, 1.0, 2.0, and 4.0%. All EOs reduced larval hatching. The lowest lethal concentrations were obtained from Piper fuligineum (SP), Piper mollicomum “chemotype 1” (SP), Piper mosenii (PR), Piper aduncum (PA) and Piper marginatum (PA). Ovicidal activity is related to the potential toxicity of several compounds, especially dilapiolle, myristicin, asaricine, spathulenol and piperitone. According to our results, EOs from 16 Brazilian Piper species have potential for use as biorational botanical insecticides.

Keywords:
Piper abutiloides; Piper fuligineum; Piper marginatum; bioinseticides

RESUMO.

A toxicidade dos óleos essenciais (OEs) de 18 espécies de Piperaceae brasileiras foi avaliada sobre ovos da lagarta da soja, Anticarsia gemmatalis. Os óleos foram extraídos por destilação de arraste de vapor d´água e as diluições foram feitas para os bioensaios em concentrações de 0,25; 0,5; 1,0; 2,0 e 4,0%. Todos os OEs reduzidam a eclosão larval. As menores concentrações letais foram observadas em Piper fuligineum (SP), Piper mollicomum “quimiotipo 1” (SP), Piper mosenii (PR), Piper aduncum (PA) e Piper marginatum (PA). A atividade ovicida observada está relacionado com a toxicidade potencial de alguns compostos, especialmente o dilapiol, a miristicina, a asaricina, o espatulenol e a piperitona. De acordo com nossos resultados, os OEs de 16 espécies de Piper brasileiras têm potencial para uso como inseticidas vegetais bioracionais.

Palavras-chave:
Piper abutiloides; Piper fuligineum; Piper marginatum; bioinseticidas

Introduction

The velvetbean caterpillar, Anticarsia gemmatalis Hübner (Lepidoptera: Eribidae), is the primary soybean defoliator in Brazil (Panizzi, Oliveira, & Silva, 2004Panizzi, A. R., Oliveira, L. J., & Silva, J. J. (2004). Survivorship, larval development and pupal weight of Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae) feeding on potential leguminous host plants. Neotropical Entomology, 33(5), 563-567. doi: 10.1590/S1519-566X2004000500004
https://doi.org/10.1590/S1519-566X200400...
). This species also damages other crops of economic importance (Rahman, Bridges, Chapin, & Thomas, 2007Rahman, K., Bridges, W. C., Chapin, J. W., & Thomas, J. S. (2007). Three cornered alfalfa hopper (Hemiptera: Membracidae): seasonal occurrence, girdle distribution, and response to insecticide treatment on peanut in South Carolina. Journal of Economic Entomology , 100(4), 1229-1240. doi: 10.1603/0022-0493(2007)100[1229:TAHHMS]2.0.CO;2
https://doi.org/10.1603/0022-0493(2007)1...
). It is mainly controlled using synthetic insecticides, but other control methods include the use of transgenic crop plants and the soil-dwelling bacterium, Bacillus thuringiensis Berliner (McPherson & Macrae, 2009McPherson, R. M., & Macrae, T. C. (2009). Evaluation of transgenic soybean exhibiting high expression of a synthetic Bacillus thuringiensis cry1A transgene for suppressing lepidopteran population densities and crop injury. Journal of Economic Entomology, 102(4), 1640-1648. doi: 10.1603/029.102.0431
https://doi.org/10.1603/029.102.0431...
; Castro et al., 2013Castro, A. A., Corrêa, A. S., Legaspi, J. C., Guedes, R. N. C., Serrão, J. E., & Zanuncio, J. C. (2013). Survival and behavior of the insecticide-exposed predators Podisus nigrispinus and Supputius cincticeps (Heteroptera: Pentatomidae). Chemosphere, 93(6), 1043-1050. doi: 10.1016/j.chemosphere.2013.05.075
https://doi.org/10.1016/j.chemosphere.20...
).

However, new approaches are needed to reduce risks to the environment and natural enemies and to avoid or delay the onset of insecticide resistance (Loureiro, Moino-Junior, Arnosti, & Souza, 2002Loureiro, E. S., Moino-Junior, A., Arnosti, A., & Souza, G. C. (2002). Effect of chemical products used in lettuce and chrysanthemum on entomopathogenic fungi. Neotropical Entomology, 31(2), 263-269. doi: 10.1590/S1519-566X2002000200014
https://doi.org/10.1590/S1519-566X200200...
; Petroski & Stanley, 2009Petroski, R. J., & Stanley, D. W. (2009). Natural compounds for pest and weed control. Journal of Agricultural and Food Chemistry, 57(18), 8171-8179. doi: 10.1021/jf803828w
https://doi.org/10.1021/jf803828w...
; Rampelotti-Ferreira et al., 2010Rampelotti-Ferreira, F. T., Ferreira, A., Prando, H. F., Tcacenco, F. A., Grützmacher, A. D., & Martins, J. F. S. (2010). Selectivity of chemical pesticides used in rice irrigated crop at fungus Metarhizium anisopliae, microbial control agent of Tibraca limbativentris. Ciência Rural , 40(4), 745-751. doi: 10.1590/S0103-84782010005000062
https://doi.org/10.1590/S0103-8478201000...
). Additionally, they may be safer and more environmentally acceptable. Thus, strategies for insect management should include alternatives to conventional insecticides. The use of plant-based insecticides is an alternative for the control of lepidopteran pests primarily by having low toxicity and short persistence in the environment (Costa, Silva, & Fiuza, 2004Costa, E. L. N., Silva, R. F. P., & Fiuza, L. M. (2004). Efeitos, aplicações e limitações de extratos de plantas inseticidas. Acta Biologica Leopoldensia, 26(2), 173-185.). In this context, plants of the family Piperaceae may be a promising alternative for the control of insect pests because they contain active principles with high insecticidal potential (Fazolin, Estrela, Catani, & Alécio, 2005Fazolin, M., Estrela, J. L. S., Catani, V., & Alécio, M. R. (2005). Toxicity of Piper aduncum oil to adults of Cerotoma tingomarianus Bechyné (Coleoptera: Chrysomelidae). Neotropical Entomology, 34(3), 485-489. doi: 10.1590/S1519-566X2005000300018
https://doi.org/10.1590/S1519-566X200500...
; Fazolin, Estrela, Catani, Alécio, & Lima, 2007Fazolin, M., Estrela, J. L. S., Catani, V., Alécio, M. R., & Lima, M. S. (2007). Insecticidal properties of essential oils of Piper hispidinervum C. DC.; Piper aduncum L. and Tanaecium nocturnum (Barb. Rodr.) Bur. & K. Shum against Tenebrio molitor L., 1758. Ciência e Agrotecnologia, 31(1), 113-120. doi: 10.1590/S1413-70542007000100017
https://doi.org/10.1590/S1413-7054200700...
; Estrela, Fazolin, Catani, Alécio, & Lima, 2006Estrela, J. L. V., Fazolin, M., Catani, V., Alécio, M. R., & Lima, M. S. (2006). Toxicity of essential oils of Piper aduncum and Piper hispidinervum against Sitophilus zeamais. Pesquisa Agropecuária Brasileira , 41(2), 217-222. doi: 10.1590/S0100-204X2006000200005
https://doi.org/10.1590/S0100-204X200600...
; Barbosa et al., 2012Barbosa, Q. P. S., Câmara, C. A. G., Ramos, C. S., Nascimento, D. C. O., Lima-Filho, J. V., & Guimarães, E. F. (2012). Chemical composition, circadian rhythm and antibacterial activity of essential oils of Piper divaricatum: a new source of safrole. Química Nova, 35(9), 1806-1808. doi: 10.1590/S0100-40422012000900019
https://doi.org/10.1590/S0100-4042201200...
).

The analysis and identification of chemical compounds of plant origin that are active against insects are important as they allow the discovery of new groups of plants with insecticidal potential, and they provide new perspectives for the synthesis and development of new bioactive compounds (Scott, Jensen, Philogène, & Arnason, 2008Scott, I. M., Jensen, H. R., Philogène, B. J. R., & Arnason, J.T. (2008). A review of Piper spp. (Piperaceae) phytochemistry, insecticidal activity and mode of action. Phytochemistry Reviews, 7(1), 65-75. doi: 10.1007/s11101-006-9058-5
https://doi.org/10.1007/s11101-006-9058-...
). Despite the widespread occurrence of the Piperaceae species in Brazil, research on its bioactivity against agricultural insect pests is incipient. In addition, pest management is performed during the phase in which the insects are causing damage to the crop, and in this case, A. gemmatalis is in the larval stage, where the larvae feed mainly on soybean leaves (Lourenção, Reco, Braga, Valle, & Pinheiro, 2010Lourenção, A. L., Reco, P. C., Braga, N. R., Valle, G. E., & Pinheiro, J. B. (2010). Yield of soybean genotypes under infestation of the velvetbean caterpillar and stink bugs. Neotropical Entomology, 39(2), 275-281. doi: 10.1590/S1519-566X2010000200020
https://doi.org/10.1590/S1519-566X201000...
; Moscardi et al., 2012Moscardi, F., Bueno, A. F., Sosa-Gómez, D. R., Roggia, S., Hoffman-Campo, C. B., Pomari, A. F., ... Yano, S. A. C. (2012). Artrópodes que atacam as folhas da soja. In C. B. Hoffman-Campo, B. S. Corrêa-Ferreira, & F. Moscardi (Eds.), Soja: manejo integrado de insetos e outros artrópodes-praga (p. 213-309). Brasília, DF: Embrapa.; Franco et al., 2014Franco, A. A., Queiroz, M. S., Peres, A. R., Rosa, M. E, Campos, A. R., & Campos, Z. R. (2014). Preferência alimentar de Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) por cultivares de soja. Científica, 42(1), 32-38. doi: 10.15361/1984-5529.2014v42n1p32-38
https://doi.org/10.15361/1984-5529.2014v...
).

However, few studies have been conducted on the ovicidal effect of Piperaceae on any insect pest group (Laurent et al., 1997Laurent, D., Vilaseca, L. A., Chantraine, J. M., Ballivian, C., Saavedra, G., & Ibañez, R. (1997). Insecticidal activity of essential oils on Triatoma infestans. Phytotherapy Research, 11(4), 283-290.; Fazolin et al., 2005Fazolin, M., Estrela, J. L. S., Catani, V., & Alécio, M. R. (2005). Toxicity of Piper aduncum oil to adults of Cerotoma tingomarianus Bechyné (Coleoptera: Chrysomelidae). Neotropical Entomology, 34(3), 485-489. doi: 10.1590/S1519-566X2005000300018
https://doi.org/10.1590/S1519-566X200500...
; Scott et al., 2008Scott, I. M., Jensen, H. R., Philogène, B. J. R., & Arnason, J.T. (2008). A review of Piper spp. (Piperaceae) phytochemistry, insecticidal activity and mode of action. Phytochemistry Reviews, 7(1), 65-75. doi: 10.1007/s11101-006-9058-5
https://doi.org/10.1007/s11101-006-9058-...
; Carneiro, Pereira, & Galbiati, 2011Carneiro, A. P., Pereira, M. J. B., & Galbiati, C. (2011). Biocidal effect of the Annona coriacea Mart 1841 on eggs and nymphs of the vector Rhodnius neglectus Lent 1954. Neotropical Biology and Conservation, 6(2), 131-136. doi: 10.4013/nbc.2011.62.08
https://doi.org/10.4013/nbc.2011.62.08...
). Due to the importance of identifying alternative, environmentally sound methods for agricultural pest control, we determined the ovicidal action of essential oils (EOs) from leaves of Piperaceae species of various Brazilian regions against Anticarsia gemmatalis eggs.

Material and methods

The eggs used in the bioassays were obtained from a colony of A. gemmatalis maintained in the Laboratory of Integrated Control of Insects (LCII), and the oils were extracted by hydrodistillation in the Vegetable Ecophysiology Laboratory, both at the Federal University of Paraná (UFPR), Curitiba, Paraná State, Brazil.

Essential oils extraction - To obtain the EOs, we used dry leaves of Piper species collected from various Brazilian regions (Table 1, Figure 1).

Chromatographic analysis

Chromatographic analysis was performed in the Laboratory of Ecophysiology Vegetable and the Laboratory of Natural Products and Chemical Ecology (LAPEQ), both at the UFPR. The EOs were subjected to analysis by gas chromatography coupled to a flame ionization detector (HP- Agilent 7890A GC-FID) and by gas chromatography coupled to mass spectrometry (MS) (60-240°C at 3ºC min. rate) using a fused-silica capillary column (30 m x 0.25 mm i.d. x 0.25 μm) coated with DB-5. The injector and detector temperatures were 280ºC. Hydrogen was used as a carrier gas at a flow rate of 2.4 mL min.-1; injection was in the split mode (1:20), and the injection volume was 1.0 μL. MS spectra were obtained using electron impact at 70 eV, with a scan interval of 0.5 s and mass range from 40 to 550 m/z. The initial identification of components of the EOs was carried out by comparison with previously reported values of retention indices, which was obtained by co-injection of oil samples and C11-C24 linear hydrocarbons and calculated according to the equation of Van den Dool and Kratz (1963Van den Dool, H., & Kratz, P. D. (1963). A generalization of the retention index system including liner temperature programmed gas-liquid partition chromatography. Journal of Chromatography A, 11(1), 463-467. doi: 10.1016/S0021-9673(01)80947-X
https://doi.org/10.1016/S0021-9673(01)80...
). Subsequently, the MS acquired for each component was matched with those stored in the Wiley/NBS mass spectral library of the GC-MS system and with other published mass spectral data (Adams, 2007Adams, R. P. (2007). Identification of essential oil components by Gas Chromatography/Mass Spectroscopy. Gruver, TX: Allured Publishing Corporation.).

Table 1
Piper species evaluated and collection sites (geographic coordinates).

Figure 1
Piper species evaluated and collection regions (Brazilian states).

The species were identified, and herbarium specimens were deposited at Universidade do Estado de Mato Grosso, Campus Universitário de Tangará da Serra (UNEMAT/CUTS) in Herbarium Tangará (TANG). Collected leaves were stored in a greenhouse for 96h at 50°C to dry and then ground with a mill to obtain the leaf powder. The milled material was extracted by hydrodistillation. For each oil extraction, 50 g of vegetable powder were placed in a glass flask (2 L) containing 1 L of distilled water. The flask was heated in a heating mantle and boiled for four hours to obtain the EOs.

Ovicidal effects of essential oils on Anticarsia gemmatalis eggs

To evaluate the activity of EOs from Piperaceae leaves on A. gemmatalis eggs, the bioassays were performed by spraying eggs with an airbrush up to 24 hours after oviposition. Five oil concentrations (0.25, 0.5, 1.0, 2.0, and 4.0% diluted with acetone P.A.) and two control treatments (distilled in water and acetone P.A.) were evaluated, totalling seven treatments for each Piper species. The sprayings were performed with a calibrated airbrush at a pressure of 20 psi, which enabled the deposition of 1.5 mg cm-2 of each solution/concentration. Ten replicates containing ten eggs glued on blue paper were sprayed in each concentration, and the eggs were left to dry at room temperature. Each replicate was placed in glass tubes (10 cm x 1 cm), and all treatments were maintained in climatic chambers (Eletrolab Model EL 202) at 25 ± 1.0°C (SD), 70 ± 10% RH (SD), and a photoperiod of 12h L:D. Larval hatching was evaluated on the third day after oviposition, which is the normal time for emergence of A. gemmatalis caterpillars at 25°C (Magrini, Botelho, & Silveira Neto, 1999Magrini, E. A., Botelho, P. S. M., & Silveira Neto, S. (1999). Biologia de Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Noctuidae) na cultura da soja. Scientia Agricola, 56(3), 547-555. https://dx.doi.org/10.1590/S0103-90161999000300006
https://dx.doi.org/10.1590/S0103-9016199...
).

Statistical analysis

For the statistical analysis, we used the results obtained three days after treatment in each EO. After this time, the hatching of A. gemmatalis caterpillars was recorded. The results were compared using an analysis of variance (ANOVA), and means were classified with the Scott Knott test (p < 0.05). Lethal concentrations causing 50, 75, and 90% mortality of the eggs (LC50, LC75, and LC90) were calculated by Probit analysis (Finney, 1971Finney, D. J. (1971). Probit analysis. Cambridge, UK: University Press.) using Statistica software (version 7).

Results

All evaluated EOs reduced the larval hatching of A. gemmatalis compared with control treatments (water and acetone), except for P. solmsianum (SP) and P. hispidum (GO), which did not show significant differences in the average number of hatched larvae. The results showed that there were significant differences among Piper species on the ecclosion of A. gemmatalis eggs (Table 2). To consider a product as ovicidal, it should inhibit hatching by at least 75% (Picollo & Zerba, 1997Picollo, M. I., & Zerba, E. (1997). Embryogenesis. In R. U. Carcavallo, G. L. Galíndez, J. Jurberg, & H. Lent (Eds.), Atlas dos vetores da Doença de Chagas nas Américas. (p. 265-270). Rio de Janeiro, RJ: Fiocruz.). The Piper species showing ovicidal effects (mortality of eggs greater than 75%) at each concentration were P. fuligineum (SP) from the lowest concentration (0.25%); P. aduncum (PA), P. mollicomum ‘chemotype 1’ (SP) and P. mosenii (PR) from 0.5%; P. caldense ‘chemotype 1’ (SP) and P. marginatum (PA) at concentrations of 1.0%; P. arboreum (SP), P. gaudichaudianum (PR), P. lhotzkyanum (SP), P. mikanianum (PR), P. mollicomum ‘chemotype 2’ (SP), P. caldense ‘chemotype 2’ (PR) and P. tuberculatum (MT) at 2.0%; and only P. abutiloides (SP) and P. amalago (SP) in the highest concentration (4.0%) (Table 2). Data concerning the lethal concentrations that inhibit hatching of 50, 75, and 90% of A. gemmatalis eggs (LC50, LC75, and LC90) are reported in Table 3. The LC50s calculated after 72 hours ranged from 0.4% (P. fuligineum oil) to 1091.4% (P. hispidum oil). The lowest LC50s were observed for P. fuligineum (SP), P. mollicomum ‘chemotype 1’ (SP), P. mosenii (PR), P. aduncum (PA) and P. marginatum (PA), in this order. Similar patterns were observed for the LC75 and LC90 with P. caldense ‘chemotype 1’ and P. mollicomum ‘chemotype 2’ being included among the species with smaller lethal concentrations (Table 3). The major chemical compounds found in each species of Piperaceae evaluated are shown in Table 4.

Table 2
Mean (± SD) number of caterpillars hatching (n= 10) after spraying of essential oils from dried leaves of different species of Piperaceae on Anticarsia gemmatalis eggs three days after treatment in each essential oil concentration.
Table 3
Lethal concentrations of essential oils from leaves of Piper species to make unviable 50, 75, and 90% (LC50, LC75, and LC90) of Anticarsia gemmatalis eggs.
Table 4
Main chemical compounds found in the Piper species tested against Anticarsia gemmatalis eggs.

Discussion

The toxicity of some species such as P. aduncum against different orders of insects of medical and agricultural importance has already been reported (Estrela et al., 2006Estrela, J. L. V., Fazolin, M., Catani, V., Alécio, M. R., & Lima, M. S. (2006). Toxicity of essential oils of Piper aduncum and Piper hispidinervum against Sitophilus zeamais. Pesquisa Agropecuária Brasileira , 41(2), 217-222. doi: 10.1590/S0100-204X2006000200005
https://doi.org/10.1590/S0100-204X200600...
; Silva, Ribeiro, Souza, & Correa, 2007Silva, W. C., Ribeiro, J. D., Souza, H. E. M., & Correa, R. S. (2007). Insecticidal activity of Piper aduncum L. (Piperaceae) on Aetalion sp. (Hemiptera: Aetalionidae), plague of economic importance in Amazon. Acta Amazonica, 37(2), 293-298. doi: 10.1590/S0044-59672007000200017
https://doi.org/10.1590/S0044-5967200700...
; Scott et al., 2008Scott, I. M., Jensen, H. R., Philogène, B. J. R., & Arnason, J.T. (2008). A review of Piper spp. (Piperaceae) phytochemistry, insecticidal activity and mode of action. Phytochemistry Reviews, 7(1), 65-75. doi: 10.1007/s11101-006-9058-5
https://doi.org/10.1007/s11101-006-9058-...
; Misni, Othman, & Sulaiman, 2011Misni, N., Othman, H., & Sulaiman, S. (2011). The effect of Piper aduncum Linn. (Family: Piperaceae) essential oil as aerosol spray against Aedes aegypti (L.) and Aedes albopictus Skuse. Tropical Biomedicine, 28(2), 249-258.; Souto, Harada, Andrade, & Maia, 2012Souto, R. N., Harada, A. Y., Andrade, E. H., & Maia, J. G. (2012). Insecticidal activity of Piper essential oils from the Amazon against the fire ant Solenopsis saevissima (Smith) (Hymenoptera: Formicidae). Neotropical Entomology, 41(6), 510-517. doi: 10.1007/s13744-012-0080-6
https://doi.org/10.1007/s13744-012-0080-...
; Piton, Turchen, Butnariu, & Pereira, 2014Piton, L. P., Turchen, L. M., Butnariu, A. R., & Pereira, M. J. B. (2014). Natural insecticide based-leaves extract of Piper aduncum (Piperaceae) in the control of stink bug brown soybean. Ciência Rural , 44(11), 1915-1920. doi: 10.1590/0103-8478cr20131277
https://doi.org/10.1590/0103-8478cr20131...
; Turchen, Piton, Dall'Oglio, Butnariu, & Pereira, 2016aTurchen, L. M., Piton, L. P., Dall'Oglio, E. L., Butnariu, A. R., & Pereira, M. J. B. (2016a). Toxicity of Piper aduncum (Piperaceae) essential oil against Euschistus heros (F.) (Hemiptera: Pentatomidae) and non-effect on egg parasitoids. Neotropical Entomology, 45(5), 604-611. doi: 10.1007/s13744-016-0409-7
https://doi.org/10.1007/s13744-016-0409-...
). However, the egg stage is probably the least studied in terms of susceptibility to chemicals, and the few studies that assessed the vulnerability of eggs were often reported by accident, arising from the application of insecticides to other developmental phases of insects (Smith & Salkeld, 1966Smith, E. H., & Salkeld, E. H. (1966). The use and action of ovicides. Annual Review of Entomology, 11(1), 331-368. doi: 10.1146/annurev.en.11.010166.001555
https://doi.org/10.1146/annurev.en.11.01...
). Past studies report that mineral oils act primarily as ovicides by depressing the respiratory rate when applied directly to moth eggs (Riedl, Halaj, Kreowski, Hilton, & Westigard, 1995Riedl, H., Halaj, J., Kreowski, W., Hilton, R., & Westigard, P. (1995). Laboratory evaluation of mineral oils for control of Codling moth (Lepidoptera: Tortricidae). Journal of Economic Entomology , 88(1), 140-147. doi: 10.1093/jee/88.1.140
https://doi.org/10.1093/jee/88.1.140...
). The length of respiratory expression and the dose of oil in contact with the egg are critical to provoke mortality (Smith & Pearce, 1948Smith, E., & Pearce, G. (1948). The mode of action of petroleoum oils as ovicides. Journal of Economic Entomology , 41(2), 173-180. doi: 10.1093/jee/41.2.173
https://doi.org/10.1093/jee/41.2.173...
). Other studies have reported that the ovicidal nature of the oils is due to the natural tendency of oils to block the oxygen supplied to the developing embryo or due to the toxicity of some inherent chemical constituents of the oil (Rajapakse & Senanayake, 1997Rajapakse, R., & Senanayake, S. (1997). Effectiveness of seven vegetable oils against Callosobruchus chinensis L. in pigeon pea Cajanus cajan L. Entomon, 22(3/4), 179-183.).

In general, ovicidal activity is directly proportional to the increase in the concentration tested. Considering previous information, the ovicidal effects of the EOs evaluated in our study can be attributed either to physical or chemical properties. Physically, when the oils come into contact with the surface of the eggs, they can cover the areas of gas exchange between the embryo and the external environment (corium and micropyles), thus interfering in the normal embryo development. Chemically, the compounds present in each oil may exhibit different toxicity rates and can operate concurrently with the physical properties of the oils, thus causing the death of the eggs.

This characteristic was observed for some of the Piperaceae oils tested in our study. We observed that some compounds in particular (or perhaps synergistically) may be acting on A. gemmatalis eggs and causing their death. The EOs that showed bioactivity contained among the most abundant compounds, mainly asaricine (P. aduncum, P. fuligineum and P. mollicomum ‘chemotype 1’), myristicin (P. aduncum, P. abutiloides, P. Caldense, and P. marginatum), spathulenol (P. fuligineum, P. lhotzkyanum, P. mollicomum SP, and P. solmsianum), (E)-caryophyllene and germacrene B (P. arboreum and P. tuberculatum), dillapiol (P. aduncum e P. fuligineum), (E)-β-ocimene (P. aduncum, P. Marginatum, and P. mollicomum ‘chemotype 1’), limonene (only in P. mosenii), (E)-nerolidol (only in P. crassinervium), piperitone (P. aduncum), 1-epi-cubenol and cadalene (only in P. gaudichaudianum ‘chemotype 1’), 4,6-dimethyl-5-vinyl-1,2-benzodioxide, eudesm-7 (11)-en-4-ol and ciclocolorenone (only in P. mikanianum), α-copaene (only in P. tuberculatum), and (E, E)-α-farnesene and allo-aromadendrene (only in P. abutiloides) (Table 4).

Some compounds, such as (E)-caryophyllene and bicyclogermacrene, were discarded as possible agents of egg mortality, even when they were in large quantities in some oils, as recorded for P. caldense ‘chemotype 2’, P. crassinervium, P. gaudichaudianum ‘chemotype 2’, P. lhotzkyanum, P. solmsianum, P. amalago, P. Hispidum, and P. umbellatum (Table 4). Apparently, these compounds are common among Piperaceae, as observed in other chemical constitutions of several Piper species (Santos, Moreira, Guimarães, & Kaplan, 2001Santos, P. R. D., Moreira, D. L., Guimarães, E. F., & Kaplan, M. A. (2001). Essential oil analysis of 10 Piperaceae species from the Brazilian Atlantic forest. Phytochemistry, 58(4), 547-551. ; Mundina et al., 2001Mundina, M., Vila, R., Tomi, F., Tomas, X., Ciccio, J. F., Adzet, T., ... Canigueral, S. (2001). Composition and chemical polymorphism of the essential oils from Piper lanceaefolium. Biochemical Systematics and Ecology , 29(7), 739-748.; Cruz, Cáceres, Álvarez, Apel, & Henriques, 2011Cruz, S. M., Cáceres, A., Álvarez, L. E., Apel, M. A., & Henriques, A. T. (2011). Chemical diversity of essential oils of 15 Piper species from Guatemala. Acta Horticulturae, 964(1), 39-46. doi: 10.17660/ActaHortic.2012.964.4
https://doi.org/10.17660/ActaHortic.2012...
; Santana et al., 2015Santana, H. T., Trindade, F. T. T, Stabeli, R. G., Silva, A. A. E, Militão, J. S. L. T., & Facundo, V. A. (2015). Essential oils of leaves of Piper species display larvicidal activity against the dengue vector, Aedes aegypti (Diptera: Culicidae). Revista Brasileira de Plantas Medicinais, 17(1), 105-111. doi: 10.1590/1983-084X/13_052
https://doi.org/10.1590/1983-084X/13_052...
).

Among the 21 chemotypes of Piperaceae tested, P. aduncum, P. caldense, P. fuligineum, P. marginatum, P. mollicomum chemotype 1, and P. mosenii were the most effective against A. gemmatalis eggs. Piper aduncum and P. marginatum presented compounds already reported as insecticides in previous works, such as dillapiol, asaricine (sarisan), piperitone and myristicin (Bizzo et al., 2001Bizzo, H. R., Lopes, D., Abdala, R. V., Pimentel, F. A., Souza, J. A., Pereira, M. V. G., ... Guimarães, E. F. (2001). Sarisan from leaves of Piper hispidinervum C. DC (Long pepper). Flavour and Fragrance Journal, 16(2), 113-115. doi: 10.1002/ffj.957
https://doi.org/10.1002/ffj.957...
; Morais et al., 2007Morais, S. M., Facundo, V. A., Bertini, L. M., Cavalcanti, E. S. B., Anjos-Junior, J. F., Ferreira, S. A., ... Souza-Neto, M. A. (2007). Chemical composition and larvicidal activity of essential oils from Piper species. Biochemical Systematics and Ecology, 35(10), 670-675. doi: 10.1016/j.bse.2007.05.002
https://doi.org/10.1016/j.bse.2007.05.00...
; Qin, Huang, Li, Chen, & Peng, 2010Qin, W., Huang, S., Li, C., Chen, S., & Peng, Z. (2010). Biological activity of the essential oil from the leaves of Piper sarmentosum Roxb. (Piperaceae) and its chemical constituents on Brontispa longissima (Gestro) (Coleoptera: Hispidae). Pesticide Biochemistry and Physiology, 96(3), 132-139. doi: 10.1016/j.pestbp.2009.10.006
https://doi.org/10.1016/j.pestbp.2009.10...
; Souto et al., 2012Souto, R. N., Harada, A. Y., Andrade, E. H., & Maia, J. G. (2012). Insecticidal activity of Piper essential oils from the Amazon against the fire ant Solenopsis saevissima (Smith) (Hymenoptera: Formicidae). Neotropical Entomology, 41(6), 510-517. doi: 10.1007/s13744-012-0080-6
https://doi.org/10.1007/s13744-012-0080-...
; Santana et al., 2015Santana, H. T., Trindade, F. T. T, Stabeli, R. G., Silva, A. A. E, Militão, J. S. L. T., & Facundo, V. A. (2015). Essential oils of leaves of Piper species display larvicidal activity against the dengue vector, Aedes aegypti (Diptera: Culicidae). Revista Brasileira de Plantas Medicinais, 17(1), 105-111. doi: 10.1590/1983-084X/13_052
https://doi.org/10.1590/1983-084X/13_052...
; Ribeiro, Camara, & Ramos, 2016Ribeiro, N. E., Camara, C., & Ramos, C. (2016). Toxicity of essential oils of Piper marginatum Jacq. against Tetranychus urticae Koch and Neoseiulus californicus (McGregor). Chilean Journal of Agricultural Research, 76(1), 71-76. doi: 10.4067/S0718-58392016000100010
https://doi.org/10.4067/S0718-5839201600...
; Krinski & Foerster, 2016Krinski, D., & Foerster, L. A. (2016). Toxicity of essential oils from leaves of five Piperaceae species in rice stalk stink bug eggs, Tibraca limbativentris (Hemiptera: Pentatomidae). Ciência e Agrotecnologia , 40(6), 155-167. doi: 10.1590/1413-70542016406021616
https://doi.org/10.1590/1413-70542016406...
). For P. caldense, P. fuligineum, P. Mollicomum, and P. mosenii, there are no studies regarding the insecticidal activity, and our work is the first to test the ovicidal activity against a lepidopteran pest of importance in Brazilian agriculture.

It was shown that the chemical compounds present in these Piperaceae can be further evaluated among the isolation of active molecules to develop new botanical formulations, especially when we consider that the majority of these substances has been reported as potential insecticides in many other studies conducted worldwide (Santos et al., 2010Santos, M. R. A., Silva, A. G., Lima, R. A., Lima, D. K. S., Sallet, L. A. P., Teixeira, C. A. D., ... Facundo, V. A. (2010). Inseticidal activity of Piper hispidum (Piperaceae) leaves extract on (Hypothenemus hampei). Brazilian Journal of Botany , 33(2), 319-324. doi: 10.1590/S0100-84042010000200012
https://doi.org/10.1590/S0100-8404201000...
; 2011Santos, M. R. A., Lima, R. A., Silva, A. G., Teixeira, C. A. D., Lima, D. K. S., & Polli, A. R. (2011). Facundo, V.A. Atividade inseticida do extrato de raiz de Piper hispidum H.B.K. (Piperaceae) sobre Hypothenemus hampei Ferrari. Revista Saúde e Pesquisa, 4(3), 335-340.; 2013Santos, M. R. A., Lima, R. A., Silva, A. G., Teixeira, C. A. D., Alpirez, I. P. V., Facundo, & V. A. (2013). Chemical constituents and insecticidal activity of the crude acetonic extract of Piper alatabaccum Trel & Yuncker (Piperaceae) on Hypothenemus hampei Ferrari. Revista Brasileira de Plantas Medicinais , 15(3), 332-336. doi: 10.1590/S1516-05722013000300004
https://doi.org/10.1590/S1516-0572201300...
; Cáceres & Kato, 2014Cáceres, A., & Kato, M. J. (2014). Importance of a multidisciplinary evaluation of Piper genus for development of new natural products in Latin America. International Journal of Phytocosmetics and Natural Ingredients, 1(3), 1-7. doi: 10.15171/ijpni.2014.04
https://doi.org/10.15171/ijpni.2014.04...
, Brito, Baldin, Silva, Ribeiro, & Vendramim, 2015Brito, E. F., Baldin, E. L. L., Silva, R. C. M., Ribeiro, L. P., & Vendramim, J. D. (2015). Bioactivity of Piper extracts on Tuta absoluta (Lepidoptera: Gelechiidae) in tomato. Pesquisa Agropecuária Brasileira, 50(3), 196-202. doi: 10.1590/S0100-204X2015000300002
https://doi.org/10.1590/S0100-204X201500...
; Krinski & Foerster, 2016Krinski, D., & Foerster, L. A. (2016). Toxicity of essential oils from leaves of five Piperaceae species in rice stalk stink bug eggs, Tibraca limbativentris (Hemiptera: Pentatomidae). Ciência e Agrotecnologia , 40(6), 155-167. doi: 10.1590/1413-70542016406021616
https://doi.org/10.1590/1413-70542016406...
, Sanini et al. 2017Sanini, C., Massarolli, A., Krinski, D., Butnariu, A.R. (2017). Essential oil of spiked pepper, Piper aduncum L. (Piperaceae) for the control of caterpillar soybean looper, Chrysodeixis includens Walker (Lepidoptera: Noctuidae). Brazilian Journal of Botany, 40(2), 399-404. doi: 10.1007/s40415-017-0363-6
https://doi.org/10.1007/s40415-017-0363-...
, Turchen, Hunhoff, Paulo,Souza, Pereira, 2016bTurchen, L. M., Hunhoff, L. M., Paulo, M. V., Souza, C. P. R., & Pereira, M. J. B. (2016b). Potential phytoinsecticide of Annona mucosa (Jacq) (Annonaceae) in the control of brown stink bug. Bioscience Journal , 32(3), 581-587. doi: 10.14393/BJ-v32n3a2016-32803
https://doi.org/10.14393/BJ-v32n3a2016-3...
) and other plant families (Isman, 2000Isman, M. B. (2000). Plant essential oils for pest and disease management. Crop Protection , 19(8/10), 603-608. doi: 10.1016/S0261-2194(00)00079-X
https://doi.org/10.1016/S0261-2194(00)00...
; Koul, Walia, & Dhaliwal, 2008Koul, O., Walia, S., & Dhaliwal, G. S. (2008). Essential oils as green pesticides: Potential and constraints. Biopesticides International, 4(1), 63-84.; Tripathi, Upadhyay, Bhuiyan, & Bhattacharya, 2009Tripathi, A. K., Upadhyay, S., Bhuiyan, M., & Bhattacharya., P. R. (2009). A review on prospects of essential oils as biopesticide in insect-pest management. Journal of Pharmacognosy and Phytotherapy, 1(5), 52-63.; Coitinho, Oliveira, Gondim-Júnior, & Câmara, 2010Coitinho, R. L. B. C., Oliveira, J. V., Gondim-Júnior, M. G. C., & Câmara, C. A. G. (2010). Persistence of essential oils in stored maize submitted to infestation of maize weevil. Ciência Rural, 40(7), 1492-1496. doi: 10.1590/S0103-8478201000500 0109
https://doi.org/10.1590/S0103-8478201000...
; Ntalli & Menkissoglu-Spiroudi, 2011Ntalli, N.G., & Menkissoglu-Spiroudi, U. (2011). Pesticides of botanical origin: a promising tool in plant protection. In M. Stoytcheva (Ed.), Pesticides-formulation, effects fate (p. 3-24). Croatia: InTech. doi: 10.5772/13776
https://doi.org/10.5772/13776...
, Zoubiri & Baaliouamer, 2011Zoubiri, S., & Baaliouamer, A. (2011). Potentiality of plants as source of insecticide principles. Journal of Saudi Chemical Society, 18(6), 925-938. doi: 10.1016/j.jscs.2011.11.015
https://doi.org/10.1016/j.jscs.2011.11.0...
; Baskar & Ignacimuthu, 2012Baskar, K., & Ignacimuthu, S. (2012). Ovicidal activity of Atalantia monophylla (L) Correa against Helicoverpa armigera Hubner (Lepidoptera: Noctuidae). Journal of Agricultural Technology, 8(3), 861-868.; Baskar, Muthu, Raj, Kingsley, & Ignacimuthu, 2012Baskar, K., Muthu, C., Raj, G. A., Kingsley, S., & Ignacimuthu, S. (2012). Ovicidal activity of Atalantia monophylla (L) Correa against Spodoptera litura Fab. (Lepidoptera: Noctuidae). Asian Pacific Journal of Tropical Biomedicine, 2(12), 987-991. doi: 10.1016/S2221-1691(13)60011-8
https://doi.org/10.1016/S2221-1691(13)60...
; Krishnappa & Elumalai, 2012Krishnappa, K., & Elumalai, K. (2012). Larvicidal and ovicidal activities of Chloroxylon swietenia (Rutaceae) essential oils against Spodoptera litura (Lepidoptera: Noctuidae) and their chemical compositions. International Journal of Current Research in Life Sciences, 1(1), 3-7.; Cáceres & Kato, 2014Cáceres, A., & Kato, M. J. (2014). Importance of a multidisciplinary evaluation of Piper genus for development of new natural products in Latin America. International Journal of Phytocosmetics and Natural Ingredients, 1(3), 1-7. doi: 10.15171/ijpni.2014.04
https://doi.org/10.15171/ijpni.2014.04...
, Krinski & Massaroli, 2014Krinski, D., & Massaroli, A. (2014). Nymphicidal effect of vegetal extracts of Annona mucosa and Annona crassiflora (Magnoliales, Annonaceae) against rice stalk stink bug, Tibraca limbativentris (Hemiptera, Pentatomidae). Revista Brasileira de Fruticultura, 36(spe1), 217-224. doi: 10.1590/S0100-29452014000500026
https://doi.org/10.1590/S0100-2945201400...
; Krinski, Massaroli, & Machado, 2014Krinski, D., Massaroli, A., & Machado, M. (2014). Insecticidal potential of the Annonaceae family plants. Revista Brasileira de Fruticultura , 36(spe1), 225-242. doi: 10.1590/S0100-29452014000500027
https://doi.org/10.1590/S0100-2945201400...
; Backiyaraj et al., 2015Backiyaraj, M., Elumalai, A., Kasinathan, D., Mathivanan, T., Krishnappa K., & Elumalai K. (2015). Bioefficacy of Caesalpinia bonducella extracts against tobacco cutworm, Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae). Journal of Coastal Life Medicine, 3(5), 382-388. doi: 10.12980/JCLM.3.2015JCLM-2014-0058
https://doi.org/10.12980/JCLM.3.2015JCLM...
; Massaroli, Pereira, & Foerster; 2016Massarolli, A., Pereira, M. J. B., & Foerster, L. A. (2016). Annona mucosa Jacq. (Annonaceae): A promising phytoinsecticide for the control of Chrysodeixis includens (Walker) (Lepidoptera: Noctuidae). Journal of Entomology, 13(4), 132-140. doi: 10.3923/je.2016.132.140
https://doi.org/10.3923/je.2016.132.140...
; Costa, Santana, Oliveira, & Serrão, 2017Costa, M. S., Santana, A. E. G., Oliveira, L. L., & Serrão, J. E. (2017). Toxicity of squamocin on larvae, its predators and human cells. Pest Management Science, 73(3), 636-640. doi: 10.1002/ps.4350
https://doi.org/10.1002/ps.4350...
).

The effects of EOs from Piper species on egg hatching of A. gemmatalis were evaluated, and their respective major compounds were reported as alternative plant products with effectiveness to control insect pests. The literature reports that there are many phytochemical studies on several species of Piper, demonstrating the presence of a variety of secondary metabolites, including alkaloids, amides, propenilfenóis, lignins, neoligninas, terpenes, steroids, kawapirenos, chalcones, dihydrochalcones, flavones, and flavonones (Dyer & Palmer, 2004Dyer, L. A., & Palmer, A. D. N. (2004). Piper: A model genus for studies of Pytochemistry, Ecology, and Evolution. New York, US: Kluwer Academic Publisher.; Tchoumbougnang et al., 2009Tchoumbougnang, F., Jazet, D. P. M., Sameza, M. L., Fombotioh, N., Wouatsa, N. A. V., Amvam, Z. P. H., & Menut, C. (2009). Comparative essential oils composition and insecticidal effect of different tissues of Piper capense L., Piper guineense Schum. et Thonn., Piper nigrum L. and Piper umbellatum L. grown in Cameroon. African Journal of Biotechnology, 8(3), 424-431.).

Thus, the use of these oils can affect different functions in the insects, possibly due to the synergism that occurs in unique, natural and complex mixtures that may decrease the resistance of these organisms (Ntalli & Menkissoglu-Spiroudi, 2011Ntalli, N.G., & Menkissoglu-Spiroudi, U. (2011). Pesticides of botanical origin: a promising tool in plant protection. In M. Stoytcheva (Ed.), Pesticides-formulation, effects fate (p. 3-24). Croatia: InTech. doi: 10.5772/13776
https://doi.org/10.5772/13776...
).

Field and semi-field studies must be conducted to assess whether the same pattern of results obtained in laboratory studies is maintained in the field, both for A. gemmatalis and for other insects and food crops (Albuquerque, 1993Albuquerque, G. S. (1993). Planting time as a tactic to manage the small rice stink bug, Oebalus poecilus (Hemiptera, Pentatomidae), in Rio Grande do Sul, Brazil. Crop Protection, 12(8), 627-630. doi: 10.1016/0261-2194(93)90128-6
https://doi.org/10.1016/0261-2194(93)901...
; Krinski & Pelissari, 2012Krinski, D., & Pelissari, T. D. (2012). Occurrence of the stinkbug Edessa meditabunda F. (Pentatomidae) in differents cultivars of lettuce Lactuca sativa L. (Asteraceae). Bioscience Journal, 28(4), 654-659.; Krinski, Favetti, & Butnariu, 2012Krinski, D., Favetti, B. M., & Butnariu, A. R. (2012). First record of Edessa meditabunda (F.) on lettuce in Mato Grosso State, Brazil. Neotropical Entomology , 41(1), 79-80. doi: 10.1007/s13744-011-0012-x
https://doi.org/10.1007/s13744-011-0012-...
; Favetti, Krinski, & Butnariu, 2013Favetti, B. M., Krinski, D., & Butnariu, A. R. (2013). Egg parasitoids of Edessa meditabunda (Fabricius) (Pentatomidae) in lettuce crop. Revista Brasileira de Entomologia, 57(2), 236-237. doi: 10.1590/S0085-56262013005000014
https://doi.org/10.1590/S0085-5626201300...
; Krinski, 2013Krinski, D. (2013). First report of phytophagous stink bug in chicory crop. Ciência Rural , 43(1), 42-44.; Krinski, 2015Krinski, D. (2015). First report of Squash Vine Borer, Melittia cucurbitae (Harris, 1828) (Lepidoptera, Sessidae) in Brazil and South America: distribution extension and geographic distribution map. Check List, 11(3), 1625-1626. doi: 10.15560/11.3.1625
https://doi.org/10.15560/11.3.1625...
; Krinski & Godoy, 2015Krinski, D., & Godoy, A. F. (2015). First record of Helicoverpa armigera (Lepidoptera: Noctuidae) feeding on Plectranthus neochilus (Lamiales: Lamiaceae) in Brazil. Florida Entomologist, 98(4), 1238-1240. doi: 10.1653/024.098.0434
https://doi.org/10.1653/024.098.0434...
; Krinski, Foerster, & Grazia, 2015Krinski, D., Foerster, L. A., & Grazia, J. (2015). Hypatropis inermis (Hemiptera, Pentatomidae): First report on rice crop. Revista Brasileira de Entomologia , 59(1), 12-13. doi: 10.1016/j.rbe.2014.11.001
https://doi.org/10.1016/j.rbe.2014.11.00...
; Krinski & Foerster, 2017Krinski, D., & Foerster, L. A. (2017). Damage by Tibraca limbativentris Stål (Pentatomidae) to upland rice cultivated in Amazon rainforest region (Brazil) at different growth stages. Neotropical Entomology, 46(1), 107-114. doi: 10.1007/s13744-016-0435-5
https://doi.org/10.1007/s13744-016-0435-...
; Martins & Krinski, 2016Martins, A. L., & Krinski, D. (2016). First record of the parasitoid Gonatopus flavipes Olmi, 1984 (Hymenoptera, Dryinidae) in Brazil’s Amazon forest. Journal of Hymenoptera Research, 50(3), 191-196. doi: 10.3897/JHR.50.8897
https://doi.org/10.3897/JHR.50.8897...
).

Therefore, more studies are needed to search for new plant species with bioactive principles as well as for the chemical synthesis of effective ingredients and identification of the target sites of the toxic molecule. There is a lack of major commitment by the chemical industry to promote research and development of new biopesticides, based on the results obtained for plants considered bio-insecticides. Such studies have increased in recent years, however, without the concomitant development of new compounds for use in agriculture (Isman & Grieneisen, 2014Isman, M. B., & Grieneisen, M. L. (2014). Botanical insecticide research: many publications, limited useful data. Trends in Plant Science, 19(3), 140-145. doi: 10.1016/j.tplants.2013.11.005
https://doi.org/10.1016/j.tplants.2013.1...
).

Conclusion

The ovicidal activity observed in our study may indicate the potential toxicity of the main chemical components found in 16 Piper species tested and the possible synergistic action among these compounds. Based on the ovicidal effect and lethal concentrations, the species P. aduncum (PA), P. caldense (SP), P. fuligineum (SP), P. marginatum (PA), P. mollicomum (SP), and P. mosenii (PR) were the most promising for the management of A. gemmatalis in egg stage.

Thus, we noticed that the Piperaceae species showed to be toxic to A. gemmatalis eggs by reducing or inhibiting larval hatching of treated eggs.

Acknowledgements

The authors acknowledge the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for providing scholarship to the first author (CAPES - Proc.: 1468981/2015). We also thank the Dra. Micheline Carvalho-Silva of University of Brasilia (UnB) for the identification of the Piperaceae used in this research, Dra. Beatriz Helena Lameiro de Noronha Sales Maia of Federal University of Paraná (UFPR) for chromatographic analysis of the essential oils in the Laboratory of Natural Products and Chemical Ecology (LAPEQ), and Dr. Wanderley do Amaral for the collection of P. gaudichaudianum ‘chemotype 2’ and P. mosenii species (PR).

References

  • Adams, R. P. (2007). Identification of essential oil components by Gas Chromatography/Mass Spectroscopy Gruver, TX: Allured Publishing Corporation.
  • Albuquerque, G. S. (1993). Planting time as a tactic to manage the small rice stink bug, Oebalus poecilus (Hemiptera, Pentatomidae), in Rio Grande do Sul, Brazil. Crop Protection, 12(8), 627-630. doi: 10.1016/0261-2194(93)90128-6
    » https://doi.org/10.1016/0261-2194(93)90128-6
  • Backiyaraj, M., Elumalai, A., Kasinathan, D., Mathivanan, T., Krishnappa K., & Elumalai K. (2015). Bioefficacy of Caesalpinia bonducella extracts against tobacco cutworm, Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae). Journal of Coastal Life Medicine, 3(5), 382-388. doi: 10.12980/JCLM.3.2015JCLM-2014-0058
    » https://doi.org/10.12980/JCLM.3.2015JCLM-2014-0058
  • Barbosa, Q. P. S., Câmara, C. A. G., Ramos, C. S., Nascimento, D. C. O., Lima-Filho, J. V., & Guimarães, E. F. (2012). Chemical composition, circadian rhythm and antibacterial activity of essential oils of Piper divaricatum: a new source of safrole. Química Nova, 35(9), 1806-1808. doi: 10.1590/S0100-40422012000900019
    » https://doi.org/10.1590/S0100-40422012000900019
  • Baskar, K., & Ignacimuthu, S. (2012). Ovicidal activity of Atalantia monophylla (L) Correa against Helicoverpa armigera Hubner (Lepidoptera: Noctuidae). Journal of Agricultural Technology, 8(3), 861-868.
  • Baskar, K., Muthu, C., Raj, G. A., Kingsley, S., & Ignacimuthu, S. (2012). Ovicidal activity of Atalantia monophylla (L) Correa against Spodoptera litura Fab. (Lepidoptera: Noctuidae). Asian Pacific Journal of Tropical Biomedicine, 2(12), 987-991. doi: 10.1016/S2221-1691(13)60011-8
    » https://doi.org/10.1016/S2221-1691(13)60011-8
  • Bizzo, H. R., Lopes, D., Abdala, R. V., Pimentel, F. A., Souza, J. A., Pereira, M. V. G., ... Guimarães, E. F. (2001). Sarisan from leaves of Piper hispidinervum C. DC (Long pepper). Flavour and Fragrance Journal, 16(2), 113-115. doi: 10.1002/ffj.957
    » https://doi.org/10.1002/ffj.957
  • Brito, E. F., Baldin, E. L. L., Silva, R. C. M., Ribeiro, L. P., & Vendramim, J. D. (2015). Bioactivity of Piper extracts on Tuta absoluta (Lepidoptera: Gelechiidae) in tomato. Pesquisa Agropecuária Brasileira, 50(3), 196-202. doi: 10.1590/S0100-204X2015000300002
    » https://doi.org/10.1590/S0100-204X2015000300002
  • Cáceres, A., & Kato, M. J. (2014). Importance of a multidisciplinary evaluation of Piper genus for development of new natural products in Latin America. International Journal of Phytocosmetics and Natural Ingredients, 1(3), 1-7. doi: 10.15171/ijpni.2014.04
    » https://doi.org/10.15171/ijpni.2014.04
  • Carneiro, A. P., Pereira, M. J. B., & Galbiati, C. (2011). Biocidal effect of the Annona coriacea Mart 1841 on eggs and nymphs of the vector Rhodnius neglectus Lent 1954. Neotropical Biology and Conservation, 6(2), 131-136. doi: 10.4013/nbc.2011.62.08
    » https://doi.org/10.4013/nbc.2011.62.08
  • Castro, A. A., Corrêa, A. S., Legaspi, J. C., Guedes, R. N. C., Serrão, J. E., & Zanuncio, J. C. (2013). Survival and behavior of the insecticide-exposed predators Podisus nigrispinus and Supputius cincticeps (Heteroptera: Pentatomidae). Chemosphere, 93(6), 1043-1050. doi: 10.1016/j.chemosphere.2013.05.075
    » https://doi.org/10.1016/j.chemosphere.2013.05.075
  • Coitinho, R. L. B. C., Oliveira, J. V., Gondim-Júnior, M. G. C., & Câmara, C. A. G. (2010). Persistence of essential oils in stored maize submitted to infestation of maize weevil. Ciência Rural, 40(7), 1492-1496. doi: 10.1590/S0103-8478201000500 0109
    » https://doi.org/10.1590/S0103-8478201000500 0109
  • Costa, E. L. N., Silva, R. F. P., & Fiuza, L. M. (2004). Efeitos, aplicações e limitações de extratos de plantas inseticidas. Acta Biologica Leopoldensia, 26(2), 173-185.
  • Costa, M. S., Santana, A. E. G., Oliveira, L. L., & Serrão, J. E. (2017). Toxicity of squamocin on larvae, its predators and human cells. Pest Management Science, 73(3), 636-640. doi: 10.1002/ps.4350
    » https://doi.org/10.1002/ps.4350
  • Cruz, S. M., Cáceres, A., Álvarez, L. E., Apel, M. A., & Henriques, A. T. (2011). Chemical diversity of essential oils of 15 Piper species from Guatemala. Acta Horticulturae, 964(1), 39-46. doi: 10.17660/ActaHortic.2012.964.4
    » https://doi.org/10.17660/ActaHortic.2012.964.4
  • Dyer, L. A., & Palmer, A. D. N. (2004). Piper: A model genus for studies of Pytochemistry, Ecology, and Evolution. New York, US: Kluwer Academic Publisher.
  • Estrela, J. L. V., Fazolin, M., Catani, V., Alécio, M. R., & Lima, M. S. (2006). Toxicity of essential oils of Piper aduncum and Piper hispidinervum against Sitophilus zeamais Pesquisa Agropecuária Brasileira , 41(2), 217-222. doi: 10.1590/S0100-204X2006000200005
    » https://doi.org/10.1590/S0100-204X2006000200005
  • Favetti, B. M., Krinski, D., & Butnariu, A. R. (2013). Egg parasitoids of Edessa meditabunda (Fabricius) (Pentatomidae) in lettuce crop. Revista Brasileira de Entomologia, 57(2), 236-237. doi: 10.1590/S0085-56262013005000014
    » https://doi.org/10.1590/S0085-56262013005000014
  • Fazolin, M., Estrela, J. L. S., Catani, V., & Alécio, M. R. (2005). Toxicity of Piper aduncum oil to adults of Cerotoma tingomarianus Bechyné (Coleoptera: Chrysomelidae). Neotropical Entomology, 34(3), 485-489. doi: 10.1590/S1519-566X2005000300018
    » https://doi.org/10.1590/S1519-566X2005000300018
  • Fazolin, M., Estrela, J. L. S., Catani, V., Alécio, M. R., & Lima, M. S. (2007). Insecticidal properties of essential oils of Piper hispidinervum C. DC.; Piper aduncum L. and Tanaecium nocturnum (Barb. Rodr.) Bur. & K. Shum against Tenebrio molitor L., 1758. Ciência e Agrotecnologia, 31(1), 113-120. doi: 10.1590/S1413-70542007000100017
    » https://doi.org/10.1590/S1413-70542007000100017
  • Finney, D. J. (1971). Probit analysis Cambridge, UK: University Press.
  • Franco, A. A., Queiroz, M. S., Peres, A. R., Rosa, M. E, Campos, A. R., & Campos, Z. R. (2014). Preferência alimentar de Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) por cultivares de soja. Científica, 42(1), 32-38. doi: 10.15361/1984-5529.2014v42n1p32-38
    » https://doi.org/10.15361/1984-5529.2014v42n1p32-38
  • Isman, M. B. (2000). Plant essential oils for pest and disease management. Crop Protection , 19(8/10), 603-608. doi: 10.1016/S0261-2194(00)00079-X
    » https://doi.org/10.1016/S0261-2194(00)00079-X
  • Isman, M. B., & Grieneisen, M. L. (2014). Botanical insecticide research: many publications, limited useful data. Trends in Plant Science, 19(3), 140-145. doi: 10.1016/j.tplants.2013.11.005
    » https://doi.org/10.1016/j.tplants.2013.11.005
  • Koul, O., Walia, S., & Dhaliwal, G. S. (2008). Essential oils as green pesticides: Potential and constraints. Biopesticides International, 4(1), 63-84.
  • Krinski, D. (2013). First report of phytophagous stink bug in chicory crop. Ciência Rural , 43(1), 42-44.
  • Krinski, D. (2015). First report of Squash Vine Borer, Melittia cucurbitae (Harris, 1828) (Lepidoptera, Sessidae) in Brazil and South America: distribution extension and geographic distribution map. Check List, 11(3), 1625-1626. doi: 10.15560/11.3.1625
    » https://doi.org/10.15560/11.3.1625
  • Krinski, D., & Foerster, L. A. (2016). Toxicity of essential oils from leaves of five Piperaceae species in rice stalk stink bug eggs, Tibraca limbativentris (Hemiptera: Pentatomidae). Ciência e Agrotecnologia , 40(6), 155-167. doi: 10.1590/1413-70542016406021616
    » https://doi.org/10.1590/1413-70542016406021616
  • Krinski, D., & Foerster, L. A. (2017). Damage by Tibraca limbativentris Stål (Pentatomidae) to upland rice cultivated in Amazon rainforest region (Brazil) at different growth stages. Neotropical Entomology, 46(1), 107-114. doi: 10.1007/s13744-016-0435-5
    » https://doi.org/10.1007/s13744-016-0435-5
  • Krinski, D., & Massaroli, A. (2014). Nymphicidal effect of vegetal extracts of Annona mucosa and Annona crassiflora (Magnoliales, Annonaceae) against rice stalk stink bug, Tibraca limbativentris (Hemiptera, Pentatomidae). Revista Brasileira de Fruticultura, 36(spe1), 217-224. doi: 10.1590/S0100-29452014000500026
    » https://doi.org/10.1590/S0100-29452014000500026
  • Krinski, D., & Pelissari, T. D. (2012). Occurrence of the stinkbug Edessa meditabunda F. (Pentatomidae) in differents cultivars of lettuce Lactuca sativa L. (Asteraceae). Bioscience Journal, 28(4), 654-659.
  • Krinski, D., Favetti, B. M., & Butnariu, A. R. (2012). First record of Edessa meditabunda (F.) on lettuce in Mato Grosso State, Brazil. Neotropical Entomology , 41(1), 79-80. doi: 10.1007/s13744-011-0012-x
    » https://doi.org/10.1007/s13744-011-0012-x
  • Krinski, D., Foerster, L. A., & Grazia, J. (2015). Hypatropis inermis (Hemiptera, Pentatomidae): First report on rice crop. Revista Brasileira de Entomologia , 59(1), 12-13. doi: 10.1016/j.rbe.2014.11.001
    » https://doi.org/10.1016/j.rbe.2014.11.001
  • Krinski, D., & Godoy, A. F. (2015). First record of Helicoverpa armigera (Lepidoptera: Noctuidae) feeding on Plectranthus neochilus (Lamiales: Lamiaceae) in Brazil. Florida Entomologist, 98(4), 1238-1240. doi: 10.1653/024.098.0434
    » https://doi.org/10.1653/024.098.0434
  • Krinski, D., Massaroli, A., & Machado, M. (2014). Insecticidal potential of the Annonaceae family plants. Revista Brasileira de Fruticultura , 36(spe1), 225-242. doi: 10.1590/S0100-29452014000500027
    » https://doi.org/10.1590/S0100-29452014000500027
  • Krishnappa, K., & Elumalai, K. (2012). Larvicidal and ovicidal activities of Chloroxylon swietenia (Rutaceae) essential oils against Spodoptera litura (Lepidoptera: Noctuidae) and their chemical compositions. International Journal of Current Research in Life Sciences, 1(1), 3-7.
  • Laurent, D., Vilaseca, L. A., Chantraine, J. M., Ballivian, C., Saavedra, G., & Ibañez, R. (1997). Insecticidal activity of essential oils on Triatoma infestans Phytotherapy Research, 11(4), 283-290.
  • Loureiro, E. S., Moino-Junior, A., Arnosti, A., & Souza, G. C. (2002). Effect of chemical products used in lettuce and chrysanthemum on entomopathogenic fungi. Neotropical Entomology, 31(2), 263-269. doi: 10.1590/S1519-566X2002000200014
    » https://doi.org/10.1590/S1519-566X2002000200014
  • Lourenção, A. L., Reco, P. C., Braga, N. R., Valle, G. E., & Pinheiro, J. B. (2010). Yield of soybean genotypes under infestation of the velvetbean caterpillar and stink bugs. Neotropical Entomology, 39(2), 275-281. doi: 10.1590/S1519-566X2010000200020
    » https://doi.org/10.1590/S1519-566X2010000200020
  • Magrini, E. A., Botelho, P. S. M., & Silveira Neto, S. (1999). Biologia de Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Noctuidae) na cultura da soja. Scientia Agricola, 56(3), 547-555. https://dx.doi.org/10.1590/S0103-90161999000300006
    » https://dx.doi.org/10.1590/S0103-90161999000300006
  • Martins, A. L., & Krinski, D. (2016). First record of the parasitoid Gonatopus flavipes Olmi, 1984 (Hymenoptera, Dryinidae) in Brazil’s Amazon forest. Journal of Hymenoptera Research, 50(3), 191-196. doi: 10.3897/JHR.50.8897
    » https://doi.org/10.3897/JHR.50.8897
  • Massarolli, A., Pereira, M. J. B., & Foerster, L. A. (2016). Annona mucosa Jacq. (Annonaceae): A promising phytoinsecticide for the control of Chrysodeixis includens (Walker) (Lepidoptera: Noctuidae). Journal of Entomology, 13(4), 132-140. doi: 10.3923/je.2016.132.140
    » https://doi.org/10.3923/je.2016.132.140
  • McPherson, R. M., & Macrae, T. C. (2009). Evaluation of transgenic soybean exhibiting high expression of a synthetic Bacillus thuringiensis cry1A transgene for suppressing lepidopteran population densities and crop injury. Journal of Economic Entomology, 102(4), 1640-1648. doi: 10.1603/029.102.0431
    » https://doi.org/10.1603/029.102.0431
  • Misni, N., Othman, H., & Sulaiman, S. (2011). The effect of Piper aduncum Linn. (Family: Piperaceae) essential oil as aerosol spray against Aedes aegypti (L.) and Aedes albopictus Skuse. Tropical Biomedicine, 28(2), 249-258.
  • Morais, S. M., Facundo, V. A., Bertini, L. M., Cavalcanti, E. S. B., Anjos-Junior, J. F., Ferreira, S. A., ... Souza-Neto, M. A. (2007). Chemical composition and larvicidal activity of essential oils from Piper species. Biochemical Systematics and Ecology, 35(10), 670-675. doi: 10.1016/j.bse.2007.05.002
    » https://doi.org/10.1016/j.bse.2007.05.002
  • Moscardi, F., Bueno, A. F., Sosa-Gómez, D. R., Roggia, S., Hoffman-Campo, C. B., Pomari, A. F., ... Yano, S. A. C. (2012). Artrópodes que atacam as folhas da soja. In C. B. Hoffman-Campo, B. S. Corrêa-Ferreira, & F. Moscardi (Eds.), Soja: manejo integrado de insetos e outros artrópodes-praga (p. 213-309). Brasília, DF: Embrapa.
  • Mundina, M., Vila, R., Tomi, F., Tomas, X., Ciccio, J. F., Adzet, T., ... Canigueral, S. (2001). Composition and chemical polymorphism of the essential oils from Piper lanceaefolium Biochemical Systematics and Ecology , 29(7), 739-748.
  • Ntalli, N.G., & Menkissoglu-Spiroudi, U. (2011). Pesticides of botanical origin: a promising tool in plant protection. In M. Stoytcheva (Ed.), Pesticides-formulation, effects fate (p. 3-24). Croatia: InTech. doi: 10.5772/13776
    » https://doi.org/10.5772/13776
  • Panizzi, A. R., Oliveira, L. J., & Silva, J. J. (2004). Survivorship, larval development and pupal weight of Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae) feeding on potential leguminous host plants. Neotropical Entomology, 33(5), 563-567. doi: 10.1590/S1519-566X2004000500004
    » https://doi.org/10.1590/S1519-566X2004000500004
  • Petroski, R. J., & Stanley, D. W. (2009). Natural compounds for pest and weed control. Journal of Agricultural and Food Chemistry, 57(18), 8171-8179. doi: 10.1021/jf803828w
    » https://doi.org/10.1021/jf803828w
  • Picollo, M. I., & Zerba, E. (1997). Embryogenesis. In R. U. Carcavallo, G. L. Galíndez, J. Jurberg, & H. Lent (Eds.), Atlas dos vetores da Doença de Chagas nas Américas (p. 265-270). Rio de Janeiro, RJ: Fiocruz.
  • Piton, L. P., Turchen, L. M., Butnariu, A. R., & Pereira, M. J. B. (2014). Natural insecticide based-leaves extract of Piper aduncum (Piperaceae) in the control of stink bug brown soybean. Ciência Rural , 44(11), 1915-1920. doi: 10.1590/0103-8478cr20131277
    » https://doi.org/10.1590/0103-8478cr20131277
  • Qin, W., Huang, S., Li, C., Chen, S., & Peng, Z. (2010). Biological activity of the essential oil from the leaves of Piper sarmentosum Roxb. (Piperaceae) and its chemical constituents on Brontispa longissima (Gestro) (Coleoptera: Hispidae). Pesticide Biochemistry and Physiology, 96(3), 132-139. doi: 10.1016/j.pestbp.2009.10.006
    » https://doi.org/10.1016/j.pestbp.2009.10.006
  • Rahman, K., Bridges, W. C., Chapin, J. W., & Thomas, J. S. (2007). Three cornered alfalfa hopper (Hemiptera: Membracidae): seasonal occurrence, girdle distribution, and response to insecticide treatment on peanut in South Carolina Journal of Economic Entomology , 100(4), 1229-1240. doi: 10.1603/0022-0493(2007)100[1229:TAHHMS]2.0.CO;2
    » https://doi.org/10.1603/0022-0493(2007)100[1229:TAHHMS]2.0.CO;2
  • Rajapakse, R., & Senanayake, S. (1997). Effectiveness of seven vegetable oils against Callosobruchus chinensis L. in pigeon pea Cajanus cajan L. Entomon, 22(3/4), 179-183.
  • Rampelotti-Ferreira, F. T., Ferreira, A., Prando, H. F., Tcacenco, F. A., Grützmacher, A. D., & Martins, J. F. S. (2010). Selectivity of chemical pesticides used in rice irrigated crop at fungus Metarhizium anisopliae, microbial control agent of Tibraca limbativentris Ciência Rural , 40(4), 745-751. doi: 10.1590/S0103-84782010005000062
    » https://doi.org/10.1590/S0103-84782010005000062
  • Ribeiro, N. E., Camara, C., & Ramos, C. (2016). Toxicity of essential oils of Piper marginatum Jacq. against Tetranychus urticae Koch and Neoseiulus californicus (McGregor). Chilean Journal of Agricultural Research, 76(1), 71-76. doi: 10.4067/S0718-58392016000100010
    » https://doi.org/10.4067/S0718-58392016000100010
  • Riedl, H., Halaj, J., Kreowski, W., Hilton, R., & Westigard, P. (1995). Laboratory evaluation of mineral oils for control of Codling moth (Lepidoptera: Tortricidae). Journal of Economic Entomology , 88(1), 140-147. doi: 10.1093/jee/88.1.140
    » https://doi.org/10.1093/jee/88.1.140
  • Sanini, C., Massarolli, A., Krinski, D., Butnariu, A.R. (2017). Essential oil of spiked pepper, Piper aduncum L. (Piperaceae) for the control of caterpillar soybean looper, Chrysodeixis includens Walker (Lepidoptera: Noctuidae). Brazilian Journal of Botany, 40(2), 399-404. doi: 10.1007/s40415-017-0363-6
    » https://doi.org/10.1007/s40415-017-0363-6
  • Santana, H. T., Trindade, F. T. T, Stabeli, R. G., Silva, A. A. E, Militão, J. S. L. T., & Facundo, V. A. (2015). Essential oils of leaves of Piper species display larvicidal activity against the dengue vector, Aedes aegypti (Diptera: Culicidae). Revista Brasileira de Plantas Medicinais, 17(1), 105-111. doi: 10.1590/1983-084X/13_052
    » https://doi.org/10.1590/1983-084X/13_052
  • Santos, M. R. A., Lima, R. A., Silva, A. G., Teixeira, C. A. D., Alpirez, I. P. V., Facundo, & V. A. (2013). Chemical constituents and insecticidal activity of the crude acetonic extract of Piper alatabaccum Trel & Yuncker (Piperaceae) on Hypothenemus hampei Ferrari. Revista Brasileira de Plantas Medicinais , 15(3), 332-336. doi: 10.1590/S1516-05722013000300004
    » https://doi.org/10.1590/S1516-05722013000300004
  • Santos, M. R. A., Lima, R. A., Silva, A. G., Teixeira, C. A. D., Lima, D. K. S., & Polli, A. R. (2011). Facundo, V.A. Atividade inseticida do extrato de raiz de Piper hispidum H.B.K. (Piperaceae) sobre Hypothenemus hampei Ferrari. Revista Saúde e Pesquisa, 4(3), 335-340.
  • Santos, M. R. A., Silva, A. G., Lima, R. A., Lima, D. K. S., Sallet, L. A. P., Teixeira, C. A. D., ... Facundo, V. A. (2010). Inseticidal activity of Piper hispidum (Piperaceae) leaves extract on (Hypothenemus hampei). Brazilian Journal of Botany , 33(2), 319-324. doi: 10.1590/S0100-84042010000200012
    » https://doi.org/10.1590/S0100-84042010000200012
  • Santos, P. R. D., Moreira, D. L., Guimarães, E. F., & Kaplan, M. A. (2001). Essential oil analysis of 10 Piperaceae species from the Brazilian Atlantic forest. Phytochemistry, 58(4), 547-551.
  • Scott, I. M., Jensen, H. R., Philogène, B. J. R., & Arnason, J.T. (2008). A review of Piper spp. (Piperaceae) phytochemistry, insecticidal activity and mode of action. Phytochemistry Reviews, 7(1), 65-75. doi: 10.1007/s11101-006-9058-5
    » https://doi.org/10.1007/s11101-006-9058-5
  • Silva, W. C., Ribeiro, J. D., Souza, H. E. M., & Correa, R. S. (2007). Insecticidal activity of Piper aduncum L. (Piperaceae) on Aetalion sp. (Hemiptera: Aetalionidae), plague of economic importance in Amazon. Acta Amazonica, 37(2), 293-298. doi: 10.1590/S0044-59672007000200017
    » https://doi.org/10.1590/S0044-59672007000200017
  • Smith, E. H., & Salkeld, E. H. (1966). The use and action of ovicides. Annual Review of Entomology, 11(1), 331-368. doi: 10.1146/annurev.en.11.010166.001555
    » https://doi.org/10.1146/annurev.en.11.010166.001555
  • Smith, E., & Pearce, G. (1948). The mode of action of petroleoum oils as ovicides. Journal of Economic Entomology , 41(2), 173-180. doi: 10.1093/jee/41.2.173
    » https://doi.org/10.1093/jee/41.2.173
  • Souto, R. N., Harada, A. Y., Andrade, E. H., & Maia, J. G. (2012). Insecticidal activity of Piper essential oils from the Amazon against the fire ant Solenopsis saevissima (Smith) (Hymenoptera: Formicidae). Neotropical Entomology, 41(6), 510-517. doi: 10.1007/s13744-012-0080-6
    » https://doi.org/10.1007/s13744-012-0080-6
  • Tchoumbougnang, F., Jazet, D. P. M., Sameza, M. L., Fombotioh, N., Wouatsa, N. A. V., Amvam, Z. P. H., & Menut, C. (2009). Comparative essential oils composition and insecticidal effect of different tissues of Piper capense L., Piper guineense Schum. et Thonn., Piper nigrum L. and Piper umbellatum L. grown in Cameroon. African Journal of Biotechnology, 8(3), 424-431.
  • Tripathi, A. K., Upadhyay, S., Bhuiyan, M., & Bhattacharya., P. R. (2009). A review on prospects of essential oils as biopesticide in insect-pest management. Journal of Pharmacognosy and Phytotherapy, 1(5), 52-63.
  • Turchen, L. M., Piton, L. P., Dall'Oglio, E. L., Butnariu, A. R., & Pereira, M. J. B. (2016a). Toxicity of Piper aduncum (Piperaceae) essential oil against Euschistus heros (F.) (Hemiptera: Pentatomidae) and non-effect on egg parasitoids. Neotropical Entomology, 45(5), 604-611. doi: 10.1007/s13744-016-0409-7
    » https://doi.org/10.1007/s13744-016-0409-7
  • Turchen, L. M., Hunhoff, L. M., Paulo, M. V., Souza, C. P. R., & Pereira, M. J. B. (2016b). Potential phytoinsecticide of Annona mucosa (Jacq) (Annonaceae) in the control of brown stink bug. Bioscience Journal , 32(3), 581-587. doi: 10.14393/BJ-v32n3a2016-32803
    » https://doi.org/10.14393/BJ-v32n3a2016-32803
  • Van den Dool, H., & Kratz, P. D. (1963). A generalization of the retention index system including liner temperature programmed gas-liquid partition chromatography. Journal of Chromatography A, 11(1), 463-467. doi: 10.1016/S0021-9673(01)80947-X
    » https://doi.org/10.1016/S0021-9673(01)80947-X
  • Zoubiri, S., & Baaliouamer, A. (2011). Potentiality of plants as source of insecticide principles. Journal of Saudi Chemical Society, 18(6), 925-938. doi: 10.1016/j.jscs.2011.11.015
    » https://doi.org/10.1016/j.jscs.2011.11.015

Publication Dates

  • Publication in this collection
    2018

History

  • Received
    07 Feb 2017
  • Accepted
    04 Aug 2017
Editora da Universidade Estadual de Maringá - EDUEM Av. Colombo, 5790, bloco 40, 87020-900 - Maringá PR/ Brasil, Tel.: (55 44) 3011-4253, Fax: (55 44) 3011-1392 - Maringá - PR - Brazil
E-mail: actaagron@uem.br