Acessibilidade / Reportar erro

Metabolic alterations and X-ray chlorophyll fluorescence for the early detection of lead stress in castor bean (Ricinus communis) plants

Alterações metabólicas e fluorescência de clorofila para detecção precoce da toxicidade de chumbo em mamona (Ricinus communis)

ABSTRACT.

The remediation of lead-contaminated areas poses a serious challenge to soil chemists because Pb has low solubility in soil. Thus, Pb phytostabilization is considered to be an attractive remediation technique. Castor bean (Ricinus communis) is an oilseed crop known for its tolerance to heavy metals, and our aim was to assess the early detection of Pb toxicity and the effects of Pb on the biomass, photosynthetic pigments, antioxidative enzyme activities, and total soluble proteins of this plant. Specimens were grown in a nutrient solution spiked with Pb concentrations of 25, 50, 100, 150, or 200 µmol L-1. A control without Pb was also grown. The results show that X-ray chlorophyll fluorescence is an efficient technique for the early detection of photosystem II alterations driven by Pb toxicity. Castor bean was tolerant to the Pb doses tested; plants presented no changes in photosynthetic pigments, defense enzyme activities, or total soluble proteins in leaves. Given its ability to tolerate and accumulate Pb in its roots, castor bean is a viable alternative for phytostabilization and phytoattenuation of lead-contaminated areas. It is also economically attractive for industrial and biofuel oil production while being used for remediation.

Keywords:
tolerance; oilseed crop; photosystem II; Fr/FFr ratios

RESUMO.

A remediação de áreas contaminadas com Pb é uma prática relevante e difícil, pois este é um elemento praticamente imóvel no solo. A fitoestabilização é uma prática considerada ambientalmente atraente para manejo de áreas contaminadas por metais pesados. A mamona é uma espécie produtora de óleo não comestível e apresenta relativa tolerância a metais pesados. O presente trabalho avaliou a toxicidade por Pb utilizando a técnica da fluorescência de clorofila e as alterações provocadas pelo metal na produção de biomassa, produção de pigmentos fotossintéticos, na atividade de enzimas antioxidantes e concentração de proteínas solúveis total. Os resultados demonstraram que a fluorescência de clorofila é um indicador eficiente para detectar precocemente as alterações no fotossistema II causadas pela toxicidade por Pb. As doses de Pb não provocaram alterações nos pigmentos fotossintéticos, na atividade das enzimas antioxidantes e nas proteínas solúveis total nas folhas. A mamona, por sua tolerância e capacidade de acumular Pb nas raízes, pode ser uma alternativa ambiental e economicamente atraente para fitoestabilização e fitoatenuação de áreas contaminadas por Pb. A mamona apresenta adicional vantagem econômica decorrente da utilização do óleo para produção de bioenergia e fins industriais durante o processo de remediação.

Palavras-chave:
tolerância; oleaginosa; fotossistema II; razão Fr/FFr

Introduction

Environmental contamination by lead (Pb) could originate from anthropogenic sources such as sewage sludge, mining, metallurgy, or waste and pollutant emissions from various industrial activities. Once Pb enters the soil system, it can be transferred to various trophic levels, compromising environmental quality (Ren, Wang, & Zhang, 2006Ren, H. M., Wang, J. D., & Zhang, X. L. (2006). Assessment of soil lead exposure in children in Shenyang, China. Environmental Pollution, 144(1), 327‒325. doi: 327-335. 10.1016/j.envpol.2005.11.011
https://doi.org/327-335. 10.1016/j.envpo...
; Gamiño-Gutiérrez, González-Pérez, Gonsebatt, & Monroy-Fernández, 2013Gamiño-Gutiérrez, S. P., González-Pérez, C., Gonsebatt, M. E., & Monroy-Fernández, M. G. (2013). Arsenic and lead contamination in urban soils of Villa de la Paz (Mexico) affected by historical mine wastes and its effect on children’s health studied by micronucleated exfoliated cells assay. Environmental Geochemistry and Health, 35(1), 37-51. doi: 10.1007/S10653-012-9469-8
https://doi.org/10.1007/S10653-012-9469-...
; Li, Lin, Cheng, Duan, & Lei, 2015Li, P., Lin, C., Cheng, H., Duan, X., & Lei, K. (2015). Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicology and Environmental Safety, 113(C), 391-399. doi: 10.1016/j.ecoenv.2014.12.025
https://doi.org/10.1016/j.ecoenv.2014.12...
; Santos, Nascimento, Matschullat, & Olinda, 2016Santos, N. M., Nascimento, C. W. A., Matschullat, J., & Olinda, R. A. (2016). Assessment of the spatial distribution of metal(oid)s in soil around an abandoned Pb-smelter plant. Environmental Management, 59(3), 522-530. doi: 10.1007/s00267-016-0796-x
https://doi.org/10.1007/s00267-016-0796-...
).

In areas contaminated with Pb, its removal is an onerous and difficult task because it is a practically immobile element in soil, and it presents low translocation in most plants. Phytoremediation practices can be used to remediate impacted areas, and among these practices, phytostabilization can be an environmentally attractive alternative. Some researchers have demonstrated that castor bean is highly tolerant of heavy metals and metalloids (Costa et al., 2012Costa, E. T. S., Guilherme, L. R. G., Melo, E. E. C., Ribeiro, B. T., Inácio, E. S. B., Severiano, E. C., ... Hale, B. A. (2012). Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes. Biological Trace Element Research, 145(1), 93-100. doi: 10.1007/s12011-011-9164-0
https://doi.org/10.1007/s12011-011-9164-...
; Silva, Silva, Araújo, & Nascimento, 2017Silva, A. J., Nascimento, C. W. A., & Gouveia-Neto, A. S. (2017). Assessment of cadmium phytotoxicity alleviation by silicon using chlorophyll a fluorescence. Photosynthetica, 55(4), 648‒654. doi: 10.1007/s11099-016-0680-1
https://doi.org/10.1007/s11099-016-0680-...
). Because it is a non-food crop, it has great potential for remediation of contaminated areas, and it has the additional advantage of economic exploitation during the recovery period because it can be used for biofuel production (Berman, Nizri, & Wiesman, 2011Berman, P., Nizri, S., & Wiesman, Z. (2011). Castor oil biodiesel and its blends as alternative fuel. Biomass and Bioenergy. 35(7), 2861-2866. doi: 10.1016/j.biombioe.2011.03.024
https://doi.org/10.1016/j.biombioe.2011....
) with no restrictions on metal accumulation in the oil (González-Chávez, Ruız Olivares, Carrillo-González, Leal, 2015González-Chávez, M. C. A., Ruız Olivares, A., Carrillo-González, R., & Leal, E. R. (2015). Crude oil and bioproducts of castor bean (Ricinus communis L.) plants established naturally on metal mine tailings. International Journal of Environmental Science and Technology, 12(7), 2263-2272. doi: 10.1007/s13762-014-0622-z
https://doi.org/10.1007/s13762-014-0622-...
).

Lead accumulation and the mechanisms involved in its tolerance and toxicity can lead to distinct responses in various plant species. Tolerant plants can sequester and accumulate Pb in the cell wall and/or vacuole, thus restricting its toxicity (Kopittke et al., 2008Kopittke, P. M., Asher, C. J., Blamey, F. P. C., Auchterlonie, G. J., Guo, Y. N., & Menzies, N. W. (2008). Localization and chemical speciation of Pb in roots of signal Grass (Brachiaria decumbens) and rhodes grass (Chloris gayana). Environmental Science & Technology, 42(12), 4595-4599. doi: 10.1021/es702627c
https://doi.org/10.1021/es702627c...
; Meyers, Auchterlonie, Webb, Wood, 2008Meyers, D. E. R., Auchterlonie, G. J., Webb, R. I., & Wood, B. (2008). Uptake and localisation of lead in the root system of Brassica juncea. Environmental Pollution, 153(2), 323‒332. doi: 10.1016/j.envpol.2007.08.029
https://doi.org/10.1016/j.envpol.2007.08...
; Chandra & Kumar, 2017Chandra, R., & Kumar, V. (2017). Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilised distillery sludge as a prospective tool for in situ phytoremediation of industrial waste. Environmental Science Pollution Research, 24(3), 2605-2619. doi: 10.1007/s11356-016-8022-1
https://doi.org/10.1007/s11356-016-8022-...
). In addition, antioxidant enzyme activity in plants cultivated under Pb stress is reportedly a relevant defense mechanism against this element (Kumar, Prasad, & Sytar, 2012Kumar, A., Prasad, M. N. V., & Sytar, O. (2012). Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere, 89(9), 1056‒1065. doi: 10.1016/j.chemosphere.2013.05.070
https://doi.org/10.1016/j.chemosphere.20...
; Hamdouche, Aoumeur, Djediai, Slimani, & Aoues, 2012Hamadouche, N. A., Aoumeur, H., Djediai, S., Slimani, M., & Aoues, A. (2012). Phytoremediation potential of Raphanus sativus L. for lead contaminated soil. Acta Biologica Szegediensis, 56(1), 43‒49.). On the other hand, plants susceptible to Pb toxicity exhibit visual symptoms such as reduced dry matter production (Karimi, Khanahmadi, & Moradi, 2012Karimi, L. N., Khanahmadi, M., & Moradi, B. (2012). Accumulation and phytotoxicity of lead in Cynara scolymus. Indian Journal of Science & Technolology, 5(11), 3634‒3641.), chlorosis followed by necrosis and decreased assimilation of nitrogen (Hamdouche et al., 2012Hamadouche, N. A., Aoumeur, H., Djediai, S., Slimani, M., & Aoues, A. (2012). Phytoremediation potential of Raphanus sativus L. for lead contaminated soil. Acta Biologica Szegediensis, 56(1), 43‒49.; Alkhatib et al., 2011Alkhatib, R., Maruthavanan, J., Ghoshroy, S., Steiner, R., Terling, T., & Creamer, R. (2011). Physiological and ultrastructural effects of lead on tobacco. Biologia Plantarum, 56(4) 711‒716. doi: 10.1007/s10535-012-0241-9
https://doi.org/10.1007/s10535-012-0241-...
), nutritional imbalance (Sinha, Dube, Srivastava, & Chatterjee, 2006Sinha, P., Dube, B. K., Srivastava, P., & Chatterjee, C. (2006). Alteration in uptake and translocation of essential nutrients in cabbage by excess lead. Chemosphere, 65(4), 651‒656. doi: 10.1016/j.chemosphere.2006.01.68
https://doi.org/10.1016/j.chemosphere.20...
), slower photosynthetic rate, and lower CO2 concentration in leaves.

Aside from investigations of the toxic effects of Pb on plant tissues (visual symptoms; nutritional imbalance; and morphological, metabolic, and physiological disorders), techniques allowing the identification of toxicity or tolerance in early-stage plants are of great importance for monitoring environmental contamination. Chlorophyll fluorescence uses information about the photochemical activity of plants, allowing the early detection of environmental stress (Corcoll, Bonet, Leira, & Guasch 2011Corcoll, N., Bonet, B., Leira, M., & Guasch, H. (2011). Chl-a fluorescence parameters as biomarkers of metal toxicity in fluvial biofilms: an experimental study. Hydrobiologia, 673(1), 119-136. doi: 10.1007/s10750-011-0763-8
https://doi.org/10.1007/s10750-011-0763-...
, Marques, Nascimento, Silva, Gouveia-Neto, & Silva, 2017Marques, M. C., Nascimento, C. W. A, Silva, A. J., & Gouveia-Neto, A. S. (2017) Tolerance of an energy crop (Jatropha curcas L.) to zinc and lead assessed by chlorophyll fluorescence and enzyme activity. South African Journal of Botany, 112, 275-282. doi: 10.1016/j.sajb.2017.06.009
https://doi.org/doi: 10.1016/j.sajb.2017...
; Silva, Nascimento, & Gouveia-Neto, 2017Silva, W. R., Silva, F. B. V., Araújo, P. R. M., & Nascimento, C. W. A. (2017). Assessing human health risks and strategies for phytoremediation in soils contaminated with As, Cd, Pb, and Zn by slag disposal. Ecotoxicology and Environmental Safety, 144, 522-530. doi: 10.10.16/j.ecoenv.2017.06.068
https://doi.org/10.10.16/j.ecoenv.2017.0...
). This is possible because the chlorophyll molecule is fluorescent, and through photon dissipation, changes in electron transfer at the level of chloroplast membranes can be detected (Lin, Liu, Lin, Pan, & Peng, 2007Lin, Z., Liu, N., Lin, G., Pan, X., & Peng, C. (2007). Stress-induced alteration of chlorophyll fluorescence polarization and spectrum in leaves of Alocasia macrorrhiza L. schott. Journal of Fluorescence, 17(6), 663‒669. doi: org/10.1007/s10895-007-0213-1
https://doi.org/10.1007/s10895-007-0213-...
). Another significant advantage of this technique is that it is sensitive to photosynthetic cell membrane disorders but does not destroy plant tissue (Cherif et al., 2010Cherif, J., Derbel, N., Nakkach, M., Bergmanm, H. V., Jemal, F., & Lakhdar, Z. B. (2010). Analysis of in vivo chorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress. Journal of Photochemistry Photobiology B: Biology, 101(3), 332‒339. doi: org/10.1016/jjphotobiol.2010.08.005
https://doi.org/10.1016/jjphotobiol.2010...
; Silva, Nascimento, Gouveia-Neto, & Silva-Jr., 2015Silva, A. J., Nascimento, C. W., Gouveia-Neto, A. S., & Silva Jr., E. A. (2015). Effects of silicon on alleviating arsenic toxicity in maize plants. Revista Brasileira de Ciência do Solo, 39(1), 289‒296. doi: 10.1590/01000683rbcs20150176
https://doi.org/10.1590/01000683rbcs2015...
; Marques & Nascimento, 2013Marques, M. C., & Nascimento, C. W. A. (2013). Analysis of chlorophyll fluorescence spectra for the monitoring of Cd toxicity in a bio-energy crop (Jatropha curcas). Journal of Photochemistry and Photobiology B: Biology, 127(C), 88-93. doi: 10.1016/j.jphotobiol.2013.07.016
https://doi.org/10.1016/j.jphotobiol.201...
).

In this study, we evaluated the toxicity of Pb using the non-destructive chlorophyll fluorescence technique and evaluated changes in the production of biomass and photosynthetic pigments, the activity of antioxidant enzymes, and the concentration of total soluble proteins. We aimed to use this species in phytostabilization or phytoattenuation remediation programs.

Material and method

Castor bean seeds (Ricinus communis cv. BRS Energia) were germinated in trays containing vermiculite moistened with a 0.67 mmol L-1 Ca solution (Ca(NO3)2.4H2O) (Vilela & Anghinoni, 1984Vilela, L., & Anghinoni, I. (1984). Morfologia do sistema radicular e cinética da absorção de fósforo em cultivares de sojas afetadas pela interação alumínio-fósforo. Revista Brasileira de Ciência do Solo, 8(1), 91‒96. ). Twenty-eight days after sowing, the seedlings were transferred to plastic pots with 6 L of nutrient solution, which was replaced weekly (Hoagland & Arnon, 1950Hoagland, D. R., & Arnon, D. L. (1950). The water culture methods for growing plants without soil. Berkeley, US: University of California.), containing: 105.05 mg L-1 N, 15.5 mg L-1 P, 117.3 mg L-1 K, 100.2 mg L-1 Ca, 24.3 mg L-1 Mg, 32.1 mg L-1 S, 0.65 mg L-1 Cl, 0.5 mg L-1 Mn, 0.05 mg L-1 Zn, 0.02 mg L-1 Cu, 0.5 mg L-1 B, 0.01 mg L-1 Mo, and 7.35 mg L-1 Fe. Deionized water was added daily to replace the water lost by evapotranspiration. The pH was adjusted with H2SO4 or NaOH 1 mmol L-1 to values close to 5.6 (+/- 0.2) whenever necessary. Doses of 25, 50, 100, 150, and 200 μmol L-1 Pb [(CH3COO)2Pb3H2O] were added to the solution after 14 days of culture. The control did not contain added Pb.

The plants were kept in a greenhouse for 28 days once Pb was added. The plants were collected at the end of the growth period. Leaves, stems and roots were separated, dried and weighed to obtain their respective biomasses. Digestion of powdered plant material was carried out in a microwave oven. In the digestion extract, Pb concentrations were determined by atomic absorption spectrophotometry (Perkin Elmer, AAnalyst 800).

Chlorophyll fluorescence measurements were carried out with a UV LED light, with red (685 ηm) and far-red (735 ηm) peaks obtained by the appliance’s software (Ocean Optics SpectraSuite). Four evaluations were performed throughout the experiment. The first was carried out before metal addition, and the last was carried out the day before plant collection. These evaluations were performed at night, after leaving the plants in the dark for 20 min. in order to ensure the inactivation of electron transport in photosynthesis. Analyses were carried out using the second pair of leaves below the apical meristem, with four readings per plant submitted to light emission for 10 seconds.

The spectra were fitted to two Gaussian curves corresponding to 685 ηm and 735 ηm. The peak height of the fluorescence intensity F685/F735 ratio (Fr/FFr) was calculated from the fitted curve for Pb concentration and used to infer the effect of the element on the biosynthesis of chlorophyll and PSII via Origin 6.0 software.

One sample per plant was collected from the same pair of leaves used in the evaluation of chlorophyll fluorescence for the analyses of photosynthetic pigments. The determination of chlorophylls a and b as well as carotenoids was carried out using extraction with 80% acetone (Arnon, 1949Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant physiology, 24(1), 1-15. ). The equation suggested by Lichtenthaler (1987Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In L. Packer, & R. Douce (Ed.), Methods in enzymology (p. 350‒382). NewYork, US: Academic Press. ) was used for carotenoid determination.

The crude extract used in the determination of enzyme activity and protein content was obtained by mixing 200 mg of plant material in a mortar with liquid N2 and 2.0 mL of potassium phosphate buffer (100 mmol L-1, pH 7.0). The homogenate was centrifuged at 14,000 g for 25 min. at 4°C. The supernatant was collected and stored in a freezer at 80°C. Ascorbate peroxidase (Nakano & Asada, 1981Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specifc peroxidase in spinach chloroplasts. Plant & Cell Physiology, 22(5), 1068‒1072. doi: 10.1093/oxfordjournals.pcp.a076232
https://doi.org/10.1093/oxfordjournals.p...
), catalase (Havir & McHale, 1987Havir, E. A., & Mchale, N. A. (1987). Biochemical and development characterization of multiples forms of catalase in tabocco leaves. Plant Physiology, 84(2), 450‒455. doi: 10.1104/pp.84.2.450.
https://doi.org/10.1104/pp.84.2.450....
), polyphenoloxidase (Kar & Mishra, 1976Kar, M., & Mishra, D. (1976). Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology, 57(11), 315‒319. doi: 10.1104/pp.57.2.315
https://doi.org/10.1104/pp.57.2.315...
), and total soluble protein content (Bradford, 1976Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 729(1-2), 248‒254. doi: 10.1016/0003-2697(76)90527-3
https://doi.org/10.1016/0003-2697(76)905...
) activities were determined by spectrophotometry.

The experiments were conducted in a randomized block design with three replicates. Data were analyzed using ANOVA and regression analysis.

Result and discussion

Biomass production and phytotoxicity symptoms

During the growing period, the dry matter yield from the leaves, stems, and roots did not change with the dose of Pb in the nutrient solution (Table 1). Some researchers have shown that Pb toxicity causes a reduced transpiration rate and inhibition of the photosynthetic rate, resulting in visual changes such as slowed growth, foliar chlorosis, leaf wilt, and fruit deformation (Zhao, Ye, & Zheng, 2011Zhao, S., Ye, X., & Zheng, J. (2011). Lead-induced changes in plant morphology, cell ultrastructure, growth and yields of tomato. African Journal of Biotechnology, 10(50), 10116‒10124. doi: 10.5897/AJB11.627
https://doi.org/10.5897/AJB11.627...
; Lou, Luo, Hu, Li, & Fu, 2012Lou, Y., Luo, H., Hu, T., Li, H., & Fu, J. (2012). Toxic effects, uptake, and translocation of Cd and Pb in perennial ryegrass. Ecotoxicology, 22(2), 207‒2014. doi: 10.1007/s10646-012-1017-x
https://doi.org/10.1007/s10646-012-1017-...
). However, our castor bean plants did not exhibit any of these symptoms, suggesting they are tolerant to the metal. Differences between cultivars could result in lesser or greater susceptibility to heavy metal stress (Romeiro et al., 2006Romeiro, S., Lagôa, A. M. M. A., Furlani, P. R., Abreu, C. A., Abreu, M. F., & Erismann, N. M. (2006). Lead uptake and tolerance of Ricinus communis L. Brazilian Journal of Plant Physiology, 18(4), 483‒489. doi: 10.1590/S1677-04202006000400006
https://doi.org/10.1590/S1677-0420200600...
; Niu, Sun, & Sun, 2009Niu, Z., Sun, L., & Sun, T. (2009). Response of root and aerial biomass to phytoextraction of Cd and Pb by sunflower, castor bean, alfalfa and mustard. Advances in Environmental Biology, 3(3), 255‒262. ; Costa et al., 2012Costa, E. T. S., Guilherme, L. R. G., Melo, E. E. C., Ribeiro, B. T., Inácio, E. S. B., Severiano, E. C., ... Hale, B. A. (2012). Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes. Biological Trace Element Research, 145(1), 93-100. doi: 10.1007/s12011-011-9164-0
https://doi.org/10.1007/s12011-011-9164-...
).

Table 1
Biomass of castor bean plants grown under different doses of Pb in the nutrient solution. Values between parentheses refer to standard deviation of the mean.

Pb distribution in plants

Greater Pb doses were accompanied by increased Pb concentrations in the leaves and roots (Figure 1). From the control to the highest Pb dose (200 μmol L-1), the increase was 52% in the leaves and 48572% in the roots, similar to what was found by Romeiro et al. (2006Romeiro, S., Lagôa, A. M. M. A., Furlani, P. R., Abreu, C. A., Abreu, M. F., & Erismann, N. M. (2006). Lead uptake and tolerance of Ricinus communis L. Brazilian Journal of Plant Physiology, 18(4), 483‒489. doi: 10.1590/S1677-04202006000400006
https://doi.org/10.1590/S1677-0420200600...
). In that case, accumulation was approximately 500 mg kg-1 and 24,000 mg kg-1 in the leaves and roots, respectively, at a Pb dose of 200 μmol L-1. Costa et al. (2012Costa, E. T. S., Guilherme, L. R. G., Melo, E. E. C., Ribeiro, B. T., Inácio, E. S. B., Severiano, E. C., ... Hale, B. A. (2012). Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes. Biological Trace Element Research, 145(1), 93-100. doi: 10.1007/s12011-011-9164-0
https://doi.org/10.1007/s12011-011-9164-...
) verified that the distribution of metal is 1.4% in the leaves and 98.6% in the roots in castor bean plants grown with a Pb dose of 96 mg L-1.

We found that when dosing with Pb at 200 μmol L-1, the roots contained 382 times the amount in the leaves. Metal sequestration in the vacuoles of the root cells is a defense mechanism of plants that prevents the absorbed metal from being translocated to the aerial areas (Kumar et al., 2012Kumar, A., Prasad, M. N. V., & Sytar, O. (2012). Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere, 89(9), 1056‒1065. doi: 10.1016/j.chemosphere.2013.05.070
https://doi.org/10.1016/j.chemosphere.20...
). The ABC transporter gene is one responsible for detoxifying Pb in the roots of plants (Pal, Banerjee, & Kundu, 2013Pal, R., Banerjee, A., & Kundu, R. (2013). Responses of castor bean (Ricinus communis L.) to lead stress. Proceedings of the National Academy Sciences India Section B Biological Sciences, 83(4), 643-650. doi: 10.1007/s40011-013-0180-z
https://doi.org/10.1007/s40011-013-0180-...
). The highest accumulation (1,312 mg kg-1 of Pb) in the roots of plants grown with the 200 μmol L-1 dose of Pb demonstrates the defense strategy in which the roots contribute to the plant’s tolerance when high doses of this metal are in the soil. This is also an outstanding, advantageous feature for the phytostabilization or phytoattenuation of lead-contaminated areas. The benefit of vegetal coverage is accompanied by the advantage of a natural barrier, preventing the metal from being transported by erosion, leaching, or runoff (Melo, Costa, Guilherme, Faquin, & Nascimento, 2009Melo, E. E. C., Costa, E. T. S., Guilherme, L. R. G., Faquin, V., & Nascimento, C. W. A. (2009). Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. Journal of Hazardous Materials, 168(1), 479-483. doi: 10.1016/j.jhazmat.2009.02.048
https://doi.org/10.1016/j.jhazmat.2009.0...
; Andreazza, Bortolon, Pieniz, & Camargo, 2013Andreazza, R., Bortolon, L., Pieniz, S., & Camargo, F. A. O. (2013). Use of High-Yielding Bioenergy Plant Castor Bean (Ricinus communis L.) as a Potential Phytoremediator for Copper-Contaminated Soils. Pedosphere, 23(5), 651-661. doi: 10.1016/S1002-0160(13)60057-0
https://doi.org/10.1016/S1002-0160(13)60...
; Pandey, 2013Pandey, V. C. (2013). Suitability of Ricinus communis L. cultivation for phytoremediation of fly ash disposal sites. Ecolological Engineering, 57, 336- 341. doi: 10.1016/j.ecoleng.2013.04.054
https://doi.org/10.1016/j.ecoleng.2013.0...
).

Figure 1
Pb levels in leaves (a) and roots (b) of castor bean plants grown under different Pb doses in the nutrient solution. * and **: significant at the 5% and 1% probability levels, respectively.

Some researchers have shown that Pb accumulation in the cells of roots can be observed in several cellular components, inducing tolerance or indirectly causing disturbances in the photosynthetic, nutritional, and metabolic apparatuses of plants. Piechalak, Tomaszewska, Baralkiewicz, and Małecka (2002Piechalak, A., Tomaszewska, B., Baralkiewicz, D., & Małecka, A. (2002). Accumulation and detoxification of lead ions in legumes. Phytochemistry, 60(2), 153‒162. doi: 10.1016/s0031-9422(02)00067-5
https://doi.org/10.1016/s0031-9422(02)00...
), evaluating the accumulation and distribution of Pb in fava (Vicia faba), pea (Pisum sativum), and bean (Phaseolus vulgaris) plants, found that after a 96-h exposure to a dose of 0.001 mol L-1, only 5% to 10% of the accumulated metal was translocated to the shoots, and the greatest Pb content, found in the roots, was located in cell walls and nuclei. These authors also noted that if 1% of the Pb accumulated in the cytoplasm of the root cells, then it was sufficient to activate the plant’s defense mechanism and raise the production of phytochelatins. Samardakiewicz and Woźny (2000Samardakiewicz, S., & Woźny, A. (2000). The distribution of lead in duckweed (Lemna minor L.) root tip. Plant and Soil, 226(1), 107‒111.), evaluating the accumulation of Pb in the root cells of an aquatic plant (Lemna minor L.), verified that after 1h of exposure to the metal (at 15 μmol L-1), greater accumulation could be found in the cell walls, vesicles, and small vacuoles. Kopittke et al. (2008Kopittke, P. M., Asher, C. J., Blamey, F. P. C., Auchterlonie, G. J., Guo, Y. N., & Menzies, N. W. (2008). Localization and chemical speciation of Pb in roots of signal Grass (Brachiaria decumbens) and rhodes grass (Chloris gayana). Environmental Science & Technology, 42(12), 4595-4599. doi: 10.1021/es702627c
https://doi.org/10.1021/es702627c...
), evaluating Pb accumulation in the root cells of Brachiaria (Brachiaria decumbens Stapf) plants and Rhodes grass (Chloris gayana Knuth), found the initial presence of the metal in the cytoplasm and cortical cells when the dose was no more than 20 μmol L-1 and 5.5 μmol L-1, respectively. A greater part was sequestered by the vacuole in the form of pyromorphite [Pb5 (PO4) 3Cl]. These authors suggested that the presence of pyromorphite in the Golgi complex is an additional defense mechanism against Pb accumulation in the cell wall of the roots of Brachiaria plants, a behavior not observed for Rhodes grass, a plant that is sensitive to Pb. Meyers et al. (2008Meyers, D. E. R., Auchterlonie, G. J., Webb, R. I., & Wood, B. (2008). Uptake and localisation of lead in the root system of Brassica juncea. Environmental Pollution, 153(2), 323‒332. doi: 10.1016/j.envpol.2007.08.029
https://doi.org/10.1016/j.envpol.2007.08...
), evaluating the distribution of Pb in the root system of Indian mustard (Brassica juncea), verified the deposition of this metal in extracellular compartments, suggesting that this complexation occurred as a result of Pb binding to anionic sites. Małecka, Piechalak, Morkunas, and Tomaszewska (2008Małecka, A., Piechalak, A., Morkunas, I., & Tomaszewska, B. (2008). Accumulation of lead in root cells of Pisum sativum. Acta Physiologiae Plantarum, 30(5), 629‒637. doi: 10.1007/s11738-008-0159-1
https://doi.org/10.1007/s11738-008-0159-...
), studying the defense mechanism of pea plants (Pisum sativum) under conditions of Pb toxicity, verified changes in root mitochondria treated with Pb at a dose of 0.5 or 1.0 mmol L-1. They found reductions in mitochondrial crests, increases in mitochondrial volume, changes in mitochondrial shapes, and the presence of granules within peroxisomes and mitochondria when Pb was present. The authors state that Pb toxicity is relevant in these non-photosynthetic organelles because they are responsible for ATP generation and the storage of antioxidant enzymes, which is performed in the peroxisomes (Mhamdi, Noctor, & Baker, 2012Mhamdi, A., Noctor, G., & Baker, A. (2012). Plant catalases: Peroxisomal redox guardians. Archives of Biochemistry and Biophysics, 525(2), 181-194. doi: 10.1016/j.abb.2012.04.015
https://doi.org/10.1016/j.abb.2012.04.01...
).

Chlorophyll fluorescence

Differences in the absorption peaks in chlorophyll fluorescence spectra were observed (Figure 2a). The lowest fluorescence reabsorption was observed in plants grown at the greatest Pb dose (Figure 2b), demonstrating that chlorophyll fluorescence is sensitive enough to detect changes in photosystem II (PSII) caused by Pb toxicity in plants.

The Fr/FFr ratio shows that Pb doses promoted temporal changes in photosynthetic biosynthesis, and these were detected after as few as 10 days of cultivation and became more intense 18 days after the addition of the metal (Figure 3a). It is interesting to note that the increase in chlorophyll fluorescence ratios corroborated the Pb levels in the leaves (Figure 3b), indicating that the plants presented stress in the photosynthetic apparatus even without displaying visual Pb toxicity symptoms. The stress resulting from heavy metals causes poorer efficiency in the PSII reaction, triggering inhibition in the phosphorylation reaction (Romanowska, Wasilewska, Fristedt, Vener, & Zienkiewicz, 2012Romanowska, E., Wasilewska,W., Fristedt, R., Vener, A. V., & Zienkiewicz, M. (2012). Phosphorylation of PSII proteins in maize thylakoids in the presence of Pb ions. Journal of Plant Physiology, 169(4) 345-352. doi: 10.1016/j.jplph.2011.10.006
https://doi.org/10.1016/j.jplph.2011.10....
) at the association of thylakoids with polyamine molecules, in turn inducing a process of re-adaptation in the photosynthetic apparatus at the molecular level (Abreu, Coscione, Pires, & Paz-Ferreiro, 2012Abreu, C. A., Coscione, A. R., Pires, A. M., & Paz-Ferreiro, J. (2012). Phytoremediation of a soil contaminated by heavy metals and boron using castor oil plants and organic matter amendments. Journal of Geochemical Exploration, 123, 3-7. doi: 10.1016/j.gexplo.2012.04.013
https://doi.org/doi: 10.1016/j.gexplo.20...
).

Figure 2
Gaussian curve-fitted chlorophyll fluorescence spectra of the control and Pb treated castor bean plants leaves (a) and Maximum intensity of the chlorophyll fluorescence for the highest doses of Pb in the nutrient solution (b).

Measuring chlorophyll fluorescence is non-destructive, and it can evaluate changes in chloroplast membranes and elucidate damage in the photosynthetic apparatuses of plants (Krause & Weis, 1991Krause, G. H., & Weis, E. (1991). Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 313‒49. doi: 10.1146/annurev.pp.42.060191.001525
https://doi.org/10.1146/annurev.pp.42.06...
). The values for the Fv/Fm ratio (maximum fluorescence / maximum fluorescence emission variation) and Fr/FFr ratio (maximum peak in the red / peak region in the red-distal region), obtained by measuring the chlorophyll fluorescence bands, can be used to detect stress in PSII. A decline in chlorophyll concentration indicates an abnormal condition in the photon metabolism and, consequently, a reduction in the Fv/Fm ratio. However, the Fr/FFr ratio increases when PSII is disturbed. The Fv/Fm and Fr/FFr ratios demonstrate opposite behaviors under normal photosynthetic conditions (Marques & Nascimento, 2013Marques, M. C., & Nascimento, C. W. A. (2013). Analysis of chlorophyll fluorescence spectra for the monitoring of Cd toxicity in a bio-energy crop (Jatropha curcas). Journal of Photochemistry and Photobiology B: Biology, 127(C), 88-93. doi: 10.1016/j.jphotobiol.2013.07.016
https://doi.org/10.1016/j.jphotobiol.201...
; Silva et al., 2015Silva, A. J., Nascimento, C. W., Gouveia-Neto, A. S., & Silva Jr., E. A. (2015). Effects of silicon on alleviating arsenic toxicity in maize plants. Revista Brasileira de Ciência do Solo, 39(1), 289‒296. doi: 10.1590/01000683rbcs20150176
https://doi.org/10.1590/01000683rbcs2015...
).

Figure 3
Ratio of chlorophyll fluorescence spectra as a function of the cultivation time: red = 680-700 nm and far-red = 730-740 nm (Fr/FFr) (a). Ratio of chlorophyll fluorescence spectra at 28 days in castor bean plants grown under different Pb doses in the nutrient solution, referring to the red and farred (Fr/FFr) readings and Pb content in the leaves (b).

Use of the Fr/FFr ratio allowed detection of changes in PSII when plants showed no visual symptoms of toxicity. Therefore, chlorophyll fluorescence is a useful tool for monitoring Pb toxicity in castor bean plants, corroborating results found in studies of Cd toxicity (Silva, Nascimento, Gouveia-Neto, & Silva-Jr., 2012Silva, A. J., Nascimento, C. W. A., Gouveia-Neto, A. S., & Silva-Jr., E. A. (2012). LED-Induced chlorophyll fluorescence spectral analysis for the early detection and monitoring of cadmium toxicity in maize plants. Water Air & Soil Pollution, 223(6), 3527‒3533. doi: 10.1007/s11270-012-1130-8
https://doi.org/10.1007/s11270-012-1130-...
; Marques & Nascimento, 2013Marques, M. C., & Nascimento, C. W. A. (2013). Analysis of chlorophyll fluorescence spectra for the monitoring of Cd toxicity in a bio-energy crop (Jatropha curcas). Journal of Photochemistry and Photobiology B: Biology, 127(C), 88-93. doi: 10.1016/j.jphotobiol.2013.07.016
https://doi.org/10.1016/j.jphotobiol.201...
; Silva et al., 2017Silva, W. R., Silva, F. B. V., Araújo, P. R. M., & Nascimento, C. W. A. (2017). Assessing human health risks and strategies for phytoremediation in soils contaminated with As, Cd, Pb, and Zn by slag disposal. Ecotoxicology and Environmental Safety, 144, 522-530. doi: 10.10.16/j.ecoenv.2017.06.068
https://doi.org/10.10.16/j.ecoenv.2017.0...
), As toxicity (Stoeva, Berova, & Zlatev, 2004Stoeva, N., Berova, M., & Zlatev, Z. (2004). Physiological response of Maize to arseni contamination. Biologia Plantarum, 47(3), 449‒452.; (Silva et al., 2015Silva, A. J., Nascimento, C. W., Gouveia-Neto, A. S., & Silva Jr., E. A. (2015). Effects of silicon on alleviating arsenic toxicity in maize plants. Revista Brasileira de Ciência do Solo, 39(1), 289‒296. doi: 10.1590/01000683rbcs20150176
https://doi.org/10.1590/01000683rbcs2015...
), Ni toxicity (Gopal, Mishra, Zeeshan, Prasad, & Joshi, 2002GopaL, R., Mishra, K. B., Zeeshan, M., Prasad, S. M., & Joshi, M. M. (2002). Laser-induced chlorophyll fluorescence spectra of mung plants growing under nickel stress. Current Science, 83(7), 880‒884.; Mishra & Gopal, 2008Mishra, K. B., & Gopal, R. (2008). Detection of nickel-induced stress using laser induced fluorescence signatures from leaves of wheat seedlings. Internacional Journal of Remote Sensing, 29(1), 157‒173. doi: 157‒173. 10.1080/01431160701280975
https://doi.org/157‒173. 10.1080/0143116...
), Cu and Hg toxicities (Ventrella, Catucci, Piletska, Piletsky, & Agostiano, 2009Ventrella, A., Catucci, L., Piletska, E., Piletsky, S., & Agostiano, A. (2009). Interactions between heavy metals and photosynthetic materials studied by optical techniques. Bioelectrochemistry, 77(1), 19‒25. doi: 10.1016/j.bioelechem.2009.05.002
https://doi.org/10.1016/j.bioelechem.200...
), Zn (Cherif et al., 2010Cherif, J., Derbel, N., Nakkach, M., Bergmanm, H. V., Jemal, F., & Lakhdar, Z. B. (2010). Analysis of in vivo chorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress. Journal of Photochemistry Photobiology B: Biology, 101(3), 332‒339. doi: org/10.1016/jjphotobiol.2010.08.005
https://doi.org/10.1016/jjphotobiol.2010...
; Marques & Nascimento, 2014Marques, M. C., & Nascimento, C. W. A. (2014). Tolerância de mamona a zinco avaliada por fluorescência de clorofila e nutrição das plantas. Revista Brasileira de Ciência do Solo, 38(3), 850-857. doi: 10.1590/S0100-06832014000300016
https://doi.org/10.1590/S0100-0683201400...
; Marques et al., 2017Marques, M. C., Nascimento, C. W. A, Silva, A. J., & Gouveia-Neto, A. S. (2017) Tolerance of an energy crop (Jatropha curcas L.) to zinc and lead assessed by chlorophyll fluorescence and enzyme activity. South African Journal of Botany, 112, 275-282. doi: 10.1016/j.sajb.2017.06.009
https://doi.org/doi: 10.1016/j.sajb.2017...
) and Pb toxicity (Marques et al., 2017Marques, M. C., Nascimento, C. W. A, Silva, A. J., & Gouveia-Neto, A. S. (2017) Tolerance of an energy crop (Jatropha curcas L.) to zinc and lead assessed by chlorophyll fluorescence and enzyme activity. South African Journal of Botany, 112, 275-282. doi: 10.1016/j.sajb.2017.06.009
https://doi.org/doi: 10.1016/j.sajb.2017...
).

Pigments, enzyme activities, and total soluble protein

Pigment concentrations were not influenced by Pb (Table 2). Interestingly, these results corroborate the non-visualization of any chlorosis symptoms in the leaves as well as the absence of nutritional imbalance (data not shown). In addition, although Pb did not cause damage to chlorophyll biosynthesis, a remarkable change in chlorophyll fluorescence was observed, indicating that this technique is efficient for early detection of Pb toxicity at the membrane level of chloroplasts in castor bean plants. According to Buschmann (2007Buschmann, C. (2007). Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leave. Photosynthesis Research, 92(2), 261-271. doi: 10.1007/s11120-007-9187-8
https://doi.org/10.1007/s11120-007-9187-...
), the Fr/FFr ratio depends primarily on chlorophyll content and, to a lesser extent, the photosynthetic activity, optical characteristics and cellular arrangements of the leaf tissue. According to Siedlecka and Krupa (2004Siedlecka, A., & Krupa, Z. (2004). Rubisco activity maintenance in environmental stress conditions-how many strategies. Cellular & Molecular Biology Letters, 9, 56‒57.), Rubisco (ribulose-1.5-bisphosphate carboxylase/oxygenase) is an abundant and very important enzyme in the Calvin cycle because it participates in the catalysis of carboxylation and oxygenation reactions. Under stress by heavy metals, these can substitute the Mg in the active center or subunits of the Rubisco and, consequently, hinder its normal activity, causing changes in the Calvin cycle function. This inhibits electron transport in the photosynthetic apparatus and damage to PSII.

No significant response to the presence of Pb was observed in the activities of the enzymes ascorbate peroxidase, catalase, and polyphenoloxidase or in total soluble protein concentration (Table 3). Heavy metal toxicity could induce production of reactive oxygen species (ROS) such as superoxide, hydroxyl radicals, and hydrogen peroxide, all of which interact with cellular components, causing oxidative damage and subsequent cellular deterioration (Gadjev, Stone, & Gechev, 2008Gadjev, I., Stone, J. M., & Gechev, T. S. (2008). Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. International Review of Cell and Molecular Biology, 270, 87‒144. doi: 10.1016/S1937-6448(08)01403-2
https://doi.org/10.1016/S1937-6448(08)01...
). In plant species tolerant to heavy metals, ROS content can be controlled by an efficient mechanism of antioxidant enzymes (Jamil, Abhilash, Singh, & Sharma, 2009Jamil, S., Abhilash, P. C., Singh, N., & Sharma, P. N. (2009). Jatropha curcas: A potential crop for phytoremediation of coal fly ash. Journal of Hazardous Materials, 172(1), 269‒275. doi: 10.1016/j.jhazmat.2009.07.004
https://doi.org/10.1016/j.jhazmat.2009.0...
; Lin & Aarts, 2012Lin, Y., & Aarts, M. G. M. (2012). The molecular mechanism of zinc and cadmium stress response in plants. Celular and Molcular Life Sciences, 69(19), 3187‒3206. doi: 10.1007/s00018-012-1089-z
https://doi.org/10.1007/s00018-012-1089-...
; Juknys, Vitkauskaite, Račaite, & Vencloviene, 2012Juknys, R., Vitkauskaite, G., Račaite, M., & Vencloviene, J. (2012). The impacts of heavy metals on oxidative stress and growth of spring barley. Central European Journal of Biology, 7(2), 299‒306. doi: 10.2478/s11535-012-0012-9
https://doi.org/10.2478/s11535-012-0012-...
). This is an important defense mechanism in the homeostatic balance that reduces heavy metal toxicity in plants (Sun, Zhou, Sun, & Jin, 2007Sun, R. L., Zhou, Q. X., Sun, F. H., & Jin, C. X. (2007). Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environmental Experimental Botany, 60(3), 468-476. doi: 10.1016/j.envexpbot.2007.01.004
https://doi.org/10.1016/j.envexpbot.2007...
; Yadav et al., 2009Yadav, S. K., Juwarkar, A. A, Kumar, G. P., Thawale, P. R., Singh, S. K., & Chakrabarti, T. (2009). Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: Impact of dairy sludge and biofertilizer. Bioresource Technology, 100(20), 4616‒4622. doi: 10.1016/j.biortech.2009.04.062
https://doi.org/10.1016/j.biortech.2009....
).

Nautiyal and Sinha (2012NautiyaL, N., & Sinha, P. (2012). Lead induced antioxidant defense system in pigeon pea and its impact on yield and quality of seeds. Acta Physiologiae Plantarum, 34(3), 977‒983. doi: 10.1007/s11738-011-0894-6
https://doi.org/10.1007/s11738-011-0894-...
) did not observe changes in chlorophyll a concentration in pigeon pea (Cajanus cajan) leaves with Pb doses up to 0.2 mmol L-1, but the production of carotenoids was stimulated at a dose of 0.05 mmol L-1. These authors also observed that Pb doses up to 1 mmol L-1 caused proline accumulation and induced elevation in the activities of the enzymes ascorbate peroxidase and superoxide dismutase in the leaves as well as an increase in non-protein substances with thiol groups in the roots. Alkhatib et al. (2011Alkhatib, R., Maruthavanan, J., Ghoshroy, S., Steiner, R., Terling, T., & Creamer, R. (2011). Physiological and ultrastructural effects of lead on tobacco. Biologia Plantarum, 56(4) 711‒716. doi: 10.1007/s10535-012-0241-9
https://doi.org/10.1007/s10535-012-0241-...
), evaluating the toxicity of Pb in tobacco (Nicotiana tabacum), verified that the metal did not affect pigment content. The authors did not observe anomalies in the thylakoid membranes when Pb was less than 10 μmol L-1; however, chloroplasts treated with 500 μmol L-1 exhibited alterations in their compositions and fewer thylakoids. On the other hand, our results were contrary to those found by Kiran and Prasad (2017Kiran, B. R., & Prasad, M. N. V. (2017). Responses of Ricinus communis L. (castor bean, phytoremediation crop) seedlings to lead (Pb) toxicity in hydroponics. Selcuk Journal of Agriculture and Food Sciences, 31(1), 2458-8377. doi: 10.15316/SJAFS.2017.9
https://doi.org/10.15316/SJAFS.2017.9...
), who verified a reduction in chlorophyll a and b content in the leaves of R. communis by approximately 50% and 30% at Pb doses of 200 and 400 μM, respectively. Pal et al. (2013Pal, R., Banerjee, A., & Kundu, R. (2013). Responses of castor bean (Ricinus communis L.) to lead stress. Proceedings of the National Academy Sciences India Section B Biological Sciences, 83(4), 643-650. doi: 10.1007/s40011-013-0180-z
https://doi.org/10.1007/s40011-013-0180-...
) found a 23% reduction in chlorophyll a and b content in R. communis when the soil was dosed with 800 mg kg-1 Pb.

Table 2
Pigment contents in castor bean plants grown under different doses of Pb in the nutrient solution. Values between parentheses refer to standard deviation of the mean.
Table 3
Ascorbate peroxidade (APX), catalase (CAT), polifenoloxidase (PPO), and total soluble protein (TSP) of castor bean plants grown under different doses of Pb in the nutrient solution. Values between parentheses refer to standard deviation of the mean.

R. communis cv. BRS Energia showed integrity in chlorophyll a and b content, the activities of antioxidant enzymes, and the concentration of total soluble protein under Pb stress. An important defense mechanism used by the plants was metal accumulation in the roots and survival without greater damage from the metal.

Conclusion

The use of chlorophyll fluorescence is efficient for detecting changes in photosystem II that result from Pb toxicity. Lead doses do not cause alterations in photosynthetic pigments, antioxidant enzyme activities, and total soluble proteins in the leaves, showing metal tolerance. The castor bean, because of its tolerance of Pb and ability to accumulate Pb in the roots, can be an environmentally and economically attractive alternative for phytostabilization and phytoattenuation of lead-contaminated areas. It has the additional economic advantage of providing oil for industrial purposes and bioenergy production while it is used during remediation.

References

  • Abreu, C. A., Coscione, A. R., Pires, A. M., & Paz-Ferreiro, J. (2012). Phytoremediation of a soil contaminated by heavy metals and boron using castor oil plants and organic matter amendments. Journal of Geochemical Exploration, 123, 3-7. doi: 10.1016/j.gexplo.2012.04.013
    » https://doi.org/doi: 10.1016/j.gexplo.2012.04.013
  • Alkhatib, R., Maruthavanan, J., Ghoshroy, S., Steiner, R., Terling, T., & Creamer, R. (2011). Physiological and ultrastructural effects of lead on tobacco. Biologia Plantarum, 56(4) 711‒716. doi: 10.1007/s10535-012-0241-9
    » https://doi.org/10.1007/s10535-012-0241-9
  • Andreazza, R., Bortolon, L., Pieniz, S., & Camargo, F. A. O. (2013). Use of High-Yielding Bioenergy Plant Castor Bean (Ricinus communis L.) as a Potential Phytoremediator for Copper-Contaminated Soils. Pedosphere, 23(5), 651-661. doi: 10.1016/S1002-0160(13)60057-0
    » https://doi.org/10.1016/S1002-0160(13)60057-0
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris Plant physiology, 24(1), 1-15.
  • Berman, P., Nizri, S., & Wiesman, Z. (2011). Castor oil biodiesel and its blends as alternative fuel. Biomass and Bioenergy 35(7), 2861-2866. doi: 10.1016/j.biombioe.2011.03.024
    » https://doi.org/10.1016/j.biombioe.2011.03.024
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 729(1-2), 248‒254. doi: 10.1016/0003-2697(76)90527-3
    » https://doi.org/10.1016/0003-2697(76)90527-3
  • Buschmann, C. (2007). Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leave. Photosynthesis Research, 92(2), 261-271. doi: 10.1007/s11120-007-9187-8
    » https://doi.org/10.1007/s11120-007-9187-8
  • Chandra, R., & Kumar, V. (2017). Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilised distillery sludge as a prospective tool for in situ phytoremediation of industrial waste. Environmental Science Pollution Research, 24(3), 2605-2619. doi: 10.1007/s11356-016-8022-1
    » https://doi.org/10.1007/s11356-016-8022-1
  • Cherif, J., Derbel, N., Nakkach, M., Bergmanm, H. V., Jemal, F., & Lakhdar, Z. B. (2010). Analysis of in vivo chorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress. Journal of Photochemistry Photobiology B: Biology, 101(3), 332‒339. doi: org/10.1016/jjphotobiol.2010.08.005
    » https://doi.org/10.1016/jjphotobiol.2010.08.005
  • Corcoll, N., Bonet, B., Leira, M., & Guasch, H. (2011). Chl-a fluorescence parameters as biomarkers of metal toxicity in fluvial biofilms: an experimental study. Hydrobiologia, 673(1), 119-136. doi: 10.1007/s10750-011-0763-8
    » https://doi.org/10.1007/s10750-011-0763-8
  • Costa, E. T. S., Guilherme, L. R. G., Melo, E. E. C., Ribeiro, B. T., Inácio, E. S. B., Severiano, E. C., ... Hale, B. A. (2012). Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes. Biological Trace Element Research, 145(1), 93-100. doi: 10.1007/s12011-011-9164-0
    » https://doi.org/10.1007/s12011-011-9164-0
  • Gadjev, I., Stone, J. M., & Gechev, T. S. (2008). Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. International Review of Cell and Molecular Biology, 270, 87‒144. doi: 10.1016/S1937-6448(08)01403-2
    » https://doi.org/10.1016/S1937-6448(08)01403-2
  • Gamiño-Gutiérrez, S. P., González-Pérez, C., Gonsebatt, M. E., & Monroy-Fernández, M. G. (2013). Arsenic and lead contamination in urban soils of Villa de la Paz (Mexico) affected by historical mine wastes and its effect on children’s health studied by micronucleated exfoliated cells assay. Environmental Geochemistry and Health, 35(1), 37-51. doi: 10.1007/S10653-012-9469-8
    » https://doi.org/10.1007/S10653-012-9469-8
  • González-Chávez, M. C. A., Ruız Olivares, A., Carrillo-González, R., & Leal, E. R. (2015). Crude oil and bioproducts of castor bean (Ricinus communis L.) plants established naturally on metal mine tailings. International Journal of Environmental Science and Technology, 12(7), 2263-2272. doi: 10.1007/s13762-014-0622-z
    » https://doi.org/10.1007/s13762-014-0622-z
  • GopaL, R., Mishra, K. B., Zeeshan, M., Prasad, S. M., & Joshi, M. M. (2002). Laser-induced chlorophyll fluorescence spectra of mung plants growing under nickel stress. Current Science, 83(7), 880‒884.
  • Hamadouche, N. A., Aoumeur, H., Djediai, S., Slimani, M., & Aoues, A. (2012). Phytoremediation potential of Raphanus sativus L. for lead contaminated soil. Acta Biologica Szegediensis, 56(1), 43‒49.
  • Havir, E. A., & Mchale, N. A. (1987). Biochemical and development characterization of multiples forms of catalase in tabocco leaves. Plant Physiology, 84(2), 450‒455. doi: 10.1104/pp.84.2.450.
    » https://doi.org/10.1104/pp.84.2.450.
  • Hoagland, D. R., & Arnon, D. L. (1950). The water culture methods for growing plants without soil Berkeley, US: University of California.
  • Jamil, S., Abhilash, P. C., Singh, N., & Sharma, P. N. (2009). Jatropha curcas: A potential crop for phytoremediation of coal fly ash. Journal of Hazardous Materials, 172(1), 269‒275. doi: 10.1016/j.jhazmat.2009.07.004
    » https://doi.org/10.1016/j.jhazmat.2009.07.004
  • Juknys, R., Vitkauskaite, G., Račaite, M., & Vencloviene, J. (2012). The impacts of heavy metals on oxidative stress and growth of spring barley. Central European Journal of Biology, 7(2), 299‒306. doi: 10.2478/s11535-012-0012-9
    » https://doi.org/10.2478/s11535-012-0012-9
  • Kar, M., & Mishra, D. (1976). Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology, 57(11), 315‒319. doi: 10.1104/pp.57.2.315
    » https://doi.org/10.1104/pp.57.2.315
  • Karimi, L. N., Khanahmadi, M., & Moradi, B. (2012). Accumulation and phytotoxicity of lead in Cynara scolymus Indian Journal of Science & Technolology, 5(11), 3634‒3641.
  • Kiran, B. R., & Prasad, M. N. V. (2017). Responses of Ricinus communis L. (castor bean, phytoremediation crop) seedlings to lead (Pb) toxicity in hydroponics. Selcuk Journal of Agriculture and Food Sciences, 31(1), 2458-8377. doi: 10.15316/SJAFS.2017.9
    » https://doi.org/10.15316/SJAFS.2017.9
  • Kopittke, P. M., Asher, C. J., Blamey, F. P. C., Auchterlonie, G. J., Guo, Y. N., & Menzies, N. W. (2008). Localization and chemical speciation of Pb in roots of signal Grass (Brachiaria decumbens) and rhodes grass (Chloris gayana). Environmental Science & Technology, 42(12), 4595-4599. doi: 10.1021/es702627c
    » https://doi.org/10.1021/es702627c
  • Krause, G. H., & Weis, E. (1991). Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 313‒49. doi: 10.1146/annurev.pp.42.060191.001525
    » https://doi.org/10.1146/annurev.pp.42.060191.001525
  • Kumar, A., Prasad, M. N. V., & Sytar, O. (2012). Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere, 89(9), 1056‒1065. doi: 10.1016/j.chemosphere.2013.05.070
    » https://doi.org/10.1016/j.chemosphere.2013.05.070
  • Li, P., Lin, C., Cheng, H., Duan, X., & Lei, K. (2015). Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicology and Environmental Safety, 113(C), 391-399. doi: 10.1016/j.ecoenv.2014.12.025
    » https://doi.org/10.1016/j.ecoenv.2014.12.025
  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In L. Packer, & R. Douce (Ed.), Methods in enzymology (p. 350‒382). NewYork, US: Academic Press.
  • Lin, Y., & Aarts, M. G. M. (2012). The molecular mechanism of zinc and cadmium stress response in plants. Celular and Molcular Life Sciences, 69(19), 3187‒3206. doi: 10.1007/s00018-012-1089-z
    » https://doi.org/10.1007/s00018-012-1089-z
  • Lin, Z., Liu, N., Lin, G., Pan, X., & Peng, C. (2007). Stress-induced alteration of chlorophyll fluorescence polarization and spectrum in leaves of Alocasia macrorrhiza L. schott. Journal of Fluorescence, 17(6), 663‒669. doi: org/10.1007/s10895-007-0213-1
    » https://doi.org/10.1007/s10895-007-0213-1
  • Lou, Y., Luo, H., Hu, T., Li, H., & Fu, J. (2012). Toxic effects, uptake, and translocation of Cd and Pb in perennial ryegrass. Ecotoxicology, 22(2), 207‒2014. doi: 10.1007/s10646-012-1017-x
    » https://doi.org/10.1007/s10646-012-1017-x
  • Marques, M. C., & Nascimento, C. W. A. (2013). Analysis of chlorophyll fluorescence spectra for the monitoring of Cd toxicity in a bio-energy crop (Jatropha curcas). Journal of Photochemistry and Photobiology B: Biology, 127(C), 88-93. doi: 10.1016/j.jphotobiol.2013.07.016
    » https://doi.org/10.1016/j.jphotobiol.2013.07.016
  • Marques, M. C., & Nascimento, C. W. A. (2014). Tolerância de mamona a zinco avaliada por fluorescência de clorofila e nutrição das plantas. Revista Brasileira de Ciência do Solo, 38(3), 850-857. doi: 10.1590/S0100-06832014000300016
    » https://doi.org/10.1590/S0100-06832014000300016
  • Marques, M. C., Nascimento, C. W. A, Silva, A. J., & Gouveia-Neto, A. S. (2017) Tolerance of an energy crop (Jatropha curcas L.) to zinc and lead assessed by chlorophyll fluorescence and enzyme activity. South African Journal of Botany, 112, 275-282. doi: 10.1016/j.sajb.2017.06.009
    » https://doi.org/doi: 10.1016/j.sajb.2017.06.009
  • Małecka, A., Piechalak, A., Morkunas, I., & Tomaszewska, B. (2008). Accumulation of lead in root cells of Pisum sativum Acta Physiologiae Plantarum, 30(5), 629‒637. doi: 10.1007/s11738-008-0159-1
    » https://doi.org/10.1007/s11738-008-0159-1
  • Melo, E. E. C., Costa, E. T. S., Guilherme, L. R. G., Faquin, V., & Nascimento, C. W. A. (2009). Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. Journal of Hazardous Materials, 168(1), 479-483. doi: 10.1016/j.jhazmat.2009.02.048
    » https://doi.org/10.1016/j.jhazmat.2009.02.048
  • Meyers, D. E. R., Auchterlonie, G. J., Webb, R. I., & Wood, B. (2008). Uptake and localisation of lead in the root system of Brassica juncea Environmental Pollution, 153(2), 323‒332. doi: 10.1016/j.envpol.2007.08.029
    » https://doi.org/10.1016/j.envpol.2007.08.029
  • Mhamdi, A., Noctor, G., & Baker, A. (2012). Plant catalases: Peroxisomal redox guardians. Archives of Biochemistry and Biophysics, 525(2), 181-194. doi: 10.1016/j.abb.2012.04.015
    » https://doi.org/10.1016/j.abb.2012.04.015
  • Mishra, K. B., & Gopal, R. (2008). Detection of nickel-induced stress using laser induced fluorescence signatures from leaves of wheat seedlings. Internacional Journal of Remote Sensing, 29(1), 157‒173. doi: 157‒173. 10.1080/01431160701280975
    » https://doi.org/157‒173. 10.1080/01431160701280975
  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specifc peroxidase in spinach chloroplasts. Plant & Cell Physiology, 22(5), 1068‒1072. doi: 10.1093/oxfordjournals.pcp.a076232
    » https://doi.org/10.1093/oxfordjournals.pcp.a076232
  • NautiyaL, N., & Sinha, P. (2012). Lead induced antioxidant defense system in pigeon pea and its impact on yield and quality of seeds. Acta Physiologiae Plantarum, 34(3), 977‒983. doi: 10.1007/s11738-011-0894-6
    » https://doi.org/10.1007/s11738-011-0894-6
  • Niu, Z., Sun, L., & Sun, T. (2009). Response of root and aerial biomass to phytoextraction of Cd and Pb by sunflower, castor bean, alfalfa and mustard. Advances in Environmental Biology, 3(3), 255‒262.
  • Pandey, V. C. (2013). Suitability of Ricinus communis L. cultivation for phytoremediation of fly ash disposal sites. Ecolological Engineering, 57, 336- 341. doi: 10.1016/j.ecoleng.2013.04.054
    » https://doi.org/10.1016/j.ecoleng.2013.04.054
  • Pal, R., Banerjee, A., & Kundu, R. (2013). Responses of castor bean (Ricinus communis L.) to lead stress. Proceedings of the National Academy Sciences India Section B Biological Sciences, 83(4), 643-650. doi: 10.1007/s40011-013-0180-z
    » https://doi.org/10.1007/s40011-013-0180-z
  • Piechalak, A., Tomaszewska, B., Baralkiewicz, D., & Małecka, A. (2002). Accumulation and detoxification of lead ions in legumes. Phytochemistry, 60(2), 153‒162. doi: 10.1016/s0031-9422(02)00067-5
    » https://doi.org/10.1016/s0031-9422(02)00067-5
  • Ren, H. M., Wang, J. D., & Zhang, X. L. (2006). Assessment of soil lead exposure in children in Shenyang, China. Environmental Pollution, 144(1), 327‒325. doi: 327-335. 10.1016/j.envpol.2005.11.011
    » https://doi.org/327-335. 10.1016/j.envpol.2005.11.011
  • Romanowska, E., Wasilewska,W., Fristedt, R., Vener, A. V., & Zienkiewicz, M. (2012). Phosphorylation of PSII proteins in maize thylakoids in the presence of Pb ions. Journal of Plant Physiology, 169(4) 345-352. doi: 10.1016/j.jplph.2011.10.006
    » https://doi.org/10.1016/j.jplph.2011.10.006
  • Romeiro, S., Lagôa, A. M. M. A., Furlani, P. R., Abreu, C. A., Abreu, M. F., & Erismann, N. M. (2006). Lead uptake and tolerance of Ricinus communis L. Brazilian Journal of Plant Physiology, 18(4), 483‒489. doi: 10.1590/S1677-04202006000400006
    » https://doi.org/10.1590/S1677-04202006000400006
  • Samardakiewicz, S., & Woźny, A. (2000). The distribution of lead in duckweed (Lemna minor L.) root tip. Plant and Soil, 226(1), 107‒111.
  • Santos, N. M., Nascimento, C. W. A., Matschullat, J., & Olinda, R. A. (2016). Assessment of the spatial distribution of metal(oid)s in soil around an abandoned Pb-smelter plant. Environmental Management, 59(3), 522-530. doi: 10.1007/s00267-016-0796-x
    » https://doi.org/10.1007/s00267-016-0796-x
  • Siedlecka, A., & Krupa, Z. (2004). Rubisco activity maintenance in environmental stress conditions-how many strategies. Cellular & Molecular Biology Letters, 9, 56‒57.
  • Silva, W. R., Silva, F. B. V., Araújo, P. R. M., & Nascimento, C. W. A. (2017). Assessing human health risks and strategies for phytoremediation in soils contaminated with As, Cd, Pb, and Zn by slag disposal. Ecotoxicology and Environmental Safety, 144, 522-530. doi: 10.10.16/j.ecoenv.2017.06.068
    » https://doi.org/10.10.16/j.ecoenv.2017.06.068
  • Silva, A. J., Nascimento, C. W. A., Gouveia-Neto, A. S., & Silva-Jr., E. A. (2012). LED-Induced chlorophyll fluorescence spectral analysis for the early detection and monitoring of cadmium toxicity in maize plants. Water Air & Soil Pollution, 223(6), 3527‒3533. doi: 10.1007/s11270-012-1130-8
    » https://doi.org/10.1007/s11270-012-1130-8
  • Silva, A. J., Nascimento, C. W., Gouveia-Neto, A. S., & Silva Jr., E. A. (2015). Effects of silicon on alleviating arsenic toxicity in maize plants. Revista Brasileira de Ciência do Solo, 39(1), 289‒296. doi: 10.1590/01000683rbcs20150176
    » https://doi.org/10.1590/01000683rbcs20150176
  • Silva, A. J., Nascimento, C. W. A., & Gouveia-Neto, A. S. (2017). Assessment of cadmium phytotoxicity alleviation by silicon using chlorophyll a fluorescence. Photosynthetica, 55(4), 648‒654. doi: 10.1007/s11099-016-0680-1
    » https://doi.org/10.1007/s11099-016-0680-1
  • Sinha, P., Dube, B. K., Srivastava, P., & Chatterjee, C. (2006). Alteration in uptake and translocation of essential nutrients in cabbage by excess lead. Chemosphere, 65(4), 651‒656. doi: 10.1016/j.chemosphere.2006.01.68
    » https://doi.org/10.1016/j.chemosphere.2006.01.68
  • Stoeva, N., Berova, M., & Zlatev, Z. (2004). Physiological response of Maize to arseni contamination. Biologia Plantarum, 47(3), 449‒452.
  • Sun, R. L., Zhou, Q. X., Sun, F. H., & Jin, C. X. (2007). Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environmental Experimental Botany, 60(3), 468-476. doi: 10.1016/j.envexpbot.2007.01.004
    » https://doi.org/10.1016/j.envexpbot.2007.01.004
  • Ventrella, A., Catucci, L., Piletska, E., Piletsky, S., & Agostiano, A. (2009). Interactions between heavy metals and photosynthetic materials studied by optical techniques. Bioelectrochemistry, 77(1), 19‒25. doi: 10.1016/j.bioelechem.2009.05.002
    » https://doi.org/10.1016/j.bioelechem.2009.05.002
  • Vilela, L., & Anghinoni, I. (1984). Morfologia do sistema radicular e cinética da absorção de fósforo em cultivares de sojas afetadas pela interação alumínio-fósforo. Revista Brasileira de Ciência do Solo, 8(1), 91‒96.
  • Yadav, S. K., Juwarkar, A. A, Kumar, G. P., Thawale, P. R., Singh, S. K., & Chakrabarti, T. (2009). Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: Impact of dairy sludge and biofertilizer. Bioresource Technology, 100(20), 4616‒4622. doi: 10.1016/j.biortech.2009.04.062
    » https://doi.org/10.1016/j.biortech.2009.04.062
  • Zhao, S., Ye, X., & Zheng, J. (2011). Lead-induced changes in plant morphology, cell ultrastructure, growth and yields of tomato. African Journal of Biotechnology, 10(50), 10116‒10124. doi: 10.5897/AJB11.627
    » https://doi.org/10.5897/AJB11.627

Publication Dates

  • Publication in this collection
    03 Sept 2018
  • Date of issue
    2018

History

  • Received
    09 Sept 2017
  • Accepted
    15 Dec 2017
Editora da Universidade Estadual de Maringá - EDUEM Av. Colombo, 5790, bloco 40, 87020-900 - Maringá PR/ Brasil, Tel.: (55 44) 3011-4253, Fax: (55 44) 3011-1392 - Maringá - PR - Brazil
E-mail: actaagron@uem.br