Acessibilidade / Reportar erro

Quantification of psychrotrophic bacteria and molecular identification of Pseudomonas fluorescens in refrigerated raw milk

Quantificação de bactérias psicrotróficas e identificação molecular de Pseudomonas fluorescens em leite cru refrigerado

ABSTRACT

In this study, we investigated the contamination of refrigerated raw milk produced in the western region of Paraná, southern Brazil, with psychrotrophic microorganisms, aiming to assay the proteolytic activity of the isolates and to identify Pseudomonas fluorescens, the main proteolytic species associated with the spoilage of milk products. Raw milk samples from 50 dairy farms were submitted to the counting of psychrotrophic microorganisms, being the microbiota characterized by its mesophilic behavior and proteolytic capacity, besides molecular identification of P. fluorescens. Of the samples evaluated, 94% had psychrotrophic counts ranging from 3 to 7.1 log CFU mL-1, and 48.5% of these showed mesophilic behavior. Of the isolates, 48.0% had proteolytic activity in at least one evaluated temperature (21 and 30°C), and 39.3% had proteolytic activity in both temperatures. Among the 61 isolates submitted to molecular identification by polymerase chain reaction (PCR), 86.8% contained the expression of the 16S gene characteristic for P. fluorescens. In this study, we demonstrated that P. fluorescens is the most prevalent psychrotrophic bacteria species in raw refrigerated milk and their proteolytic ability poses high risks to the dairy industry.

KEYWORDS
contamination; proteolysis; refrigeration

RESUMO

No presente estudo, investigamos a contaminação do leite cru refrigerado produzido na região oeste do Paraná, sul do Brasil, com micro-organismos psicrotróficos, visando testar a atividade proteolítica dos isolados e identificar Pseudomonas fluorescens, a principal espécie proteolítica associada à deterioração de produtos lácteos. Amostras de leite cru de 50 fazendas leiteiras foram submetidas à contagem de micro-organismos psicrotróficos, caracterizando-se a microbiota por seu comportamento mesofílico e sua capacidade proteolítica, além de identificação molecular de P. fluorescens. Entre as amostras avaliadas, 94% apresentaram contagem psicrotrófica variando de 3 a 7,1 log UFC mL-1 e 48,5% destas apresentaram comportamento mesofílico. Entre os isolados, 48,0% apresentaram atividade proteolítica em pelo menos uma das temperaturas testadas (21 e 30°C) e 39,3% apresentaram atividade proteolítica em ambas as temperaturas. Entre os 61 isolados sub-metidos à identificação molecular por reação em cadeia da polimerase (PCR), 86,8% continham expressão do gene 16S característico de P. fluorescens. Neste estudo, demonstramos que P. fluorescens é a espécie de bactérias psicrotróficas mais prevalente em leite refrigerado cru e sua capacidade proteolítica promove elevados riscos de deterioração para a indústria de laticínios.

PALAVRAS-CHAVE
contaminação; proteólise; refrigeração

INTRODUCTION

Raw milk is an ideal medium for the growth of contaminating microorganism due to its pH close to neutral value, high water activity, and rich nutrient and mineral content. The composition of the raw milk microbiota is very diverse and is influenced by several factors, such as farm management practices, seasons and hygienic practices and storage conditions (OLIVEIRA et al., 2015OLIVEIRA, G.B.; FAVARIN, L.; LUCHESE, R.H.; MCINTOSH, D. Psychrotrophic bacteria in milk: How much do we really know? Brazilian Journal of Microbiology, v.46, n.2, p.313-321, 2015. http://dx.doi.org/10.1590/S1517-838246220130963
http://dx.doi.org/10.1590/S1517-83824622...
; VITHANAGE et al., 2016VITHANAGE, N.R.; DISSANAYAKE, M.; BOLGE, G.; PALOMBO, E.A.; YEAGER, T.R.; DATTA, N. Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential. International Dairy Journal, v.57, p.80-90, 2016. https://doi.org/10.1016/j.idairyj.2016.02.042
https://doi.org/10.1016/j.idairyj.2016.0...
; PORCELLATO et al., 2018PORCELLATO, D.; ASPHOLM, M.; SKEIE, S.B.; MONSHAUGEN, M.; BRENDEHAUG, J.; MELLEGÅRD, H. Microbial diversity of consumption milk during processing and storage. International Journal of Food Microbiology, v.266, p.21-30, 2018. https://doi.org/10.1016/j.ijfoodmicro.2017.11.004
https://doi.org/10.1016/j.ijfoodmicro.20...
). Both Gram-positive (Bacillus, Lactococccus, Clostridium, Corynebacterium, Microbacterium, Micrococcus, Streptococcus, Staphylococcus, and Lactobacillus) and Gram-negative bacteria (Pseudomonas, Aeromonas, Serratia, Hafnia, Acinetobacter, Alcaligenes, Achromobacter, Enterobacter, and Flavobacterium) have been isolated from raw milk (HANTSIS-ZACHAROV; HALPERN, 2007HANTSIS-ZACHAROV, E.; HALPERN, M. Culturable psychrotrophic bacterial communities in raw milk and their proteolytic and lipolytic traits. Applied and Environmental Microbiology, v.73, n.22, 7162-7168, 2007. https://doi.org/10.1128/aem.00866-07
https://doi.org/10.1128/aem.00866-07...
; VITHANAGE et al., 2016VITHANAGE, N.R.; DISSANAYAKE, M.; BOLGE, G.; PALOMBO, E.A.; YEAGER, T.R.; DATTA, N. Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential. International Dairy Journal, v.57, p.80-90, 2016. https://doi.org/10.1016/j.idairyj.2016.02.042
https://doi.org/10.1016/j.idairyj.2016.0...
).

The prolonged refrigerated storage of raw milk may select some bacteria with psychrotolerant behavior, especially the genus Pseudomonas, that are responsible of the spoilage of milk and dairy products owing to their enzymatic activity (MUNSCH-ALATOSSAVA; ALATOSSAVA, 2006MUNSCH-ALATOSSAVA, P.; ALATOSSAVA, T. Phenotypic characterization of raw milk-associated psychrotrophic bacteria. Microbiological Research, v.161, n.4, p.334-346, 2006. https://doi.org/10.1016/j.micres.2005.12.004
https://doi.org/10.1016/j.micres.2005.12...
; NEUBECK et al., 2015NEUBECK, M.; BAUR, C.; KREWINKEL, M.; STOECKEL, M.; KRANZ, B.; STRESSLER, T.; FISCHER, L; HINRICHS, J.; SCHERER, S.; WENNING, M. Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. International Journal of Food Microbiology, v.211, p.57-65, 2015. https://doi.org/10.1016/j.ijfoodmicro.2015.07.001
https://doi.org/10.1016/j.ijfoodmicro.20...
; PORCELLATO et al., 2018PORCELLATO, D.; ASPHOLM, M.; SKEIE, S.B.; MONSHAUGEN, M.; BRENDEHAUG, J.; MELLEGÅRD, H. Microbial diversity of consumption milk during processing and storage. International Journal of Food Microbiology, v.266, p.21-30, 2018. https://doi.org/10.1016/j.ijfoodmicro.2017.11.004
https://doi.org/10.1016/j.ijfoodmicro.20...
).

According to the International Dairy Federation, psychrotrophic microorganisms are those able to grow at 7°C or less, regardless of their optimum growth temperature. Some psychrotrophic bacteria produce and release proteases and lipases to the external environment, compromising the integrity of the milk constituents and the quality of dairy products (BAUR et al., 2015BAUR, C.; KREWINKEL, M.; KRANZ, B.; NEUBECK, M.; WENNING, M.; SCHERER, S.; STOECKEL, M.; HINRICHS, J.; STRESSLER, T.; FISCHER, L. Quantification of the proteolytic and lipolytic activity of microorganisms isolated from raw milk. International Dairy Journal, v.49, p.23-29, 2015. https://doi.org/10.1016/j.idairyj.2015.04.005
https://doi.org/10.1016/j.idairyj.2015.0...
; NEUBECK et al., 2015NEUBECK, M.; BAUR, C.; KREWINKEL, M.; STOECKEL, M.; KRANZ, B.; STRESSLER, T.; FISCHER, L; HINRICHS, J.; SCHERER, S.; WENNING, M. Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. International Journal of Food Microbiology, v.211, p.57-65, 2015. https://doi.org/10.1016/j.ijfoodmicro.2015.07.001
https://doi.org/10.1016/j.ijfoodmicro.20...
; RIBEIRO JUNIOR et al., 2018PORCELLATO, D.; ASPHOLM, M.; SKEIE, S.B.; MONSHAUGEN, M.; BRENDEHAUG, J.; MELLEGÅRD, H. Microbial diversity of consumption milk during processing and storage. International Journal of Food Microbiology, v.266, p.21-30, 2018. https://doi.org/10.1016/j.ijfoodmicro.2017.11.004
https://doi.org/10.1016/j.ijfoodmicro.20...
). It is widely reported that contamination of raw milk by P. fluorescens induces instability in ultra-high temperature (UHT) pasteurized milk during storage (GAUCHER et al., 2011GAUCHER, I.; TANGUY, G.; FAUQUANT, J.; JARDIN, J.; ROUSSEAU, F.; ROBERT, B.; MADEC, M.-N.; GAUCHERON, F. Proteolysis of casein micelles by Pseudomonas fluorescens CNRZ 798 contributes to the destabilisation of UHT milk during its storage. Dairy Science & Technology, v.91, n.4, p.413, 2011. https://doi.org/10.1007/s13594-011-0019-4
https://doi.org/10.1007/s13594-011-0019-...
; BAGLINIÈRE et al., 2012BAGLINIÈRE, F.; TANGUY, G.; JARDIN, J.; MATÉOS, A.; BRIARD, V.; ROUSSEAU, F.; ROBERT, B.; BEAUCHERA, E.; HUMBERT, G.; DARY, A.; GAILLARD, J.L.; AMIEL, C.; GAUCHERON, F. Quantitative and qualitative variability of the caseinolytic potential of different strains of Pseudomonas fluorescens: Implications for the stability of casein micelles of UHT milks during their storage. Food Chemistry, v.135, n.4, p.2593-2603, 2012. https://doi.org/10.1016/j.foodchem.2012.06.099
https://doi.org/10.1016/j.foodchem.2012....
; STUKNYTĖ et al., 2016STUKNYTĖ, M.; DECIMO, M.; COLZANI, M.; SILVETTI, T.; BRASCA, M.; CATTANEO, S.; ALDINI, G.; DE NONI, I. Extracellular thermostable proteolytic activity of the milk spoilage bacterium Pseudomonas fluorescens PS19 on bovine caseins. Journal of Dairy Science, v.99, n.6, p.4188-4195, 2016. https://doi.org/10.3168/jds.2016-10894
https://doi.org/10.3168/jds.2016-10894...
) and technological defects in cheese (MARTIN et al., 2011MARTIN, N.H.; MURPHY, S.C.; RALYEA, R.D.; WIEDMANN, M.; BOOR, K.J. When cheese gets the blues: Pseudomonas fluorescens as the causative agent of cheese spoilage. Journal of Dairy Science, v.94, n.6, p.3176-3183, 2011. https://doi.org/10.3168/jds.2011-4312
https://doi.org/10.3168/jds.2011-4312...
; CARRASCOSA et al., 2015CARRASCOSA, C.; MILLÁN, R.; JABER, J.R.; LUPIOLA, P.; DEL ROSARIO-QUINTANA, C.; MAURICIO, C.; SANJUÁN, E. Blue pigment in fresh cheese produced by Pseudomonas fluorescens. Food Control, v.54, p.95-102, 2015. https://doi.org/10.1016/j.foodcont.2014.12.039
https://doi.org/10.1016/j.foodcont.2014....
), milk powders (CHEN et al., 2003CHEN, L.; DANIEL, R.M.; COOLBEAR, T. Detection and impact of protease and lipase activities in milk and milk powders. International Dairy Journal, v.13, n.4, p.255-275, 2003. https://doi.org/10.1016/S0958-6946(02)00171-1
https://doi.org/10.1016/S0958-6946(02)00...
) and others dairy products.

Besides compromising the integrity of the milk constituents, the microbial proteases and lipases are thermostable and can remain active even after the elimination of the vegetative microorganisms by heat treatments applied by the dairy industry (GLÜCK et al., 2016GLÜCK, C.; RENTSCHLER, E.; KREWINKEL, M.; MERZ, M.; NEUBECK, M.; WENNING, M.; SCHERER, S.; STOECKEL, M.; HINRICHS, J.; STRESSLER, T.; FISCHER, L. Thermostability of peptidases secreted by microorganisms associated with raw milk. International Dairy Journal, v.56, p.186-197, 2016. https://doi.org/10.1016/j.idairyj.2016.01.025
https://doi.org/10.1016/j.idairyj.2016.0...
; VITHANAGE et al., 2016VITHANAGE, N.R.; DISSANAYAKE, M.; BOLGE, G.; PALOMBO, E.A.; YEAGER, T.R.; DATTA, N. Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential. International Dairy Journal, v.57, p.80-90, 2016. https://doi.org/10.1016/j.idairyj.2016.02.042
https://doi.org/10.1016/j.idairyj.2016.0...
). The activities of proteases and lipases that resist the heat treatments may cause changes in quality and shelf life as well as compromise functional properties and cause flavor defects of milk products during storage (CHEN et al., 2003CHEN, L.; DANIEL, R.M.; COOLBEAR, T. Detection and impact of protease and lipase activities in milk and milk powders. International Dairy Journal, v.13, n.4, p.255-275, 2003. https://doi.org/10.1016/S0958-6946(02)00171-1
https://doi.org/10.1016/S0958-6946(02)00...
; MACHADO et al., 2017MACHADO, S.G.; BAGLINIÈRE, F.; MARCHAND, S.; VAN COILLIE, E.; VANETTI, M.C.D.; DE BLOCK, J.; HEYNDRICKX, M. The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products. Frontiers in Microbiology, v.8, p.1-22, 2017. https://doi.org/10.3389/fmicb.2017.00302
https://doi.org/10.3389/fmicb.2017.00302...
).

Therefore, knowledge is needed about which microorganisms are present in raw milk and their spoilage potential under different conditions. Thus, the aim of the current study was the quantification of the psychrotrophic microorganisms in Brazilian refrigerated raw milk, aiming to assay the proteolytic activity of the isolates and to identify P. fluorescens.

MATERIALS AND METHODS

Enumeration and Isolation of Psychrotrophic Bacteria

Fifty dairy farms located in the western region of Paraná, southern Brazil, were selected for raw milk sampling. A single sample was collected on each farm between July 2014 and February 2015. From each raw milk sample, decimal dilutions were plated in duplicate on plate count agar (PCA, DifcoTM, Becton Dickinson Company, Franklin Lakes, NJ, USA) and incubated at 7°C for 10 days (COUSIN et al., 2001COUSIN, M.A.; JAY, J.M.; VASAVADA, P.C. Psychrotrophic microorganisms. In: DOWENS, F.P.; ITO K. (Eds.). Compendium of methods for the microbiological examination of foods. Washington: American Public Health Association (APHA), Committee on Microbiological Methods for Foods, 2001. p.159-164.).

Investigation of Proteolytic Activity and Mesophilic Behavior

Four to five isolates of each plate with bacterial growth were checked for their proteolytic activity by agar diffusion assays with skim milk agar (PCA + 1.0% skim milk) and incubated at 21°C for 72 hours and 30°C for 48 hours (BEERENS; LUQUET, 1990BEERENS, H.; LUQUET, F.M. Guía practica para el análisis microbiológico de la leche y los productos lácteos. Zaragoza: Acribia Editorial, 1990.; VITHANAGE et al., 2016VITHANAGE, N.R.; DISSANAYAKE, M.; BOLGE, G.; PALOMBO, E.A.; YEAGER, T.R.; DATTA, N. Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential. International Dairy Journal, v.57, p.80-90, 2016. https://doi.org/10.1016/j.idairyj.2016.02.042
https://doi.org/10.1016/j.idairyj.2016.0...
). The presence of clear zones around the colonies was indicative of proteolytic activity.

The isolates were also inoculated in plate count agar and incubated at 35°C for 48 hours for the evaluation of their mesophilic behavior. The isolates were also inoculated in MacConkey agar and submitted for Gram identification to select presumptive Pseudomonas sp. strains.

DNA Extraction and Polymerase Chain Reaction (PCR) Amplification

Isolated Gram-negative bacteria with no fermented lactose were selected for DNA extraction using the Wizard® Genomic DNA Purification kit (Promega Corporation, Madison, WI, USA) according to the manufacturer’s instructions. The DNA concentration was estimated using spectrophotometry (NanoDropTM Lite, Thermo Scientific, Wilmington, DE, USA).

Amplification of DNA 16S-specific region for P. fluorescens was performed using the primer set 16SPSEfluF (5’-TGCATTCAAAACTGACTG-3’) and 16SPSER (5’-AATCACACCGTGGTAACCG-3’), according to SCARPELLINI et al. (2004)SCARPELLINI, M.; FRANZETTI, L.; GALLI, A. Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microbiology Letters, v.236, n.2, p.257-260, 2004. https://doi.org/10.1016/j.femsle.2004.05.043
https://doi.org/10.1016/j.femsle.2004.05...
. The PCR was performed with 12.5 μL de GoTaq® Green Master Mix (Promega Corporation, Madison, WI, USA), 1.0 μL of each primer, 9.5 μL of ultrapure water (Promega Corporation, Madison, WI, USA) and 1.0 μL of bacterial genomic DNA solution.

The amplification was performed following the thermal profile: 3 minutes at 94°C; 30 cycles of 94°C for 30 seconds; 47°C for 30 seconds; 72°C for 1 minute; and final extension of 72°C for 5 minutes. Following amplification, products were submitted to an electrophoresis run for 2 hours at 45 V in 1.5% agarose gel with GelRedTM (Biotium Inc., Hayward, CA, USA). A single DNA fragment of 850 bp was amplified for identification.

RESULTS AND DISCUSSION

Of raw milk samples presented, 94% contained psychrotrophic counts with levels ranging from 3 to 7.1 log CFU mL-1 (Fig. 1). Several studies evaluated the contamination by psychrotrophic bacteria in Brazilian raw milk and found high counts of this group of microorganisms which indicates flaws in production hygiene and problems in raw milk refrigeration and transport (PINTO et al., 2006OLIVEIRA, G.B.; FAVARIN, L.; LUCHESE, R.H.; MCINTOSH, D. Psychrotrophic bacteria in milk: How much do we really know? Brazilian Journal of Microbiology, v.46, n.2, p.313-321, 2015. http://dx.doi.org/10.1590/S1517-838246220130963
http://dx.doi.org/10.1590/S1517-83824622...
; NÖRNBERG et al., 2010NEUBECK, M.; BAUR, C.; KREWINKEL, M.; STOECKEL, M.; KRANZ, B.; STRESSLER, T.; FISCHER, L; HINRICHS, J.; SCHERER, S.; WENNING, M. Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. International Journal of Food Microbiology, v.211, p.57-65, 2015. https://doi.org/10.1016/j.ijfoodmicro.2015.07.001
https://doi.org/10.1016/j.ijfoodmicro.20...
; MÖRSCHBÄCHER et al., 2017MÖRSCHBÄCHER, V.; REMPEL, C.; MACIEL, M. Microbiological quality of refrigerated raw milk in the dairy farm and after transport to the processing dairy plant. Arquivos do Instituto Biológico, v.84, p.1-5, 2017. https://doi.org/10.1590/1808-1657000422016
https://doi.org/10.1590/1808-16570004220...
). ALMEIDA et al. (2017)ALMEIDA, K.M.; BRUZAROSKI, S.R.; ZANOL, D.; MELO, M.; SANTOS, J.S.; ALEGRO, L.C.A.; BOTARO, B.G.; SANTANA, E.H.W. Pseudomonas spp. and P. fluorescens: Population in refrigerated raw milk. Ciência Rural, v.47, n.1, p.1-6, 2017. https://doi.org/10.1590/0103-8478cr201515410
https://doi.org/10.1590/0103-8478cr20151...
found mean psychrotrophic counts in raw milk ranged from 5 to 7 log CFU mL-1 in dairy farms in the same state as this study. Although it is not a mandatory analysis for the Brazilian legislation, psychrotrophic microorganism count is very important in milk quality control. According to PINTO et al. (2006)PINTO, C.L.O.; MARTINS, M.L.; VANETTI, M.C.D. Microbial quality of raw refrigerated milk and isolation of psychrotrophic proteolytic bacteria. Food Science and Technology, v.26, n.3, p.645-651, 2006. https://doi.org/10.1590/S0101-20612006000300025
https://doi.org/10.1590/S0101-2061200600...
, it would be reckless to manufacture dairy products from raw milk with a psychrotrophic microorganism count higher than 6.5 log CFU mL-1. Other authors do not recommend using milk with counts higher than 6 log CFU mL-1 (NÖRNBERG et al., 2010NEUBECK, M.; BAUR, C.; KREWINKEL, M.; STOECKEL, M.; KRANZ, B.; STRESSLER, T.; FISCHER, L; HINRICHS, J.; SCHERER, S.; WENNING, M. Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. International Journal of Food Microbiology, v.211, p.57-65, 2015. https://doi.org/10.1016/j.ijfoodmicro.2015.07.001
https://doi.org/10.1016/j.ijfoodmicro.20...
).

Figure 1.
Psychrotrophic bacteria count (in CFU mL-1) distribution in raw milk samples of Paraná western region, Brazil (n = 50).

Raw milk should be stored between 2 and 4°C, before processing, to protect the nutritional and sensory qualities by the reduction of psychrotrophic growth as well as proteolytic and lipolytic activities (MACHADO et al., 2017MACHADO, S.G.; BAGLINIÈRE, F.; MARCHAND, S.; VAN COILLIE, E.; VANETTI, M.C.D.; DE BLOCK, J.; HEYNDRICKX, M. The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products. Frontiers in Microbiology, v.8, p.1-22, 2017. https://doi.org/10.3389/fmicb.2017.00302
https://doi.org/10.3389/fmicb.2017.00302...
; MELINI et al., 2017MELINI, F.; MELINI, V.; LUZIATELLI, F.; RUZZI, M. Raw and heattreated milk: From public health risks to nutritional quality. Beverages, v.3, n.4, p.1-33, 2017. https://doi.org/10.3390/beverages3040054
https://doi.org/10.3390/beverages3040054...
). The prompt application of a cooling treatment after milking and of cold temperatures for storage, which should be a routine practice, are not effective measures for inhibiting the growth rate of psychrotrophic bacteria. Nevertheless, the count of psychrotrophic bacteria that develop after milk collection depends on the storage period and, primally, on sanitary and hygienic conditions (HANTSIS-ZACHAROV; HALPERN, 2007HANTSIS-ZACHAROV, E.; HALPERN, M. Culturable psychrotrophic bacterial communities in raw milk and their proteolytic and lipolytic traits. Applied and Environmental Microbiology, v.73, n.22, 7162-7168, 2007. https://doi.org/10.1128/aem.00866-07
https://doi.org/10.1128/aem.00866-07...
; FOX et al., 2017FOX, E.M.; JORDAN, K.; FANNING, S.; CORSETTI, A. Microbial food safety along the dairy chain. Lausanne: Frontiers Media SA, 2017.).

Regarding the mesophilic behavior of the strains, 48.5% of the 229 psychrotrophic isolates evaluated were able to multiply at 35°C — temperature characteristic of mesophilic microorganisms — suggesting that these microorganisms are mesophilic (capable of adapting to cold) and able to alter their metabolism, since most of the psychrotrophic isolates present optimum temperature of multiplication between 20 and 30°C (MCPHEE; GRIFFITHS, 2011MCPHEE, J.; GRIFFITHS, M. Psychrotrophic bacteria Pseudomonas spp. In: FUQUAY, J.W. (Ed.). Encyclopedia of Dairy Sciences. San Diego: Academic Press, 2011. p.379-383.).

Among the 229 psychrotrophic isolates, 48.0% showed proteolytic activity in at least one temperature (21 and 30°C), and 39.3% showed activity in both tested temperatures (Table 1). This result resembles that of other authors who showed proteolytic activity in 40 to 45% of the psychrotrophic strains evaluated (MUNSCH-ALATOSSAVA; ALATOSSAVA, 2006MUNSCH-ALATOSSAVA, P.; ALATOSSAVA, T. Phenotypic characterization of raw milk-associated psychrotrophic bacteria. Microbiological Research, v.161, n.4, p.334-346, 2006. https://doi.org/10.1016/j.micres.2005.12.004
https://doi.org/10.1016/j.micres.2005.12...
; NÖRNBERG et al., 2010NÖRNBERG, M.F.B.L.; FRIEDRICH, R.S.C.; WEISS, R.D.N.; TONDO, E.C.; BRANDELLI, A. Proteolytic activity among psychrotrophic bacteria isolated from refrigerated raw milk. International Journal of Dairy Technology, v.63, n.1, p.41-46, 2010. https://doi.org/10.1111/j.1471-0307.2009.00542.x
https://doi.org/10.1111/j.1471-0307.2009...
; RIBEIRO JUNIOR et al., 2018RIBEIRO JUNIOR, J.C.; OLIVEIRA, A.M.; SILVA, F.G.; TAMANINI, R.; OLIVEIRA, A.L.M.; BELOTI, V. The main spoilage-related psychrotrophic bacteria in refrigerated raw milk. Journal of Dairy Science, v.101, n.1, p.75-83, 2018. https://doi.org/10.3168/jds.2017-13069
https://doi.org/10.3168/jds.2017-13069...
). The enzymatic activity of psychrotrophic bacteria are markedly influenced by incubation temperature, with 30°C being optimal (DECIMO et al., 2014DECIMO, M.; MORANDI, S.; SILVETTI, T.; BRASCA, M. Characterization of gram-negative psychrotrophic bacteria isolated from Italian bulk tank milk. Journal of Food Science, v.79, n.10, p.2081-2090, 2014. https://doi.org/10.1111/1750-3841.12645
https://doi.org/10.1111/1750-3841.12645...
).

Table 1.
Proteolytic activity of psychrotrophic isolates at different temperatures (n = 229).

Pseudomonas sp. isolates were submitted to the PCR confirmation by amplification of 16S-specific region for P. fluorescens, and 86.9% were confirmed to contain this bacterium. Thus, considering the total of isolates of psychrotrophic in this study, the percentage of P. fluorescens was 23.1%. Molecular methods have been frequently applied for routine identification of Pseudomonas sp. in raw milk and to measure their relative abundance, diversity, and proteolytic and lipolytic potential activity.

In this study 57.2% of psychrotrophic isolates were Gram-negative bacteria, and 27.5% exhibited no fermented lactose, a phenotypic characteristic of the Pseudomonas genus. The predominance of Gram-negative psychrotrophic in raw milk has been reported by other studies (DECIMO et al., 2014DECIMO, M.; MORANDI, S.; SILVETTI, T.; BRASCA, M. Characterization of gram-negative psychrotrophic bacteria isolated from Italian bulk tank milk. Journal of Food Science, v.79, n.10, p.2081-2090, 2014. https://doi.org/10.1111/1750-3841.12645
https://doi.org/10.1111/1750-3841.12645...
; NEUBECK et al., 2015NEUBECK, M.; BAUR, C.; KREWINKEL, M.; STOECKEL, M.; KRANZ, B.; STRESSLER, T.; FISCHER, L; HINRICHS, J.; SCHERER, S.; WENNING, M. Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. International Journal of Food Microbiology, v.211, p.57-65, 2015. https://doi.org/10.1016/j.ijfoodmicro.2015.07.001
https://doi.org/10.1016/j.ijfoodmicro.20...
). Pseudomonas sp. isolates were submitted to the PCR confirmation by amplification of 16S-specific region for P. fluorescens, and 86.9% were confirmed to contain this bacterium. Thus, considering the total of isolates of psychrotrophic in this study, the percentage of P. fluorescens was 23.1%. Molecular methods have been frequently applied for routine identification of Pseudomonas sp. in raw milk and to measure their relative abundance, diversity, and proteolytic and lipolytic potential activity (OLIVEIRA et al., 2015OLIVEIRA, G.B.; FAVARIN, L.; LUCHESE, R.H.; MCINTOSH, D. Psychrotrophic bacteria in milk: How much do we really know? Brazilian Journal of Microbiology, v.46, n.2, p.313-321, 2015. http://dx.doi.org/10.1590/S1517-838246220130963
http://dx.doi.org/10.1590/S1517-83824622...
; VITHANAGE et al., 2016VITHANAGE, N.R.; DISSANAYAKE, M.; BOLGE, G.; PALOMBO, E.A.; YEAGER, T.R.; DATTA, N. Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential. International Dairy Journal, v.57, p.80-90, 2016. https://doi.org/10.1016/j.idairyj.2016.02.042
https://doi.org/10.1016/j.idairyj.2016.0...
).

Several studies point to Pseudomonas sp. as the principal protease and lipase activity bacteria in refrigerated raw milk (MUNSCH-ALATOSSAVA; ALATOSSAVA, 2006MUNSCH-ALATOSSAVA, P.; ALATOSSAVA, T. Phenotypic characterization of raw milk-associated psychrotrophic bacteria. Microbiological Research, v.161, n.4, p.334-346, 2006. https://doi.org/10.1016/j.micres.2005.12.004
https://doi.org/10.1016/j.micres.2005.12...
; ERCOLINI et al., 2009ERCOLINI, D.; RUSSO, F.; FERROCINO, I.; VILLANI, F. Molecular identification of mesophilic and psychrotrophic bacteria from raw cow’s milk. Food Microbiology, v.26, n.2, p.228-231, 2009. https://doi.org/10.1016/j.fm.2008.09.005
https://doi.org/10.1016/j.fm.2008.09.005...
; BAUR et al., 2015BAUR, C.; KREWINKEL, M.; KRANZ, B.; NEUBECK, M.; WENNING, M.; SCHERER, S.; STOECKEL, M.; HINRICHS, J.; STRESSLER, T.; FISCHER, L. Quantification of the proteolytic and lipolytic activity of microorganisms isolated from raw milk. International Dairy Journal, v.49, p.23-29, 2015. https://doi.org/10.1016/j.idairyj.2015.04.005
https://doi.org/10.1016/j.idairyj.2015.0...
; MENG et al., 2018MENG, L.; LIU, H.; DONG, L.; ZHENG, N.; XING, M.; ZHANG, Y.; ZHAO, S.; WANG, J. Identification and proteolytic activity quantification of Pseudomonas spp. isolated from different raw milks at storage temperatures. Journal of Dairy Science, v.101, n.4, p.2897-2905, 2018. https://doi.org/10.3168/jds.2017-13617
https://doi.org/10.3168/jds.2017-13617...
). WANG; JAYARAO (2001)WANG, L.; JAYARAO, B.M. Phenotypic and genotypic characterization of Pseudomonas fluorescens isolated from bulk tank milk. Journal of Dairy Science, v.84, n.6, p.1421-1429, 2001. https://doi.org/10.3168/jds.S0022-0302(01)70174-9
https://doi.org/10.3168/jds.S0022-0302(0...
observed a higher production of proteases by P. fluorescens at 22°C than at 7°C and at 32°C. Furthermore, MENG et al. (2018)MENG, L.; LIU, H.; DONG, L.; ZHENG, N.; XING, M.; ZHANG, Y.; ZHAO, S.; WANG, J. Identification and proteolytic activity quantification of Pseudomonas spp. isolated from different raw milks at storage temperatures. Journal of Dairy Science, v.101, n.4, p.2897-2905, 2018. https://doi.org/10.3168/jds.2017-13617
https://doi.org/10.3168/jds.2017-13617...
found 58.2% of the isolates with extracellular peptidase activity at 10°C and 61.2% at 25°C.

Many proteases produced by strains of P. fluorescens are heat-resistant and retain activity even after UHT treatment. This residual activity can cause changes in the physicochemical properties of the casein micelles and lead to destabilization and gelation of UHT milk during storage (GLÜCK et al., 2016GLÜCK, C.; RENTSCHLER, E.; KREWINKEL, M.; MERZ, M.; NEUBECK, M.; WENNING, M.; SCHERER, S.; STOECKEL, M.; HINRICHS, J.; STRESSLER, T.; FISCHER, L. Thermostability of peptidases secreted by microorganisms associated with raw milk. International Dairy Journal, v.56, p.186-197, 2016. https://doi.org/10.1016/j.idairyj.2016.01.025
https://doi.org/10.1016/j.idairyj.2016.0...
; VITHANAGE et al., 2016VITHANAGE, N.R.; DISSANAYAKE, M.; BOLGE, G.; PALOMBO, E.A.; YEAGER, T.R.; DATTA, N. Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential. International Dairy Journal, v.57, p.80-90, 2016. https://doi.org/10.1016/j.idairyj.2016.02.042
https://doi.org/10.1016/j.idairyj.2016.0...
). Thus, adoption of appropriate practices for obtaining milk is necessary to minimize contamination of the raw material by psychrotrophic microorganisms.

CONCLUSIONS

The current study confirmed the high prevalence of proteolytic psychrotrophic bacteria, especially Pseudomonas, in refrigerated raw milk produced in the western region of Paraná, Brazil. This suggests the high spoilage potential of this genus under refrigeration conditions. In addition, this study confirmed that P. fluorescens is a major contaminating psychrotrophic microorganism in raw milk. The investigation of milk-associated psychrotrophs is required and should be encouraged in order to enhance and improve existing control methods and to ensure the quality of milk and milk-derived foodstuffs.

FUNDING

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

REFERENCES

  • ALMEIDA, K.M.; BRUZAROSKI, S.R.; ZANOL, D.; MELO, M.; SANTOS, J.S.; ALEGRO, L.C.A.; BOTARO, B.G.; SANTANA, E.H.W. Pseudomonas spp. and P. fluorescens: Population in refrigerated raw milk. Ciência Rural, v.47, n.1, p.1-6, 2017. https://doi.org/10.1590/0103-8478cr201515410
    » https://doi.org/10.1590/0103-8478cr201515410
  • BAGLINIÈRE, F.; TANGUY, G.; JARDIN, J.; MATÉOS, A.; BRIARD, V.; ROUSSEAU, F.; ROBERT, B.; BEAUCHERA, E.; HUMBERT, G.; DARY, A.; GAILLARD, J.L.; AMIEL, C.; GAUCHERON, F. Quantitative and qualitative variability of the caseinolytic potential of different strains of Pseudomonas fluorescens: Implications for the stability of casein micelles of UHT milks during their storage. Food Chemistry, v.135, n.4, p.2593-2603, 2012. https://doi.org/10.1016/j.foodchem.2012.06.099
    » https://doi.org/10.1016/j.foodchem.2012.06.099
  • BAUR, C.; KREWINKEL, M.; KRANZ, B.; NEUBECK, M.; WENNING, M.; SCHERER, S.; STOECKEL, M.; HINRICHS, J.; STRESSLER, T.; FISCHER, L. Quantification of the proteolytic and lipolytic activity of microorganisms isolated from raw milk. International Dairy Journal, v.49, p.23-29, 2015. https://doi.org/10.1016/j.idairyj.2015.04.005
    » https://doi.org/10.1016/j.idairyj.2015.04.005
  • BEERENS, H.; LUQUET, F.M. Guía practica para el análisis microbiológico de la leche y los productos lácteos Zaragoza: Acribia Editorial, 1990.
  • CARRASCOSA, C.; MILLÁN, R.; JABER, J.R.; LUPIOLA, P.; DEL ROSARIO-QUINTANA, C.; MAURICIO, C.; SANJUÁN, E. Blue pigment in fresh cheese produced by Pseudomonas fluorescens Food Control, v.54, p.95-102, 2015. https://doi.org/10.1016/j.foodcont.2014.12.039
    » https://doi.org/10.1016/j.foodcont.2014.12.039
  • CHEN, L.; DANIEL, R.M.; COOLBEAR, T. Detection and impact of protease and lipase activities in milk and milk powders. International Dairy Journal, v.13, n.4, p.255-275, 2003. https://doi.org/10.1016/S0958-6946(02)00171-1
    » https://doi.org/10.1016/S0958-6946(02)00171-1
  • COUSIN, M.A.; JAY, J.M.; VASAVADA, P.C. Psychrotrophic microorganisms. In: DOWENS, F.P.; ITO K. (Eds.). Compendium of methods for the microbiological examination of foods Washington: American Public Health Association (APHA), Committee on Microbiological Methods for Foods, 2001. p.159-164.
  • DECIMO, M.; MORANDI, S.; SILVETTI, T.; BRASCA, M. Characterization of gram-negative psychrotrophic bacteria isolated from Italian bulk tank milk. Journal of Food Science, v.79, n.10, p.2081-2090, 2014. https://doi.org/10.1111/1750-3841.12645
    » https://doi.org/10.1111/1750-3841.12645
  • ERCOLINI, D.; RUSSO, F.; FERROCINO, I.; VILLANI, F. Molecular identification of mesophilic and psychrotrophic bacteria from raw cow’s milk. Food Microbiology, v.26, n.2, p.228-231, 2009. https://doi.org/10.1016/j.fm.2008.09.005
    » https://doi.org/10.1016/j.fm.2008.09.005
  • FOX, E.M.; JORDAN, K.; FANNING, S.; CORSETTI, A. Microbial food safety along the dairy chain Lausanne: Frontiers Media SA, 2017.
  • GAUCHER, I.; TANGUY, G.; FAUQUANT, J.; JARDIN, J.; ROUSSEAU, F.; ROBERT, B.; MADEC, M.-N.; GAUCHERON, F. Proteolysis of casein micelles by Pseudomonas fluorescens CNRZ 798 contributes to the destabilisation of UHT milk during its storage. Dairy Science & Technology, v.91, n.4, p.413, 2011. https://doi.org/10.1007/s13594-011-0019-4
    » https://doi.org/10.1007/s13594-011-0019-4
  • GLÜCK, C.; RENTSCHLER, E.; KREWINKEL, M.; MERZ, M.; NEUBECK, M.; WENNING, M.; SCHERER, S.; STOECKEL, M.; HINRICHS, J.; STRESSLER, T.; FISCHER, L. Thermostability of peptidases secreted by microorganisms associated with raw milk. International Dairy Journal, v.56, p.186-197, 2016. https://doi.org/10.1016/j.idairyj.2016.01.025
    » https://doi.org/10.1016/j.idairyj.2016.01.025
  • HANTSIS-ZACHAROV, E.; HALPERN, M. Culturable psychrotrophic bacterial communities in raw milk and their proteolytic and lipolytic traits. Applied and Environmental Microbiology, v.73, n.22, 7162-7168, 2007. https://doi.org/10.1128/aem.00866-07
    » https://doi.org/10.1128/aem.00866-07
  • MACHADO, S.G.; BAGLINIÈRE, F.; MARCHAND, S.; VAN COILLIE, E.; VANETTI, M.C.D.; DE BLOCK, J.; HEYNDRICKX, M. The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products. Frontiers in Microbiology, v.8, p.1-22, 2017. https://doi.org/10.3389/fmicb.2017.00302
    » https://doi.org/10.3389/fmicb.2017.00302
  • MARTIN, N.H.; MURPHY, S.C.; RALYEA, R.D.; WIEDMANN, M.; BOOR, K.J. When cheese gets the blues: Pseudomonas fluorescens as the causative agent of cheese spoilage. Journal of Dairy Science, v.94, n.6, p.3176-3183, 2011. https://doi.org/10.3168/jds.2011-4312
    » https://doi.org/10.3168/jds.2011-4312
  • MCPHEE, J.; GRIFFITHS, M. Psychrotrophic bacteria Pseudomonas spp In: FUQUAY, J.W. (Ed.). Encyclopedia of Dairy Sciences San Diego: Academic Press, 2011. p.379-383.
  • MELINI, F.; MELINI, V.; LUZIATELLI, F.; RUZZI, M. Raw and heattreated milk: From public health risks to nutritional quality. Beverages, v.3, n.4, p.1-33, 2017. https://doi.org/10.3390/beverages3040054
    » https://doi.org/10.3390/beverages3040054
  • MENG, L.; LIU, H.; DONG, L.; ZHENG, N.; XING, M.; ZHANG, Y.; ZHAO, S.; WANG, J. Identification and proteolytic activity quantification of Pseudomonas spp. isolated from different raw milks at storage temperatures. Journal of Dairy Science, v.101, n.4, p.2897-2905, 2018. https://doi.org/10.3168/jds.2017-13617
    » https://doi.org/10.3168/jds.2017-13617
  • MÖRSCHBÄCHER, V.; REMPEL, C.; MACIEL, M. Microbiological quality of refrigerated raw milk in the dairy farm and after transport to the processing dairy plant. Arquivos do Instituto Biológico, v.84, p.1-5, 2017. https://doi.org/10.1590/1808-1657000422016
    » https://doi.org/10.1590/1808-1657000422016
  • MUNSCH-ALATOSSAVA, P.; ALATOSSAVA, T. Phenotypic characterization of raw milk-associated psychrotrophic bacteria. Microbiological Research, v.161, n.4, p.334-346, 2006. https://doi.org/10.1016/j.micres.2005.12.004
    » https://doi.org/10.1016/j.micres.2005.12.004
  • NEUBECK, M.; BAUR, C.; KREWINKEL, M.; STOECKEL, M.; KRANZ, B.; STRESSLER, T.; FISCHER, L; HINRICHS, J.; SCHERER, S.; WENNING, M. Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. International Journal of Food Microbiology, v.211, p.57-65, 2015. https://doi.org/10.1016/j.ijfoodmicro.2015.07.001
    » https://doi.org/10.1016/j.ijfoodmicro.2015.07.001
  • NÖRNBERG, M.F.B.L.; FRIEDRICH, R.S.C.; WEISS, R.D.N.; TONDO, E.C.; BRANDELLI, A. Proteolytic activity among psychrotrophic bacteria isolated from refrigerated raw milk. International Journal of Dairy Technology, v.63, n.1, p.41-46, 2010. https://doi.org/10.1111/j.1471-0307.2009.00542.x
    » https://doi.org/10.1111/j.1471-0307.2009.00542.x
  • OLIVEIRA, G.B.; FAVARIN, L.; LUCHESE, R.H.; MCINTOSH, D. Psychrotrophic bacteria in milk: How much do we really know? Brazilian Journal of Microbiology, v.46, n.2, p.313-321, 2015. http://dx.doi.org/10.1590/S1517-838246220130963
    » http://dx.doi.org/10.1590/S1517-838246220130963
  • PINTO, C.L.O.; MARTINS, M.L.; VANETTI, M.C.D. Microbial quality of raw refrigerated milk and isolation of psychrotrophic proteolytic bacteria. Food Science and Technology, v.26, n.3, p.645-651, 2006. https://doi.org/10.1590/S0101-20612006000300025
    » https://doi.org/10.1590/S0101-20612006000300025
  • PORCELLATO, D.; ASPHOLM, M.; SKEIE, S.B.; MONSHAUGEN, M.; BRENDEHAUG, J.; MELLEGÅRD, H. Microbial diversity of consumption milk during processing and storage. International Journal of Food Microbiology, v.266, p.21-30, 2018. https://doi.org/10.1016/j.ijfoodmicro.2017.11.004
    » https://doi.org/10.1016/j.ijfoodmicro.2017.11.004
  • RIBEIRO JUNIOR, J.C.; OLIVEIRA, A.M.; SILVA, F.G.; TAMANINI, R.; OLIVEIRA, A.L.M.; BELOTI, V. The main spoilage-related psychrotrophic bacteria in refrigerated raw milk. Journal of Dairy Science, v.101, n.1, p.75-83, 2018. https://doi.org/10.3168/jds.2017-13069
    » https://doi.org/10.3168/jds.2017-13069
  • SCARPELLINI, M.; FRANZETTI, L.; GALLI, A. Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microbiology Letters, v.236, n.2, p.257-260, 2004. https://doi.org/10.1016/j.femsle.2004.05.043
    » https://doi.org/10.1016/j.femsle.2004.05.043
  • STUKNYTĖ, M.; DECIMO, M.; COLZANI, M.; SILVETTI, T.; BRASCA, M.; CATTANEO, S.; ALDINI, G.; DE NONI, I. Extracellular thermostable proteolytic activity of the milk spoilage bacterium Pseudomonas fluorescens PS19 on bovine caseins. Journal of Dairy Science, v.99, n.6, p.4188-4195, 2016. https://doi.org/10.3168/jds.2016-10894
    » https://doi.org/10.3168/jds.2016-10894
  • VITHANAGE, N.R.; DISSANAYAKE, M.; BOLGE, G.; PALOMBO, E.A.; YEAGER, T.R.; DATTA, N. Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential. International Dairy Journal, v.57, p.80-90, 2016. https://doi.org/10.1016/j.idairyj.2016.02.042
    » https://doi.org/10.1016/j.idairyj.2016.02.042
  • WANG, L.; JAYARAO, B.M. Phenotypic and genotypic characterization of Pseudomonas fluorescens isolated from bulk tank milk. Journal of Dairy Science, v.84, n.6, p.1421-1429, 2001. https://doi.org/10.3168/jds.S0022-0302(01)70174-9
    » https://doi.org/10.3168/jds.S0022-0302(01)70174-9

Publication Dates

  • Publication in this collection
    10 Oct 2019
  • Date of issue
    2019

History

  • Received
    09 Nov 2018
  • Accepted
    30 July 2019
Instituto Biológico Av. Conselheiro Rodrigues Alves, 1252 - Vila Mariana - São Paulo - SP, 04014-002 - São Paulo - SP - Brazil
E-mail: arquivos@biologico.sp.gov.br