Acessibilidade / Reportar erro

Multiple resistance to bacterial halo blight and bacterial leaf spot in Coffea spp.*

Resistência múltipla à mancha aureolada e à mancha foliar bacteriana em Coffea spp.

ABSTRACT

Breeding for genetic resistance is an important method of crop disease management, due to the numerous benefits and low cost of establishment. In this study, progenies of 11 Coffea species and 16 wild C. arabica accessions were tested for their response to Pseudomonas syringae pv. garcae, the causal agent of bacterial halo blight, a widespread disease in the main coffee-producing regions of Brazil and considered a limiting factor for cultivation in pathogen-favorable areas; and also to P. syringae pv. tabaci, causal agent of bacterial leaf spot, a highly aggressive disease recently detected in Brazil. Separate experiments for each disease were carried out in a greenhouse, with artificial pathogen inoculations and ideal moisture conditions for disease development. The results showed that C. canephora, C. congensis, C. eugenioides, C. stenophylla, and C. salvatrix progenies, the wild C. arabica accessions Dilla & Alghe and Palido Viridis, and cultivar IPR 102 contain satisfactory levels of simultaneous resistance against bacterial halo blight and bacterial leaf spot. These results are useful in breeding programs for durable resistance to multiple biotic agents, providing new combinations of resistance alleles by hybridization, as well as for phytopathological studies, to identify infraspecific variability of the pathogens.

KEYWORDS
germplasm bank; resistant accessions; Pseudomonas syringae pv. garcae; Pseudomonas syringae pv. tabaci

RESUMO

O melhoramento de plantas para resistência genética é um método importante para o manejo de doenças, pelos inúmeros benefícios e baixo custo de implementação. No presente estudo, progênies de 11 espécies de Coffea e 16 acessos selvagens de C. arabica foram testados quanto à resposta a Pseudomonas syringae pv. garcae, agente causal da mancha aureolada, doença disseminada nas principais regiões produtoras de café do Brasil e considerada fator limitante para o cultivo em áreas favoráveis a patógenos; e também para P. syringae pv. tabaci, agente causal da mancha foliar bacteriana, doença altamente agressiva detectada recentemente no Brasil. Experimentos separados para cada doença foram realizados em estufa, por meio da inoculação artificial dos patógenos em condições ideais de umidade para o desenvolvimento das doenças. Os resultados mostraram que as progênies Coffea canephora, C. congensis, C. eugenioides, C. stenophylla e C. salvatrix, além dos acessos selvagens de C. arabica Dilla & Alghe e Palido Viridis e da cultivar IPR 102, possuem níveis satisfatórios de resistência simultânea contra mancha aureolada e mancha foliar bacteriana. Os resultados descritos são úteis em programas de melhoramento para resistência duradoura a múltiplos agentes bióticos, fornecendo novas combinações de alelos de resistência por hibridização, bem como para estudos fitopatológicos, para identificar a variabilidade infraespecífica dos patógenos.

PALAVRAS-CHAVE
banco de germoplasma; acessos resistentes; Pseudomonas syringae pv. garcae; P. syringae pv. tabaci

INTRODUCTION

The current taxonomy of the genus Coffea comprises 125 species (KRISHNAN et al., 2015KRISHNAN, S.; RANKER, T.A.; DAVIS, A.P.; RAKOTOMALALA, J.J. Current status of coffee genetic resources: implications for conservation – case study in Madagascar. Acta Horticulturae, v.101, p.15-19, 2015. https://doi.org/10.17660/ActaHortic.2015.1101.3
https://doi.org/10.17660/ActaHortic.2015...
), but only grains of C. arabica Lineu and C. canephora Pierre ex A. Froehner species are commercially exploited, corresponding to 55 and 45%, respectively, of the world production (USDA, 2014UNITED STATES DEPARTMENT OF AGRICULTURE (USDA). Coffee: world markets and trade. Washington, D.C.: USDA, 2014. 9p.). According to DAVIS et al. (2006)DAVIS, A.P.; GOVAERTS, R.; BRIDSON, D.M.; STOFFELEN, P. An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Botanical Journal of the Linnean Society, United Kingdom, v.152, n.4, p.465-512, 2006. https://doi.org/10.1111/j.1095-8339.2006.00584.x
https://doi.org/10.1111/j.1095-8339.2006...
, C. liberica Bull. ex Hiern can also be cited, although commercially it plays a marginal role.

In spite of the wide diversity of the genus, few species have been used in breeding programs of C. arabica and C. canephora, partly because of the genetic barriers that hamper the development of hybrid plants (CARVALHO et al., 1984CARVALHO, A.; MEDINA FILHO, H.P.; FAZUOLI, L.C. Evolução e melhoramento do cafeeiro. In: I Colóquio sobre citogenética e evolução de plantas, 1984. Piracicaba, SP. Tópicos de Citogenética e Evolução de Plantas. Sociedade Brasileira de Genética, São Paulo, v.21, p.215-234, 1984.), but mainly due to the difficulty in reestablishing the original genome of the cultivated varieties and, consequently, the selection of a stable cultivar.

Some species such as C. eugenioides S. Moore (NAGAI et al., 2008NAGAI, C.; RAKOTOMALALA, J.J.; KATAHIRA, R.; LI, Y.; YAMAGATA, K.; ASHIHARA, H. Production of a new low-caffeine hybrid coffee and the biochemical mechanism of low caffeine accumulation. Euphytica, Wageningen, v.164, n.1, p.133-142, 2008. https://doi.org/10.1007/s10681-008-9674-9
https://doi.org/10.1007/s10681-008-9674-...
), C. liberica (BETTENCOURT; CARVALHO, 1968BETTENCOURT, A.J.; CARVALHO, A. Melhoramento visando à resistência do cafeeiro à ferrugem. Bragantia, Campinas, v.27, n.1, p.35-68, 1968. http://dx.doi.org/10.1590/S0006-87051968000100004
http://dx.doi.org/10.1590/S0006-87051968...
; FORTUNATO et al., 2010FORTUNATO, A.S.; LIDON, F.C.; BATISTA-SANTOS, P.; LEITÃO, A.E.; PAIS, I.P.; RIBEIRO, A.I.; RAMALHO, J.C. Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance. Journal of Plant Physiology, v.167, n.5, p.333-342, 2010. https://doi.org/10.1016/j.jplph.2009.10.013
https://doi.org/10.1016/j.jplph.2009.10....
), and C. racemosa Lour. (GUERREIRO FILHO, 2007GUERREIRO FILHO, O. Cafeeiros resistentes ao bicho-mineiro. O Agronômico, Campinas, v.59, n.1, p.47, 2007.), respectively, were already used as allele donor parents of genes related to caffeine synthesis, resistance to leaf rust Hemileia vastatrix Berkeley & Broome and resistance to coffee leaf miner Leucoptera coffeella Guérin-Ménéville.

For an improved use of Coffea species in breeding programs, mainly for tolerance to abiotic stresses and resistance to biotic stresses such as diseases and pests, traits of agronomical interest must be phenotyped. In fact, the Coffea germplasm banks were primarily phenotyped for the main diseases of the crop. Some of these diseases have become relevant in a number of coffee-producing countries and sources of pathogen resistance can still be found in wild genetic resources preserved in in situ collections.

Bacterial halo blight of coffee (BHB), caused by Pseudomonas syringae pv. garcae (AMARAL et al., 1956AMARAL, J.F.; TEIXEIRA, C.G.; PINHEIRO, E.D. O bactério causador da mancha aureolada do cafeeiro. Arquivos do Instituto Biológico, São Paulo, v.23, p.151-155, 1956.; YOUNG et al., 1978YOUNG, J.M.; DYE, D.W.; BRADBURY, J.F.; PANAGOPOULOS, C.G.; ROBBS, C.F. A proposed nomenclature and classification for plant pathogenic bacteria. New Zealand Journal of Agricultural Research, Auckland, v.21, n.1, p.153-177, 1978. https://doi.org/10.1080/00288233.1978.10427397
https://doi.org/10.1080/00288233.1978.10...
), can cause large-scale damage and disease outbreaks, according to COSTA et al. (1957)COSTA, A.S.; AMARAL, J.F.; VIEGAS, A.P.; SILVA, D.M.; TEIXEIRA, C.G.; PINHEIRO, E.D. Bacterial halo blight of coffee in Brazil. Phytopathologische Zeitschrift, Berlin, v.28, p.427-444, 1957.. Outbreaks of the disease occur in areas with high inoculum potential or in nurseries, making coffee production and/or the sale of seedlings infeasible. In Brazil, BHB has already been detected in several regions of the states of São Paulo, Paraná and Minas Gerais (AMARAL et al., 1956AMARAL, J.F.; TEIXEIRA, C.G.; PINHEIRO, E.D. O bactério causador da mancha aureolada do cafeeiro. Arquivos do Instituto Biológico, São Paulo, v.23, p.151-155, 1956.; KIMURA et al., 1973KIMURA, O.; ROBBS, C.F.; RIBEIRO, R.L.D. Estudos sobre o agente da “Mancha aureolada do cafeeiro” (Pseudomonas garcae Amaral et al.). Arquivos da Universidade Federal Rural, Itaguaí, v.3. n.2, p.15-18, 1973.; ZOCCOLI et al., 2011ZOCCOLI, D.M.; TAKATSU, A.; UESUGI, C.H. Ocorrência de mancha-aureolada em cafeeiros na região do Triângulo Mineiro e Alto Paranaíba. Bragantia, Campinas, v.70, n.4, p.843-849, 2011. http://dx.doi.org/10.1590/S0006-87052011000400017
http://dx.doi.org/10.1590/S0006-87052011...
; RODRIGUES et al., 2017bRODRIGUES, L.M.R.; SERA, G.H.; GUERREIRO FILHO, O.; BERIAM, L.O.S.; ALMEIDA, I.M.G. First report of mixed infection by Pseudomonas syringae pathovars garcae and tabaci on coffee plantations. Bragantia, Campinas, v.76, n.4, p.543-549, 2017b. http://dx.doi.org/10.1590/1678-4499.2016.399
http://dx.doi.org/10.1590/1678-4499.2016...
). Moreover, ALMEIDA et al. (2012)ALMEIDA, I.M.G.; MACIEL, K.W.; BERIAM, L.O.S.; RODRIGUES, L.M.R.; DESTÉFANO, S.A.L.; RODRIGUES NETO, J.; PATRÍCIO, F.R.A. Increase in incidence of bacterial halo blight (Pseudomonas syringae pv. garcae), in coffee producing areas in Brazil. In: INTERNATIONAL CONFERENCE ON COFFEE SCIENCE, 24., San José. Proceedings… San José: ASIC, 2012. p.1080-1084. reported an increase in disease incidence and severity in the main coffee-producing states of Brazil.

In the African continent, BHB has already been described in Kenya, Ethiopia and Uganda (RAMOS; SHAVDIA, 1976RAMOS, A.H.; SHAVDIA, L.D. A dieback of coffee in Kenya. Plant Disease Reporter, St. Paul, v.60, n.10, p.831-835, 1976.; KOROBKO; WONDIMIGEGNE 1997KOROBKO, A.; WONDINAGEGNE, E. Bacterial blight of coffee (Pseudomonas syringae pv. garcae) in Ethiopia. In: RUDOLPH, K.; BURR, T.J.; MANSFIELD, J.W.; STEAD, D.; VIVIAN, A.; VON KIETZELE, J. Pseudomonas syringae and related pathogens. Dordrecht: Springer, 1997. p.538-541. https://doi.org/10.1007/978-94-011-5472-7
https://doi.org/10.1007/978-94-011-5472-...
), and in Asia, only in China (XUEHUI et al., 2013XUEHUI, B.; LIHONG, Z.; YONGLIANG, H.; GUANGHAI, J.; JINHONG, L.; ZHANG, H. Isolation and identification of the pathogen of coffee bacterial blight disease. Chinese Journal of Tropical Crops, v.34, n.4, p.738-742, 2013.).

Resistance sources to BHB were identified in C. stenophylla G. Don and C. eugenioides accessions of the germplasm bank of the Agronomic Institute of Paraná (Instituto Agronômico do Paraná — IAPAR) (MOHAN et al., 1978MOHAN, S.K.; CARDOSO, R.M.L.; PAIVA, M.A. Resistência em germoplasma de Coffea ao crestamento bacteriano incitado por Pseudomonas garcae Amaral et al. Pesquisa Agropecuária Brasileira, Brasília, v.13, n.1, p.53-64, 1978.). Exotic varieties of C. arabica, e.g., Dilla & Alghe, Geisha, Harar, and S. 12 Kaffa (MORAES et al., 1975MORAES, S.A.; SUGIMORI, M.H.; TOMAZELLO FILHO, M.; CARVALHO, P.C.T. Resistência de cafeeiros a Pseudomonas garcae. Summa Phytopathologica, Botucatu, v.1, p.105-110, 1975.), Ennarea and Semierecta (MOHAN et al., 1978MOHAN, S.K.; CARDOSO, R.M.L.; PAIVA, M.A. Resistência em germoplasma de Coffea ao crestamento bacteriano incitado por Pseudomonas garcae Amaral et al. Pesquisa Agropecuária Brasileira, Brasília, v.13, n.1, p.53-64, 1978.), SL 28 (KAIRU, 1997KAIRU, M.G. Biochemical and pathogenic differences between Kenyan and Brazilian isolates of Pseudomonas syringae pv. garcae. In: RUDOLPH K.; BURR T.J.; MANSFIELD J.W.; STEAD D.; VIVIAN A.; VON KIETZELL J. (orgs.). Pseudomonas Syringae Pathovars and Related Pathogens. Developments in Plant Pathology. Dordrecht: Springer, 1997. v.46. p.239-246.), as well as 38 wild accessions from Ethiopia, mentioned in a Food and Agriculture Organization (FAO) survey of 1968 (FAO, 1968FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO). Coffee mission to Ethiopia 1946 – 1965 (1968). Rome, Italy: FAO, 1968. 200p. (Report, FAO.); MOHAN et al., 1978MOHAN, S.K.; CARDOSO, R.M.L.; PAIVA, M.A. Resistência em germoplasma de Coffea ao crestamento bacteriano incitado por Pseudomonas garcae Amaral et al. Pesquisa Agropecuária Brasileira, Brasília, v.13, n.1, p.53-64, 1978.), were resistant to P. syringae pv. garcae. In addition, plants of C. canephora, C. congensis and C. liberica var. dewevrei species proved susceptible to this pathogen (COSTA et al., 1957COSTA, A.S.; AMARAL, J.F.; VIEGAS, A.P.; SILVA, D.M.; TEIXEIRA, C.G.; PINHEIRO, E.D. Bacterial halo blight of coffee in Brazil. Phytopathologische Zeitschrift, Berlin, v.28, p.427-444, 1957.).

In Brazil, all arabica cultivars registered by the Brazilian Ministry of Agriculture, Livestock and Food Supply (Ministério da Agricultura, Pecuária e Abastecimento — MAPA) are BHB-susceptible, except for cultivar IPR 102, which is resistant to the disease (SERA et al., 2017SERA, G.H.; SERA, T.; FAZUOLI, L.C. IPR 102 – Dwarf Arabica coffee cultivar with resistance to bacterial halo blight. Crop Breeding and Applied Biotechnology, Viçosa, v.17, n.4, p.403-407, 2017. http://dx.doi.org/10.1590/1984-70332017v17n4c60
http://dx.doi.org/10.1590/1984-70332017v...
).

Bacterial leaf spot (BLS), caused by P. syringae pv. tabaci (WOLF; FOSTER, 1917WOLF, F.A.; FOSTER, A.C. Bacterial leaf spot of tobacco. Science, v.47, 1189, p.361-362, 1917. https://doi.org/10.1126/science.46.1189.361
https://doi.org/10.1126/science.46.1189....
) (YOUNG et al., 1978YOUNG, J.M.; DYE, D.W.; BRADBURY, J.F.; PANAGOPOULOS, C.G.; ROBBS, C.F. A proposed nomenclature and classification for plant pathogenic bacteria. New Zealand Journal of Agricultural Research, Auckland, v.21, n.1, p.153-177, 1978. https://doi.org/10.1080/00288233.1978.10427397
https://doi.org/10.1080/00288233.1978.10...
) is a less-known disease, firstly observed in a coffee seedling nursery in southern São Paulo State (DESTÉFANO et al., 2010DESTÉFANO, S.A.L.; RODRIGUES, L.M.R.; BERIAM, L.O.S.; PATRÍCIO, F.R.A.; THOMAZIELLO, R.A.; RODRIGUES NETO, J. Bacterial leaf spot caused by Pseudomonas syringae pv. tabaci in Brazil. New Disease Reports, London, v.22, n.5, 2010.). A recent study reported the occurrence of BLS under field conditions in the state of Paraná, in separated and mixed infections with P. syringae pv. garcae (RODRIGUES et al., 2017bRODRIGUES, L.M.R.; SERA, G.H.; GUERREIRO FILHO, O.; BERIAM, L.O.S.; ALMEIDA, I.M.G. First report of mixed infection by Pseudomonas syringae pathovars garcae and tabaci on coffee plantations. Bragantia, Campinas, v.76, n.4, p.543-549, 2017b. http://dx.doi.org/10.1590/1678-4499.2016.399
http://dx.doi.org/10.1590/1678-4499.2016...
). To date, BLS has been poorly studied, probably because its symptoms are easily confused with BHB, for being extremely similar.

In addition, no source of BLS resistance was described. The commercial C. arabica cultivars Mundo Novo, IAC 125 RN, Obatã IAC 1669-20, Obatã IAC 4739, Bourbon Amarelo, and Icatu Vermelho IAC 4045, as well as a genotype of Timor Hybrid IAC 1559-13 and cultivar Apoatã IAC 2258 of C. canephora, were found to be susceptible to this pathogen (RODRIGUES et al., 2009RODRIGUES, L.M.R.; RODRIGUES NETO, J.; PIERI, C.; THOMAZIELLO, R.A.; MARINGONI, A.C. Reação de genótipos de cafeeiro à mancha bacteriana causada por Pseudomonas syringae pv. tabaci. In: CONGRESSO PAULISTA DE FITOPATOLOGIA, 32., São Pedro, Resumos... CD ROM, 2009.).

Unlike P. syringae pv. garcae, which is specific to coffee trees (KIMURA et al., 1973KIMURA, O.; ROBBS, C.F.; RIBEIRO, R.L.D. Estudos sobre o agente da “Mancha aureolada do cafeeiro” (Pseudomonas garcae Amaral et al.). Arquivos da Universidade Federal Rural, Itaguaí, v.3. n.2, p.15-18, 1973.), P. syringae pv. tabaci naturally infects a wide range of hosts (BRADBURY, 1986BRADBURY, J.F. Guide to plant pathogenic bacteria. Farhan House: C.A.B. International, 1986.; MALAVOLTA JUNIOR et al., 2008MALAVOLTA JÚNIOR, V.A.; BERIAM, L.O.S.; ALMEIDA, I.M.G.; RODRIGUES NETO, J.; ROBBS, C.F. Bactérias fitopatogênicas assinaladas no Brasil: uma atualização. Summa Phytopathologica, Botucatu, v.34 (supl.esp.), p.1-88, 2008.), which represent a source of primary inoculum for coffee plants.

In view of the epidemiological importance of BLS for coffee cultivation, the knowledge about resistance sources to this pathogen must be deepened, and useful information for breeding programs of the crop obtained, targeting the introgression of genes responsible for the expression of resistance to biotic agents in susceptible commercial cultivars.

The purpose of this study was to identify simultaneous resistance sources to BHB and BLS in Coffea spp., as well as in C. arabica accessions of the Germplasm Bank of the Agronomic Institute of Campinas (Instituto Agronômico de Campinas — IAC), Campinas, São Paulo, Brazil, which are potentially useful in breeding programs, especially for C. arabica.

MATERIALS AND METHODS

Germplasm accessions

Seeds of 11 species of the genus Coffea and 16 accessions of C. arabica (Tables 1 and 2), in the Coffea Germplasm Bank of the IAC, were transplanted at the cotyledonary stage into 180-cm3 tubes containing plant substrate and Osmocote® fertilizer (3 g.L-1), and maintained in a greenhouse until the evaluation of BHB and BLS severity.

Table 1.
Frequency of resistance, moderately resistance and susceptible plants, according to the disease rating scale (0 – 5 points) in Coffea spp., in response to infection by Pseudomonas syringae pv. garcae, causal agent of bacterial halo blight, evaluated in 2012 and 2013, and against P. syringae pv. tabaci, causal agent of bacterial leaf spot, evaluated in 2015.
Table 2.
Number of inoculated seedlings, frequency of resistance, moderately resistance and susceptible plants, according to the disease rating scale of 0 – 5 points, 42 days after inoculation of germplasm, evaluated in relation to infection by Pseudomonas syringae pv. garcae and P. syringae pv. tabaci causal agents of bacterial halo blight and bacterial leaf spot, respectively.

Bacterial strains and inoculation

The bacterial strains used in the experiments were obtained from the Phytobacteria Culture Collection of the Biological Institute (Coleção de Culturas de Fitobactérias do Instituto Biológico — IBSBF). A preliminary study reported that mixed P. syringae pv. garcae strains induced high levels of disease severity (RODRIGUES et al., 2017aRODRIGUES, L.M.R.; ALMEIDA, I.M.G.; PATRÍCIO, F.R.A.; BERIAM, L.O.S.; MACIEL, K.W.; BRAGHINI, M.T.; GUERREIRO FILHO, O. Aggressiveness of strains and inoculation methods for resistance assessment to bacterial halo blight on coffee seedlings. Journal of Phytopathology, Berlin, v.165, n.2, p.105-114, 2017a. https://doi.org/10.1111/jph.12543
https://doi.org/10.1111/jph.12543...
). A mixture of the P. syringae pv. garcae strains IBSBF 75 and IBSBF 1197, considered highly aggressive, was used to evaluate BHB severity. A 1:1 ratio mixture consisting of 2 mL of each bacterial suspension was inoculated. Pseudomonas syringae pv. tabaci strain IBSBF 2249 was used to evaluate the BLS resistance of the plants.

Bacterial suspensions for coffee seedling inoculations were standardized in a spectrophotometer for approximately 3×108 CFU.mL-1 (A 600 nm = 0.3) (LELLIOT; STEAD 1987LELLIOTT, R.A.; STEAD, D.E. Methods for the diagnosis of bacterial diseases of plants. Oxford, UK: Blackwell Scientific Publications, 1987. (Methods in Plant Pathology. v.2.)). Inoculations were performed by the abrasion technique (RODRIGUES et al., 2017aRODRIGUES, L.M.R.; ALMEIDA, I.M.G.; PATRÍCIO, F.R.A.; BERIAM, L.O.S.; MACIEL, K.W.; BRAGHINI, M.T.; GUERREIRO FILHO, O. Aggressiveness of strains and inoculation methods for resistance assessment to bacterial halo blight on coffee seedlings. Journal of Phytopathology, Berlin, v.165, n.2, p.105-114, 2017a. https://doi.org/10.1111/jph.12543
https://doi.org/10.1111/jph.12543...
).

Experimentation

The response of Coffea spp. to BHB was tested in two independent experiments, in 2012 (E1) and 2013 (E2), using 11 and seven species, respectively. The experiment was arranged in a completely randomized design with three to 23 replications per species, and the experimental plots consisted of a single plant. After inoculation, the plants were maintained at a relative humidity level above 70%.

In 2014, the same coffee plants used in E1 were pruned and maintained at low relative humidity, unfavorable to pathogen growth. Subsequently, in 2015 (E3), plants with 4 – 5 expanded leaves (approximately 5 – 6 months after pruning) were tested against P. syringae pv. tabaci, strain IBSBF 2249.

In 2014 (E4), the behavior of 16 C. arabica accessions in response to BHB was evaluated as described above. After the end of the experimental period, 42 days after inoculation (DAI), the plants were pruned and maintained at low relative humidity, unfavorable to the pathogen. In 2015 (E5), after the development of at least three healthy internodes, the plants were tested for BLS-resistance. The experimental design was a completely randomized design with six replications per accession, and the plots represented by a single plant.

Disease evaluation

A 0 – 5-disease-rating scale was used, according to the symptoms observed in the inoculated area, in which 0 was attributed to symptom-free plants and 5 to leaves with necrosis of the entire inoculated area (RODRIGUES et al., 2017aRODRIGUES, L.M.R.; ALMEIDA, I.M.G.; PATRÍCIO, F.R.A.; BERIAM, L.O.S.; MACIEL, K.W.; BRAGHINI, M.T.; GUERREIRO FILHO, O. Aggressiveness of strains and inoculation methods for resistance assessment to bacterial halo blight on coffee seedlings. Journal of Phytopathology, Berlin, v.165, n.2, p.105-114, 2017a. https://doi.org/10.1111/jph.12543
https://doi.org/10.1111/jph.12543...
). For the interpretation of results, the following classification was considered: resistant (score 0); moderately resistant (1); and susceptible (2 to 5 points on the disease-rating scale).

RESULTS

The results of the experiments E1 and E2 are shown in Table 1. In the cultivars Coffea arabica Mundo Novo IAC 376-4 and Catuaí Vermelho IAC 81, high susceptibility levels to P. syringae pv. garcae were observed in E1, similar to cultivar IAC 125 RN, used as susceptible control. Susceptibility of all plants of the species C. kapakata A. Chev., C. anthonyi Stoff. & F. Anthony, and C. heterocalyx Stoff. was also observed. However, over the experimental period, disease evolution varied among the plants of each species, unlike in the case of the C. arabica cultivars, with a generally uniform development. The disease evolution in susceptible plants was heterogeneous, varying among the plants of each species, especially in C. anthonyi and C. heterocalyx.

In C. kapakata, between 7 and 21 DAI, all inoculated leaves dropped, and, in some cases, the bacteria colonized young leaves in the expansion phase.

Segregation for BHB resistance in variable proportions was observed in the other seven evaluated Coffea species (Table 1).

While high percentages of BHB-susceptible plants were found in progenies of C. humilis A. Chev. (91.6%) and C. liberica var. passipagore (70%), 42.9 and 37.5%, respectively, were found for C. canephora and C. congensis A. Froehner IAC 4,349. Lowest percentages of susceptible plants were observed in C. salvatrix Swynn & Phillipson (27.2%), C. eugenioides (27.3%) and C. stenophylla (16.6%).

In BHB-resistant plants, distinct reactions were observed in leaf tissues around the wounds caused by inoculations. The species C. salvatrix and C. canephora showed no visible changes around the inoculation areas. In some resistant plants of C. eugenioides and C. stenophylla, darkening around the injured points was observed. Additionally, around some wounds, the presence of a yellowish halo without visual signs of pathogen colonization was observed (Fig. 1). Bacterial flow exudates from these tissues tested negative for the pathogen.

Figure 1.
Reaction of Coffea spp. against Pseudomonas syringae pv. garcae (pictures above) and P. syringae pv. tabaci (pictures below), respectively in: (A) Coffea canephora; (B) C. congensis; (C) C. eugenioides; (D) C. stenophylla; (E) C. salvatrix; (F) C. arabica, cultivar cultivar IAC 125 RN (F), 42 days after inoculation.

Similar results were obtained in E2 (Table 1). Lowest percentages of susceptible coffee trees were found for C. congensis IAC 4,350 (45%) and C. eugenioides (52.6%), and the highest percentage of resistant coffee trees (42.1%) (Table 1).

All plants of the species C. kapakata and C. humilis were susceptible, as well as those of the susceptible control cultivar IAC 125 RN of C. arabica.

Segregation for BHB resistance was observed in progenies of other species. The frequency of resistant plants was about 40% in progenies of C. eugenioides and C. congensis IAC 4,350 and less than 20% in C. liberica var. liberica, C. liberica var. dewevrei, and C. congensis. In these three species, the percentage of susceptible plants was 62.5, 89.5 and 68.8%, respectively.

The symptom development in E2 plants was similar as in those of the previous tests (E1). The severity in C. kapakata peaked seven DAI, while symptom evolution was slower on plants of the susceptible cultivar IAC 125 RN.

The severity of BLS was also evaluated in nine species of the genus Coffea (E3). Results of the plants of each progeny were ranked according to the level of disease resistance/susceptibility (Table 1).

The species C. humilis, C. kapakata and C. liberica var. passipagore were found to be as susceptible to P. syringae pv. tabaci as the evaluated C. arabica cultivars.

Sources of BLS-resistance were observed in the species C. congensis, cultivar IAC 4,349, C. canephora, C. eugenioides, C. stenophylla, and C. salvatrix. Among these, only C. congensis and C. stenophylla had no BLS-susceptible plants. In resistant coffee trees of C. stenophylla and in only one of C. salvatrix, dry lesions surrounded by a discrete yellow halo, with no visual symptoms of bacteria colonization, were observed 42 DAI (Fig. 1). Microscopic examinations of bacterial flow exudates tested negative.

The analysis of the reactions of the evaluated cultivars and botanical and exotic varieties of C. arabica to P. syringae, pathovars garcae (E4) and tabaci (E5), are shown in Table 2. All plants of cultivar IPR 102, as well as the variety Palido Viridis, were BHB-resistant. However, resistance to P. syringae pv. tabaci was only observed in Palido Viridis, classified as resistant (1) or moderately resistant (5). The plants of cultivar IPR 102 were BLS-susceptible.

Genetic variability for simultaneous resistance to P. syringae pathovars garcae and tabaci was identified in progenies of variety Dilla & Alghe. Of the varieties São Bernardo and Villa Sarchi, 40 and 33.3% were BHB-resistant, respectively, although BLS-susceptible. All other evaluated C. arabica genotypes were susceptible to both diseases.

DISCUSSION

Resistance to BHB was reported previously by MOHAN et al. (1978)MOHAN, S.K.; CARDOSO, R.M.L.; PAIVA, M.A. Resistência em germoplasma de Coffea ao crestamento bacteriano incitado por Pseudomonas garcae Amaral et al. Pesquisa Agropecuária Brasileira, Brasília, v.13, n.1, p.53-64, 1978. in the species C. eugenioides and C. stenophylla. Our results extended the diversity of resistance sources with the inclusion of C. liberica, C. canephora, C. congensis, and C. salvatrix. Sources of simultaneous resistance to the pathovars P. syringae garcae and tabaci were identified in the species C. canephora, C. congensis, C. eugenioides, C. salvatrix, and C. stenophylla.

In the studied plant species, resistance reactions to P. syringae pv. garcae and P. syringae pv. tabaci occur separately or simultaneously, suggesting the existence of different genes acting in the resistance expression to both pathovars in coffee plants. Probably, there are different resistance mechanisms against these pathogens in the analyzed populations.

Different Coffea species, resistant to BHB and/or BLS, have a particular use in phytobacteriology, with a view to identify infraspecific variability of these pathogens, as already known for other pathovars of P. syringae. The transfer of the resistance genes contained in these resistant sources may also allow the development of a cultivar with intrinsic traits found only in these species.

In spite of some difficulties of this strategy, e.g., the existence of genetic barriers to interspecific crosses (CARVALHO; MONACO, 1968CARVALHO, A.; MONACO, L.C. Relaciones geneticas de especies selecionadas de Coffea. Cafe, Lima, v.9, n.4, p.1-19, 1968.) and the long time required for the introgression of genes of interest and recovery of the recurrent genome, a C. arabica cultivar resistant to L. coffeella was developed in Brazil, by the transfer of resistance genes from C. racemosa (CARDOSO et al., 2014CARDOSO, D.C.; MARTINATI, J.C.; GIACHETTO, P.F.; VIDAL, R.O.; CARAZZOLLE, M.F.; PADILHA, L.; GUERREIRO FILHO, O.; MALUF, M.P. Large-scale analysis of differential gene expression in coffee genotypes resistant and susceptible to leaf miner-toward the identification of candidate genes for marker assisted-selection. BMC Genomics, v.15, p.1-20, 2014. https://doi.org/10.1186/1471-2164-15-66
https://doi.org/10.1186/1471-2164-15-66...
; MENDONÇA et al., 2016MENDONÇA, A.P.; NONATO, J.V.A.; ANDRADE, V.T.; FATOBENE, B.J.R.; BRAGHINI, M.T.; PRELA-PANTANO, A.; GUERREIRO FILHO, O. Coffea arabica clones resistant to coffee leaf miner. Crop Breeding and Applied Biotechnology, Viçosa, v.16, n.1, p.42-47, 2016. http://dx.doi.org/10.1590/1984-70332016v16n1a7
http://dx.doi.org/10.1590/1984-70332016v...
). Low-caffeine content cultivars were selected by hybridization of C. eugenioides in recombination with the species C. arabica and C. canephora (NAGAI et al., 2008NAGAI, C.; RAKOTOMALALA, J.J.; KATAHIRA, R.; LI, Y.; YAMAGATA, K.; ASHIHARA, H. Production of a new low-caffeine hybrid coffee and the biochemical mechanism of low caffeine accumulation. Euphytica, Wageningen, v.164, n.1, p.133-142, 2008. https://doi.org/10.1007/s10681-008-9674-9
https://doi.org/10.1007/s10681-008-9674-...
).

Other currently available methods, e.g., marker-assisted selection (BERNARDO, 2008BERNARDO, R. Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Science, v.48, n.5, p.1649-1664, 2008. 10.2135/cropsci2008.03.0131
10.2135/cropsci2008.03.0131...
) or genome-wide selection (MEUWISSEN et al., 2001MEUWISSEN, T.H.; HAYES, B.J.; GODDARD, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, v.157, n.4, p.1819-1829, 2001.), can make the use of wild species with multiple traits of interest feasible, for example of C. eugenioides and C. salvatrix, according to our studies both resistant to bacterial diseases, resistant to leaf-miner (GUERREIRO FILHO et al., 1991GUERREIRO FILHO, O.; MEDINA FILHO, H.P.; CARVALHO, A. Fontes de resistência ao bicho mineiro, Perileucoptera coffeella em Coffea spp. Bragantia, Campinas, v.50, n.1, p.45-55, 1991. http://dx.doi.org/10.1590/S0006-87051991000100006
http://dx.doi.org/10.1590/S0006-87051991...
) and having a low caffeine content in the endosperm (MAZZAFERA; CARVALHO, 1992MAZZAFERA, P.; CARVALHO, A. Breeding for low seed caffeine content of coffee (Coffea L.) by interspecific hybridization. Euphytica, Wageningen, v.59, n.1, p.55-60, 1992.). Coffea eugenioides was also resistant to coffee berry borer, Hypothenemus hampei Ferrari (SERA et al., 2010SERA, G.H.; SERA, T.; ITO, D.S.; RIBEIRO FILHO, C.; VILLACORTA, A.; KANAYAMA, F.S. Coffee berry borer resistance in coffee genotypes. Brazilian Archives of Biology and Technology, Curitiba, v.53, n.2, p.261-268, 2010. http://dx.doi.org/10.1590/S1516-89132010000200003
http://dx.doi.org/10.1590/S1516-89132010...
), and in C. salvatrix the seed oil content was high (MAZZAFERA et al., 1998MAZZAFERA, P.; SOAVE, D.; ZULLO, M.A.T.; GUERREIRO FILHO, O. Oil content of green beans from some coffee species. Bragantia, Campinas, v.57, n.1, p.45-48, 1998. http://dx.doi.org/10.1590/S0006-87051998000100006
http://dx.doi.org/10.1590/S0006-87051998...
).

Genome-wide selection was used by ALKIMIM et al. (2017)ALKIMIM, E.R.; CAIXETA, E.T.; SOUSA, T.V.; PEREIRA, A.A.; OLIVEIRA, A.C.B.; ZAMBOLIM, L.; SAKIYAMA, N.S. Marker-assisted selection provides arabica coffee with genes from other Coffea species targeting on multiple resistance to rust and coffee berry disease. Molecular Breeding, Springer Netherlands, v.37, n.6, 2017. https://doi.org/10.1007/s11032-016-0609-1
https://doi.org/10.1007/s11032-016-0609-...
for the identification and selection of C. arabica genotypes carrying resistant genes to leaf rust and coffee berry disease, caused by Colletotrichum kahawae (Waller & Bridge), introgressed from C. liberica and C. canephora, respectively. The profile of the species C. liberica was remarkable for Arabica coffee breeding, for having plants that carry the SH3 gene, a resistant source to all Hemileia vastatrix races described in Brazil so far (FAZUOLI et al., 2009FAZUOLI, L.C.; BRAGHINI, M.T.; SILVAROLLA, M.B.; MISTRO, J.C.; PATRÍCIO, F.R.A. Melhoramento do cafeeiro visando à resistência a doenças. IX Curso de Atualização em Café. Documentos IAC, Campinas, v.91, p.1-16, 2009.), being indicated as tolerant to cold stress (PETEK et al., 2005PETEK, M.R.; SERA, T.; ALTEIA, M.Z. Selection for frost resistance in Coffea arabica progenies carrying C. liberica var. dewevrei genes. Crop Breeding and Applied Biotechnology, Viçosa, v.5, p.355-362, 2005. https://doi.org/10.12702/1984-7033.v05n03a14
https://doi.org/10.12702/1984-7033.v05n0...
; FORTUNATO et al., 2010FORTUNATO, A.S.; LIDON, F.C.; BATISTA-SANTOS, P.; LEITÃO, A.E.; PAIS, I.P.; RIBEIRO, A.I.; RAMALHO, J.C. Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance. Journal of Plant Physiology, v.167, n.5, p.333-342, 2010. https://doi.org/10.1016/j.jplph.2009.10.013
https://doi.org/10.1016/j.jplph.2009.10....
), as well as having simultaneous BHB and BLS resistance, according to our results.

Among the diploid species, C. canephora was the most adequate BHB and BLS-resistance source for traditional C. arabica breeding, since hybrids between these species could be established without difficulty (CARVALHO et al., 1984CARVALHO, A.; MEDINA FILHO, H.P.; FAZUOLI, L.C. Evolução e melhoramento do cafeeiro. In: I Colóquio sobre citogenética e evolução de plantas, 1984. Piracicaba, SP. Tópicos de Citogenética e Evolução de Plantas. Sociedade Brasileira de Genética, São Paulo, v.21, p.215-234, 1984.), and the simultaneous resistance to these pathogens was observed in this study at a relatively high frequency in progenies of this species. The proportion of BHB-resistant (43%) and BLS-resistant (60%) coffee trees in the evaluated progenies suggests that the frequency of resistance alleles in the tested genotype C. canephora is high. Several C. arabica cultivars have been developed from interspecific hybridizations of C. canephora with leaf rust resistant genes, such as Icatu (Brazil) (FAZUOLI et al., 1983FAZUOLI, L.C.; CARVALHO, A.; COSTA, W.M.; NERY, C.; LAUN, C.R.P.; SANTIAGO, M. Avaliação de progênies e seleção no cafeeiro Icatu. Bragantia, Campinas, v.42, n.1, p.179-189, 1983. http://dx.doi.org/10.1590/S0006-87051983000100016
http://dx.doi.org/10.1590/S0006-87051983...
), Ruiru 11 (Kenya) (OMONDI et al., 2001OMONDI, C.O.; AYIECHO, P.O.; MWANG’OMBE, A.W.; HINDORF, H. Resistance of Coffea arabica cv. Ruiru 11 tested with different isolates of Colletotrichum kahawae, the causal agent of coffee berry disease. Euphytica, Wageningen, v.121, n.1, p.19-24, 2001. https://doi.org/10.1023/A:1012056622969
https://doi.org/10.1023/A:1012056622969...
), and Cenicafé 1 (Colombia) (FLÓREZ et al., 2016FLÓREZ, R.C.P.; MALDONADO, L.C.E.; CORTINA, G.H.A.; MONCADA, B.M.P.; MONTOYA, R.E.C.; IBARRA, R.L.N.; UNIGARRO, M.C.A.; RENDÓN, S.J.R.; DUQUE, O.H. Cenicafé 1: Nueva variedad de porte bajo, altamente productiva, resistente a la roya y al CBD, con mayor calidad física del grano. Avances Técnicos Cenicafé, Colombia, v.469, 8p, 2016.).

However, a detailed investigation of resistance in C. canephora is required, since plants of this species evaluated by COSTA et al. (1957)COSTA, A.S.; AMARAL, J.F.; VIEGAS, A.P.; SILVA, D.M.; TEIXEIRA, C.G.; PINHEIRO, E.D. Bacterial halo blight of coffee in Brazil. Phytopathologische Zeitschrift, Berlin, v.28, p.427-444, 1957. and MOHAN et al. (1978)MOHAN, S.K.; CARDOSO, R.M.L.; PAIVA, M.A. Resistência em germoplasma de Coffea ao crestamento bacteriano incitado por Pseudomonas garcae Amaral et al. Pesquisa Agropecuária Brasileira, Brasília, v.13, n.1, p.53-64, 1978. were BHB-susceptible. These divergent results suggest considerable variability in the disease resistance of this species.

In view of the difficulties described above, the most adequate method to breed new cultivars with simultaneous and stable resistance is the exploration of a primary gene pool of C. arabica accessions identified as BHB and BLS-resistant.

In this context, the most promising genetic material of the evaluated germplasms is cultivar IPR 102, which is highly yielding and segregates only genes for BLS resistance. This cultivar resulted from the hybridization between C. arabica Bourbon Vermelho Co 667 and C. canephora var. Robusta Co 254. Therefore, the resistance to both pathogens is probably the result of introgression of resistance genes contained in C. canephora. The BHB-susceptibility of cultivar Bourbon Vermelho (RODRIGUES et al., 2017aRODRIGUES, L.M.R.; ALMEIDA, I.M.G.; PATRÍCIO, F.R.A.; BERIAM, L.O.S.; MACIEL, K.W.; BRAGHINI, M.T.; GUERREIRO FILHO, O. Aggressiveness of strains and inoculation methods for resistance assessment to bacterial halo blight on coffee seedlings. Journal of Phytopathology, Berlin, v.165, n.2, p.105-114, 2017a. https://doi.org/10.1111/jph.12543
https://doi.org/10.1111/jph.12543...
) and the frequency of resistant plants of C. canephora to the pathovars garcae and tabaci recorded in this study support this hypothesis.

The inoculation results of C. arabica variety Villa Sarchi agreed with MORAES et al. (1975)MORAES, S.A.; SUGIMORI, M.H.; TOMAZELLO FILHO, M.; CARVALHO, P.C.T. Resistência de cafeeiros a Pseudomonas garcae. Summa Phytopathologica, Botucatu, v.1, p.105-110, 1975. and confirmed the resistance to BHB. The mutant Palido Viridis of C. arabica, less productive but BHB and BLS-resistant, is also an important tool for studies related to resistance inheritance and for coffee breeding programs. A few plants of C. arabica, variety São Bernardo, were BHB-resistant, probably due to exogenous pollen grain fertilization, since no plants of the hybrid São Bernardo × Mundo Novo with resistance to the disease were observed.

Although the pathogens are genetically very similar, the presence of resistance to one pathogen in a plant does not mean resistance to the other. Therefore, further studies aiming at the selection of plants with multiple resistance to these agents are highly desirable, as well as an improved knowledge of the resistance mechanisms involved.

ACKNOWLEDGEMENTS

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The authors are grateful to the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico — CNPq) for a research fellowship (OGF CNPq DT 308.634/2016-0 and SALD CNPq DT 30.31.22/2017-0) and the financial support (grant CNPq 479.589/2013-5).

REFERENCES

  • ALKIMIM, E.R.; CAIXETA, E.T.; SOUSA, T.V.; PEREIRA, A.A.; OLIVEIRA, A.C.B.; ZAMBOLIM, L.; SAKIYAMA, N.S. Marker-assisted selection provides arabica coffee with genes from other Coffea species targeting on multiple resistance to rust and coffee berry disease. Molecular Breeding, Springer Netherlands, v.37, n.6, 2017. https://doi.org/10.1007/s11032-016-0609-1
    » https://doi.org/10.1007/s11032-016-0609-1
  • ALMEIDA, I.M.G.; MACIEL, K.W.; BERIAM, L.O.S.; RODRIGUES, L.M.R.; DESTÉFANO, S.A.L.; RODRIGUES NETO, J.; PATRÍCIO, F.R.A. Increase in incidence of bacterial halo blight (Pseudomonas syringae pv. garcae), in coffee producing areas in Brazil. In: INTERNATIONAL CONFERENCE ON COFFEE SCIENCE, 24., San José. Proceedings… San José: ASIC, 2012. p.1080-1084.
  • AMARAL, J.F.; TEIXEIRA, C.G.; PINHEIRO, E.D. O bactério causador da mancha aureolada do cafeeiro. Arquivos do Instituto Biológico, São Paulo, v.23, p.151-155, 1956.
  • BERNARDO, R. Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Science, v.48, n.5, p.1649-1664, 2008. 10.2135/cropsci2008.03.0131
    » 10.2135/cropsci2008.03.0131
  • BETTENCOURT, A.J.; CARVALHO, A. Melhoramento visando à resistência do cafeeiro à ferrugem. Bragantia, Campinas, v.27, n.1, p.35-68, 1968. http://dx.doi.org/10.1590/S0006-87051968000100004
    » http://dx.doi.org/10.1590/S0006-87051968000100004
  • BRADBURY, J.F. Guide to plant pathogenic bacteria Farhan House: C.A.B. International, 1986.
  • CARDOSO, D.C.; MARTINATI, J.C.; GIACHETTO, P.F.; VIDAL, R.O.; CARAZZOLLE, M.F.; PADILHA, L.; GUERREIRO FILHO, O.; MALUF, M.P. Large-scale analysis of differential gene expression in coffee genotypes resistant and susceptible to leaf miner-toward the identification of candidate genes for marker assisted-selection. BMC Genomics, v.15, p.1-20, 2014. https://doi.org/10.1186/1471-2164-15-66
    » https://doi.org/10.1186/1471-2164-15-66
  • CARVALHO, A.; MONACO, L.C. Relaciones geneticas de especies selecionadas de Coffea Cafe, Lima, v.9, n.4, p.1-19, 1968.
  • CARVALHO, A.; MEDINA FILHO, H.P.; FAZUOLI, L.C. Evolução e melhoramento do cafeeiro. In: I Colóquio sobre citogenética e evolução de plantas, 1984. Piracicaba, SP. Tópicos de Citogenética e Evolução de Plantas. Sociedade Brasileira de Genética, São Paulo, v.21, p.215-234, 1984.
  • COSTA, A.S.; AMARAL, J.F.; VIEGAS, A.P.; SILVA, D.M.; TEIXEIRA, C.G.; PINHEIRO, E.D. Bacterial halo blight of coffee in Brazil. Phytopathologische Zeitschrift, Berlin, v.28, p.427-444, 1957.
  • DAVIS, A.P.; GOVAERTS, R.; BRIDSON, D.M.; STOFFELEN, P. An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Botanical Journal of the Linnean Society, United Kingdom, v.152, n.4, p.465-512, 2006. https://doi.org/10.1111/j.1095-8339.2006.00584.x
    » https://doi.org/10.1111/j.1095-8339.2006.00584.x
  • DESTÉFANO, S.A.L.; RODRIGUES, L.M.R.; BERIAM, L.O.S.; PATRÍCIO, F.R.A.; THOMAZIELLO, R.A.; RODRIGUES NETO, J. Bacterial leaf spot caused by Pseudomonas syringae pv. tabaci in Brazil. New Disease Reports, London, v.22, n.5, 2010.
  • FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO). Coffee mission to Ethiopia 1946 – 1965 (1968) Rome, Italy: FAO, 1968. 200p. (Report, FAO.)
  • FAZUOLI, L.C.; CARVALHO, A.; COSTA, W.M.; NERY, C.; LAUN, C.R.P.; SANTIAGO, M. Avaliação de progênies e seleção no cafeeiro Icatu. Bragantia, Campinas, v.42, n.1, p.179-189, 1983. http://dx.doi.org/10.1590/S0006-87051983000100016
    » http://dx.doi.org/10.1590/S0006-87051983000100016
  • FAZUOLI, L.C.; BRAGHINI, M.T.; SILVAROLLA, M.B.; MISTRO, J.C.; PATRÍCIO, F.R.A. Melhoramento do cafeeiro visando à resistência a doenças. IX Curso de Atualização em Café. Documentos IAC, Campinas, v.91, p.1-16, 2009.
  • FLÓREZ, R.C.P.; MALDONADO, L.C.E.; CORTINA, G.H.A.; MONCADA, B.M.P.; MONTOYA, R.E.C.; IBARRA, R.L.N.; UNIGARRO, M.C.A.; RENDÓN, S.J.R.; DUQUE, O.H. Cenicafé 1: Nueva variedad de porte bajo, altamente productiva, resistente a la roya y al CBD, con mayor calidad física del grano. Avances Técnicos Cenicafé, Colombia, v.469, 8p, 2016.
  • FORTUNATO, A.S.; LIDON, F.C.; BATISTA-SANTOS, P.; LEITÃO, A.E.; PAIS, I.P.; RIBEIRO, A.I.; RAMALHO, J.C. Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance. Journal of Plant Physiology, v.167, n.5, p.333-342, 2010. https://doi.org/10.1016/j.jplph.2009.10.013
    » https://doi.org/10.1016/j.jplph.2009.10.013
  • GUERREIRO FILHO, O. Cafeeiros resistentes ao bicho-mineiro. O Agronômico, Campinas, v.59, n.1, p.47, 2007.
  • GUERREIRO FILHO, O.; MEDINA FILHO, H.P.; CARVALHO, A. Fontes de resistência ao bicho mineiro, Perileucoptera coffeella em Coffea spp. Bragantia, Campinas, v.50, n.1, p.45-55, 1991. http://dx.doi.org/10.1590/S0006-87051991000100006
    » http://dx.doi.org/10.1590/S0006-87051991000100006
  • KAIRU, M.G. Biochemical and pathogenic differences between Kenyan and Brazilian isolates of Pseudomonas syringae pv. garcae In: RUDOLPH K.; BURR T.J.; MANSFIELD J.W.; STEAD D.; VIVIAN A.; VON KIETZELL J. (orgs.). Pseudomonas Syringae Pathovars and Related Pathogens. Developments in Plant Pathology. Dordrecht: Springer, 1997. v.46. p.239-246.
  • KIMURA, O.; ROBBS, C.F.; RIBEIRO, R.L.D. Estudos sobre o agente da “Mancha aureolada do cafeeiro” (Pseudomonas garcae Amaral et al.). Arquivos da Universidade Federal Rural, Itaguaí, v.3. n.2, p.15-18, 1973.
  • KOROBKO, A.; WONDINAGEGNE, E. Bacterial blight of coffee (Pseudomonas syringae pv. garcae) in Ethiopia. In: RUDOLPH, K.; BURR, T.J.; MANSFIELD, J.W.; STEAD, D.; VIVIAN, A.; VON KIETZELE, J. Pseudomonas syringae and related pathogens. Dordrecht: Springer, 1997. p.538-541. https://doi.org/10.1007/978-94-011-5472-7
    » https://doi.org/10.1007/978-94-011-5472-7
  • KRISHNAN, S.; RANKER, T.A.; DAVIS, A.P.; RAKOTOMALALA, J.J. Current status of coffee genetic resources: implications for conservation – case study in Madagascar. Acta Horticulturae, v.101, p.15-19, 2015. https://doi.org/10.17660/ActaHortic.2015.1101.3
    » https://doi.org/10.17660/ActaHortic.2015.1101.3
  • LELLIOTT, R.A.; STEAD, D.E. Methods for the diagnosis of bacterial diseases of plants Oxford, UK: Blackwell Scientific Publications, 1987. (Methods in Plant Pathology. v.2.)
  • MALAVOLTA JÚNIOR, V.A.; BERIAM, L.O.S.; ALMEIDA, I.M.G.; RODRIGUES NETO, J.; ROBBS, C.F. Bactérias fitopatogênicas assinaladas no Brasil: uma atualização. Summa Phytopathologica, Botucatu, v.34 (supl.esp.), p.1-88, 2008.
  • MAZZAFERA, P.; CARVALHO, A. Breeding for low seed caffeine content of coffee (Coffea L.) by interspecific hybridization. Euphytica, Wageningen, v.59, n.1, p.55-60, 1992.
  • MAZZAFERA, P.; SOAVE, D.; ZULLO, M.A.T.; GUERREIRO FILHO, O. Oil content of green beans from some coffee species. Bragantia, Campinas, v.57, n.1, p.45-48, 1998. http://dx.doi.org/10.1590/S0006-87051998000100006
    » http://dx.doi.org/10.1590/S0006-87051998000100006
  • MENDONÇA, A.P.; NONATO, J.V.A.; ANDRADE, V.T.; FATOBENE, B.J.R.; BRAGHINI, M.T.; PRELA-PANTANO, A.; GUERREIRO FILHO, O. Coffea arabica clones resistant to coffee leaf miner. Crop Breeding and Applied Biotechnology, Viçosa, v.16, n.1, p.42-47, 2016. http://dx.doi.org/10.1590/1984-70332016v16n1a7
    » http://dx.doi.org/10.1590/1984-70332016v16n1a7
  • MEUWISSEN, T.H.; HAYES, B.J.; GODDARD, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, v.157, n.4, p.1819-1829, 2001.
  • MOHAN, S.K.; CARDOSO, R.M.L.; PAIVA, M.A. Resistência em germoplasma de Coffea ao crestamento bacteriano incitado por Pseudomonas garcae Amaral et al. Pesquisa Agropecuária Brasileira, Brasília, v.13, n.1, p.53-64, 1978.
  • MORAES, S.A.; SUGIMORI, M.H.; TOMAZELLO FILHO, M.; CARVALHO, P.C.T. Resistência de cafeeiros a Pseudomonas garcae. Summa Phytopathologica, Botucatu, v.1, p.105-110, 1975.
  • NAGAI, C.; RAKOTOMALALA, J.J.; KATAHIRA, R.; LI, Y.; YAMAGATA, K.; ASHIHARA, H. Production of a new low-caffeine hybrid coffee and the biochemical mechanism of low caffeine accumulation. Euphytica, Wageningen, v.164, n.1, p.133-142, 2008. https://doi.org/10.1007/s10681-008-9674-9
    » https://doi.org/10.1007/s10681-008-9674-9
  • OMONDI, C.O.; AYIECHO, P.O.; MWANG’OMBE, A.W.; HINDORF, H. Resistance of Coffea arabica cv. Ruiru 11 tested with different isolates of Colletotrichum kahawae, the causal agent of coffee berry disease. Euphytica, Wageningen, v.121, n.1, p.19-24, 2001. https://doi.org/10.1023/A:1012056622969
    » https://doi.org/10.1023/A:1012056622969
  • PETEK, M.R.; SERA, T.; ALTEIA, M.Z. Selection for frost resistance in Coffea arabica progenies carrying C. liberica var. dewevrei genes. Crop Breeding and Applied Biotechnology, Viçosa, v.5, p.355-362, 2005. https://doi.org/10.12702/1984-7033.v05n03a14
    » https://doi.org/10.12702/1984-7033.v05n03a14
  • RAMOS, A.H.; SHAVDIA, L.D. A dieback of coffee in Kenya. Plant Disease Reporter, St. Paul, v.60, n.10, p.831-835, 1976.
  • RODRIGUES, L.M.R.; RODRIGUES NETO, J.; PIERI, C.; THOMAZIELLO, R.A.; MARINGONI, A.C. Reação de genótipos de cafeeiro à mancha bacteriana causada por Pseudomonas syringae pv. tabaci. In: CONGRESSO PAULISTA DE FITOPATOLOGIA, 32., São Pedro, Resumos... CD ROM, 2009.
  • RODRIGUES, L.M.R.; ALMEIDA, I.M.G.; PATRÍCIO, F.R.A.; BERIAM, L.O.S.; MACIEL, K.W.; BRAGHINI, M.T.; GUERREIRO FILHO, O. Aggressiveness of strains and inoculation methods for resistance assessment to bacterial halo blight on coffee seedlings. Journal of Phytopathology, Berlin, v.165, n.2, p.105-114, 2017a. https://doi.org/10.1111/jph.12543
    » https://doi.org/10.1111/jph.12543
  • RODRIGUES, L.M.R.; SERA, G.H.; GUERREIRO FILHO, O.; BERIAM, L.O.S.; ALMEIDA, I.M.G. First report of mixed infection by Pseudomonas syringae pathovars garcae and tabaci on coffee plantations. Bragantia, Campinas, v.76, n.4, p.543-549, 2017b. http://dx.doi.org/10.1590/1678-4499.2016.399
    » http://dx.doi.org/10.1590/1678-4499.2016.399
  • SERA, G.H.; SERA, T.; ITO, D.S.; RIBEIRO FILHO, C.; VILLACORTA, A.; KANAYAMA, F.S. Coffee berry borer resistance in coffee genotypes. Brazilian Archives of Biology and Technology, Curitiba, v.53, n.2, p.261-268, 2010. http://dx.doi.org/10.1590/S1516-89132010000200003
    » http://dx.doi.org/10.1590/S1516-89132010000200003
  • SERA, G.H.; SERA, T.; FAZUOLI, L.C. IPR 102 – Dwarf Arabica coffee cultivar with resistance to bacterial halo blight. Crop Breeding and Applied Biotechnology, Viçosa, v.17, n.4, p.403-407, 2017. http://dx.doi.org/10.1590/1984-70332017v17n4c60
    » http://dx.doi.org/10.1590/1984-70332017v17n4c60
  • UNITED STATES DEPARTMENT OF AGRICULTURE (USDA). Coffee: world markets and trade. Washington, D.C.: USDA, 2014. 9p.
  • WOLF, F.A.; FOSTER, A.C. Bacterial leaf spot of tobacco. Science, v.47, 1189, p.361-362, 1917. https://doi.org/10.1126/science.46.1189.361
    » https://doi.org/10.1126/science.46.1189.361
  • YOUNG, J.M.; DYE, D.W.; BRADBURY, J.F.; PANAGOPOULOS, C.G.; ROBBS, C.F. A proposed nomenclature and classification for plant pathogenic bacteria. New Zealand Journal of Agricultural Research, Auckland, v.21, n.1, p.153-177, 1978. https://doi.org/10.1080/00288233.1978.10427397
    » https://doi.org/10.1080/00288233.1978.10427397
  • XUEHUI, B.; LIHONG, Z.; YONGLIANG, H.; GUANGHAI, J.; JINHONG, L.; ZHANG, H. Isolation and identification of the pathogen of coffee bacterial blight disease. Chinese Journal of Tropical Crops, v.34, n.4, p.738-742, 2013.
  • ZOCCOLI, D.M.; TAKATSU, A.; UESUGI, C.H. Ocorrência de mancha-aureolada em cafeeiros na região do Triângulo Mineiro e Alto Paranaíba. Bragantia, Campinas, v.70, n.4, p.843-849, 2011. http://dx.doi.org/10.1590/S0006-87052011000400017
    » http://dx.doi.org/10.1590/S0006-87052011000400017

Publication Dates

  • Publication in this collection
    25 Nov 2019
  • Date of issue
    2019

History

  • Received
    18 May 2018
  • Accepted
    01 July 2019
Instituto Biológico Av. Conselheiro Rodrigues Alves, 1252 - Vila Mariana - São Paulo - SP, 04014-002 - São Paulo - SP - Brazil
E-mail: arquivos@biologico.sp.gov.br