Acessibilidade / Reportar erro

ANÁLISE DE CRESCIMENTO E TROCAS GASOSAS DE PLANTAS DE Lonchocarpus sericeus (Poir.) D.C. SOB ALAGAMENTO PARA USO NA RECUPERAÇÃO DE MATAS DE CILIARES

ANALYSIS OF GROWTH AND GAS EXCHANGE OF PLANTS Lonchocarpus sericeus (Poir.) D.C. IN FLOODING FOR THE RECOVERY OF THE RIPARIAN FORESTS

RESUMO

Com o intuito de selecionar espécies para utilização na recuperação de matas ciliares na margem do rio São Francisco localizada no estado de Sergipe foi realizado um experimento com o objetivo de avaliar o crescimento e as trocas gasosas de plantas de Lonchocarpus sericeus (Poir.) D.C., submetidas a alagamento em condição de viveiro. O experimento foi realizado no Viveiro Florestal do Departamento de Ciências Florestais, da Universidade Federal de Sergipe (UFS), no município de São Cristóvão-SE (11º01' de latitude S e 37º12' de longitude W, com altitude de 20 m), estado de Sergipe, Brasil, no período de outubro de 2006 a janeiro de 2007 em condição ambiente. Foi utilizado delineamento experimental inteiramente casualizado (DIC), em fatorial (2x7), dois tratamentos (controle - T0, plantas em capacidade de campo e alagadas - T1) e dias após alagamento (0, 15, 30, 45, 60, 75 e 90 dias). Para simular a condição de alagamento, as plantas foram postas em vasos plásticos de cor preta com volume de 5 L e mais substrato. Após, estes vasos foram acoplados a vasos com volume de 10 L, onde foi acrescida a água até atingir lâmina d'água de 5 cm acima do colo das plantas. As plantas do controle permaneceram em vasos com volume de 5 L com substrato mantido na capacidade de campo. Nas variáveis não destrutivas foram utilizadas 4 repetições por tratamento, avaliadas a cada quinze dias, onde cada repetição consta de 6 plantas, totalizando 24. Para as variáveis destrutivas foram utilizadas 4 repetições por tratamento, avaliadas quinzenalmente a partir de 15 dias após o alagamento, onde cada repetição consta de uma planta totalizando 24 plantas. Desta forma foram utilizadas 48 plantas por tratamento. As variáveis não destrutivas foram altura, diâmetro do colo e número de folhas. Enquanto as variáveis destrutivas analisadas foram massa seca da raiz e parte aérea, razão da massa seca da raiz/parte aérea. Além disso, foram realizadas análises de trocas gasosas mensalmente, sendo avaliadas doze plantas por tratamento, com amostragem de duas folhas, completamente expandidas, por planta. As variáveis biométricas foram submetidas à análise de variância e posteriormente ao teste de média (Tukey p<0,05), enquanto dos valores de trocas gasosas foram retirados os desvios padrões das médias. Diante disso, observamos que o alagamento promoveu a redução em altura e na razão massa seca da raiz/parte aérea, a partir dos 30 dias após aplicação do tratamento. Além disso, as plantas alagadas apresentaram modificações morfológicas como raízes adventícias e hipertrofia das lenticelas, características de espécies tolerantes ao alagamento. A taxa fotossintética líquida foi reduzida em 48,20% em relação ao controle aos 60 dias. Todavia, apesar das reduções nas variáveis de crescimento e trocas gasosas, a espécie Lonchocarpus sericeus mostrou-se promissora na recuperação de mata ciliar, por apresentar modificações morfológicas características de espécies tolerantes ao alagamento.

Palavras-chave:
Raízes adventícias; Lenticelas hipertrofiadas; Taxa fotossintética líquida

ABSTRACT

In order to select species for using in the restoration of riparian forests on the banks of the Sao Francisco River, in the state of Sergipe, an experiment was conducted to evaluate the growth and gas exchange of plants Lonchocarpus sericeus (Poir.) D.C., subject to flooding conditions in the nursery. The experiment was conducted at Forest Nursery, Department of Forest Sciences, Federal University of Sergipe (UFS), the municipality of São Cristóvão, (11 º 01 'S latitude and 37 º 12' longitude W, altitude 20 m) , state of Sergipe, Brazil, from October 2006 to January 2007 under ambient conditions. We used a completely randomized design (CRD), factorial (2x7), two treatments (control - T0, plants at field capacity and flooded - T1) and days after flooding (0, 15, 30, 45, 60, 75 and 90 days). To simulate the condition of flooding, the plants were placed in plastic pots of black color with a volume of 5 L and more substrate. Following these pots were attached to pots with a volume of 10 L, which was added water until it reaches a water depth of 5 cm above the top of the plants. The control plants kept in pots with a volume of 5 L substrate maintained at field capacity. In non-destructive variables were used four replicates per treatment evaluated every fifteen days, where each replicate consists of six plants, totaling 24. Destructive variables used were 4 replicates per treatment, determined biweekly from 15 days after flooding, where each replicate consists of a plant totaling 24 plants. Therefore, 48 plants were used per treatment. The non-destructive variables were height, diameter and number of leaves. While the destructive variables analyzed were dry weight of roots, dry weight of shoots and dry weight of root / shoot ratio. In addition, we carried out analysis of gas exchange on a monthly basis and evaluated twelve plants per treatment, with two sampling leaves, fully expanded, per plant. The biometric variables were subjected to analysis of variance and subsequently the average test (Tukey p <0.05), while the values of gas exchange were taken from the standard deviations of the mean. Thus, we observe that the flooding caused a reduction in height and dry mass of root / shoot ratio, from 30 days after treatment application. In addition, flooded plants showed morphological changes such as hypertrophy of adventitious roots and lenticels, characteristics of species tolerant to flooding. The net photosynthetic rate has been reduced by 48.20% compared to control after 60 days. However, despite reductions in growth variables and gas exchange species Lonchocarpus sericeus showed promise in the recovery of riparian vegetation, due to its morphological characteristics of species tolerant to flooding.

Keywords:
adventitious roots; hypertrophied lenticels; net photosynthetic rate

Texto completo disponível apenas em PDF.

REFERÊNCIAS BIBLIOGRÁFICAS

  • ANDRADE, A. C. S. et al. Flooding effects in seedlings of Cytharexyllum myrianthum Cham. and Genipa americana L.: responses of two neotropical lowland tree species. Revista Brasileira de Botânica, São Paulo, v. 22, n. 2, p. 281-285, out. 1999.
  • ARRUDA, G. M. T. et al. Efeitos da inundação no crescimento, trocas gasosas e porosidade radicular da carnaúba (Copernicia prunifera (Mill.) H.E. Moore). Acta botanica brasilica, São Paulo, v. 18, n. 2, p. 219-224, ago. 2004.
  • BLOM, C. W. P. M. et al. Flooding: the survival strategies of plants. Tree, v. 11, n. 7, p. 290-295, July 1996.
  • BLOM, C. W. P. M. et al. Physiological Ecology of Riverside Species: Adaptive Responses of Plants to Submergence. Annals of Botany, v. 74, p. 253-263, 1994.
  • CALBO, M. E. R.et al. Crescimento, condutância estomática, fotossíntese e porosidade do buriti sob inundação. Revista Brasileira de Fisiologia Vegetal, v. 10, n. 1, p. 51-58, 1998.
  • CARVALHO, C. J. R. et al. Respostas de pupunheiras (Bactris gasipaes Kunth) jovens ao alagamento. Pesquisa agropecuária brasileira, Brasília, v. 37, n. 9, p. 1231-1237, set. 2002.
  • CASIMIRO, E. L. N. et al. Efeitos da saturação hídrica, idade, volume radicular no crescimento inicial de quatro espécies florestais. Scientia Agraria Paranaensis, Marechal Cândido Rondon, v. 5, n. 2, p. 13-20, 2006.
  • CHANG, W. W. P. et al. Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment and identification of proteins by mass spectrometry. Plant Physiology, v. 122, p. 295-317, fev. 2000.
  • CHAVES, A. A. A. et al. Uso das terras da parte norte da bacia do rio descoberto, Distrito Federal, Brasil. Bragantia, Campinas, v. 69, n. 3, p. 711-718, mar. 2010.
  • CHEN, H. et al. Effect of Flooding Depth on Growth, Biomass, Photosynthesis, and Chlorophyll Fluorescence of Typha domingensis Wetlands, v. 30, p. 957-965, 2010.
  • CHEN, X. et al. Fitness consequences of natural variation in flooding induced shoot elongation in Rumex palustris New Phytologist, v. 190, p. 409-420, 2011.
  • COLMER, T. D. et al. Flooding tolerance: suites of plant traits in variable environments. Functional Plant Biology, v. 36, p. 665-681, 2009.
  • COOK, C. D. K. The number and kinds of embryo- bearing plants which have become aquatic: a survey. Perspectives in Plant Ecology, Evolution and Systematics v. 2, n. 1, p. 79-102, 1999.
  • DAMASCENO-JUNIOR, G. A. et al. Tree mortality in a riparian forest at Rio Paraguai, Pantanal, Brazil, after an extreme flooding. Acta botanica brasilica , São Paulo, v. 18, n. 4, p. 839-846. maio 2004.
  • DANTAS, B. F. et al. Cálcio e o desenvolvimento de aerênquimas e atividade de celulase em plântulas de milho submetidas a hipoxia. Scientia Agricola, Piracicaba, v. 58, n. 2, p. 251-257, abr./jun.2001.
  • DAVANSO, V. M. et al. Photosynthesis, Growth and Development of Tabebuia avellanedae Lor. ex Griseb. (Bignoniaceae) in Flooded Soil. Brazilian Archives of Biology and Technology, v. 45, n. 3, p.375-384, sep.2008.
  • DAVIDE, A. C. et al. Restauração de matas ciliares. Informe Agropecuário, Belo Horizonte, v. 21, n. 207, p. 65-74, nov./dez. 2000.
  • DAVIES, F. S. et al Flooding, gas exchange and root hydraulic conductivity of highbush blueberry. Physiologia Plantarum, v. 67, p. 545-551, 1986.
  • DREW, M. C. Oxygen deficiency and root metabolism: Injury and Acclimation Under Hypoxia and Anoxia. Annual Review Plant Physiology and Plant Molecular Biology, v. 48, p. 223-250, 1997.
  • ERB, M. et al. The underestimated role of roots in defense against leaf attackers. Trends in Plant Science, v. 14, n. 12, p. 653-659, 2009.
  • FARIA, J. M. R. Propagação de espécies florestais para recomposição de matas ciliares. In: SIMPÓSIO MATA CILIAR: CIÊNCIA E TECNOLOGIA, 1999, Belo Horizonte. Anais... Lavras: UFLA/FAEPE/CEMIG, 1999, p. 69-79.
  • FERREIRA, C. et al. Tolerância de Himatanthus sucuuba Wood. (Apocynaceae) ao alagamento na Amazônia Central. Acta botanica brasilica , São Paulo, v. 19, p. 425-429, 2005.
  • FERREIRA, D. F. SISVAR 4.3 Sistema de análises estatísticas. Lavras: UFLA, 1999.
  • FERREIRA, W. C. et al. Estabelecimento de mata ciliar às margens do reservatório da usina hidroelétrica de Camargos, MG. Ciência Florestal, Santa Maria, v. 19, n. 1, p. 69-81, jan/mar. 2009.
  • FONTES, C. G. et al. Dinâmica do componente arbóreo de uma mata de galeria inundável (Brasília, Distrito Federal) em um período de oito anos. Revista Brasileira de Botânica , São Paulo, v. 34, n. 2, p. 145-158, abr./jun. 2011.
  • FOX, T. C. et al. Energetics of plant Growth under anoxia: Metabolic adaptations of Oryza sativa and Echinochloa phyllopogon Annals of Botany , v. 74, p. 444-455, 1994.
  • HERRERA, A. et al. Estomatal and non estomatal limitations of photosynthesis in trees of a tropical seasonally flooded forest. Physiologia Plantarum , v. 134, n. 1, p. 41-48, 2008.
  • GOMES, A. R. S. et al. Growth Responses and Adaptations of Fraxinus pennsylvanica Seedlings to Flooding. Plant Physiology , v. 66, p. 267-271, 1980.
  • GOUT, E. et al. Origin of the Cytoplasmic pH Changes during Anaerobic Stress in Higher Plant Cells. Carbon-13 and Phosphorous-31 Nuclear Magnetic Resonance Studies. Plant Physiology , v. 125, p. 912-925, Feb. 2001.
  • IRFAN, M. et al. Physiological and biochemical changes in plants under waterlogging. Protoplasma, v. 241, p. 3-17, Jan. 2010.
  • JACKSON, M. B. Ethylene and responses of plants to soil waterlogging and submergence. Annual Review of Plant Physiology and Plant Molecular Biology, Palo Alto, v. 36, p. 145-174, 1985.
  • KENNEDY, R. A. Anaerobic Metabolism in Plants. Plant Physiology , v. 100, p. 1-6, Jan. 1992.
  • KOZLOWSKI, T. T. et al. Physiological-ecological impacts of flooding on riparian forest ecosystems. Wetlands , v. 22, n. 3, p. 550-561, Sept. 2002.
  • KOZLOWSKI, T. T. Responses of woody plants to flooding and salinity. Tree Physiology Monograph, Victoria, v. 1, p. 2-29, 1997.
  • LACERDA, V. A. et al. Flora arbustiva-arbórea de três áreas ribeirinhas no semiárido paraibano, Brasil. Biota Neotropical, v. 10, n. 4, p. 275-284, out. 2010
  • LIMA, J. A.et al. Comportamento inicial de espécies na revegetação da mata de galeria na fazenda mandaguari, em Indianópolis, MG. Revista Árvore, Viçosa, v. 33, n. 4, p. 685-694, 2009.
  • LOPES, S. F. et al. Dinâmica da comunidade arbórea de mata de galeria da Estação Ecológica do Panga, Minas Gerais, Brasil. Acta Botanica Brasilica, São Paulo, v. 21, n. 2, p. 249-261, 2007.
  • LORENZI, H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas do Brasil. Nova Odessa: Plantarum, 1998. v. 1.
  • MELO, A. S. et al. Desenvolvimento vegetativo, rendimento da fruta e otimização do abacaxizeiro cv. Pérola em diferentes níveis de irrigação. Ciência Rural, Santa Maria, v. 36, n. 1, p. 93-98, jan-fev, 2006.
  • OKAMOTO, J. M. et al. Ecophysiology and respiratory metabolism during the germination of Inga sessilis (Vell.) Mart. (Mimosaceae) seeds subjected to hypoxia and anoxia. Revista Brasileira de Botânica , São Paulo, v. 23, n. 1, p.51-57, mar. 2000.
  • OLIVEIRA, V. C. et al. Flooding tolerance of Calophyllum brasiliense Camb. (Clusiaceae): morphological, physiological and growth responses. Trees, v. 24, p. 185-193, Nov. 2010.
  • PIRES, J. L. F. et al. Adaptações morfofisiológicas da soja em solo inundado. Pesquisa agropecuária brasileira , Brasília, v. 37, n. 1, p. 41-50, jan. 2002.
  • RIBEIRO, G. H. P. M. et al. Regeneração natural em diferentes ambientais da mata de galeria do capetinga na fazenda Água-Limpa-DF. Cerne, Lavras, v. 15, n. 1, p. 1-9, jan./mar. 2009.
  • RODRÍGUEZ-GONZÁLEZ, P. M. et al. Subsidy or stress? Tree structure and growth in wetland forests along a hydrological gradient in Southern Europe. Forest Ecology and Management, v. 259, p. 2015-2025, Feb. 2010.
  • SANTIAGO, E. F. et al. Respostas morfológicas em Guibourtia hymenifolia (Moric.) J. Leonard (Fabaceae) e Genipa americana L. (Rubiaceae), submetidas ao estresse por deficiência nutricional e alagamento do substrato. Revista Brasileira de Botânica , v. 30, n. 1, p.131-140, jan./mar. 2007.
  • SAIRAM, R. K. et al. Physiology and biochemistry of waterlogging tolerance in plants. Biologia plantarum, v. 52, n. 3, p. 401-412, maio 2008.
  • SILVA, L. C. R. et al. Sobrevivência e crescimento de seis espécies arbóreas submetidas a quatro tratamento em área minerada no cerrado. Revista Árvore , Viçosa, v. 32, n.4, p. 731-740, maio 2008.
  • SILVA, M. M. P. et al. Respostas Morfogênicas de Gramíneas Forrageiras Tropicais sob Diferentes Condições Hídricas do Solo. Revista Brasileira de Zootecnia, v. 34, n. 5, p. 1493-1594, 2005.
  • VAN DIJK, A. I. J. M. et al. Forest-flood relation still tenuous - comment on 'Global evidence that deforestation amplifies flood risk and severity in the developing world' by C. J. A. Bradshaw, N.S. Sodi, K. S.-H. Peh and B. W. Brook. Global Change Biology, v. 15, p. 110-115, jul. 2009.
  • VARTAPETIAN, B. B. Plant Anaerobic Stress as a Novel Trend in Ecological Physiology, Biochemistry, and Molecular Biology: 2. Further Development of the Problem. Russian Journal of Plant Physiology , v. 53, n. 6, p. 711-738, mar.2006.

Datas de Publicação

  • Publicação nesta coleção
    Oct-Dec 2013
Universidade Federal de Santa Maria Av. Roraima, 1.000, 97105-900 Santa Maria RS Brasil, Tel. : (55 55)3220-8444 r.37, Fax: (55 55)3220-8444 r.22 - Santa Maria - RS - Brazil
E-mail: cienciaflorestal@ufsm.br