Acessibilidade / Reportar erro

RELAÇÃO ENTRE O ÍNDICE DE AVERMELHAMENTO DO SOLO E O ESTOQUE DE CARBONO NA BIOMASSA AÉREA DA VEGETAÇÃO DE CERRADO

RELATIONSHIP BETWEEN REDNESS INDEX OF SOIL AND CARBON STOCK OF AERIAL BIOMASS IN CERRADO VEGETATION

RESUMO

A variação da cor do solo é uma resposta relacionada principalmente a sua composição física, química, biológica e mineralógica. O sistema de cores de Munsell é baseado na cor de forma objetiva, em que, através dela é possível avaliar diversos fatores do solo, como a presença de óxidos de ferro, granulometria e material orgânico. O objetivo do trabalho foi realizar uma relação e identificação entre o índice de avermelhamento (IAV) com o estoque de carbono presente na parte aérea da vegetação de Cerrado. O trabalho foi realizado em sete municípios do Oeste Baiano, em áreas nativas de Cerrado, nas fitofisionomias: Floresta de Galeria, Cerradão, Cerrado stricto sensu e Campo Sujo. A determinação da cor foi efetuada no campo em amostras de solo úmido, empregando-se a caderneta de Munsell. A partir da avaliação da matiz, valor e croma, foi calculado o índice de avermelhamento (IAV). A estimativa do estoque de carbono acima do solo foi realizada a partir dos compartimentos: tronco e galhos, tanto das árvores vivas quanto árvores mortas, através de uma equação alométrica desenvolvida para o Cerrado. O índice de avermelhamento da cor do solo na camada de 0,00 a 0,20 m possui uma relação diretamente proporcional e significativa com o estoque de carbono da biomassa aérea da vegetação de Cerrado, podendo ser extrapolado o cálculo do estoque de carbono (EC) pelo valor do índice de avermelhamento (IAV) do solo pela equação [EC = 0,4936 · IAV + 4,2286 (-1,5%)]. A praticidade pela coleta dos dados de IAV, através da carta de Munsell e a confiabilidade do ajuste, dado pelo erro residual menor do que 5%, faz com que esta relação possa ser utilizada para fins acadêmicos e coorporativos em estimação dos estoques de carbono para aplicação em manejos florestais e ambientais. A variação de EC entre as fitofisionomias estudadas faz-se, principalmente, pela distinta densidade de indivíduos arbóreos por hectare. A variação do IAV nas áreas estudadas é devido à matéria orgânica acumulada na superfície do solo, ao conteúdo mineral e à capacidade de drenagem, segundo inferências da literatura, refletindo assim nas distintas cores do solo nas fitofisionomias estudadas.

Palavras-chave:
cor do solo; fitofisionomia; teor de ferro, carta de cores de Munsell

ABSTRACT

The color variety of soil is response of its physical, chemical, biological and mineralogical composition. The Munsell color system is based on an objective color evaluation in which it is possible to evaluate different color soil factors such as the presence of iron oxides, particle size, and accumulated organic material. The objective of this study was to identify the relation between the redness index (IAV) of soil and the amount of carbon content present in the aerial part of Cerrado vegetation. The study was conducted in seven cities in western Bahia state, in native areas of Cerrado. The determination o soil color was made in the field, with moist soil samples, using the Munsell color chart. From the evaluation of hue, value and chroma, the redness index (IAV) was calculated. The estimation of carbon stock above ground was carried out from: trunk and branches, both living and dead trees by the allometric equation developed in Cerrado areas. The redness index of soil, from the layer 0.00 to 0.20 m, has a significant and directly proportional relationship with the carbon stock of above ground biomass of Cerrado vegetation. This may be extrapolated to calculate the carbon stock (EC) by the redness index (IAV) of soil by the equation [EC = 0.4936 · IAV + 4.2286 (-1.5%)]. The practicality of sampling of data by IAV with Munsell chart, and the reliability of data fit by results of residual error less than 5%, make that this relationship may be used for academic and corporative in carbon stocks estimation for use in forest and environmental management. The EC variation between the studied physiognomies is mainly by distinct density of tree individuals per hectare. The variation of IAV in studied areas is due to the accumulated organic matter on the soil surface, the mineral content and drainage capacity, according to inferences of literature, and this reflecting the different colors of soil in the studied phytophysiognomies.

Keywords:
soil color; phytophysiognomies; iron content, Munsell color chart

Texto completo disponível apenas em PDF.

REFERÊNCIAS BIBLIOGRÁFICAS

  • ALVAREZ, E. et al. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management, v. 267, n. 1, p. 297-308, 2012.
  • BARBOSA, I. O.; LACERDA, M. P. C.; BILICH, M. R. Relações pedomorfológicas nas Chapadas elevadas do Distrito Federal. Revista Brasileira de Ciências do Solo, v. 33, n. 5, p. 1373-1383, 2009.
  • BARTHOLOMEUS, H.; EPEMA, G.; SCHAEPMAN, M. Determining iron content in Mediterranean soils in partly vegetated areas, using spectral reflectance and imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformation, v. 9, n. 2, p. 194-203, 2007.
  • BRANNSTROM, C. et al. Land change in the Brazilian Savanna (Cerrado), 1986-2002: Comparative analysis and implications for land- use policy. Land Use Policy, v. 25, p. 579-595. 2008.
  • BIGHAM, J. M.; CIOLKOSZ, E. J.; LUXMOORE, R. J. Soil Color. Madison: SSSA Special Publication. 1993. 172 p.
  • BURKHARD, B.; MÜLLER, F.; LILL, A. Ecosystem Health Indicators. In: JORGENSEN, S.R; FATH, B. (eds.). Encyclopedia of Ecology, Elsevier B.V.: The Netherlands. p. 1132-1138, 2008.
  • CAMPOS, R. C.; DEMATTE, J. A. M. Cor do solo: uma abordagem da forma convencional de obtenção em oposição à automatização do método para fins de classificação de solos. Revista Brasileira de Ciências do Solo , v. 28, n. 5, p. 853-863, 2004.
  • CAMPOS, R. C.; DEMATTÊ, J. A. M.; QUARTAROLI, C. F. Determinação indireta do teor de hematita na fração argila de solos a partir de dados de colorimetria e radiometria. Pesquisa Agropecuária Brasileira, v. 38, n. 4, p. 521-528, 2003.
  • CHIG, L. A. et al. Distribuição espacial da granulometria, cor e carbono orgânico do solo ao longo de um transecto em microbacias na Amazônia meridional. Acta Amazonica, v. 38, p. 715-722, 2008.
  • COOK, R. D.; WEISBERG, S. Residuals and Influence in Regression. New York: Chapman and Hall, 1982. 230 p.
  • DELGADO, R.; AGUILAR, J.; DELGADO, G. Use of numerical estimators and multivariate analysis to characterize the genesis and pedogenic evolution of xeralfs from southern Spain. CATENA, v. 23, n. 3-4, p. 309-325, 1994.
  • DJOMO, A. N.; KNOHL, A.; GRAVENHORST, G. Estimations of total ecosystem carbon pools distribution and carbon biomass current annual increment of a moist tropical forest. Forest Ecology and Management , v. 261, n. 8, p. 1448-1459, 2011.
  • DOUGLASS, D. C.; BOCKHEIM, J. G. Soil- forming rates and processes on Quaternary moraines near Lago Buenos Aires, Argentina. Quaternary Research, v. 65, n. 2, p. 293-307, 2006.
  • EITEN, G. Vegetação natural do Distrito Federal. Brasília: SEBRAE. 162 p. 2001.
  • FELFILI, J. M. et al. Fitossociologia no Brasil: métodos e estudos de casos. Viçosa: Editora UFV, 2011. 558p. v. 1.
  • GALVÃO, L. S.; VITORELLO, I.; FORMAGGIO, A. R. Relationships of spectral reflectance and color among surface and subsurface horizons of tropical soil profiles. Remote Sensing of Environment, v. 61, n. 1, p. 24-33, 1997.
  • GRAHAM, R. C.; O'GEEN, A. T. Soil mineralogy trends in California landscapes. Geoderma, v. 154, n. 3-4, p. 418-437, 2010.
  • HOWARD, J. L.; CLAWSON, C. R.; DANIELS, W. L. A comparison of mineralogical techniques and potassium adsorption isotherm analysis for relative dating and correlation of Late Quaternary soil chronosequences. Geoderma , v. 179-180, p. 81-95, 2012.
  • HOUSSA, R.; PION, J. C.; YÉSOU, H. Effects of granulometric and mineralogical composition on spectral reflectance of soils in a Sahelian area. ISPRS Journal of Photogrammetry and Remote Sensing, v. 51, n. 6, p. 284-298, 1996.
  • IBGE - Instituto Brasileiro de Geografia e Estatística. Mapas temáticos. Disponível em <Disponível em http://mapas.ibge.gov.br/ >. Acessado em 20.09.2009.
    » http://mapas.ibge.gov.br/
  • KETTERINGS, Q. M.; BIGHAM, J. M. Soil Color as an Indicator of Slash-and-Burn Fire Severity and Soil Fertility in Sumatra, Indonesia. Soil Science Society of America Journal, v. 64, p. 1826-1833, 2000.
  • KÖHL, M. et al. Effect of the estimation of forest management and decay of dead woody material on the reliability of carbon stock and carbon stock changes - A simulation study. Forest Ecology and Management , v. 256, n. 3, 229-236, 2008.
  • KUMARAVEL, V. et al. Interrelation of magnetic susceptibility, soil color and elemental mobility in the Pliocene-Pleistocene Siwalik paleosol sequences of the NW Himalaya, India. Geoderma , v. 154, n. 3-4, p. 267-280, 2010.
  • LEVIN, N. et al. Dune whitening and inter-dune freshwater ponds in NE Brazil. Catena, v. 70, n. 1, p. 1-15, 2007.
  • LYNN, W. C.; PEARSON, M. J. The Color of Soil, exploring the chemistry of soil color. Science Teacher, v. 67, n. 5, p. 20-23, 2000.
  • MADEIRA NETTO, J.S.; ROBBEZ-MASSON, J. M.; MARTINS, E. Visible-NIR Hyperspectral Imagery for Discriminating Soil Types in the La Peyne Watershed (France). Developments in Soil Science, v. 31, p. 219-233, 2006.
  • MATHIEU, R. et al. Relationships between Satellite-Based Radiometric Indices Simulated Using Laboratory Reflectance Data and Typic Soil Color of an Arid Environment. Remote Sensing of Environment , v. 66, n. 1, p. 17-28, 1998.
  • MULDER, V. L. et al. The use of remote sensing in soil and terrain mapping - A review. Geoderma , v. 162, n. 1-2, p. 1-19, 2011.
  • MUNSELL, A. H. A color notation. Baltimore: G. H. Ellis Co, 1905. 89p.
  • OLIVEIRA, P. S.; MARQUIS, R. J. The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. New York: Columbia University Press. 2002. 398p.
  • PAIVA, A. O.; REZENDE, A. V.; PEREIRA, R. S. Estoque de carbono em cerrado sensu stricto do Distrito Federal. Revista Árvore, v. 35, n.3, p. 527-538. 2011.
  • PARK, A. et al. Local and regional environmental variation influences the growth of tropical trees in selection trials in the Republic of Panama. Forest Ecology and Management , v. 260, n. 1, p. 12-21, 2010.
  • PINHEIRO, E. S.; DURIGAN, G. Diferenças florísticas e estruturais entre fitofisionomias do cerrado em Assis, SP, Brasil. Revista Árvore, v. 36, n. 1, p. 181-193, 2012.
  • REZENDE, A. V. et al. Comparação de modelos matemáticos para estimativa do volume, biomassa e estoque de carbono da vegetação lenhosa de um cerrado sensu stricto em Brasília, DF. Scientia Forestalis, v.71, n. 2, p. 65-73. 2006.
  • RHOTON, F. E.; SJOERD, W. D. Erodibility of a soil drainage sequence in the loess uplands of Mississippi. Catena , v. 75, n. 2, p. 164-171, 2008.
  • ROSKIN, J. et al. Do dune sands redden with age? The case of the northwestern Negev dune field, Israel. Aeolian Research, v. 5, p. 63-75, 2012.
  • ROSSEL, R. A. V. et al. Colour space models for soil science. Geoderma , v. 133, n. 3-4, p. 320-337, 2006.
  • ROSSEL, R. A. V.; FOUAD, Y.; WALTER, C. Using a digital camera to measure soil organic carbon and iron contents. Biosystems Engineering, v. 100, n. 2, p. 149-159, 2008.
  • RUGGIERO, P. G. C. et al. Relação entre solo, vegetação e topografia em área de cerrado (Parque Estadual de Vassununga, SP): como se expressa em mapeamentos? Acta Botanica Brasilica, v. 20, n. 2, p. 383-394, 2006.
  • SANTANA, O. A.; CUNIAT, G.; IMAÑA-ENCINAS, J. Contribuição da vegetação rasteira na evapotranspiração total em diferentes ecossistemas do bioma Cerrado, Distrito Federal. Ciência Florestal, v. 20, n. 2; p. 269-280, 2010.
  • SANTANA, O. A.; IMAÑA-ENCINAS, J. Leaf Area Index and Canopy Openness estimation using high spatial resolution image QuickBird. Revista Caatinga, v. 24, p. 59-66, 2011.
  • SANTANA, O. A. et al. Produção da serapilheira em Floresta de Galeria e Floresta Mesofítica na Dolina da Garapa, Distrito Federal, Brasil. Cerne, v. 16, n. 4, p. 585-596, 2010.
  • SCHWERTMANN, U. Relations between iron oxides, soil color, and soil formation. In: BIGHAM, J.M.; CIOLKOSZ, E. J. (Ed.). Soil Color . SSSA: Madison. 1993. p. 57-66. (Special Publication, 31).
  • TEREFE, T. et al. Influence of heating on various properties of six Mediterranean soils. A laboratory study. Geoderma , v. 143, n. 3-4, p. 273-280, 2008.
  • TORRENT, J.; BARRÒN, V. Laboratory measurement of soil color: theory and practice. In: BIGHAM, J. M.; CIOLKOSZ, E. J. (Ed.). Soil Color . SSSA: Madison . 1993. p. 21-33. (Special Publication, 31).
  • VALE, A. T.; FELFILI, J. M. Dry biomass distribution in a cerrado sensu stricto site in Brazil central. Revista Árvore, v. 29, n. 5, p. 661-669, 2005.
  • VIANNA, A. L. M. et al. Tamanho ótimo de parcela para estimativa de estoque de carbono da parte aérea lenhosa de fitofisionomias florestais na Amazônia Oriental. Floresta, v. 40, n. 2, p. 447-456, 2010.
  • VIEIRA, S. A. et al. Estimation of biomass and carbon stocks: the case of the Atlantic Forest. Biota Neotropica, v. 8, n.2, p. 21-29. 2008.
  • WATERWORTH, R. M.; RICHARDS, G. P. Implementing Australian forest management practices into a full carbon accounting model. Forest Ecology and Management , v. 255, n. 7, p. 2434-2443, 2008.
  • ZAR, J. H. Biostatistical analysis. 5th Ed. New Jersey: Prentice Hall, 2010. 944p.

Datas de Publicação

  • Publicação nesta coleção
    Oct-Dec 2013
Universidade Federal de Santa Maria Av. Roraima, 1.000, 97105-900 Santa Maria RS Brasil, Tel. : (55 55)3220-8444 r.37, Fax: (55 55)3220-8444 r.22 - Santa Maria - RS - Brazil
E-mail: cienciaflorestal@ufsm.br