Acessibilidade / Reportar erro

Analytical study of the dimensional stability of tropical brazilian wood species

Estudo analítico da estabilidade dimensional longitudinal das espécies de madeira tropicais brasileiras

ABSTRACT

Brazil owns a large vegetal covering and the best utilization of these materials requires physical and mechanical characterization procedures. Equations found in the literature make easier the wood properties determination. At this context, well known authors developed the equation βl = βt/23, being βl and βt the longitudinal and tangential shrinkage percentages, for βl estimation based on the βt value specially for wood species from the Northern hemisphere. This paper aims to investigate the accuracy of this equation for fifteen tropical Brazilian wood species covering the entire range of hardwood strength classes according to the Brazilian Normative ABNT NBR7190. The average experimental values of βl and βt were 7.71% (CV = 26,71%) and 0.73% (CV = 38,76%), respectively. The non-parametric Kruskal-Wallis ANOVA refuted the hypothesis of equivalence between theoretical and experimental βl values (p-value = 0.0000). A linear regression model fitted to experimental values provided βl = βt/9,84 as optimal solution (p-value = 0.0000, R2 = 47,23%). According to results it is possible to conclude that the value of longitudinal shrinkage percentage of tropical Brazilian wood species is statistically 2,34 times greater than the value found in the literature, which impacts the design of timber structures procedures increasing the internal stresses in timber structural elements.

Keywords
Longitudinal shrinkage; Tangential shrinkage; Tropical Brazilian wood

RESUMO

O Brasil possui grande cobertura vegetal e o melhor aproveitamento desses materiais requer procedimentos de caracterização física e mecânica. Equações encontradas na literatura facilitam a determinação das propriedades da madeira. Nesse contexto, autores conhecidos desenvolveram a equação βl = βt/23, sendo βl e βt as porcentagens de retração longitudinal e tangencial, para estimativa de βl com base no valor de βl especialmente para espécies de madeira do hemisfério Norte. Este trabalho tem como objetivo investigar a precisão desta equação para quinze espécies de madeiras tropicais brasileiras cobrindo toda a faixa de classes de resistência da madeira de lei de acordo com o Norma Brasileira ABNT NBR 7190. Os valores experimentais médios de βl e βt foram 7,71% (CV = 26,71 %) e 0,73% (CV = 38,76%), respectivamente. A ANOVA não paramétrica de Kruskal-Wallis refutou a hipótese de equivalência entre os valores de βl teórico e experimental (p-valor = 0,0000). Um modelo de regressão linear ajustado aos valores experimentais forneceu βl =βt/9,84 como solução ótima (p-valor = 0,0000, R² = 47,23%). De acordo com os resultados, é possível concluir que o valor da porcentagem de retração longitudinal das espécies de madeira tropical brasileira é estatisticamente 2,34 vezes maior que o valor encontrado na literatura, o que impacta nos procedimentos de dimensionamento de estruturas de madeira aumentando as tensões internas nas estruturas de madeira.

Palavras-chave
Retração longitudinal; Retração tangencial; Madeira tropical brasileira

1 INTRODUCTION

According to Steege et al. (2016)STEEGE, H. T.VAESSEN, R. W.; CÁRDENAS-LOPEZ, D.; SABATIER, D.; ANTONELLI, A.; OLIVEIRA, S. M.; PITMAN, N. C. A.; JORGENSEN, P. M.; SALOMÃO, R. P.The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Scientific Reports, [s. l.], v. 6, p. 1–15, 2016. Available in: https://doi.org/10.1038/srep29549
https://doi.org/10.1038/srep29549...
Brazil presents about 7694 tropical wood species botanically classified and it is estimated that the total number is more than 12655 wood species. Into this number of botanically classified wood species, only a few of them are already physically and mechanically characterized. In addition, Brazil has the greatest certified forests area (6,2 million hectares) and the second greatest reforestation area (2,72 million hectares), being Malaysia the holder of the largest reforestation area (4,04 million hectares) (ITTO, 2018ITTO. Biennial review and assessment of the world situation 2017-2018. Yokohama, Japan: INTERNATIONAL TROPICAL TIMBER ORGANIZATION, 2018.). Tropical woods present high market value, being very useful in the civil construction industry as structural material and edification components because of their physical and mechanical properties (ALMEIDA et al., 2017ALMEIDA, T. H.; ALMEIDA, D. H.; ARAUJO, V. A.; SILVA, S. A. M.; CHRISTOFORO, A. L.; LAHR, F. A. R. Density as Estimator of Dimensional Stability Quantities of Brazilian Tropical Woods. BioResources, [s. l.], v. 12, n. 3, p. 6579–6590, 2017. Available in: https://doi.org/10.15376/biores.12.3.6579-6590
https://doi.org/10.15376/biores.12.3.657...
; CALIL JUNIOR; LAHR; DIAS, 2003CALIL JUNIOR, C.; LAHR, F. A. R.; DIAS, A. A. Dimensionamento de elementos estruturais de madeira. 1. ed. Barueri, São Paulo: Manole, 2003.; STOLF et al., 2017STOLF, D. O.; BERTOLINI, M. S.; CHRISTOFORO, A. L.; PANZERA, T. H.; RIBEIRO FILHO, S. L. M. LAHR, F. A. R. Pinus caribae. var. hondurensis Wood Impregnated with Methyl Methacrylate. Journal of Materials in Civil Engineering, [s. l.], v. 29, n. 6, p. 05016004, 2017. Available in: https://doi.org/10.1061/(asce)mt.1943-5533.0001830
https://doi.org/10.1061/(asce)mt.1943-55...
).

It is observed in Brazil the international tendency of wood structure industrialization, making possible several possibilities of structural systems, and beyond that, the prioritization of hyperstatic structures replacing the isostatic ones (BRITO et al., 2016BRITO, L. D.; CHRISTOFORO, A. L.; SEGUNDINHO, P. G. A.; LAHR, F. A. R.; CALIL JUNIOR, C. Historic “HAUFF” Timber Roofs in Poços de Caldas in Brazil. International Journal of Materials Engineering, [s. l.], v. 6, n. 3, p. 113–118, 2016. Available in: https://doi.org/10.5923/j.ijme.20160603.09
https://doi.org/10.5923/j.ijme.20160603....
).

At this context, it is of significant relevance to assess the representativeness of the equation presented by Kollmann and Côté (1968)KOLLMANN, F. F. P.; CÔTÉ, W. A. Principles of Wood Science and Technology. Berlin, Heidelberg: Springer Berlin Heidelberg, 1968. Available in: https://doi.org/10.1007/978-3-642-87928-9
https://doi.org/10.1007/978-3-642-87928-...
: βl = βt/23 (based on insipient statistical methods), which is about the relation between longitudinal and tangential shrinkage percentages (βl and βt, respectively), developed based on experimental data of wood species mostly from the Northern hemisphere. This equation has been used for evaluating the structural elements performance into hyperstatic structures.

Dimensional variation because of the moisture content oscillation, estimated by βl parameter, generates stresses into the structural elements. According to Cassiano et al. (2013)CASSIANO, C.; SOUZA, A. P.; STANGERLIN, D. M.; PAULINO, J.; MELO, R. R..Seasonality and estimates of the equilibrium moisture content of amazonian woods in Sinop, mato grosso state, Brazil. Scientia Forestalis, [s. l.], v. 41, n. 100, p. 457–468, 2013., this dimensional variation can reach up to six percentage points in low rainfall periods. Other authors have dealt with related topics of this theme highlighting Genoese et al. (2013)GENOESE, A. GENOESE, A.; FORTINO, S.; HRADIL, P. A numerical approach for the hygro-thermal monitoring of timber structures under environmental conditions. Advanced Materials Research, [s. l.], v. 778, p. 786–793, 2013. Available in: https://doi.org/10.4028/www.scientific.net/AMR.778.786
https://doi.org/10.4028/www.scientific.n...
and Mariño et al. (2009)MARIÑO, R. A. CARREIRA, X. C.; FERNÁNDEZ, M. E.; FERNANDEZ-RODRIGUEZ, C. Durability of timber structures in agricultural and livestock buildings. Biosystems Engineering, [s. l.], v. 104, n. 1, p. 152–160, 2009. Available in: https://doi.org/10.1016/j.biosystemseng.2009.06.009
https://doi.org/10.1016/j.biosystemseng....
.

It is necessary to consider the longitudinal dimensional variation for hyperstatic structures dimensioning, whose approach based on probabilistic and semi-probabilistic methods requires knowing of the relation between βl and βt (LUKACS et al., 2016LUKACS, I.; BJORNFOT, A.; TSALKATIDIS, T.; TOMASI, R. Structural redundancy in cross-laminated timber buildings. In: 2016. WCTE 2016 - World Conference on Timber Engineering. [S. l.: s. n.], 2016.; SOUSA; LOURENÇO; NEVES, 2010SOUSA, H. S.; LOURENÇO, P. B.; NEVES, L. C. Safety evaluation of timber structures through probabilistic analysis. Advanced Materials Research, [s. l.], v. 133–134, p. 337–342, 2010. Available in: https://doi.org/10.4028/www.scientific.net/AMR.133-134.337
https://doi.org/10.4028/www.scientific.n...
; WACKER et al., 2014WACKER, J. P. BRASHAW, B. K.; WILLIAMSON, T. G.; JONES, P. D.; SMITH, M. S.; HOSTENG, T. K.; STRAHL, D. L.; COOMBE, L. E.; GOPU, V. Service life assessment of timber highway bridges in USA climate zones. WCTE 2014 - World Conference on Timber Engineering, Proceedings, [s. l.], n. 1, p. 2021, 2014.).

In addition, when it is evaluated the current stresses in historic edification structures, it will certainly occur the introducing of degrees of redundancy, making it necessary to adopt reliable relation between βl and βt values (FERREIRA et al., 2013FERREIRA, C. F.; D’AYALA, D.; CABO, J. L. F.; DÍEZ, R.Numerical modelling of historic vaulted timber structures. Advanced Materials Research, [s. l.], v. 778, n. May 2014, p. 517–525, 2013. Available in: https://doi.org/10.4028/www.scientific.net/AMR.778.517
https://doi.org/10.4028/www.scientific.n...
; HOLZER, 2016HOLZER, S.M. Analysis of historical timber structures. In: STRUCTURAL ANALYSIS OF HISTORICAL CONSTRUCTIONS: ANAMNESIS, DIAGNOSIS, THERAPY, CONTROLS. [S. l.]: CRC Press, 2016. p. 1203–1210. Available in: https://doi.org/10.1201/9781315616995-163
https://doi.org/10.1201/9781315616995-16...
). The same happens for design of timber structures submitted to the high possibility of earthquakes (BUCHANAN; CARRADINE; JORDAN, 2011BUCHANAN, A.; CARRADINE, D.; JORDAN, J. Performance of engineered timber structures in the Canterbury earthquakes. Bulletin of the New Zealand Society for Earthquake Engineering, [s. l.], v. 44, n. 4, p. 394–401, 2011. Available in: https://doi.org/10.5459/bnzsee.44.4.394-401
https://doi.org/10.5459/bnzsee.44.4.394-...
; PARISI; PIAZZA, 2015PARISI, M. A.; PIAZZA, M. Seismic strengthening and seismic improvement of timber structures. Construction and Building Materials, [s. l.], v. 97, p. 55–66, 2015. Available in: https://doi.org/10.1016/j.conbuildmat.2015.05.093
https://doi.org/10.1016/j.conbuildmat.20...
).

Specificities of new technologies in the timber structures field, especially for thin walls (Cross Laminated Timber), also require the development project based on more detailed knowledge of the physical properties of wood, and among them the relation between βl and βt values (GIANOLI; FURRER, 2016GIANOLI, A; FURRER, R. Contrasting approaches to load-bearing timber structures. In: STRUCTURES AND ARCHITECTURE. [S. l.]: CRC Press, 2016. p. 1516–1523. Available in: https://doi.org/10.1201/b20891-211
https://doi.org/10.1201/b20891-211...
; ŠMAK; STRAKA, 2014ŠMAK, M.; STRAKA, B. Development of new types of timber structures based on theoretical analysis and their real behaviour. Wood Research, [s. l.], v. 59, n. 3, p. 459–470, 2014.).

At last, it is important to note that the relation between βl and βt values is important when numerical simulations are performed for the previous evaluation of the behavior of timber structures (FUEYO; DOMÍNGUEZ; CABEZAS, 2017FUEYO, J. G.; DOMÍNGUEZ, M.; CABEZAS, J. A. Contact shear stresses in dowel-type joints with expansive kits of timber structures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, [s. l.], v. 231, n. 1, p. 140–149, 2017. Available in: https://doi.org/10.1177/0954406216656215
https://doi.org/10.1177/0954406216656215...
; GEBHARDT; KALISKE, 2015GEBHARDT, C.; KALISKE, M. Reliable simulation of timber structures by combined load and displacement control. Engineering Computations (Swansea, Wales), [s. l.], v. 32, n. 3, p. 766–778, 2015. Available in: https://doi.org/10.1108/EC-04-2014-0069
https://doi.org/10.1108/EC-04-2014-0069...
).

In the mentioned context, this paper aims to investigate the accuracy of the relation between βl and βt proposed by Kollmann and Côté (1968)KOLLMANN, F. F. P.; CÔTÉ, W. A. Principles of Wood Science and Technology. Berlin, Heidelberg: Springer Berlin Heidelberg, 1968. Available in: https://doi.org/10.1007/978-3-642-87928-9
https://doi.org/10.1007/978-3-642-87928-...
for tropical Brazilian wood species, determining the relation between experimental values of βl and βt for fifteen wood species covering the five hardwood strength classes of the Brazilian Normative ABNT NBR 7190 (ABNT, 1997ABNT. Projeto de estruturas de madeira ABNT- Técnicas NBR 7190. Associação Brasileira de Normas Técnicas, [s. l.], p. 107, 1997.).

2 MATERIALS AND METHODS

2.1 Sampling

For investigating the theoretical equations accuracy, based on robust experimental data, fifteen tropical Brazilian wood species covering the five strength-classes preconized by the Brazilian Normative ABNT NBR 7190 (three wood species for each strength class) were considered. Table 1 presents the wood species considered here.

Table 1
Tropical Brazilian wood species considered

According to Almeida et al. (2016)ALMEIDA, T. H. de; ALMEIDA, D. H.; CHRISTOFORO, A. L.; CHAHUD, E.; BRANCO, L. A. M. N.; LAHR, F. A. R. Density as Estimator of Strength in Compression Parallel to the Grain in Wood. International Journal of Materials Engineering, [s. l.], v. 6, n. 3, p. 67–71, 2016. Available in: https://doi.org/10.5923/j.ijme.20160603.01
https://doi.org/10.5923/j.ijme.20160603....
, the five strength-classes of the Brazilian Normative ABNT NBR 7190 (1997) cover the entire range of wood densities, which is important for best conclusions concerning this comparative study between experimental and theoretical approaches of dimensional stability of wood materials.

2.2 Determination of experimental values

Experimental values were determined according to the ABNT NBR 7190 (ABNT, 1997ABNT. Projeto de estruturas de madeira ABNT- Técnicas NBR 7190. Associação Brasileira de Normas Técnicas, [s. l.], p. 107, 1997.) “Design of Timber Structures”, in its ANNEX B, that prescribes procedures for wood properties characterization. Wood tangential and longitudinal shrinkage percentages were determined according to the part 3 of Brazilian Normative (ABNT, 1997ABNT. Projeto de estruturas de madeira ABNT- Técnicas NBR 7190. Associação Brasileira de Normas Técnicas, [s. l.], p. 107, 1997.). Figure 1 illustrates this procedure. This procedure is about measuring the longitudinal e tangential dimensions of twelve standardized specimens of wood at 0% and Fiber Saturation Point, about 21,6% (ALMEIDA et al., 2020ALMEIDA, T. H.; ALMEIDA, D. H.; AQUINO, V. B. M.; CHAHUD, E.; PINHEIRO, R. V.; BRANCO, L.A.M.N.; ALMEIDA, J. P B.; CHRISTOFORO, A. L.; LAHR, F. A. R. Investigation of the Fiber Saturation Point of Tropical Brazilian Wood Species. BioResources, v. 15, n. 3, p. 5379-5387, 2020. Available in: https://doi.org/ 10.15376/biores.15.3.5379-5387
https://doi.org/10.15376/biores.15.3.537...
) for Brazilian wood species moisture contents, and after that, calculating the percentual modification of those dimensions.

Figure 1
Illustration of the wood specimen measurement

According to this standard normative, at least twelve repetitions should be performed for each test for wood properties characterization. The total of 180 determinations were performed for each experimental variable considered, which corresponds to 540 determinations (among experimental and theoretical values of the three variables considered).

2.3 Statistical analysis

A summary of experimental and theoretical data was made for best presenting these results. Shapiro-Wilk normality test was carried out at 5% significance level for the choice of parametric or non-parametric comparison test to be performed. The non-parametric Kruskal-Wallis Analysis of variance was performed for comparison between experimental and theoretical results (based on Kollmann and Côté (1968)KOLLMANN, F. F. P.; CÔTÉ, W. A. Principles of Wood Science and Technology. Berlin, Heidelberg: Springer Berlin Heidelberg, 1968. Available in: https://doi.org/10.1007/978-3-642-87928-9
https://doi.org/10.1007/978-3-642-87928-...
equation).

A linear regression model was fitted for the experimental data (using the ordinary least square method), trying to estimate the longitudinal shrinkage percentage based on the tangential shrinkage result. This model was tested using parametric ANOVA (Analysis of Variance) and the coefficient of determination made possible to measure the accuracy of this model. The statistical analysis was performed using the software R 4.2.1 (R PROJECT, 2022R PROJECT. Software R 4.2.1. Vienna, Austria, 2022.).

3 RESULTS AND DISCUTIONS

After determining the longitudinal and tangential shrinkage (βl and βt, respectively) for the fifteen tropical Brazilian wood species considered, as well as calculating the theoretical values of longitudinal shrinkage (βl) according to Kollmann and Côté (1968), these results were summarized. Table 2 presents the βl, βl and βt results.

Table 2
Summary of results for the fifteen tropical Brazilian wood species

Firstly, to compare the theoretical and experimental values of longitudinal shrinkage determined, it was necessary to evaluate the normal distribution of these data. The Shapiro-Wilk normality test was performed for the three variables studied. Figures 2 to 4 present the normality tests as well as the quantile chart for each variable.

Figure 2
Normality test and quantiles chart for βt
Figure 3
Normality test and quantiles chart for βl
Figure 4
Normality test and quantiles chart for βl

As it can be seen at the Figures 2 to 4, the three normalities tests presented p-values 0.0019, 0.0070 and 0.0011, for βt, βl and βl, respectively. The significant p-values resulted lead to refute the normality distribution of the data. Based on the non-normality of the data and in order to compare experimental and theoretical values of longitudinal shrinkage, the performed the non-parametric Kruskal-Wallis ANOVA at 5% significance level was performed. Figure 5 presents the boxplots of βl and βl data.

Figure 5
Normality test and quantiles chart for experimental and theoretical values of βl

The boxplots showed in the Figure 5 brings relevant information about the experimental (green) and theoretical (blue) longitudinal shrinkage percentages. As can be seen here is a large differentiation between these two groups.

Performing the non-parametric ANOVA, the Chi-squared parameter resulted 195,22, being the number of degrees of freedom equal to 1, the p-value resulted was 0.0000. This test leads to refute the null hypothesis (equivalence between groups) and accept that the estimated value of longitudinal shrinkage percentage based on the Kollmann and Côté (1968) equation (βl = βt/23) does not provide assertive results for tropical Brazilian wood species.

For βl estimation based on the βt, using the ordinary least square method, a linear regression model setting the intercept to zero was fitted. The parametric ANOVA was used for testing the representativeness of this model, in addition, the accuracy of the model can be measured using the coefficient of determination (R2). Figure 6 presents the linear regression model fitted for βl and βt data.

Figure 6
Scatterplot of βl and βt experimental results and the fitted linear regression model

As shows the Figure 6, βl = βt /9.84 was the best fit for the experimental results of βl and βt parameters. This result shows us that the longitudinal shrinkage percentage of the tropical Brazilian wood species covering the entire strength classes of the Brazilian standard Normative is about 2,34 times greater than the theoretical value found in the literature (βl = βt/23) (KOLLMANN; COTÉ, 1968), which impacts the design of timber structures procedures. This difference might come from the difference in the microstructure of those materials since amorphous regions of the cellulose are supposed to vary with the wood species considered.

4 CONCLUSIONS

According to results it is possible to conclude that the value of longitudinal shrinkage percentage of tropical Brazilian wood species is statistically 2.34 times greater than the value fund in the literature with 95% confidence level. This information is important for the hyperstatic structures field, where the longitudinal dimensional stability quantity must be used assertively for stresses determinations.

ACKNOWLEDGEMENTS

Authors thank CAPES for the financial support (this study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Normative 001), Wood and Timber Structures Laboratory (LaMEM) of the Engineering of Structures Department (SET) of the São Carlos Engineering School (EESC) - University of São Paulo (USP).

How to quote this article

  • Almeida, T. H.; Almeida, D. H.; Aquino, V. B. M.; Christoforo, A. L.; Lahr, F. A. R. Analytical study of the dimensional stability of tropical brazilian wood species. Ciência Florestal, Santa Maria, v. 33, n. 1, e65389, p. 1-14, 2023. DOI 10.5902/1980509865389. Available from: https://doi.org/10.5902/1980509865389.

REFERENCES

  • ABNT. Projeto de estruturas de madeira ABNT- Técnicas NBR 7190. Associação Brasileira de Normas Técnicas, [s. l.], p. 107, 1997.
  • ALMEIDA, T. H.; ALMEIDA, D. H.; ARAUJO, V. A.; SILVA, S. A. M.; CHRISTOFORO, A. L.; LAHR, F. A. R. Density as Estimator of Dimensional Stability Quantities of Brazilian Tropical Woods. BioResources, [s. l.], v. 12, n. 3, p. 6579–6590, 2017. Available in: https://doi.org/10.15376/biores.12.3.6579-6590
    » https://doi.org/10.15376/biores.12.3.6579-6590
  • ALMEIDA, T. H. de; ALMEIDA, D. H.; CHRISTOFORO, A. L.; CHAHUD, E.; BRANCO, L. A. M. N.; LAHR, F. A. R. Density as Estimator of Strength in Compression Parallel to the Grain in Wood. International Journal of Materials Engineering, [s. l.], v. 6, n. 3, p. 67–71, 2016. Available in: https://doi.org/10.5923/j.ijme.20160603.01
    » https://doi.org/10.5923/j.ijme.20160603.01
  • ALMEIDA, T. H.; ALMEIDA, D. H.; AQUINO, V. B. M.; CHAHUD, E.; PINHEIRO, R. V.; BRANCO, L.A.M.N.; ALMEIDA, J. P B.; CHRISTOFORO, A. L.; LAHR, F. A. R. Investigation of the Fiber Saturation Point of Tropical Brazilian Wood Species. BioResources, v. 15, n. 3, p. 5379-5387, 2020. Available in: https://doi.org/ 10.15376/biores.15.3.5379-5387
    » https://doi.org/10.15376/biores.15.3.5379-5387
  • BRITO, L. D.; CHRISTOFORO, A. L.; SEGUNDINHO, P. G. A.; LAHR, F. A. R.; CALIL JUNIOR, C. Historic “HAUFF” Timber Roofs in Poços de Caldas in Brazil. International Journal of Materials Engineering, [s. l.], v. 6, n. 3, p. 113–118, 2016. Available in: https://doi.org/10.5923/j.ijme.20160603.09
    » https://doi.org/10.5923/j.ijme.20160603.09
  • BUCHANAN, A.; CARRADINE, D.; JORDAN, J. Performance of engineered timber structures in the Canterbury earthquakes. Bulletin of the New Zealand Society for Earthquake Engineering, [s. l.], v. 44, n. 4, p. 394–401, 2011. Available in: https://doi.org/10.5459/bnzsee.44.4.394-401
    » https://doi.org/10.5459/bnzsee.44.4.394-401
  • CALIL JUNIOR, C.; LAHR, F. A. R.; DIAS, A. A. Dimensionamento de elementos estruturais de madeira 1. ed. Barueri, São Paulo: Manole, 2003.
  • CASSIANO, C.; SOUZA, A. P.; STANGERLIN, D. M.; PAULINO, J.; MELO, R. R..Seasonality and estimates of the equilibrium moisture content of amazonian woods in Sinop, mato grosso state, Brazil. Scientia Forestalis, [s. l.], v. 41, n. 100, p. 457–468, 2013.
  • FERREIRA, C. F.; D’AYALA, D.; CABO, J. L. F.; DÍEZ, R.Numerical modelling of historic vaulted timber structures. Advanced Materials Research, [s. l.], v. 778, n. May 2014, p. 517–525, 2013. Available in: https://doi.org/10.4028/www.scientific.net/AMR.778.517
    » https://doi.org/10.4028/www.scientific.net/AMR.778.517
  • FUEYO, J. G.; DOMÍNGUEZ, M.; CABEZAS, J. A. Contact shear stresses in dowel-type joints with expansive kits of timber structures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, [s. l.], v. 231, n. 1, p. 140–149, 2017. Available in: https://doi.org/10.1177/0954406216656215
    » https://doi.org/10.1177/0954406216656215
  • GEBHARDT, C.; KALISKE, M. Reliable simulation of timber structures by combined load and displacement control. Engineering Computations (Swansea, Wales), [s. l.], v. 32, n. 3, p. 766–778, 2015. Available in: https://doi.org/10.1108/EC-04-2014-0069
    » https://doi.org/10.1108/EC-04-2014-0069
  • GENOESE, A. GENOESE, A.; FORTINO, S.; HRADIL, P. A numerical approach for the hygro-thermal monitoring of timber structures under environmental conditions. Advanced Materials Research, [s. l.], v. 778, p. 786–793, 2013. Available in: https://doi.org/10.4028/www.scientific.net/AMR.778.786
    » https://doi.org/10.4028/www.scientific.net/AMR.778.786
  • GIANOLI, A; FURRER, R. Contrasting approaches to load-bearing timber structures. In: STRUCTURES AND ARCHITECTURE. [S. l.]: CRC Press, 2016. p. 1516–1523. Available in: https://doi.org/10.1201/b20891-211
    » https://doi.org/10.1201/b20891-211
  • HOLZER, S.M. Analysis of historical timber structures. In: STRUCTURAL ANALYSIS OF HISTORICAL CONSTRUCTIONS: ANAMNESIS, DIAGNOSIS, THERAPY, CONTROLS. [S. l.]: CRC Press, 2016. p. 1203–1210. Available in: https://doi.org/10.1201/9781315616995-163
    » https://doi.org/10.1201/9781315616995-163
  • ITTO. Biennial review and assessment of the world situation 2017-2018 Yokohama, Japan: INTERNATIONAL TROPICAL TIMBER ORGANIZATION, 2018.
  • KOLLMANN, F. F. P.; CÔTÉ, W. A. Principles of Wood Science and Technology Berlin, Heidelberg: Springer Berlin Heidelberg, 1968. Available in: https://doi.org/10.1007/978-3-642-87928-9
    » https://doi.org/10.1007/978-3-642-87928-9
  • LUKACS, I.; BJORNFOT, A.; TSALKATIDIS, T.; TOMASI, R. Structural redundancy in cross-laminated timber buildings. In: 2016. WCTE 2016 - World Conference on Timber Engineering [S. l.: s. n.], 2016.
  • MARIÑO, R. A. CARREIRA, X. C.; FERNÁNDEZ, M. E.; FERNANDEZ-RODRIGUEZ, C. Durability of timber structures in agricultural and livestock buildings. Biosystems Engineering, [s. l.], v. 104, n. 1, p. 152–160, 2009. Available in: https://doi.org/10.1016/j.biosystemseng.2009.06.009
    » https://doi.org/10.1016/j.biosystemseng.2009.06.009
  • PARISI, M. A.; PIAZZA, M. Seismic strengthening and seismic improvement of timber structures. Construction and Building Materials, [s. l.], v. 97, p. 55–66, 2015. Available in: https://doi.org/10.1016/j.conbuildmat.2015.05.093
    » https://doi.org/10.1016/j.conbuildmat.2015.05.093
  • R PROJECT. Software R 4.2.1 Vienna, Austria, 2022.
  • ŠMAK, M.; STRAKA, B. Development of new types of timber structures based on theoretical analysis and their real behaviour. Wood Research, [s. l.], v. 59, n. 3, p. 459–470, 2014.
  • SOUSA, H. S.; LOURENÇO, P. B.; NEVES, L. C. Safety evaluation of timber structures through probabilistic analysis. Advanced Materials Research, [s. l.], v. 133–134, p. 337–342, 2010. Available in: https://doi.org/10.4028/www.scientific.net/AMR.133-134.337
    » https://doi.org/10.4028/www.scientific.net/AMR.133-134.337
  • STEEGE, H. T.VAESSEN, R. W.; CÁRDENAS-LOPEZ, D.; SABATIER, D.; ANTONELLI, A.; OLIVEIRA, S. M.; PITMAN, N. C. A.; JORGENSEN, P. M.; SALOMÃO, R. P.The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Scientific Reports, [s. l.], v. 6, p. 1–15, 2016. Available in: https://doi.org/10.1038/srep29549
    » https://doi.org/10.1038/srep29549
  • STOLF, D. O.; BERTOLINI, M. S.; CHRISTOFORO, A. L.; PANZERA, T. H.; RIBEIRO FILHO, S. L. M. LAHR, F. A. R. Pinus caribae. var. hondurensis Wood Impregnated with Methyl Methacrylate. Journal of Materials in Civil Engineering, [s. l.], v. 29, n. 6, p. 05016004, 2017. Available in: https://doi.org/10.1061/(asce)mt.1943-5533.0001830
    » https://doi.org/10.1061/(asce)mt.1943-5533.0001830
  • WACKER, J. P. BRASHAW, B. K.; WILLIAMSON, T. G.; JONES, P. D.; SMITH, M. S.; HOSTENG, T. K.; STRAHL, D. L.; COOMBE, L. E.; GOPU, V. Service life assessment of timber highway bridges in USA climate zones. WCTE 2014 - World Conference on Timber Engineering, Proceedings, [s. l.], n. 1, p. 2021, 2014.

Publication Dates

  • Publication in this collection
    26 June 2023
  • Date of issue
    2023

History

  • Received
    22 Apr 2021
  • Accepted
    08 Nov 2022
  • Published
    28 Mar 2023
Universidade Federal de Santa Maria Av. Roraima, 1.000, 97105-900 Santa Maria RS Brasil, Tel. : (55 55)3220-8444 r.37, Fax: (55 55)3220-8444 r.22 - Santa Maria - RS - Brazil
E-mail: cienciaflorestal@ufsm.br