Acessibilidade / Reportar erro

Criteria for the implementation of ecological corridors in fragmented areas in southern Brazil

Proposta de implantação de corredores ecológicos para áreas fragmentadas de ecossistemas tropicais no Brasil

ABSTRACT

The present study aims to analyze the potential of areas for the implementation of ecological corridors. The study area represents a transition between the Atlantic Forest and Cerrado domains and is extensively fragmented. Geographic Information System was used to determine suitable areas for the implementation of ecological corridors based on their ecological and structural potential, while multi-criteria classification was used to generate a final ecological map of the area. Weights and notes were assigned to vegetation class, river width, elevation and declivity in their respective maps, which were overlaid using ArcGis 10.3 software. Structural analysis of the area used the landscape metrics mean area, mean shape and total edge of fragments and mean connectivity among fragments in Fragstats software. The results indicated an ecologically and structurally suitable area for the implementation of ecological corridors in the study area.

Keywords
Cerrado; Mata Atlântica; Ecological corridors; Espinhaço Mountain Range; Landscape ecology

RESUMO

O presente estudo tem como propósito analisar áreas potenciais para a implantação de Corredores Ecológicos. Atualmente a área encontra-se fragmentada e está sob os domínios de Cerrado e Mata Atlântica. Baseado no Sistema de Informações Geográficas, foram determinadas possíveis áreas, do ponto de vista ecológico e estrutural, para a implantação dos Corredores Ecológicos. Para a geração do mapa final de potencial ecológico da área, utilizou-se a metodologia de classificação por múltiplos critérios. Foram atribuídos pesos e notas às classes de vegetação, largura dos rios, altitude e declividade em seus respectivos mapas. Após a determinação dos pesos e notas, realizou-se a sobreposição dos mapas no software ArcGis 10.3. Para analise estrutural da área utilizou-se às métricas de paisagem área média, formato médio e borda total dos fragmentos e conectividade média entre os fragmentos no software Fragstats. Os resultados apontaram para uma área ecologicamente e estruturalmente viável para a implantação dos Corredores Ecológicos na área de estudo.

Palavras-chave
Cerrado; Mata Atlântica; Corredores ecológicos; Cordilheira do Espinhaço; Ecologia de paisagem

1 INTRODUCTION

Preserved natural areas have decreased in number and become restricted in tropical regions of Brazil due to human activities (LAURENCE et al., 2014LAURENCE, W.F.; SAYER, J.; CASSMAN, K.G. Agricultural expansion and its impacts on tropical nature. Trends in Ecology & Evolution, v. 29, n. 2, p.107-116, 2014. DOI: https://doi.org/10.1016/j.tree.2013.12.001
https://doi.org/10.1016/j.tree.2013.12.0...
). Expanding agriculture and pasture are among the causes responsible for the reduction of natural areas in the Cerrado and Atlantic Forest biomes in Sourtheast Brazil (SILVA et al., 2016SILVA, C. et al. GIS-Based Ecological Risk Assessment for Contaminated Sites by Fish Farm Effluents Using a Multicriteria Weight of Evidence Approach. Aquaculture Research, v.47, n.2, p. 524-539, 2016. DOI: https://doi.org/10.1111/are.12512
https://doi.org/10.1111/are.12512...
).

The Cerrado (Brazilian savanna) originally occupied approximately 23% of the territory of Brazil (DANTAS et al., 2018DANTAS, D.; SOUZA, M.J.; VIEIRA, A.; OLIVEIRA, M.; PEREIRA, I.; MACHADO, E.; SOUZA, C.M.; ROCHA, W. Soil Influences on Tree Species Distribution in a Rupestrian Cerrado Area. Floresta e Ambiente, v.25, n.4, p. 1-9, 2018. DOI: https://doi.org/10.1590/2179-8087.060517
https://doi.org/10.1590/2179-8087.060517...
), comprising forest, savannic and grassland vegetations (RIBEIRO; WALTER, 1998). The biome is considered the second largest in Latin America, encompassing more than 200 million hectares, and due to its favorable topography hosts the most of agricultural activities for grain and beef production in the world (SANO et al., 2019SANO, E.E.; RODRIGUES, A.A.; MARTINS, E.S.; Bettiol, G.M.; BUSTAMANTE, M.M.C.; BEZERRA, A.S.; COUTO JR, A.F.; VASCONCELOS, V.; SHULER, J.; BOLFE, E.L. Cerrado ecoregions: A spatial framework to assess and prioritize Brazilian savana environmental diversity for conservation. Journal of Environmental Management, v.232, n.15, p.818-828, 2019. DOI: https://doi.org/10.1016/j.jenvman.2018.11.108
https://doi.org/10.1016/j.jenvman.2018.1...
). Furthermore, due to high levels of endemic and threatened biodiversity, the Cerrado is considered a global hotspot for biodiversity conservation (DANTAS et al., 2018DANTAS, D.; SOUZA, M.J.; VIEIRA, A.; OLIVEIRA, M.; PEREIRA, I.; MACHADO, E.; SOUZA, C.M.; ROCHA, W. Soil Influences on Tree Species Distribution in a Rupestrian Cerrado Area. Floresta e Ambiente, v.25, n.4, p. 1-9, 2018. DOI: https://doi.org/10.1590/2179-8087.060517
https://doi.org/10.1590/2179-8087.060517...
).

The Cerrado has experienced an extended reduction in its original vegetation cover in the Southeast Region of Brazil due to the expansion of land use for pasture and agriculture (SILVA et al., 2016SILVA, C. et al. GIS-Based Ecological Risk Assessment for Contaminated Sites by Fish Farm Effluents Using a Multicriteria Weight of Evidence Approach. Aquaculture Research, v.47, n.2, p. 524-539, 2016. DOI: https://doi.org/10.1111/are.12512
https://doi.org/10.1111/are.12512...
). Replacing native areas of the Cerrado with exotic pastures can influence vegetation structure (MACEDO et al., 2020MACEDO, R.; AUDINO, L.D.; KORASAKI, V.; LOUZADA, J. Conversion of Cerrado savannas into exotic pastures: The relative importance of vegetation and food resources for dung beetle assemblages. Agriculture, Ecosystems & Environment, v. 288, n.1, 2020. DOI: https://doi.org/10.1016/j.agee.2019.106709
https://doi.org/10.1016/j.agee.2019.1067...
) and approximately half of the original coverage of the biome has been converted into planted pastures, annual crops and other land use types (BACARJI et al., 2020BACARJI, A.G.; VILPOUX, O.F.; FILHO, A.C.P. Impacts of agrarian reform on land use in the biomes of the Midwest region of Brazil between 2004 and 2014. An Acad Bras Cienc, v.93, n.1, p.1-21, 2020. DOI: http://dx.doi.org/10.1590/0001-3765202120181106
https://doi.org/10.1590/0001-37652021201...
).

The Atlantic Forest is one of the most threatened biomes in Brazil, and with a small proportion of its original area remaining its natural landscape is highly fragmented (COSTA et al., 2019COSTA, A.; GALVÃO, A.; SILVA, L.G. Mata Atlântica brasileira: análise do efeito de borda em fragmentos florestais remanescentes de um hotspot para conservação da biodiversidade. Revista de Geografia, Meio ambiente e Ensino, v.10, n.1, p.112-123, 2019. DOI: https://doi.org/10.17605/OSF.IO/8GS9Y
https://doi.org/10.17605/OSF.IO/8GS9Y...
). Currently, the biome occupies approximately 1,300.00 km², which extends over 17 Brazilian states and originally occupied 15% of the national territory (LIPORACCI et al., 2017LIPORACCI, H.S.N. Where are the Brazilian ethnobotanical studies in the Atlantic Forest and Caatinga? Rodriguésia, v.68, n.4, p.1225-1240, 2017. DOI: https://doi.org/10.1590/2175-7860201768407
https://doi.org/10.1590/2175-78602017684...
). Exploitation of the Atlantic Forest began late in the 14th century with the removal of trees and by the 19th century it was partially suppressed by the development of agriculture (LIPORACCI et al., 2017LIPORACCI, H.S.N. Where are the Brazilian ethnobotanical studies in the Atlantic Forest and Caatinga? Rodriguésia, v.68, n.4, p.1225-1240, 2017. DOI: https://doi.org/10.1590/2175-7860201768407
https://doi.org/10.1590/2175-78602017684...
). Because of the high level of exploitation of natural resources, the Atlantic Forest has undergone alterations in land use, resulting in the fragmentation of its original structure.

Landscape Ecology is the science that studies the processes of fragmentation, isolation and connectivity in landscapes with the aim of determining the influence that spatial patterns have on ecological processes (SALOMÃO et al., 2018SALOMÃO, N.V.; MACHADO, E.L.M.; PEREIRA, R.S.; FERNANDES, G.W.; GONZAGA, A.P.D.; MUCIDA, P.D.; SILVA, L.S. Structural analysis of a fragmented area in Minas Gerais State, Brazil. Anais da Academia Brasileira de Ciências, v. 90, n.4, p. 3353-3361, 2018. DOI: https://doi.org/10.1590/0001-3765201820160828
https://doi.org/10.1590/0001-37652018201...
). Also, landscape research serves as a tool for making sustainable and integrated decisions, and provides a perspective for obtaining information relevant to territorial planning at various scales (PREMKE et al., 2016PREMKE,K.; ATTERMEYER, K.; AUGUSTIN, J.; CABEZAS,A.; CASPER,P.; DEUMLICH, D.; GELBRECHT,J.; GERKE,H.H.; GESSLER,A.; SIQUEIRA, M.N.; FARIA, K.M.S. Análise da dinâmica da paisagem no município de Rio Verde, Goiás, Brasil: uma ferramenta para a escolha de áreas prioritárias para a conservação. Sociedade & Natureza, v.31, n.1, p. 1-20, 2019. DOI: https://doi.org/10.14393/SN-v31-2019-38832
https://doi.org/10.14393/SN-v31-2019-388...
).

Landscape analyses should never disregard any spatial characteristics because their interpretation is precisely what is useful in proposals aimed at restoring the connectivity and ecological integrity of areas of interest for the maintenance of ecological functions that provide ecosystem services (NORIEGA et al., 2017NORIEGA, J.A.; HORTAl, J.; AZCARATÉ, F.M.; BERG, M.P.; BONADA, N.; BRIONES, M.J.I.; TORO, I.D.; GOULSON, D.; IBABEZ, S.; LANDIS, D.A.; MORETTI, M.; POTTS, S.G.; SLADE, E.M.; STOUT, J.C.; ULYSHEN, M.D.; WACKERS, F.L.; WOODCOOK, B.A.; SANTOS, A.M.C. Research trends in ecosystem services provided by insects. Basic and Applied Ecology, v.26, p.8-23, 2018. DOI: https://doi.org/10.1016/j.baae.2017.09.006
https://doi.org/10.1016/j.baae.2017.09.0...
). Such interpretation is based on quantitative data and facilitates a better understanding of patterns and process for the analysis and prediction of future scenarios and the mitigation of existing problems (PREMKE et al., 2016PREMKE,K.; ATTERMEYER, K.; AUGUSTIN, J.; CABEZAS,A.; CASPER,P.; DEUMLICH, D.; GELBRECHT,J.; GERKE,H.H.; GESSLER,A.; SIQUEIRA, M.N.; FARIA, K.M.S. Análise da dinâmica da paisagem no município de Rio Verde, Goiás, Brasil: uma ferramenta para a escolha de áreas prioritárias para a conservação. Sociedade & Natureza, v.31, n.1, p. 1-20, 2019. DOI: https://doi.org/10.14393/SN-v31-2019-38832
https://doi.org/10.14393/SN-v31-2019-388...
).

There is, however, a lack of quantitative methods capable of assessing ecological connectivity and fragmentation on a regional scale (MINASIEWICZ et al., 2018MINASIEWICZ, J.; ZNANIECKA, J.M.; GÓRNIAK, M.; KAWIŃSKI, A. Spatial genetic structure of an endangered orchid Cypripedium calceolus (Orchidaceae) at a regional scale: limited gene flow in a fragmented landscape. Conservation Genetics, v.19, p.1449–1460. DOI: https://doi.org/10.1007/s10592-018-1113-4
https://doi.org/10.1007/s10592-018-1113-...
). In this context, spatial assessment based on geographic information system (GIS) and multicriteria analysis (FERRETI; POMARICO, 2013) are needed to make this process effective. The development of systematic studies of landscape fragmentation based on GIS and multicriteria data analysis will allow the identification of areas with ecological and structural potential and allow delimiting them as priority areas for preservation. Such studies will also contribute to landscape monitoring and strategic planning (SILVA et al., 2017SILVA, W.C.; FERREIRA, M.E.; TEIXEIRA, L.M.S.; MALAQUIAS, F.S.S.; PARENTE, L.L.; FERREIRA, L.G. Plataforma livre e interativa de mapas para a gestão territorial e ambiental do bioma cerrado. Revista Brasileira de Cartografia, v.69, n.8, Edição Especial “Geovisualização, mídias sociais e participação cidadã: apoio à representação, análise e gestão da paisagem”, p.1598-1609, 2017.).

One way to maintain dispersal and migration of organisms has been the creation of ecological corridors as part of strategic planning (FERNANDES; FERNANDES, 2017FERNANDES, M.M.; FERNANDES, M.R.M. Análise Espacial da Fragmentação Florestal da Bacia do rio Ubá – RJ. Ciência Florestal, v. 27, n. 4, p. 1429-1439, 2017.). In the context of spatial pattern connectivity, ecological corridors can guarantee functionality with respect to mobility since they provide links of connectivity within a heterogeneous territory (PEREIRA et al., 2007PEREIRA, M. A. S.; NEVES, N. A. G. S.; FIGUEIREDO, D. F. Considerações sobre a fragmentação territorial e as redes de corredores ecológicos. Geografia, v.16, p. 5-20, 2007.).

The marked increase in socio-economic activity in the Cerrado and Atlantic Forest has favored large-scale landscape changes to these biomes, resulting in many highly fragmented areas in Southeast Brazil. In the region of Conceição do Mato Dentro, in the state of Minas Gerais, Southeast, Brazil, the area of transition between the Cerrado and Atlantic Forest domains has been largely deforested for pasture, resulting in a highly fragmented landscape.

Motivation for the development of the present study came from concerns about the loss of biological diversity in this region. Thus, the aim was to promote reintegration of the local ecosystem by evaluating the ecological and structural potential of areas of Atlantic Forest and Cerrado in the region, through the use of GIS, for the implementation of ecological corridors, and contribute to the development of guidelines for planning actions and interventions in that fragmented areas.

2 MATERIAL AND METHODS

2.1 Delimitation of the study area

The study area is located in the municipality of Conceição do Mato Dentro in the state of Minas Gerais, Southeast, Brazil. According to the Koppen – Geiger climatic classification, the climate of the region is tropical of altitude, which is represented by elevations above 500 m, mild temperatures between 18ºC and 26ºC, and an annual thermal amplitude of between 7ºC and 9ºC. The elevation of the area varies from 679 to 1472 m and the landscape comprises an area of transition between two Brazilian domains — the Cerrado and the Atlantic Forest.

The Cerrado domain is represented by a high-altitude rupestrian environment with rocky outcrops (campos rupestres). Ribeiro and Walter (1998) proposed classifying rupestrian phytophysiognomies as campo rupestre and cerrado rupestre. These two phytophysiognomies are generally located on rocky outcrops at high altitudes, but differ in that campo rupestre has only 5% tree cover, while the rupestrian cerrado belongs to savanna formations, whose tree cover ranges from 5% to 70% (PINTO et al., 2009PINTO, J. R. R.; LENZA, E.; PINTO, A. S. Composição florística e estrutura da vegetação arbustivo-arbórea em um cerrado rupestre, Cocalzinho de Goiás, Goiás. Brazilian Journal of Botany, v.32, n.1, p. 1-10, 2009. DOI: https://doi.org/10.1590/S0100-84042009000100002
https://doi.org/10.1590/S0100-8404200900...
). Thus, several studies in the Cerrado biome have generalized the vegetation located in rupestrian environments, considering them such only because they are located on rocky outcrops and at high altitudes (RIBEIRO; WALTER, 1998).

2.2 Identification of areas with ecological potential for the implementation of ecological corridors

This step consists of identifying areas of ecological potential and defining factors for choosing them. Firstly, a map of ecological potential was generated for the study area using the multi-criteria classification methodology called Weighted Linear Combination (WLC) (DONHA et al., 2006DONHA, A. G., SOUZA, L. C. de P., SUGAMOSTO. Determinação da fragilidade ambiental utilizando técnicas de suporte à decisão e SIG. Revista Brasileira de Engenharia Agrícola e Ambiental, v.10, n.1, p. 175-181, 2006. DOI: https://doi.org/10.1590/S1415-43662006000100026
https://doi.org/10.1590/S1415-4366200600...
). This method consists of multiplying each factor by its weight, and then summing the results; this calculation is done pixel by pixel, thus generating a very detailed final map (DONHA et al., 2006DONHA, A. G., SOUZA, L. C. de P., SUGAMOSTO. Determinação da fragilidade ambiental utilizando técnicas de suporte à decisão e SIG. Revista Brasileira de Engenharia Agrícola e Ambiental, v.10, n.1, p. 175-181, 2006. DOI: https://doi.org/10.1590/S1415-43662006000100026
https://doi.org/10.1590/S1415-4366200600...
).

The model chosen for combining maps was the overlap model using index or weighted average when the maps are analyzed together by means of a combination of importance weights for factors and notes for the classes, according to the judgment of their influence on the phenomena being modeled (MEDEIROS; CESTARO, 2020MEDEIROS, J.F.; CESTARO, L.A. O emprego de técnicas estatísticas para a compartimentação geoambiental da Serra de Martins-RN. Sociedade & natureza, v.32, p. 384-395, 2020. DOI: https://doi.org/10.14393/SN-v32-2020-46691
https://doi.org/10.14393/SN-v32-2020-466...
). Factors were chosen according to literature review. The higher the weight of a factor and note of a class the greater the degree of importance of the factor and the class for implementing ecological corridors. Weights from 0 to 100% were assigned to factors, while notes of 0 to 3 were assigned to classes. Notes below 2 represented areas with low and medium ecological potential, while scores above 2 represented areas with high and very high ecological potential (Table 1).

Table 1
Quantification of ecological potential for the chosen factor

Weights were attributed to each factor through related bibliographic analysis studies obtained according to Andrade et al. (2017)ANDRADE, E.L.; OLIVEIRA, A. N. S.; CONCEIÇÃO, D. N. Áreas Potenciais para Preservação na Área de Proteção Ambiental de Santa Rita, Alagoas. Revista Contexto Geográfico, v. 2, n. 4, p. 91 – 103, 2017. DOI: https://doi.org/10.28998/contegeo.v2i4.6325
https://doi.org/10.28998/contegeo.v2i4.6...
. According to this author, vegetation and hydrography are the most important factors for determining suitable areas for the implementation of corridors since the conservation of both minimizes the effects of erosion and silting in watercourses and helps to control the water regime of rivers.

The factor ‘vegetation’ was classified using a vegetation map of the study area that indicates arboreal (Atlantic Forest), herbaceous and shrub (Cerrado) vegetation, with arboreal and shrub areas having the greatest ecological potential (Table 1) (FERRAZ et al., 2020FERRAZ, T.M.; SARAIVA, R.V.C.; LEONEL, L.V.; DOS REIS, F.F.; FIGUEIREDO, F.A.M.M.A.; REIS, F.D.; DE SOUZA, J.R.P.; MUNIZ, F.H. Cerrado physiognomies in Chapada das Mesas National Park (Maranhão, Brazil) revealed by patterns of floristic similarity and relationships in a transition zone. Anais da Academia Brasileira de Ciências, v.92, n.2, p.1-16. 2020. DOI: https://doi.org/10.1590/0001-3765202020181109
https://doi.org/10.1590/0001-37652020201...
). The interval values used for classifying the factors ‘river width’, ‘altitude’ and ‘declivity’ were analyzed using histograms for maps of hydrography, altitude and declivity, respectively, of the region, and are shown in Table 1.

For the factor ‘river width’, areas with narrower river widths were considered to have greater ecological potential because they have lower environmental risks and can facilitate the implementation of ecological corridors (FERRAZ et al., 2020FERRAZ, T.M.; SARAIVA, R.V.C.; LEONEL, L.V.; DOS REIS, F.F.; FIGUEIREDO, F.A.M.M.A.; REIS, F.D.; DE SOUZA, J.R.P.; MUNIZ, F.H. Cerrado physiognomies in Chapada das Mesas National Park (Maranhão, Brazil) revealed by patterns of floristic similarity and relationships in a transition zone. Anais da Academia Brasileira de Ciências, v.92, n.2, p.1-16. 2020. DOI: https://doi.org/10.1590/0001-3765202020181109
https://doi.org/10.1590/0001-37652020201...
). Thus, very high and high ecological potential were attributed to areas with river widths of less than 238.31 meters, and medium and low ecological potential for areas with river widths of more than 238.31 meters (Table 1).

Classification of the factors ‘altitude’ and ‘declivity’ was done according to Lei do Código Florestal (Forest Code Law 12.651/2012) on the delimitation of Áreas de Preservação Permanente (APP; permanent preservation areas). According to Guidotti et al. (2020)GUIDOTTI, V.; FERRAZ, S.F.B.; PINTO, L.F.G.; SPAROVEK, G.; TANIWAKI, R,H.; GARCIA, L.G.; BRANCALION, P, H, S. Changes in Brazil’s Forest Code can erode the potential of riparian buffers to supply watershed services. Land Use Policy, v.94, 2020. DOI: https://doi.org/10.1016/j.landusepol.2020.104511
https://doi.org/10.1016/j.landusepol.202...
, APPs are areas of ecological potential because they promote habitats for fauna, protect water bodies from sedimentation and contamination from pollutants from economic activities, and serve as ecological corridors interconnecting large forests.

According to the forest code, areas above 1800 meters and hillsides with declivities greater than 45º are delimited as APPs. This delimitation indicated that altitude classes below 1011.50 meters were areas of low ecological potential and areas above 1011.50 meters were areas of medium and high ecological potential (Table 1). For declivity, areas with declivities of up to 45º were of low and medium ecological potential, while areas with declivities greater than 45º were of very high ecological potential (Table 1).

After determining the factors with their respective weights, and notes for each class, the maps were overlapped using ArcGis 10.3 software, and a final map of the ecological potential of the study area was generated.

2.3 Identification of landscape structure for the implementation of ecological corridors

To determine structurally favorable areas for the implementation of ecological corridors, the study area was divided into 13 sub-areas (quadrants) of approximately 702.28 ha each. The structure of the landscape was determined by analysis of the spatial configuration of each quadrant from the calculation of landscape metrics in Fragstats 4.2 software.

The landscape metrics mean fragment area (area_mn), total border (TE), mean connectivity (connect_mn) and mean shape (shape_mn) were calculated with Fragstats 4.2 software to analyze the structural potential of each sub-area. A distance of 100 meters was used for calculating edge and connectivity. Considering that areas with fragments that are larger and have less total border (CABACINHA et al., 2010CABACINHA, C. D.; CASTRO, S. S.; GONÇALVES, D. A. Análise da estrutura da paisagem da alta bacia do rio Araguaia na savana brasileira. Floresta, v. 40, n.4, p. 675-690, 2010. DOI: http://dx.doi.org/10.5380/rf.v40i4.20318
https://doi.org/10.5380/rf.v40i4.20318...
), more connectivity and shapes varying between 1 and 2 are ideal for conservation and the implementation of ecological corridors (STEWART, 2019STEWART, F.E.C.; DARLINGTON, S.; VOLPE, J.P.; MCADIE, M.; FISHER, J.T. Corridors best facilitate functional connectivity across a protected area network. Scientific Reports, v.9, p.1-9, 2019. DOI: https://doi.org/10.1038/s41598-019-47067-x
https://doi.org/10.1038/s41598-019-47067...
), they were assigned classification interval values for the landscape metrics identified in Table 2. Since there was little variation among the intervals of the calculated means, the values were quantified as of high and low structural potential (Table 2).

Table 2
Quantification of structural potential for the landscape metrics

3 RESULTS

The figure 1 shows the final map of ecological potential for the implementation of ecological corridors. Note that these are areas of native tree and/or shrub vegetation associated with watercourses with hydrographic proximities of between 92.40 m and 238.31 m, declivities of between 45º and 125º and altitudes above 1210.28 m (Fig. 1).

Figure 1
Ecological potential map for implementation of ecological corridors in the municipality of Conceição do Mato Dentro, state of Minas Gerais, Brazil

The table 3 shows the sub-areas with high structural potential for the implementation of ecological corridors. It can be seen that all quadrants had a mean area between 0 and 1 and a mean shape equal to 1. Thus, considering only total border below 405750.0 and mean connectivity among fragments above 0.7831, areas with structural potential can be seen to be located in quadrants 1,3,4,5,6,10 and 13 (Table 3).

Table 3
Landscape metrics in the sub-areas studied

4 DISCUSSIONS

The map of areas of ecological potential within the study area reveals that all vegetation classes are associated with the presence of water bodies. This finding makes the area important for conservation since, from an ecological point of view, riparian vegetation contributes to the equilibrium of the environment and the resilience of the hydrographic basin (LAPOLA; FOWLER, 2008LAPOLA, D. M.; FOWLER, H. G. Questioning the implementation of habitat corridors: a case study in interior São Paulo using ants as bioindicators. Brazilian Journal of Biology, v.68, n.1, p. 11-20, 2008. DOI: https://doi.org/10.1590/S1519-69842008000100003
https://doi.org/10.1590/S1519-6984200800...
).

In its entirety, the riparian ecosystem includes the dynamics of the riparian zone, its vegetation and its interactions, and facilitates direct runoff in micro-basins, increased storage capacity, maintenance of water quality (buffer effect), stability of river banks, thermal equilibrium of water and the formation of ecological corridors (ATTANASIO et al., 2012ATTANASIO, C. M.; GANDOLFI S.; ZAKIA, M.J.B.; JUNIOR, J.C.T.V. Importância das áreas ripárias para a sustentabilidade hidrológica do uso da terra em microbacias hidrográficas. Bragantia, v.71, n.4, p. 493-501, 2012. http://dx.doi.org/10.1590/S0006-87052013005000001
https://doi.org/10.1590/S0006-8705201300...
). The implementation of ecological corridors in riparian areas is favored because they, when well conserved, provide connectivity (BRESSIANI; SCHMIDT, 2016BRESSIANI, J.X.; SCHMIDT, M.A.R. Proposta de Uso das Áreas Variáveis de Afluência como Área de Preservação Permanente. Revista Monografias Ambientais, v. 15, n.1, p.198-208, 2016. DOI: http://dx.doi.org/10.5902/22361308
https://doi.org/10.5902/22361308...
), which facilitates gene flow and the displacement of local fauna (FERRAZ; VETTORAZZI, 2003FERRAZ, S. F. B.; VETTORAZZI, C. A. Identificação de áreas para recomposição florestal com base em princípios de ecologia de paisagem. Árvore, v. 27, n.4, p. 575-583, 2003. DOI: https://doi.org/10.1590/S0100-67622003000400018
https://doi.org/10.1590/S0100-6762200300...
).

With regard to vegetation, ecological corridors are expected to be implemented areas with native tree and shrub vegetation; vegetation classes where ecological potential was considered very high. The high ecological potential of these vegetation classes is due to the greater phytosociological composition and structure of the arboreal-shrub stratum, with regards to the number of species, diversity and cover of vegetation, when compared to the herbaceous stratum (MULLER; WAECHTER, 1991MULLER, S. C.; WAECHTER, J. L. Estrutura sinusial dos componentes herbáceo e arbustivo de uma floresta costeira subtropical. Brazilian Journal of Botany, v. 24, n.4, p. 395-406, 2001. DOI: https://doi.org/10.1590/S0100-84042001000400005
https://doi.org/10.1590/S0100-8404200100...
). However, native herbaceous species are essential for the diversity of fragmented forests because they act as a source of propagules in forest regeneration (SILVA et al., 2009SILVA, F. M. et al. Diversidade e estrutura do componente herbáceo-subarbustivo em vegetação secundária de Floresta Atlântica no sul do Brasil. Revista Brasileira de Biociência, v.7, n.1, p. 53-65, 2009.).

The medium ecological potential of the herbaceous class for the implementation of ecological corridors is due to the presence of exotic herbaceous species from the use of areas for pasture. Exotic grasses may impair the establishment and development of native species due to competition for nutritional resources of the soil, and thus change plant morphophysiology and the quantity and quality of nutrients absorbed by plants (PIRES et al., 2012PIRES, A. C. V.; PEREIRA, S. R.; FERNANDES, G. W.; OKI, Y. Efeito de Brachiaria decumbens na herbivoria e no desenvolvimento de duas leguminosas nativas de cerrado. Planta Daninha, v.30, n.4, p. 737-746, 2012. DOI: https://doi.org/10.1590/S0100-83582012000400007
https://doi.org/10.1590/S0100-8358201200...
). Therefore, it is recommended that ecological corridors be implemented in these areas only if there is intervention to control exotic grasses through recovery projects.

Analysis of the ecological potential for the implementation of corridors in areas with hydrographic proximity revealed that the hydrographic network is well distributed in the study area; however, the implementation of corridors between 0 and 92 meters and 92 to 220 meters is recommended. These values are attributed to the geomorphology of the study area, with most of the native vegetation occurring in areas with steep declivity, and although there has been no flooding in these areas, the risk is high. Geomorphological studies associate the risk of flooding with river width, declivity and sediment load. According to Mello et al., 2016MELLO, R.C.A.; ZANARDO, A.; CONCEIÇÃO, F.T.; FERNANDES, A.M. Using the mineralogy of river sediments as pollution indicator of clay mining activity. Revista Brasileira de Recursos Hídricos, v. 21, n. 3, p. 502-513, 2016. DOI: https://doi.org/10.1590/2318-0331.011615099
https://doi.org/10.1590/2318-0331.011615...
, the greater the river width, the greater the sediment load. Therefore, if there is flooding in areas where the rivers are wider, there will be greater loss of vegetation through the processes of erosion and sedimentation.

The map of ecological potential reveals that APP areas are found in areas of higher altitudes and with greater declivities. The implementation of ecological corridors in areas of APPs is, therefore, suggested since, from an ecological point of view, the preservation of APPs is of fundamental importance to the management of watersheds because they are able to control soil erosion and water quality, and thus assure stabilization of the river banks and minimize accumulation of sediment from the highest parts of the terrain (EUGÊNIO et al., 2011EUGÊNIO, F. C.; SANTOS, A. R.; LOUZADA, R. O.; PIMENTEL, L. B.; MOULIN, J. V. Identificação de Áreas de Preservação Permanente no município de Alegre utilizando geotecnologia. Cerne, v.17, n.4, p. 563-571, 2011. DOI: https://doi.org/10.1590/S0104-77602011000400016
https://doi.org/10.1590/S0104-7760201100...
). According to Borges et al. (2011)BORGES, L.A.C.; REZENDE, J.L.P.; PEREIRA, J.A.A.; JÚNIOR, L.M.C.; BARROS, D.A. Áreas de preservação permanente na legislação ambiental brasileira. Ciência Rural, v.41, n.7, p, 1202-1210, 2011. DOI: https://doi.org/10.1590/S0103-84782011000700016
https://doi.org/10.1590/S0103-8478201100...
, interventions in these areas to open new agricultural areas will compromise, in the future, the replacement of water in aquifers, the quality of surface and underground water, and soil retention.

Another important factor for the implementation of corridors in areas of APPs is the wide distribution of the hydrographic network in these areas. The rivers present in higher areas are considered natural reservoirs of the ecosystem because they transfer water to the lower areas (TAMBOSI et al., 2015TAMBOSI, L.R.; VIDAL, M.M.; FERRAZ, S.F.B.; METZGER, J.P. Funções eco-hidrológicas das florestas nativas e o Código Florestal. Estudos avançados, v.29, n.84, 2015. DOI: https://doi.org/10.1590/S0103-40142015000200010
https://doi.org/10.1590/S0103-4014201500...
). In this way, lower areas depend greatly on the quality of the water transferred from higher areas. The forests located in these areas are ecologically important since they are able to influence the quantity, form and quantity of water that will be transported to the rest of the basin (ORTIZ et al., 2018ORTIZ, D.A.; ALBERTINA, P.L.; WERNECK, F.P. Environmental transition zone and rivers shape intraspecifc population structure and genetic diversity of an Amazonian rain forest tree frog. Evolutionary Ecology, v. 32, p.359–378, 2018. DOI: https://doi.org/10.1007/s10682-018-9939-2
https://doi.org/10.1007/s10682-018-9939-...
).

The areas that exhibited low ecological potential for the implementation of ecological corridors were considered so mainly because they are areas of exposed soil and further from water bodies. When soil is impacted, depending on the intensity of the removal of vegetation cover, an area may or may not be recovered (RODRIGUES et al., 2006RODRIGUES, G. B. Dinâmica da regeneração do subsolo de áreas degradadas dentro do bioma Cerrado. Brasileira de Engenharia Agrícola e Ambiental. v. 11, n. 1, p. 73–80, 2006. DOI: https://doi.org/10.1590/S1415-43662007000100010
https://doi.org/10.1590/S1415-4366200700...
). However, these areas were observed to have very degraded soil due to the impacts of agricultural activity, and thus may have lost their capacity for regeneration (CORRÊA; MELO, 1998CORRÊA, R. S.; MELO, B. F. Ecologia da revegetação em áreas escavadas. In: Corrêa, R. S.; Melo, B. F. (ed.). Ecologia e recuperação de áreas degradadas no Cerrado. Brasília: Ed. Paralelo 15, 2007. p. 65-99, 1998.).

Relating structural potential to the size and shape of fragments, all areas were noted to possess small irregular fragments. Although small fragments possess smaller populations and are more susceptible to external factors, when they are dispersed in the matrix they can be structurally important for the implementation of ecological corridors since they can facilitate the displacement of animals and contribute to the recolonization of areas in the process of natural regeneration (MUCHAILH, 2010MUCHAILH, M. C.; RODERJAN, C. V.; CAMPOS, J. B.; MACHADO, A. L. T.; CURCIO, G. R. Metodologia de planejamento de paisagens fragmentadas visando a formação de corredores ecológicos. Floresta, v. 40, n.1, p. 147-162, 2010. DOI: https://doi.org/10.5380/rf.v40i1.17106
https://doi.org/10.5380/rf.v40i1.17106...
).

With regard to shape, Cabacinha et al. (2010)CABACINHA, C. D.; CASTRO, S. S.; GONÇALVES, D. A. Análise da estrutura da paisagem da alta bacia do rio Araguaia na savana brasileira. Floresta, v. 40, n.4, p. 675-690, 2010. DOI: http://dx.doi.org/10.5380/rf.v40i4.20318
https://doi.org/10.5380/rf.v40i4.20318...
affirmed that values below 1 refer to more circular fragments, which are less elongated and less influenced by the edge effect. Circular areas minimize the area-edge relationship, with the center being further away from the edge when compared to elongated shapes. Thus, the more a fragment is cut, the greater the contact area between the forest and the matrix, and the larger the contact area the greater the edge effect (SANTIAGO et al., 2007SANTIAGO, B. S.; REZENDE, R. F.; FERREIRA, C. C. M. Reserva Biológica Municipal de Poço D’Anta, Juiz de Fora/MG - aspectos da fragmentação de habitat e efeito de borda. Gaia Scientia. v.1, n.1, p. 53-66, 2007.). Analysis of shape for determining structural potential of the study area revealed that the whole area possessed elongated (or irregular) fragments, which implies, for this study, that although the area possesses sub-areas with structural potential for the implementation of ecological corridors, all areas are under the border effect.

Areas with greater structural potential for the implementation of ecological corridors were observed to have greater connectivity among fragments and less total border. Regarding connectivity, the higher the mean connectivity among fragments the greater the potential dispersal and colonization, thus assuring greater the gene flow among populations (TAYLOR et al., 1993TAYLOR, P. D.; FAHRIG, L.; HENEIN, K.; MERRIAM, G. Connectivity is a vital element of landscape structure. Oikos, v.68, n.3, p. 571:573, 1993. DOI: https://doi.org/10.2307/3544927
https://doi.org/10.2307/3544927...
). Areas with lower structural potential possessed lower connectivity because greater isolation limits the dispersion of species and reduces gene flow, which can result in inbreeding and loss of diversity (GIBBS, 2001GIBBS, J. P. Demography versus habitat fragmentation as determinants of genetic variation in wild population. Biological conservation, v.100, n.1, p. 15-21, 2001. DOI: https://doi.org/10.1016/S0006-3207(00)00203-2
https://doi.org/10.1016/S0006-3207(00)00...
). In addition, most of the fragments must be considered small, and populations isolated in very small fragments will have even lower persistence due to reduced population sizes and the effects of stochastic processes (MEDINA; VIEIRA, 2007MEDINA, G. F.; VIEIRA, M. V. Conectividade funcional e a importância da interação organismo – paisagem. Oecologia Brasiliensis, v.11, n.4, p. 493-501, 2007. DOI: https://doi.org/10.4257/oeco.2007.1104.03
https://doi.org/10.4257/oeco.2007.1104.0...
).

With respect to total border, areas that possess greater mean border are likely to experience greater influence from external factors. They are also likely to possess a shorter distance between the interior (nucleus) and the edge, which means a reduction in the central area that is sufficient to support species (NASCIMENTO; LAURANCE, 2006NASCIMENTO, H.; LAURANCE, W.F. Area and edge effects on forest structure in Amazonian forest fragments after 13-17 years of isolation. Acta Amazonica, v. 36, n.2, p. 183-192, 2006. DOI: https://doi.org/10.1590/S0044-59672006000200008
https://doi.org/10.1590/S0044-5967200600...
).

5 CONCLUSIONS

The use of remote sensing together with the application of landscape metrics has effectively supported the proposal to implement ecological corridors. The routes of the corridors permitted the identification of areas with structural and ecological potential. Additionally, the results indicated the extreme necessity of implementing ecological corridors in the study area since even though it has high ecological potential, structurally the area is quite affected by small irregular fragments and edge effects.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. GWF thanks CNPq and Fapemig for grant supports.

How to quote this article

  • Salomão, N. V.; Silva, L. S.; Fernandes, G. W.; Piuzana, D.; Gonzaga, A. P. D.; Machado, E. L. M. Criteria for the implementation of ecological corridors in fragmented areas in southern Brazil. Ciência Florestal, Santa Maria, v. 33, n. 1, e70337, p. 1-19, 2023. DOI 10.5902/1980509870337. Available from: https://doi.org/10.5902/1980509870337.

REFERÊNCIAS

  • ANDRADE, E.L.; OLIVEIRA, A. N. S.; CONCEIÇÃO, D. N. Áreas Potenciais para Preservação na Área de Proteção Ambiental de Santa Rita, Alagoas. Revista Contexto Geográfico, v. 2, n. 4, p. 91 – 103, 2017. DOI: https://doi.org/10.28998/contegeo.v2i4.6325
    » https://doi.org/10.28998/contegeo.v2i4.6325
  • ATTANASIO, C. M.; GANDOLFI S.; ZAKIA, M.J.B.; JUNIOR, J.C.T.V. Importância das áreas ripárias para a sustentabilidade hidrológica do uso da terra em microbacias hidrográficas. Bragantia, v.71, n.4, p. 493-501, 2012. http://dx.doi.org/10.1590/S0006-87052013005000001
    » https://doi.org/10.1590/S0006-87052013005000001
  • BACARJI, A.G.; VILPOUX, O.F.; FILHO, A.C.P. Impacts of agrarian reform on land use in the biomes of the Midwest region of Brazil between 2004 and 2014. An Acad Bras Cienc, v.93, n.1, p.1-21, 2020. DOI: http://dx.doi.org/10.1590/0001-3765202120181106
    » https://doi.org/10.1590/0001-3765202120181106
  • BRESSIANI, J.X.; SCHMIDT, M.A.R. Proposta de Uso das Áreas Variáveis de Afluência como Área de Preservação Permanente. Revista Monografias Ambientais, v. 15, n.1, p.198-208, 2016. DOI: http://dx.doi.org/10.5902/22361308
    » https://doi.org/10.5902/22361308
  • BORGES, L.A.C.; REZENDE, J.L.P.; PEREIRA, J.A.A.; JÚNIOR, L.M.C.; BARROS, D.A. Áreas de preservação permanente na legislação ambiental brasileira. Ciência Rural, v.41, n.7, p, 1202-1210, 2011. DOI: https://doi.org/10.1590/S0103-84782011000700016
    » https://doi.org/10.1590/S0103-84782011000700016
  • CABACINHA, C. D.; CASTRO, S. S.; GONÇALVES, D. A. Análise da estrutura da paisagem da alta bacia do rio Araguaia na savana brasileira. Floresta, v. 40, n.4, p. 675-690, 2010. DOI: http://dx.doi.org/10.5380/rf.v40i4.20318
    » https://doi.org/10.5380/rf.v40i4.20318
  • COELHO, V.H.R.; XAVIER,, A.C.; BARBOSA, L.R.; .MELO, D.C.D.; XUAN, Y.; HUFFMAN, G.J.; PETERSEN, W.A.; .ALMEIDA, C.D.N. Grid box-level evaluation of IMERG over Brazil at various space and time scales. Atmospheric Research, v. 218, n.1, p.231-244, 2019. DOI: https://doi.org/10.1016/j.atmosres.2018.12.001
    » https://doi.org/10.1016/j.atmosres.2018.12.001
  • COSTA, A.; GALVÃO, A.; SILVA, L.G. Mata Atlântica brasileira: análise do efeito de borda em fragmentos florestais remanescentes de um hotspot para conservação da biodiversidade. Revista de Geografia, Meio ambiente e Ensino, v.10, n.1, p.112-123, 2019. DOI: https://doi.org/10.17605/OSF.IO/8GS9Y
    » https://doi.org/10.17605/OSF.IO/8GS9Y
  • CORRÊA, R. S.; MELO, B. F. Ecologia da revegetação em áreas escavadas. In: Corrêa, R. S.; Melo, B. F. (ed.). Ecologia e recuperação de áreas degradadas no Cerrado Brasília: Ed. Paralelo 15, 2007. p. 65-99, 1998.
  • DANTAS, D.; SOUZA, M.J.; VIEIRA, A.; OLIVEIRA, M.; PEREIRA, I.; MACHADO, E.; SOUZA, C.M.; ROCHA, W. Soil Influences on Tree Species Distribution in a Rupestrian Cerrado Area. Floresta e Ambiente, v.25, n.4, p. 1-9, 2018. DOI: https://doi.org/10.1590/2179-8087.060517
    » https://doi.org/10.1590/2179-8087.060517
  • DONHA, A. G., SOUZA, L. C. de P., SUGAMOSTO. Determinação da fragilidade ambiental utilizando técnicas de suporte à decisão e SIG. Revista Brasileira de Engenharia Agrícola e Ambiental, v.10, n.1, p. 175-181, 2006. DOI: https://doi.org/10.1590/S1415-43662006000100026
    » https://doi.org/10.1590/S1415-43662006000100026
  • EUGÊNIO, F. C.; SANTOS, A. R.; LOUZADA, R. O.; PIMENTEL, L. B.; MOULIN, J. V. Identificação de Áreas de Preservação Permanente no município de Alegre utilizando geotecnologia. Cerne, v.17, n.4, p. 563-571, 2011. DOI: https://doi.org/10.1590/S0104-77602011000400016
    » https://doi.org/10.1590/S0104-77602011000400016
  • FERNANDES, M.M.; FERNANDES, M.R.M. Análise Espacial da Fragmentação Florestal da Bacia do rio Ubá – RJ. Ciência Florestal, v. 27, n. 4, p. 1429-1439, 2017.
  • FERRAZ, S. F. B.; VETTORAZZI, C. A. Identificação de áreas para recomposição florestal com base em princípios de ecologia de paisagem. Árvore, v. 27, n.4, p. 575-583, 2003. DOI: https://doi.org/10.1590/S0100-67622003000400018
    » https://doi.org/10.1590/S0100-67622003000400018
  • FERRAZ, T.M.; SARAIVA, R.V.C.; LEONEL, L.V.; DOS REIS, F.F.; FIGUEIREDO, F.A.M.M.A.; REIS, F.D.; DE SOUZA, J.R.P.; MUNIZ, F.H. Cerrado physiognomies in Chapada das Mesas National Park (Maranhão, Brazil) revealed by patterns of floristic similarity and relationships in a transition zone. Anais da Academia Brasileira de Ciências, v.92, n.2, p.1-16. 2020. DOI: https://doi.org/10.1590/0001-3765202020181109
    » https://doi.org/10.1590/0001-3765202020181109
  • GIBBS, J. P. Demography versus habitat fragmentation as determinants of genetic variation in wild population. Biological conservation, v.100, n.1, p. 15-21, 2001. DOI: https://doi.org/10.1016/S0006-3207(00)00203-2
    » https://doi.org/10.1016/S0006-3207(00)00203-2
  • GUIDOTTI, V.; FERRAZ, S.F.B.; PINTO, L.F.G.; SPAROVEK, G.; TANIWAKI, R,H.; GARCIA, L.G.; BRANCALION, P, H, S. Changes in Brazil’s Forest Code can erode the potential of riparian buffers to supply watershed services. Land Use Policy, v.94, 2020. DOI: https://doi.org/10.1016/j.landusepol.2020.104511
    » https://doi.org/10.1016/j.landusepol.2020.104511
  • LAURENCE, W.F.; SAYER, J.; CASSMAN, K.G. Agricultural expansion and its impacts on tropical nature. Trends in Ecology & Evolution, v. 29, n. 2, p.107-116, 2014. DOI: https://doi.org/10.1016/j.tree.2013.12.001
    » https://doi.org/10.1016/j.tree.2013.12.001
  • LAPOLA, D. M.; FOWLER, H. G. Questioning the implementation of habitat corridors: a case study in interior São Paulo using ants as bioindicators. Brazilian Journal of Biology, v.68, n.1, p. 11-20, 2008. DOI: https://doi.org/10.1590/S1519-69842008000100003
    » https://doi.org/10.1590/S1519-69842008000100003
  • LIPORACCI, H.S.N. Where are the Brazilian ethnobotanical studies in the Atlantic Forest and Caatinga? Rodriguésia, v.68, n.4, p.1225-1240, 2017. DOI: https://doi.org/10.1590/2175-7860201768407
    » https://doi.org/10.1590/2175-7860201768407
  • MACEDO, R.; AUDINO, L.D.; KORASAKI, V.; LOUZADA, J. Conversion of Cerrado savannas into exotic pastures: The relative importance of vegetation and food resources for dung beetle assemblages. Agriculture, Ecosystems & Environment, v. 288, n.1, 2020. DOI: https://doi.org/10.1016/j.agee.2019.106709
    » https://doi.org/10.1016/j.agee.2019.106709
  • MELLO, R.C.A.; ZANARDO, A.; CONCEIÇÃO, F.T.; FERNANDES, A.M. Using the mineralogy of river sediments as pollution indicator of clay mining activity. Revista Brasileira de Recursos Hídricos, v. 21, n. 3, p. 502-513, 2016. DOI: https://doi.org/10.1590/2318-0331.011615099
    » https://doi.org/10.1590/2318-0331.011615099
  • MEDEIROS, J.F.; CESTARO, L.A. O emprego de técnicas estatísticas para a compartimentação geoambiental da Serra de Martins-RN. Sociedade & natureza, v.32, p. 384-395, 2020. DOI: https://doi.org/10.14393/SN-v32-2020-46691
    » https://doi.org/10.14393/SN-v32-2020-46691
  • MEDINA, G. F.; VIEIRA, M. V. Conectividade funcional e a importância da interação organismo – paisagem. Oecologia Brasiliensis, v.11, n.4, p. 493-501, 2007. DOI: https://doi.org/10.4257/oeco.2007.1104.03
    » https://doi.org/10.4257/oeco.2007.1104.03
  • MINASIEWICZ, J.; ZNANIECKA, J.M.; GÓRNIAK, M.; KAWIŃSKI, A. Spatial genetic structure of an endangered orchid Cypripedium calceolus (Orchidaceae) at a regional scale: limited gene flow in a fragmented landscape. Conservation Genetics, v.19, p.1449–1460. DOI: https://doi.org/10.1007/s10592-018-1113-4
    » https://doi.org/10.1007/s10592-018-1113-4
  • MUCHAILH, M. C.; RODERJAN, C. V.; CAMPOS, J. B.; MACHADO, A. L. T.; CURCIO, G. R. Metodologia de planejamento de paisagens fragmentadas visando a formação de corredores ecológicos. Floresta, v. 40, n.1, p. 147-162, 2010. DOI: https://doi.org/10.5380/rf.v40i1.17106
    » https://doi.org/10.5380/rf.v40i1.17106
  • MULLER, S. C.; WAECHTER, J. L. Estrutura sinusial dos componentes herbáceo e arbustivo de uma floresta costeira subtropical. Brazilian Journal of Botany, v. 24, n.4, p. 395-406, 2001. DOI: https://doi.org/10.1590/S0100-84042001000400005
    » https://doi.org/10.1590/S0100-84042001000400005
  • NASCIMENTO, H.; LAURANCE, W.F. Area and edge effects on forest structure in Amazonian forest fragments after 13-17 years of isolation. Acta Amazonica, v. 36, n.2, p. 183-192, 2006. DOI: https://doi.org/10.1590/S0044-59672006000200008
    » https://doi.org/10.1590/S0044-59672006000200008
  • NORIEGA, J.A.; HORTAl, J.; AZCARATÉ, F.M.; BERG, M.P.; BONADA, N.; BRIONES, M.J.I.; TORO, I.D.; GOULSON, D.; IBABEZ, S.; LANDIS, D.A.; MORETTI, M.; POTTS, S.G.; SLADE, E.M.; STOUT, J.C.; ULYSHEN, M.D.; WACKERS, F.L.; WOODCOOK, B.A.; SANTOS, A.M.C. Research trends in ecosystem services provided by insects. Basic and Applied Ecology, v.26, p.8-23, 2018. DOI: https://doi.org/10.1016/j.baae.2017.09.006
    » https://doi.org/10.1016/j.baae.2017.09.006
  • ORTIZ, D.A.; ALBERTINA, P.L.; WERNECK, F.P. Environmental transition zone and rivers shape intraspecifc population structure and genetic diversity of an Amazonian rain forest tree frog. Evolutionary Ecology, v. 32, p.359–378, 2018. DOI: https://doi.org/10.1007/s10682-018-9939-2
    » https://doi.org/10.1007/s10682-018-9939-2
  • PEREIRA, M. A. S.; NEVES, N. A. G. S.; FIGUEIREDO, D. F. Considerações sobre a fragmentação territorial e as redes de corredores ecológicos. Geografia, v.16, p. 5-20, 2007.
  • PINTO, J. R. R.; LENZA, E.; PINTO, A. S. Composição florística e estrutura da vegetação arbustivo-arbórea em um cerrado rupestre, Cocalzinho de Goiás, Goiás. Brazilian Journal of Botany, v.32, n.1, p. 1-10, 2009. DOI: https://doi.org/10.1590/S0100-84042009000100002
    » https://doi.org/10.1590/S0100-84042009000100002
  • PIRES, A. C. V.; PEREIRA, S. R.; FERNANDES, G. W.; OKI, Y. Efeito de Brachiaria decumbens na herbivoria e no desenvolvimento de duas leguminosas nativas de cerrado. Planta Daninha, v.30, n.4, p. 737-746, 2012. DOI: https://doi.org/10.1590/S0100-83582012000400007
    » https://doi.org/10.1590/S0100-83582012000400007
  • PREMKE,K.; ATTERMEYER, K.; AUGUSTIN, J.; CABEZAS,A.; CASPER,P.; DEUMLICH, D.; GELBRECHT,J.; GERKE,H.H.; GESSLER,A.; SIQUEIRA, M.N.; FARIA, K.M.S. Análise da dinâmica da paisagem no município de Rio Verde, Goiás, Brasil: uma ferramenta para a escolha de áreas prioritárias para a conservação. Sociedade & Natureza, v.31, n.1, p. 1-20, 2019. DOI: https://doi.org/10.14393/SN-v31-2019-38832
    » https://doi.org/10.14393/SN-v31-2019-38832
  • RODRIGUES, G. B. Dinâmica da regeneração do subsolo de áreas degradadas dentro do bioma Cerrado. Brasileira de Engenharia Agrícola e Ambiental. v. 11, n. 1, p. 73–80, 2006. DOI: https://doi.org/10.1590/S1415-43662007000100010
    » https://doi.org/10.1590/S1415-43662007000100010
  • SALOMÃO, N.V.; MACHADO, E.L.M.; PEREIRA, R.S.; FERNANDES, G.W.; GONZAGA, A.P.D.; MUCIDA, P.D.; SILVA, L.S. Structural analysis of a fragmented area in Minas Gerais State, Brazil. Anais da Academia Brasileira de Ciências, v. 90, n.4, p. 3353-3361, 2018. DOI: https://doi.org/10.1590/0001-3765201820160828
    » https://doi.org/10.1590/0001-3765201820160828
  • SANO, E.E.; RODRIGUES, A.A.; MARTINS, E.S.; Bettiol, G.M.; BUSTAMANTE, M.M.C.; BEZERRA, A.S.; COUTO JR, A.F.; VASCONCELOS, V.; SHULER, J.; BOLFE, E.L. Cerrado ecoregions: A spatial framework to assess and prioritize Brazilian savana environmental diversity for conservation. Journal of Environmental Management, v.232, n.15, p.818-828, 2019. DOI: https://doi.org/10.1016/j.jenvman.2018.11.108
    » https://doi.org/10.1016/j.jenvman.2018.11.108
  • SANTIAGO, B. S.; REZENDE, R. F.; FERREIRA, C. C. M. Reserva Biológica Municipal de Poço D’Anta, Juiz de Fora/MG - aspectos da fragmentação de habitat e efeito de borda. Gaia Scientia. v.1, n.1, p. 53-66, 2007.
  • SILVA, F. M. et al. Diversidade e estrutura do componente herbáceo-subarbustivo em vegetação secundária de Floresta Atlântica no sul do Brasil. Revista Brasileira de Biociência, v.7, n.1, p. 53-65, 2009.
  • SILVA, C. et al. GIS-Based Ecological Risk Assessment for Contaminated Sites by Fish Farm Effluents Using a Multicriteria Weight of Evidence Approach. Aquaculture Research, v.47, n.2, p. 524-539, 2016. DOI: https://doi.org/10.1111/are.12512
    » https://doi.org/10.1111/are.12512
  • SILVA, W.C.; FERREIRA, M.E.; TEIXEIRA, L.M.S.; MALAQUIAS, F.S.S.; PARENTE, L.L.; FERREIRA, L.G. Plataforma livre e interativa de mapas para a gestão territorial e ambiental do bioma cerrado. Revista Brasileira de Cartografia, v.69, n.8, Edição Especial “Geovisualização, mídias sociais e participação cidadã: apoio à representação, análise e gestão da paisagem”, p.1598-1609, 2017.
  • STEWART, F.E.C.; DARLINGTON, S.; VOLPE, J.P.; MCADIE, M.; FISHER, J.T. Corridors best facilitate functional connectivity across a protected area network. Scientific Reports, v.9, p.1-9, 2019. DOI: https://doi.org/10.1038/s41598-019-47067-x
    » https://doi.org/10.1038/s41598-019-47067-x
  • TAMBOSI, L.R.; VIDAL, M.M.; FERRAZ, S.F.B.; METZGER, J.P. Funções eco-hidrológicas das florestas nativas e o Código Florestal. Estudos avançados, v.29, n.84, 2015. DOI: https://doi.org/10.1590/S0103-40142015000200010
    » https://doi.org/10.1590/S0103-40142015000200010
  • TAYLOR, P. D.; FAHRIG, L.; HENEIN, K.; MERRIAM, G. Connectivity is a vital element of landscape structure. Oikos, v.68, n.3, p. 571:573, 1993. DOI: https://doi.org/10.2307/3544927
    » https://doi.org/10.2307/3544927

Publication Dates

  • Publication in this collection
    26 June 2023
  • Date of issue
    2023

History

  • Received
    12 May 2022
  • Accepted
    13 Dec 2022
  • PUB
    10 Apr 2023
Universidade Federal de Santa Maria Av. Roraima, 1.000, 97105-900 Santa Maria RS Brasil, Tel. : (55 55)3220-8444 r.37, Fax: (55 55)3220-8444 r.22 - Santa Maria - RS - Brazil
E-mail: cienciaflorestal@ufsm.br