Acessibilidade / Reportar erro

Effects of intrahippocampal administration of the phosphatase inhibitor okadaic acid: Dual effects on memory formation

Efeitos da administração intra-hipocampal do inibidor de fosfatases ácido okadaico: efeito duplo sobre a formação de memória

Abstract

Protein phosphorylation mediated by serine-threonine kinases in the hippocampus is crucial to the synaptic modifications believed to underlie memory formation. The role of phosphatases has been the focus of comparatively little study. Objectives: Here we evaluate the contribution of the serine-threonine protein phosphatases 1 and 2A (PP1, PP2A) on memory consolidation. Methods: We used immediate post-training bilateral hippocampal infusions of okadaic acid (OA, 0.01 and 10 pmol/side), a potent inhibitor of PP1 and PP2A, and measured short- [3 h] and long-term memory [24 h] (STM, LTM) of step-down inhibitory avoidance. Results: At the lower dose, OA inhibited both STM and LTM whereas at the higher dose it instead enhanced LTM. Pre-test infusion of these two doses of OA had no effect on retrieval. Conclusions: These two doses of OA are known to selectively inhibit PP1 and PP2A respectively. These findings point to the importance of these enzymes in memory formation and also suggest a deleterious influence of endogenous hippocampal PP2A on LTM formation.

Key words:
hippocampus; PP1; PP2A; okadaic acid; short-term memory; long-term memory

Resumo

A fosforilação de proteínas mediada por serina-treonina quinases no hipocampo é crucial para as modificações sinápticas que se acredita sejam necessárias para a formação de memórias. O papel das fosfatases tem sido comparativamente pouco estudado. Objetivos: Aqui avaliamos a contribuição das fosfatases serina-treonina 1 e 2 (PP1, PP2A) sobre a consolidação da memória. Métodos: Usamos infusões imediatamente após o treino de ácido okadaico (OA, 0.01 e 10 pmol/lado), um potente inibidor de PP1 e medimos memória de curta [3 h] e longa duração [24 h] (STM, LTM) de esquiva inibitória de evitar descer de uma plataforma. Resultados: Na dose menor, OA inibiu tanto STM como LTM. Na dose maior, produziu, em vez disso, uma melhora da LTM. A infusão pré-teste de qualquer uma das duas doses de OA não teve efeito sobre a evocação. Conclusões: Estas duas doses de OA são conhecidas por inibir seletivamente PP1 a PP2 respectivamente. Estes resultados apontam à importância das duas enzimas na formação de memória e sugerem, adicionalmente, uma influência deletérea da PP2A endógena sobre a formação de LTM.

Palavras-chave:
hipocampo; PP1; PP2A; ácido ocadaico; memória de curto prazo; memória de longo prazo

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

References

  • 1
    Winder DG, Sweatt JD Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. Nature Rev Neurosci 2001; 2:461-474.
  • 2
    Izquierdo I, Bevilaqua LRM, Rossato JI, Bonini JS, Medina JH, Cammarota M. Different molecular cascades in different sites of the brain control consolidation. Trends Neurosci 2006;29: 496-505.
  • 3
    Cammarota M, Bernabeu R, Levi de Stein M, Izquierdo I, Medina JH. Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity. Eur J Neurosci 1998;10:2669-2676.
  • 4
    Bevilaqua LR, Medina JH, Cammarota M, Izquierdo I. Memory consolidation induces N-methyl-d-aspartic acid receptor and Ca(2+)/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties. Neurosci 2005;136: 397-403.
  • 5
    Bernabeu R, Bevilaqua L, Ardenghi P, Bromberg E, Schmitz P, Bianchin M, Izquierdo I, Medina JH. Involvement of hippocampal D1/D5 receptor - cAMP signaling pathways in a late memory consolidation phase of an aversively-motivated task in rats. Proc Natl Acad Sci USA 1997;94:7041-7046.
  • 6
    Samuels IS, Karlo JC, Faruzzi AN, et al. Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci 2008; 28:6983-6995.
  • 7
    Schrader LA, Ren Y, Cheng F, Bui D, Sweatt JD, Anderson AE. Kv4.2 is a locus for PKC and ERK/MAPK cross-talk. Biochem J 2009;417:705-715.
  • 8
    Paratcha G, Furman M, Bevilaqua L, et al. Involvement of hippocampal PKCbI isoform in the early phase of memory formation of an inhibitory avoidance learning. Brain Res 2000;855:199-205.
  • 9
    Holahan M, Routtenberg A. The protein kinase C phosphorylation site on GAP-43 differentially regulates information storage. Hippocampus 2008;18:1099-1102.
  • 10
    Riedel G, Platt B. From messengers to molecules. New York: Kluwer Academic; 2004: 614.
  • 11
    Zhao W, Bennett P, Sedman GL, Ng KT. The impairment of long-term memory formation by the phosphatase inhibitor okadaic acid. Brain Res Bull 1995;36:557-561.
  • 12
    Bennett PC, Moutsoulas P, Lawen A, Perini E, Ng KT. Novel effects on memory observed following unilateral intracranial administration of okadaic acid, cyclosporine A, FK506 and [VeVal4]CyA. Brain Res 2003;988:56-68.
  • 13
    Mansuy IM, Shenolikar S. Protein serine/threonine phosphatases in neuronal plasticity and disorders of learning and memory. Trends Neurosci 2006;29:679-686.
  • 14
    Stefan MI, Edelstein SJ, Le Novère N. An allosteric model of calmodulin explains differential activation of PP2B and CaMKII. Proc Natl Acad Sci USA 2008;105:10768-10773.
  • 15
    Wang LY, Orser BA, Brautigan DL, MacDonald JF. Regulation of NMDA receptors in cultured hippocampal neurons by protein phosphatases 1 and 2A. Nature 1994;369:230-232.
  • 16
    Woo NH, Nguyen PV. Silent metaplasticity of the late phase of long-term potentiation requires protein phosphatases. Learn Mem 2002;9:202-213.
  • 17
    Gruart A, Muñoz MD, Delgado-García JM. Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice. J Neurosci 2006;26:1077-1087.
  • 18
    Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long-term potentiation in the hippocampus. Science 2006;313:1093-1097.
  • 19
    Bennett PC, Zhao W, Lawan A, Ng KT. Cyclosporin A, an inhibitor of calcineurin, impairs memory formation in day-old chicks. Brain Res 1996;730:107-117.
  • 20
    Sun L, Liu SY, Zhow XW, Wang XC, Liu R, Wang Q, Wang JZ. Inhibition of protein phosphatase 2A- and protein phosphatase 1-induced tau hyperphosphorylation and impairment of spatial memory retention in rats. Neurosci 2003;118:1175-1182.
  • 21
    Bennett PC, Zhao W, Ng KT. Concentration-dependent effects of protein phosphatases (PP) inhibitors implicate PP1 and PP2A in different stages of memory formation. Neurobiol Learn Mem 2001;75:91-110. 22.
  • 22
    Winder DG, Mansuy IM, Osman M, Moallem TM, Kandel ER. Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell 1998;92:25-37.
  • 23
    Mansuy IM, Mayford M, Jacob B, Kandel ER, Bach ME. Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 1998;92:39.
  • 24
    Malleret G, Haditsch U, Genoux D, et al. Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of Calcineurin. Cell 2001; 104:675-686.
  • 25
    Genoux D, Haditsch U, Knobloch M, Michalon A, Storm D, Mansuy IM. Protein phosphatase 1 is a molecular constraint on learning and memory. Nature 2002;418:929-930.
  • 26
    Jouvenceau A, Hédou G, Potier B, Kollen M, Dutar P, Mansuy IM. Partial inhibition of PP1 alters bidirectional synaptic plasticity in the hippocampus. Eur J Neurosci 2006;24:564-572.
  • 27
    Izquierdo I, Barros DM, Mello e Souza T, Souza MM, Izquierdo LA, Medina JH. Mechanisms for memory types differ. Nature 1998;393:635-636.
  • 28
    McGaugh JL. Memory: a century of consolidation. Science 2000;287:248-251.
  • 29
    Cohen P, Alemany S, Hemmings BA, Resink TJ, Strålfors P, Tung HY. Protein phosphatase-1 and protein phosphatase-2A from rabbit skeletal muscle. Meth Enzymol 1988;159:390-408.
  • 30
    Grahame-Hardie D. Protein phosphorylation: a practical approach, Oxford Academic Press: Oxford; 1999.
  • 31
    Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Academic Press: San Diego; 1986.
  • 32
    Vianna MR, Alonso M, Viola H, et al. Role of hippocampal signaling pathways in long-term memory formation of a nonassociative learning task in the rat. Learn Mem 2000;7:333-340.
  • 33
    Arendt T, Holzer M, Fruth R, Bruckner MK, Gartner U. Paired helical filament-like phosphorylation of tau, deposition of beta/A4-amyloid and memory impairment in rat induced by chronic inhibition of phosphatase 1 and 2A. Neuroscience 1995;69:691-698.
  • 34
    Silva AJ, Josselyn SA. The molecules of forgetfulness. Nature 2002;418:929-930.
  • 35
    Izquierdo I. A arte de esquecer. Rio de Janeiro, Vieira & Lent; 2004.
  • 36
    Lopez-Salon M, Alonso M, Vianna, MR, Viola H, Mello e Souza T, Izquierdo I, Pasquini JM, Medina JH. The ubiquitin-proteasome cascade is required for mammalian long-term memory formation. Eur J Neurosci 2001;14:1820-1826.

Publication Dates

  • Publication in this collection
    Jan-Mar 2010

History

  • Received
    16 Sept 2009
  • Accepted
    20 Feb 2010
Academia Brasileira de Neurologia, Departamento de Neurologia Cognitiva e Envelhecimento R. Vergueiro, 1353 sl.1404 - Ed. Top Towers Offices, Torre Norte, São Paulo, SP, Brazil, CEP 04101-000, Tel.: +55 11 5084-9463 | +55 11 5083-3876 - São Paulo - SP - Brazil
E-mail: revistadementia@abneuro.org.br | demneuropsy@uol.com.br