Acessibilidade / Reportar erro

A systematic review of the neurobiological aspects of memory in the aging process

Revisão sistemática dos aspectos neurobiológicos da memória no processo de envelhecimento

Abstract

A systematic review of the neuroanatomical literature was performed to determine the neuropharmacological aspects most relevant to the study of memory processes. Articles were retrieved using the search terms "biology of memory", "memory and aging", "memory impairment", "elderly and memory," and their equivalents in Portuguese. Of the studies surveyed, five studies dealt with epidemiological and demographic issues, 12 were clinical trials i.e. were based on testing and implementation of instruments in human subjects, 33 studies were basic research involving studies of mice, rats and non-human primates, and biochemical and in vitro trials and finally, 52 studies were literature reviews or book chapters which in our view, fell into this category.

Conclusions:

The work sought to highlight which neural networks are most involved in processing information, as well as their location within brain regions and the way in which neurotransmitters interact with each other for the formation of these memories. Moreover, it was shown how memory changes during the normal human aging process, both positively and negatively, by analyzing the morphological alterations that occur in the brain of aging individuals.

Key words:
memory; neurobiology; neuropharmacology; aging.

Resumo

Buscou-se verificar na literatura os aspectos neuroanatômicos e neurofarmacológicos mais relevantes no estudo dos processos de memória, através de revisão sistemática. O levantamento bibliográfico foi realizado utilizando-se os termos "biology of memory", "memory and aging", "memory impairment", "elderly and memory", e seus correspondentes em português. Dos estudos levantados, cinco estudos tratavam sobre questões epidemiológicas e demográficas; 12 estudos eram de base clínica, ou seja, as pesquisas ocorreram com base em testes e aplicação de instrumentos em seres humanos; 33 estudos foram oriundos da pesquisa básica, envolvendo pesquisas com camundongos, ratos e primatas não humanos, e ensaios bioquímicos e in vitro; e, por fim, 52 estudos são revisões da literatura ou capítulos de livros que, a nosso ver, enquadram-se nesta categoria.

Conclusões:

Buscou-se dar destaque para quais redes neurais estão mais envolvidas no processamento das informações, bem como sua localização dentro das regiões cerebrais e a forma com a qual os neurotransmissores interagem entre si e atuam para a formação destas memórias. Ademais, mostrou-se como a memória se altera ao longo do processo de envelhecimento humano normal, negativa e positivamente, analisando as alterações morfológicas que ocorrem no cérebro do indivíduo que envelhece.

Palavras-chave:
memória; neurobiologia; neurofarmacologia; envelhecimento.

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

References

  • Instituto Brasileiro de Geografia e Estatística - IBGE. Uma análise das condições de vida da população brasileira. Rio de Janeiro. Disponível em: Disponível em: http://www.ibge.gov.br/home/estatistica/populacao/condicaodevida/indicadoresminimos/sinteseindicsociais2010/default.shtm , 2010. Acessado em: 17/07/2011.
    » http://www.ibge.gov.br/home/estatistica/populacao/condicaodevida/indicadoresminimos/sinteseindicsociais2010/default.shtm
  • Organização das Nações Unidas - ONU. World population to increase by 2.6 billion over next 45 years, with all growth occurring in less developed regions. Disponível em: Disponível em: http://www.un.org/News/Press/docs/2005/pop918.doc.htm 2005. Acessado em: 17/07/2011.
    » http://www.un.org/News/Press/docs/2005/pop918.doc.htm
  • Carvalho J, Garcia RA. O Envelhecimento da população brasileira: um enfoque demográfico. Cad. Saúde Pública, Rio de Janeiro 2003;19:725-733.
  • Camarano AA, Kanso S, Mello JL. Como vive o idoso brasileiro? In: Camarano AA. (org). Os novos idosos brasileiros: muito além dos 60? Rio de Janeiro, Ipea, 2004:25-73.
  • Yassuda MS. Memória e envelhecimento saudável. In: Freitas EV, Py L, Cançado FAX. Tratado de geriatria e gerontologia. Rio de Janeiro: Guanabara Koogan; 2002:914-919.
  • Paulo DLV, Yassuda MS. Queixas de memória de idosos e sua relação com escolaridade, desempenho cognitivo e sintomas de depressão e ansiedade. Rev Psiq Clin 2010;37:23-26.
  • Souza RR. Alterações anatômicas do sistema nervoso central associadas ao envelhecimento. In: Jacob WF, Carvalho ETF (eds.). Envelhecimentodo sistema nervoso e a dor no idoso. São Paulo, 1996, FMUSP, 56-60.
  • Lima-Silva TB, Yassuda MS. A relação entre a queixa de memória e a idade no envelhecimento normal / The relationship between memory complaints and age in normal aging. Dement Neuropsychol 2009;3:94-100.
  • Izquierdo I. Memória. Porto Alegre: Artmed, 2002.
  • Lent R. Neurociência da Mente e do Comportamento. Rio de Janeiro: Guanabara Koogan ; 2008.
  • Lent R. Cem bilhões de neurônios - Conceitos fundamentais de neurociência. 2ed., São Paulo SP, Editora Atheneu; 2010.
  • Gazzaniga MS, Heatherton TF. Memória , Ciência Psicológica: Mente, Cérebro e Comportamento, Porto Alegre, RS: Artmed; 2002.
  • Squire LR, Kandel ER. Memória . Da mente às moléculas. Artmed; 2003.
  • Lent R. Neurociência da Mente e do Comportamento . Rio de Janeiro: Guanabara Koogan , 2009.
  • Sala SD, Logie RH. Neuropsychological impairments of visual and spatial working memory. In: Baddeley AD, Kopelman MD, Wilson BA. The handbook of memory disorders. 2nd ed.. Chichester, W. Sussex: John Wiley & Sons Ltd. 2002:271-292.
  • Cassini LF. Influência de novos aprendizados sobre o processo de reorganização da memória de medo condicionado [Trabalho de conclusão de curso]. Universidade Federal do Rio Grande do Sul, 2010.
  • Akers KG, Frankland WP. Grading gradients: evaluating evidence for time-dependentmemory reorganizations in experimental animals. J Exp Neurosci 2009;13:22-29.
  • Daumas S, Ceccon J, Halley H, Francés B, Lassalle JM. Activation of metabotropic glutamate receptor type 2/3 supports the involvement of the hipocampal mossy fiber pathway on contextual fear memory consolidation. Learn Mem 2009; 16:504-507.
  • Nakazawa K, McHugh TJ, Wilson MA, Tonegawa S. NMDA receptors, place cells and hippocampal spatial memory. Nat Rev Neurosci 2009;5:361-372.
  • Rolls ET, Kesner RP. A computational theory of hippocampal function, and empirical tests of the theory. Prog Neurobiol 2006;79:1-48.
  • Gimenes-Junior JA. Busca alimentar, memória espacial e ansiedade em ratos: possível participação do núcleo mamilar medial [Tese de mestrado]. São Paulo; 2008.
  • Eslinger PJ. Functinal neuroanatomy of the limbic system. In: The handbook of pediatric neuropsychology. Org: Davis AS. New York: Springer Publishing Company; 2011.
  • Mendonça LIZ. Bases biológicas do comportamento. Cad Bras Saúde Mental 2009;1:1-4.
  • Espiridião-Antonio V, Majeski-Colombo M, Toledo-Monteverde D, Moraes-Martins G, Fernandes JJ, Assis MB, Siqueira-Batista R. Neurobiologia das emoções. Rev Psiquiatr Clin 2008;35:55-65.
  • Vetulani J. Drug Addiction. Part II. Neurobiology of addiction. Pol J Pharmacol 2001;53:303-317.
  • Lent R. Cem bilhões de neurônios: conceitos fundamentais de neurociências. São Paulo: Ed Atheneu; 2002.
  • Gazzaniga MS, Heatherton TF. Ciência psicológica: mente, cérebro e comportamento. 2 ed. Porto Alegre: Artmed ; 2005.
  • LaBar KS, Cabeza R. Cognitive neuroscience of emotional memory. Nat Rev Neurosc 2006;7:54-64.
  • Buchanan TW. Retrieval of emotional memories. Psychol Bull 2007;133:761-779.
  • LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci 2000;23:155-184.
  • Maren S. Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci 2001;24:897-931.
  • Maren S. Synaptic mechanisms of associative memory in the amygdala. Neuron 2005;47:783-786.
  • Sigurdsson T, Doyère V, Cain CK, LeDoux JE. Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Neuropharmacology 2007; 52:215-227.
  • Rattiner LM, Davis M, Ressler KJ. Brain-derived neurotrophic factor in amygdala-dependent learning. Neuroscientist 2005; 11:323-333.
  • Tsvetkov E, Carlezon WA, Benes FM, Kander ER, Bolshakov VY. Fear Conditioning Occludes LTP-Induced Presynaptic Enhancement of Synaptic Transmission in the Cortical Pathway to the Lateral Amygdala. Neuron 2002;34:289-300.
  • Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses. Science 2001;294: 1030-1038.
  • Pang PT, Lu B. Regulation of late-phase LTP and long-term memory in normal and aging hippocampus role of secreted proteins tPA and BDNF. Aging Res Rev 2004;3:407-430.
  • Izquierdo I, Cammarota M, Da Silva WB, et al. The evidence for hippocampal long-term potentiation as a basis of memory for simple tasks. An Acad Bras Ciênc 2008;80:115-127.
  • Lazzaro SC, Hou M, Cunha C, Le Doux JE, Cain CK. Antagonism of lateral amygdala alpha1-adrenergic receptors facilitates fear conditioning and long-term potentiation. Learn Mem 2010;17:489-493.
  • Duvarci S, Popa D, Paré D. Central Amygdala Activity during Fear Conditioning. J Neurosc 2011;31:289 -294.
  • Ciocchi S, Herry C, Grenier F, Wolff SBE, et al. Encoding of conditioned fear in central amygdala inhibitory circuits.Nature 2010;468:277-282.
  • Albuquerque FS, Silva RH. Amygdala and the slight boundary between memory and emotion. Rev Psiquiatr, Rio Gd Sul 2009;31(suppl.):S1.
  • Liu CC, Crone NE, Franaszczuk PJ, Cheng DT, Schretlen DS, Lenz FA. Fear conditioning is associated with dynamic directed functional interactions between and within the human amygdala, hippocampus, and frontal lobe. Neuroscience 2011; 189:359-369.
  • Roozendaal B, Quervain DJF, Ferry B, Setlow B, McGauch JL. Basolateral Amygdala-Nucleus Accumbens interactions in mediating glucocorticoid enhancement of memory consolidation. J Neurosc 2001;21:2518-2525.
  • Quevedo J, Feier G, Agostinho FR, Martins MR, Roesler R. Consolidação da memória e estresse pós-traumático. Rev Bras Psiquiatr 2003;25(Supl 1):25-30.
  • Phelps EA. Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol 2004;14:198-202.
  • Jackowski AP. Neuroanatomia. In: Flávio Kapcinzski, João Quevedo e Ivan Izquierdo (orgs). Bases biológicas dos transtornos psiquiátricos. 2. ed. Porto Alegre: Artmed ; 2004.
  • Dani JA, Bertrand D. Nicotinic Acetylcholine Receptors and Nicotinic Cholinergic Mechanisms of the Central Nervous System. Annu Rev Pharmacol Toxicol 2007;47:699-729.
  • De Leonibus E, Oliverio A, Mele A. A Study on the Role of the Dorsal Striatum and the Nucleus Accumbens in Allocentric and Egocentric Spatial Memory Consolidation. Learn Mem 2005;12:491-503.
  • LaLumiere RT, Nawar EM, McGaugh JL. Modulation of Memory Consolidation by the Basolateral Amygdala or Nucleus Accumbens Shell Requires Concurrent Dopamine Receptor Activation in Both Brain Regions. Learn Mem 2005;12:296-301.
  • Carlezon JR, Thomas MJ. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 2009;56(Suppl 1):122-132.
  • Kerfoot EC, Chattillion EA, Williams CL. Functional interactions between the Nucleus Tractus Solitarius (NTS) and Nucleus Accumbens Shell in modulating memory for arousing experiences. Neurobiol. Learn Mem 2009;89:47-60.
  • Van Stegeren AH. The role of the noradrenergic system in emotional memory. Acta Psychol 2008;17:532-541.
  • Harber SN, Knutson B. The reward circuit: link primate anatomy and human imaging. Neuropsychopharmacology 2010; 35:4-26.
  • Machizawa MG, Kalla R, Walsh V, Otten LJ. The time course of ventrolateral prefrontal cortex involvement in memory formation. J Neurophysiol 2010;103:1569-1579.
  • Rang HP, Dale MM, Ritter JM, and Flower RJ. Farmacologia. 6ª ed., Rio de Janeiro: Elsevier; 2008.
  • McKinney M, Jacksonville MC. Brain Cholinergic Vulnerability: relevance to behavior and disease. Biochem Pharmacol 2005;70:1115-1124.
  • Arthur D, Levin ED. Chronic inhibition of alpha4beta2 nicotinic receptors in the ventral hippocampus of rats: impacts on memory and nicotine response. Psychopharmacology (Berl) 2002;160:140-145.
  • Barros MD, Ramirez MR, Dos Reis EA, Izquierdo I. Participation of hippocampal nicotinic receptors in acquisition, consolidation and retrieval of memory for one trial inhibitory avoidance in rats. Neuroscience 2003;126:651-656.
  • Nott A, Levin ED. Dorsal Hippocampal alpha7 and alpha4beta2 nicotinic receptors and memory. Brain Res 2006; 1081:72-78.
  • Matsuyama S, Matsumoto A. Epibatidine induces long-term potentiation (LTP) via activation of alpha4beta2 nicotinic acetylcholine receptors (nAChRs) in vivo in the intact mouse dentate gyrus: both alpha7 and alpha4beta2 nAChRs essential to nicotinic LTP. J Pharmacol Sci 2003;93: 180-187.
  • Jones IW, Wonnacott S. Precise localization of alpha7 nicotinic acetylcholine receptors on glutamatergic axon terminals in the rat ventral tegmental area. J Neurosci 2004;24:11244-11252.
  • Kiernan JA. Sistema límbico: hipocampo e amígdala. In: Neuroanatomia humana de Barr. 7ed. Manole; 2003.
  • Rossato JI, Bevilaqua LRM, Izquierdo I, Medina JH, Cammarota M. Dopamine controls persistence of long-term memory storage. Science 2009;325:1017-1020.
  • Cao JL, Covington IHE, Friedman AK, Wilkinson MB, Walsh JJ, Cooperr DC, Nestler EJ, Han MH. J. Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. Neurosci 2010; 30:16453-16458.
  • Vijayraghavan S. Physiological actions and signaling mechanisms of dopamine D1-D5 receptor modulation of working memory circuitry in prefrontal cortex [Tese de Doutorado]. Yale University. Disponível em: Disponível em: http://proquest.umi.com/pqdlink?did=1550307021&Fmt=14&VType=PQD&VInst=PROD&RQT=309&VName=PQD&TS=1310780259&clientId=79356 , 2008. Acessado em: 17/07/2011.
    » http://proquest.umi.com/pqdlink?did=1550307021&Fmt=14&VType=PQD&VInst=PROD&RQT=309&VName=PQD&TS=1310780259&clientId=79356
  • Cools R, Gibbs SE, Miyakawa A, Jagust W, D'Esposito M. Working memory capacity predicts popamine synthesis capacity in the human striatum. J Neurosci 2008;28:1208-1212.
  • Landau SM, Lal R, O'Neil JP, Baker S, Jagust WJ. Striatal dopamine and working memory. Cerebral Cortex 2009;19: 445-454.
  • Bermudez-Rattoni F. Is memory consolidation a multiple-circuit system? PNAS 2010;17:8051-8052.
  • Reiriz AB. Estudo da função cognitiva em camundongos submetidos ao agente quimioterápico ciclosfamida [Dissertação de Doutorado].UFRS; 2008.
  • Pereira-Junior A. Questões epidemiológicas da neurociência cognitiva [Tese de livre-docência]. Instituto de biociências.UNESP; 2001.
  • Bertolucci PHF. Avaliação da memória. In: Forlenza, O.V.; Caramelli, P. Neuropsiquiatria geriátrica. São Paulo. Editora: Atheneu; 2000;507-516.
  • Mattay VS, Goldberg TE, Sambataro F, Weinberg DR. Neurobiology of cognitive aging: insights from imaging genetics. Biological Psychology 2008;79:9-22.
  • Neri AL, In E.V. Freitas L, Py, FAX, Cançado J. Tratado de geriatria e gerontologia , Rio de Janeiro: Guanabara Koogan , 2ª edição, 2006:1236-1244.
  • Cançado FAX, Horta ML. Envelhecimento Cerebral. Tratado de geriatria e gerontologia , Rio de Janeiro: Guanabara Koogan , 2ª edição, 2006:113-127.
  • Salthouse TA. When does age-related cognitive decline begin? Neurobiol Aging 2010;30:507-514.
  • Morgado I. The psychobiology of learning and memory: fundamentals and recent advances. Rev Neurol 2005;40:289-297.
  • Albert ML, Spiro A, Sayers KJ, Cohen JA, Brady CB, Goral M, Obler LK. Effects of health status on word finding in aging. J Am Geriatr Soc 2009;57:2300-2305.
  • Steuber V, Mittmann W, Hoebeek FE, Silver RA, De Zeeuw CI, Häusser M, De Schutter E, Cerebellar LTD and pattern recognition by Purkinje cells. Neuron 2007;54:121-136.
  • Erickson CA, Barnes CA. The neurobiology of memory changes in normal aging. Exp Gerontol 2003;38:61-69.
  • Bédard A, Cossette M, Lévesque M, Parent A. Proliferating cells can differentiate into neurons in the striatum of normal adult monkey Neurosci ence Letters 2002;328:213-216.
  • Okuda H, Tatsumi K, Makinodan M, Yamauchi T, Kishimoto T, et al. Environmental enrichment stimulates progenitor cell proliferation in the amygdala. J Neurosci Res 2009; 87:3546-3553.
  • Landgren H, Curtis MA. Locating and labeling neural stem cells in the brain. J Cell Physiol 2010, DOI: 10.1002/jcp.22319.
  • Hotulainen P & Hoogenraad CC. Actin in dendritic spines: connecting dynamics to function. J Cell Biol 2010;189:619-629.
  • Lynch G, Rex CS, Gall CM. Synaptic plasticity in early aging. Ageing Res Rev 2006;5:255-280.
  • Phale M, Korgaonkar D. Pharmacology of learning and memory. The Internet Journal of Pharmacology 2009; 7(1).
  • Squire LR, Kandel ER. Memory: From Mind to Molecules. Roberts & Company Publishers, Colorado, USA; 2008.
  • Sah P, Faber ESL, Lopez -Armentia M, Power J. The amygdaloid complex: anatomy and phisiology. Phisiol Rev 2003;83: 803-834.
  • Goldenberg G, Schuri U, Grömminger O, Arnold U. Basal forebrain amnesia: does the nucleus accumbens contribute to human memory? J Neurol Neurosurg Psychiatry 1999;67:163-168.
  • Kramer AF, Bherer L, Colcombe SJ, Dong W, Greenough WT. Environmental influences on cognitive and brain plasticity during aging. J Gerontol A Biol Sci Med Sci 2004;59:940-957.
  • Riley KR, Snowdon DA, Desrosiers MF & Markesbery WR. Early life linguistic ability, late life cognitive function, and neuropathology: findings from the Nun Study. Neurobiol Aging 2005;26:341-347.
  • Loukavenko EA, Ottley MC, Moran JP, Wolff M, Dalrymple-Alford JC. Towards therapy to relieve memory impairment after anterior thalamic lesions: improved spatial working memory after immediate and delayed postoperative enrichment. Eur J Neurosci 2007;26:3267-3276.
  • Baraldi T, Amaral FA, Albuquerque MS, Buck HS, Viel TA. Comparison of cognitive stimulation during life-time and during the elderly: effects on spatial memory and on neuroplasticity of mice. Anais 42º Congresso da SBFTE, Resumo 02.042, Ribeirão Preto, SP, 2010.
  • Oliveira EM. Influência do estímulo cognitivo sobre o sistema colinérgico de camundongos transgênicos para a doença de Alzheimer: relação entre colina acetiltransferase e memória. [Trabalho de conclusão de curso]. Universidade de São Paulo; 2010.
  • Schöwe, N.M. Avaliação da densidade de receptores colinérgicos nicotínicos alfa7 após estimulação cognitiva em modelo animal de neurodegeneração. [Trabalho de conclusão de curso]. Universidade de São Paulo; 2010.
  • Fratiglioni L, Paillard-Borg S, Winblad B. An active and socially integrated lifestyle late in life might protect against dementia. Lancet Neurol 2004;3:343-353.
  • Scarmeas N, Stern Y. Cognitive reserve and lifestyle. J Clin Exp Neuropsychol 2003;25:625-633.
  • Yeh SCJ, Liu YY. Influence of social support on cognitive function in the elderly. BMC Health services research, 2003.
  • Mello MT, Boscolo RA, Esteves AM, Tufik S. O exercício físico e os aspectos psicobiológicos. Rev Bras Med Esporte 2005;11(3).
  • La Rue A. Healthy brain aging: role of cognitive reserve, cognitive stimulation and cognitive exercises. Clin Geristr Med 2010;26:99-111.
  • Spencer JPE. Symposium on Diet and mental health Food for thought: the role of dietary flavonoids in enhancing human memory, learning and neurocognitive performance. Proc Nutr Soc 2008;67:238-252.
  • Cotman CW & Engesser C. Exercise enhances and protects brain function. Exerc Sport Sci Rev 2002;30:75-79.

Publication Dates

  • Publication in this collection
    Oct-Dec 2011

History

  • Received
    19 July 2011
  • Accepted
    03 Oct 2011
Academia Brasileira de Neurologia, Departamento de Neurologia Cognitiva e Envelhecimento R. Vergueiro, 1353 sl.1404 - Ed. Top Towers Offices, Torre Norte, São Paulo, SP, Brazil, CEP 04101-000, Tel.: +55 11 5084-9463 | +55 11 5083-3876 - São Paulo - SP - Brazil
E-mail: revistadementia@abneuro.org.br | demneuropsy@uol.com.br